
A Framework to Support Continuous Range
Queries Over Multi-Attribute Trajectories

Jianqiu Xu , Zhifeng Bao , and Hua Lu , Senior Member, IEEE

Abstract—Emerging applications over spatio-temporal trajectories require representing the data from diverse aspects. We study multi-

attribute trajectories each of which consists of a sequence of time-stamped locations and a set of attributes characterizing diverse

aspects. We investigate continuous range queries over multi-attribute trajectories. Such a query returns trajectories whose attributes

contain expected values and whose locations are always within a distance threshold to the query trajectory during the entire

overlapping time period. To efficiently answer the query, an optimal method of partitioning the trajectories is proposed and an index

structure is developed to support the combined search using both spatio-temporal parameters and attribute values. Query algorithms

and auxiliary structures are developed, accompanied with optimization strategies and thorough theoretical analysis. Using both real

and synthetic datasets, we carry out comprehensive experiments in a prototype database system to evaluate the efficiency and

scalability of our designs. The experimental results show that our approach outperforms six alternative approaches by a factor of 5-50x

on large datasets.

Index Terms—Multi-attribute trajectories, continuous range, index structure, approximate computation

Ç

1 INTRODUCTION

THE increasing prevalence of GPS-equipped mobile devi-
ces has led to an explosion of spatio-temporal trajectories.

In the last decade, a rich body of research has been con-
ducted on processing such data [5], [16], [17], [27], [29].
Emerging applications perform data analytics and query
processing over big trajectories to enhance their services.
Due to COVID-19 virus pandemic recently, the system
requires to find out people who have been close to infected
or likely infected persons [13], [14]. To achieve this task, one
needs not only time-stamped locations but also an attribute
describing the state of the person: {Safe, Infected, Likely
infected}. The system utilizes the attribute to determine
from when and where an infected person will further infect
other persons rather than simply reporting two trajectoires
which have been close to each other for a while. This enhan-
ces the searching efficiency and effectiveness as a large
search space will be involved if only spatio-temporal trajec-
tories are analyzed and the result may not be accurate. The
increasing popularity of car-calling and ride-sharing serv-
ices (e.g., DiDi and Uber) have lead to a large number of
driver and passenger trajectories. To enhance the schedule
capability, an important task is to analyze locations of pas-
sengers and drivers at which passengers request pick-up

services and drivers who are not in service. The overall
pick-up time can be reduced if passengers would like to
move a short distance to places at which it takes much less
time and effort for drivers to reach than their original pla-
ces, in particular, at peak hours. The places are those routes
at which drivers are not in service and within a short dis-
tance to the passenger’s current location. We believe that it
requires less effort to let passengers move to an appropriate
pick-up place than letting drivers move to the passenger’s
place. Usually, a passenger’s location is equivalent to the
pick-up request location. However, in many all-time highly
crowded places such as train station and airport, passengers
can only be picked up in certain areas. In this context, pas-
sengers need to move to certain places. Also, during traffic
period the time to be picked up would be less if the passen-
ger moves to a nearby place with low congestion. The
passenger’s current location may be difficult to reach for the
driver due to one-way street or making a U turn. We gener-
alize the case by considering a passenger’s trajectory rather
than using a spatial location.

Consider the following task. Given a driver trajectory who
is free, report passenger trajectories who have been within the
d-distance (e.g., 1 km) to the driver and request pick-up serv-
ices. To achieve the task, trajectory databases at first require to
extend the data representation by integrating descriptive
attributes into spatio-temporal trajectories. There are driver
and passenger trajectories, and each trajectory contains the sta-
tus information such as whether the driver is free and the pas-
senger has been picked up. Furthermore, drivers’ vehicles
have several types such as taxi, tailored taxi and expresswhich
have different charges and need to be defined as well. We call
spatio-temporal trajectories associatedwith descriptive attrib-
utes multi-attribute trajectories. The query is called Continuous
Range query with Attributes, CRA for short.

The CRA reports trajectories satisfying the criteria: (i) attri-
bute consistency and (ii) time-dependent distance constraint. Each

� Jianqiu Xu is with the Department of Computer Engineering and Science,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China. E-mail: jianqiu@nuaa.edu.cn.

� Zhifeng Bao is with the School of Computing Technologies, RMIT Univer-
sity, Melbourne, VIC 3000, Australia. E-mail: zhifeng.bao@rmit.edu.au.

� Hua Lu is with the Department of People and Technology, Roskilde Uni-
versity, 4000 Roskilde, Denmark. E-mail: luhua@ruc.dk.

Manuscript received 23 Dec. 2020; revised 20 May 2021; accepted 16 July 2021.
Date of publication 29 July 2021; date of current version 10 Jan. 2023.
(Corresponding author: Jianqiu Xu.)
Recommended for acceptance by G. Chen.
Digital Object Identifier no. 10.1109/TKDE.2021.3100650

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 2, FEBRUARY 2023 1119

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0929-5234
https://orcid.org/0000-0002-0929-5234
https://orcid.org/0000-0002-0929-5234
https://orcid.org/0000-0002-0929-5234
https://orcid.org/0000-0002-0929-5234
https://orcid.org/0000-0003-2477-381X
https://orcid.org/0000-0003-2477-381X
https://orcid.org/0000-0003-2477-381X
https://orcid.org/0000-0003-2477-381X
https://orcid.org/0000-0003-2477-381X
https://orcid.org/0000-0003-1199-6678
https://orcid.org/0000-0003-1199-6678
https://orcid.org/0000-0003-1199-6678
https://orcid.org/0000-0003-1199-6678
https://orcid.org/0000-0003-1199-6678
mailto:jianqiu@nuaa.edu.cn
mailto:zhifeng.bao@rmit.edu.au
mailto:luhua@ruc.dk

trajectory is associated with a number of attribute values and
only those containing the query value will be further evalu-
ated. In Fig. 1, although o1 (DRIVER, In Service) is within the
d-distance to the query target o3, it does not fulfill the attribute
condition. The query defines a dynamic searching area as the
driver’s location changes over time. This complicates the eval-
uation as trajectories may be within the distance for a while
and then not. Trajectories are decomposed and only pieces of
movements within the query distance are considered. In the
example, o2 is within the range during [t2, t3], but it does not
satisfy the condition during [t1, t2]. As a result, only themove-
ment at [t2, t3] is reported. This differs from traditional range
queries in trajectory databases [3], [22], [33] inwhich the query
region is static. This leads to different results. Specifically, con-
tinuous range query reports trajectories at each piece of the
query time interval because distances between trajectories
change over time and only pieces of movements falling in the
rangewill be returned. In contrast, the traditional range query
considers a spatial range for a time interval and the distance
evaluation is conducted between a line (projecting trajectories
into the 2-D space) and an rectangle (or circle). Nearest neigh-
bor queries [9], [26] report the closest trajectory to the target
but there is no distance constraint. Consequently, the distance
could be very large in practice and the results are not the same
as those of our query.

Recently, trajectories featuring multiple attributes have
received increasing attention [4], [23], [25], [30], [34]. Such
data opens door to understand trajectories along different
dimensions simultaneously. What distinguish multi-attribute
trajectories from them are as follows: (i) Semantics and data
representation. Spatial and spatio-temporal trajectories are
enriched by keywords and labels for describing individual
locations, whereas multiple attributes can be location-depen-
dent or location-independent. Semantic trajectories do not
attach labels to the overall movements and usually semantic
locations are sparsely defined as only a few locations of trajec-
tories have keywords and labels, e.g., POIs. Our attributes are
assigned to the overall trajectory, otherwise redundant data
are stored. (ii) Processed queries. Queries in semantic trajecto-
ries incorporate the measurement of spatial and textual rele-
vances in order to find the most relevant trajectories, e.g.,
ranked retrieval and top-k retrieval. The returned trajectories
typically fulfill the condition at a certain time point. Consider
the query “return top-2 trajectories that pass Costa and Pizza Hut
in the city center between [10am, 12am]”. The procedure will
evaluate trajectories containing “coffee” and “pizza” and order
them based on their distances that combine spatial closeness
and text relevance. However, coffee and pizza are related to

specific locations and thus cannot be attached to the overall
movement. The evaluation is performed on certain time
points instead of all time points during an interval.

Efficient management of multi-attribute trajectories requi-
res underlying systems to be complemented in terms of data
representation and indexing methods. This motivates us to at
first model attributes and integrate themwith spatio-temporal
trajectories into a unified framework. We primarily focus on
processing static attributes (i.e., values do not change over
time) and dynamic attributes with low updating frequency. If
only static attributes are considered, each trajectory is associ-
ated with certain attribute values without updating. If there
are dynamic attribute values but the updating frequency is not
high, e.g., taxi status, one can partition trajectories with a
dynamic attribute into a sequence of sub-trajectories each of
which is for themovement containing only one attribute value.
If the updating frequency is high, the partition method can be
still applied but an approximate representation will be
employed. Such a method can also be utilized for attributes
with large domains.

Next, an effective and efficient index structure is essentially
required as this plays a pivotal role in query processing. It is
noteworthy that the well-established spatio-temporal indexes
is suboptimal for multi-attribute trajectories because they do
not manage attributes and therefore one can not prune the
search space for attributes. Consequently, trajectories after the
spatio-temporal evaluation are sequentially processed. If the
query trajectory has a short lifespan or the distance threshold
is small, a few trajectories will be returned. In such a case, the
approach still achieves good performance. However, if the
spatio-temporal predicate has bad selectivity, sequentially
evaluating the attribute predicate for each data trajectory sig-
nificantly inhibits the performance. Alternatively, one can
build an attribute index to at first retrieve trajectories with
qualified query attributes. The major drawback of this attri-
bute-first-pruning strategy is that trajectories after the evalua-
tionwill be processed by either performing the sequential scan
or accessing an index built on-the-fly. If the attribute predicate
is selective, the sequential scan is acceptable. Otherwise, a
large number of trajectories are fetched as intermediate results.
Both sequential scan and on-the-fly index building incur high
computation costs. Creating an index for each query causes
storage overhead, especially when a lot of queries are issued.
Consequently, thismethod is limited in scope.

Most cases, however, prefer a joint index that supports the
combined search on spatio-temporal parameters and attrib-
utes. As such, we adapt a standard 3-D R-tree by deploying
an optimal partitioning of spatio-temporal trajectories. The
goal is to normalize trajectories to create an R-treewith a good
shape. An attribute structure is created on top of the R-tree to
maintain attribute values. We design a flexible method such
that the attribute structure can be discarded if only spatio-
temporal trajectories are processed. In this case, the structure
is merely a 3-D R-tree, avoiding specific indexes. This pro-
vides a general solution for both multi-attribute trajectories
and spatio-temporal trajectories rather than developing two
systems that process them separately.

Our contributions are summarized as follows: first, we for-
mulate multi-attribute trajectories and continuous range
queries over them. Second, an optimal data partition method
over trajectories with thorough analysis is proposed. Next, we

Fig. 1. Example of querying multi-attribute trajectories.

1120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

develop a hybrid index supporting updating as well as effi-
cient algorithms to answer the query. Furthermore, an efficient
approximate distance computation method is developed to
speed up the evaluation procedure accompanied with space
and time complexities analysis. Finally, the proposal is fully
implemented in a database system SECONDO. A thorough
experimental study is performedusing real and synthetic data-
sets. The results demonstrate that our approach outperforms
six alternatives by a factor of 5-50x on large datasets.

The rest of the paper is organized as follows. In Section 2,
we review the related work. The studied problem is defined
in Section 3. The index structure and query algorithms are
proposed in Sections 4 and 5, respectively. Approximate dis-
tance computation is presented in Section 6. We perform the
evaluation in Section 7, followed by conclusions in Section 8.

2 RELATED WORK

There is a substantial body of literature on querying and ana-
lyzing spatio-temporal trajectories, e.g., range queries, nearest
neighbor queries [6], [9], [26], similar trajectory queries [29],
trip prediction [20] and route planning [21]. In order to com-
prehensively understandmobility data, extensive information
is essentially required in addition to time-stamped locations
[36]. Extracting semantics from spatio-temporal trajectories is
investigated by identifying stops ormoves and annotating rel-
evant locations with semantics such as hotel and restaurant
[30]. The partition-and-summarization approach automatically
generates texts to highlight semantic behavior for spatio-tem-
poral trajectories [18]. Then, one forms a sequence of time-
stamped locations with semantic labels, called semantic trajec-
tories. Attaching semantic labels to locations enables users to
perform queries and analytics considering semantic interests
and location preferences. Existing queries fall into two catego-
ries: (i) Ranking and top-k. Relevant queries consider actions
and activities that users can take at particular places such as
sport and dining. A conjunctive query returns k trajectories
whose semantics contain the query and have the shortest min-
imum match distance [35]. An approximate keyword search
retrieves trajectories containing the relevant query keywords
and having short travel distance [34]. A top-k exemplar trajec-
tory query [25] consists of a set of locations with keywords
and aims to find the most relevant trajectories in terms of the
spatial and textual similarity. (ii) Data mining and analytics.
Frequent sequential patterns can be found to reflect move-
ment regularity by considering spatial compactness, semantic
consistency and temporal continuity simultaneously [32]. A
regional semantic trajectory pattern mining problem is stud-
ied in [4], the aim of which is to identify all the regional
sequential patterns in semantic trajectories including global
and local frequent patterns. A detailed discussion on semantic
trajectories can be found elsewhere [15], [31]. Semantic trajec-
tories focus on location-dependent data and mainly target
ranking queries that combine the spatial proximity and tex-
tual similarity. In contrast, multi-attribute trajectories support
both location-dependent and location-independent informa-
tion, leading to a general data representation. We deal with
continuous queries that report trajectories containing the
query attribute value and falling in a dynamic area.

A systematic study is performed to capture a wide range
of meanings related to locations including street names,

transportation modes and speed profile [10]. A time-depen-
dent label is defined to represent the so-called symbolic trajecto-
ries, but time-dependent locations are not included in the
model. Later, a framework of analyzing large sets of move-
ment data having time-dependent attributes is developed
[23], [24]. The work is based on symbolic trajectories and
includes spatio-temporal trajectories in the data representa-
tion. They aim to support pattern matching queries on tuples
of time-dependent values. A new pattern language is pro-
posed and the superiority is thoroughly analyzed in terms of
flexibility and expressiveness. Their works are orthogonal to
our work. First, different queries are evaluated. Our attribute
and spatio-temporal parameters can be individually evalu-
ated, while they deal with static range queries. Second, their
main contribution is a flexible and expressive pattern lan-
guage and the scalability and performance is not extensively
evaluated in terms of the number of attributes and the domain
size. Also, the number of trajectories in the evaluation is not
large (162,000 spatio-temporal trajectories).

Recently, traditional spatio-temporal indexes have been
studied to incorporate semantic information. A hierarchical
aggregate grid index calledHAGI is developed to support het-
erogeneous kNN queries [19]. The method can be adapted to
answer our queries, but it is limited as only one attribute is
considered. A function is defined to combine the cost of dis-
tances and location-independent attributes, and the query
returns trajectories having the kth smallest function value.
Each node inHAGImaintainsmin andmax attribute values of
all trajectories stored in the subtree. Although min and max
values may work well for one attribute, they fail to guarantee
good pruning ability for multiple attributes as min and max
values are likely from different attributes. Also, the query
evaluates trajectories based on a ranking function, whereas
we require the exact match on attributes. Furthermore, the
distance in the function is static, whereas we deal with time-
dependent distances.

To answer spatial keyword range queries on trajectories, a
hybrid index called IOC-Tree is proposed [12]. The structure
consists of an inverted index and a set of 3-D quadtrees
termed octrees. Attributes are defined as keywords. The
inverted index is responsible for attribute values, each of
which is associated with an octree storing relevant trajectory
points. However, for multi-attribute trajectories, each octree
will contain all location points of the trajectory. A grid index is
established to organize spatio-temporal trajectories with
activities in a hierarchical manner [35]. A similar structure is
developed to incorporate both spatial and semantic informa-
tion for approximate keyword search [34]. The grid is a spatial
index that is extended to maintain trajectories based on the
spatial and activity proximity for ranking queries. This line of
work is not applicable to our problem. On the one hand, our
attributes are not related to locations and therefore it does not
make sense to group trajectories by considering both spatio-
temporal locations and attributes. On the other hand, our
query reports trajectories rather than individual locations.

3 PROBLEM DEFINITION

Let O be a set of multi-attribute trajectories. Each o 2 O is
denoted by o(Trip, Att) in which o:Trip and o:Att refer to a
spatio-temporal trajectory and attributes, respectively. A

XU ETAL.: FRAMEWORK TO SUPPORTCONTINUOUS RANGE QUERIES OVER MULTI-ATTRIBUTE TRAJECTORIES 1121

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

spatio-temporal trajectory is typically defined by a data type
mpoint [11]. Table 1 gives the representation of multi-attri-
bute trajectories.

We model descriptive information by multiple attributes.
Let A be the set of multiple attributes. The ith attribute and
its domain are denoted by A½i� and domðA½i�Þði 2 1; . . . ; jAjÞ,
respectively. We assume that each dom(A½i�) is represented
by a set of positive integers and define a data type Datt for
the set of attributes. For readability, we use symbols to
denote attribute values.

Definition 1.Multi-attribute
Datt ¼ fða1; . . . ; ajAjÞjai 2 domðA½i�Þ; i 2 f1; . . . ; jAjgg

such that

(i) 8i 2 f1; . . . ; jAjg : domðA½i�Þ � Nþ;
(ii) 8i; j 2 f1; . . . ; jAjg : i 6¼ j) domðA½i�Þ \

domðA½j�Þ ¼ ? .

Attribute semantics depend on real applications. The
running example defines dom(Type) = {Driver, Passenger}
and dom(Status) = {In Service, Free, Request, Pick-up}, while
other applications may need relevant information such as
vehicle type {TRUCK, BUS} and transportation modes
{WALK, BICYCLE, BUS} to analyze trajectories of different
vehicles and modes. Let T ðoÞ return the time period of a tra-
jectory. We employ the function in [7] to return the time-
dependent distance between two trajectories o1, o2 2 O,
denoted by dist(o1, o2, T ðo1Þ \ T ðo2Þ). Two trajectories are
mapped into pieces at the same time interval and the dis-
tance is represented by a parabola function; the coefficients
depend on locations and velocities.

Definition 2. Query attribute
The query attribute is a tuple defining values for evaluated

attributes, denoted by Qa ¼ ða1; . . . ; ajAjÞ, Qa½j� 2 domðAjÞ [
{?}.
The query predicate Qa defines a component for each

attribute. A query may specify one or several attributes. Let
Qa½j� refer to the jth attribute value. We define an operator
called contain(o:Att, Qa) that returns true if 8 Qa½j� 6¼ ? :
o:Att[j] = Qa½j�. We also support queries with multiple val-
ues. To achieve this, elements inQa are extended to sets of val-
ues, i.e., Qa = {X1; . . . ;Xd} in which Xi is a set of attribute
values. Accordingly, the operator contain is extended: con-
tain(o:Att,Qa) returns true if 8Xi 2Qa ^Xi 6¼;: o:Att[j]2Xi.

The studied query CRA is formulated below.

Definition 3. Continuous Range queries with Attributes
Given a query trajectory oq, a threshold d and an attribute

predicate Qa, CRA returns O0 �O such that 8 o0 2 O0 : ðiÞ

containðo0:Att, QaÞ;ðiiÞ9 DT = T ðoqÞ \ T ðo0Þ : 8 t 2 DT ,
distðoq, o0, tÞ � d.

There are two variations: (i) The location of oq does not
change over time such that the query returns trajectories
whose distances are smaller than d to a spatial point. (ii)
The query returns a trajectory as long as there is an instant
at which the distance between the data trajectory and the
query trajectory is smaller than d, i.e., 9 DT = T ðoqÞ \ T ðo0Þ :
9 t 2DT , distðoq, o0, tÞ � d. Table 2 lists the notations fre-
quently used in the paper.

4 THE INDEX STRUCTURE

We design an index structure named GR2-tree including two
components: GR-tree and Ratt. The GR-tree is an adapted 3-
D R-tree built on spatio-temporal trajectories and Ratt is a
relation for managing attribute values.

4.1 GR-Tree

4.1.1 Partitioning Spatio-Temporal Trajectories

Trajectories have different distributions over time and
space. We would like to decompose them into pieces having
similar sizes in terms of spatial and temporal dimensions.
This will benefit the index structure because spatio-tempo-
ral extents of nodes are similar, derivations among nodes
are small and the area of dead space1 is reduced. The time
dimension is partitioned into a set of equal-sized intervals
{T1; . . . ; TK} (K> 1) and the 2-D space is partitioned into d

� d equal-sized cells. Given a multi-attribute trajectory, its
spatio-temporal trajectory is split into a set of so-called cell
trajectories, each of which represents the movement within a
cell during an interval Tk 2 {T1; . . . ; TK}.

Definition 4. Cell trajectory
Let Cell(o, t) return the cell where the trajectory o is located

at a time point t 2 T ðoÞ. A cell trajectory o½i� � o:Trip is part
of the overall trajectory that denotes the movement within one
cell fulfilling the condition:(i) o:Trip =

S
o½i� (ii) 8 t1, t2 2

TABLE 1
Representing Multi-Attribute Trajectories

Id: int Trip: mpoint Att: att

o1 location+time (Driver, In Service)

o2 location+time (Passenger, Request)

o3 location+time (Driver, Free)

o4 location+time (Passenger, Pick-up)

TABLE 2
Notations

Notation Description

O the multi-attribute trajectory database

o, T ðoÞ a multi-attribute trajectory and its time
period

jAj the number of attributes

dom(A½i�), dom
(A)

the domain A½i� and the overall domain

oq, d query trajectory and query distance

Qa query attribute

t a time point

d grid granularity

f fanout of R-tree node

1. The space is contained by the node but there are few or no data.
This means that the area will be evaluated but few trajectories are there
or even no trajectory exists.

1122 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

T ðo½i�Þ, Cellðo½i�, t1Þ = Cellðo½i�, t2Þ; (iii) 9 Tk 2 {T1; . . . ; TK},
T ðo½i�Þ � Tk.

We partition each o 2 O into a set of cell trajectories. We
may encounter the case that one trajectory enters the cell
more than once. As a consequence, there are several cell tra-
jectories from the same target corresponding to the same
cell. The GR-tree is built on cell trajectories sorted by time,
cell id and 3-D bounding box following a bulk loading
approach [2].

Example 1. Using the trajectory o3 in Fig. 1, we assume that
the 2-D space is partitioned into 4 � 4 cells and o3 is con-
tained by one time interval from {T1; . . . ; TK}. The cells
intersecting o3 and o3’s cell trajectories are reported in
Fig. 2. This is done by (i) determining the set of cells inter-
secting the 2D bounding box of o3 and filtering those cells
that do not intersect o3; (ii) decomposing o3 into cell tra-
jectories each of which is restricted to one cell.

In order to preserve the spatio-temporal proximity, we
define that each leaf node only maintains cell trajectories hav-
ing the same time interval Ti and cell id. Each GR-tree node is
supplemented by a bitmap representing the cells intersecting
the 2-D bounding box of the node. An adaptive mapping
between the cells and the bitmap is performed by considering
the trajectory distribution among cells. This is motivated by
the observation that dense cells exhibit higher probability to be
accessed than sparse cells. More bits are allocated for dense
cells and the size of the bit array is set according to the ratio of
the number of dense cells to the total number of cells.

Example 2. Using example trajectories in Fig. 1, we show
the created GR-tree in Fig. 3, assuming that trajectories
{o1, o2, o3, o4} have the same time interval and the grid
granularity is d = 2. Leaf nodes are marked by their cells.
Each node is associated with a bitmap structure for iden-
tifying entries containing attribute values. This will
enhance the query performance as one can access those
entries without performing a linear search.

4.1.2 Grid Granularity

Grid granularity plays a pivotal role in the index design as
an arbitrary value cannot guarantee an optimal query per-
formance. If we set a coarse granularity, e.g., d = 1, all trajec-
tories are located in one cell. Since we put cell trajectories
having the same cell id into one leaf node, trajectories will
have large extent in x and y dimensions. The created index
does not exhibit the spatio-temporal proximity, increasing
false positives in query processing.

At the opposite end, a fine granularity leads to small cells
and each cell contains fewer trajectories having small extent
in x and y dimensions. This is good for preserving locality.
However, the finer the granularity is (i.e., d becomes larger),
the more GR-tree nodes there are. This is because each cell
corresponds to at least one leaf node (a node will overflow
if the trajectory number exceeds the node capacity). Some
leaf nodes may only contain a few data. Also, the number of
cell trajectories grows proportionally as a spatio-temporal
trajectory is distributed into all intersecting cells.

Suppose that the 2-D space is a unit space and the side
length of a cell is 1

d
. Let XðoÞ 2 [0, 1] and Y ðoÞ 2 [0, 1] be the

length of a trajectory in x and y dimensions, respectively. The

number of cell trajectories for o is estimated as dXðoÞ1
d

e � dY ðoÞ1
d

e. A
large d increases the number of cell trajectories, leading to
more storage overhead. Each node access requires one disk I/
O and the increasing I/Os deteriorate the query performance.

Example 3. As shown in Fig. 4a, we will visit all cells under
the setting d = 2 because they are within the d-distance to
o3. However, in cells	3 and	4 , cell trajectories of o2 and o4
do not fulfill the distance condition. Alternatively, we can
partition the space by setting d = 4, as illustrated in
Fig. 4b. As a consequence, the search space is reduced as
some cells are out of the range. Let us consider d = 8 by
referring to Fig. 4c. Although we can greatly reduce the
search space (gray area), more cells (GR-tree nodes) are
accessed in comparison with d = 4.

An effective way is to split trajectories and approximate
the resulting sub-trajectories by balancing the number of
indexed data and the approximation quality. We analyti-
cally derive an optimal granularity as follows. Given a gran-
ularity d, at each Tk the average number of leaf nodes for
storing cell trajectories intersecting a cell is approximated by

nðdÞ ¼ djOj � Tavg

K
� 1
d2
� 1
f
e ¼ dP

d2
e;

where P ¼ jOj � Tavg

K � f and Tavg ¼ dAVG T ðoÞ
1=K

� �
e:

(1)

Here, Tavg 2 f1; . . . ; Kg is the average number of time
partitions that a trajectory contains (T ðoÞ is mapped to the
unit space) and f is the capacity of a GR-tree leaf node.

Consider the lower and upper bounds of d. The lower
bound is straightforward, i.e., d = 1, resulting in a large
value nð1Þ = dPe. Regarding the upper bound, theoretically,
one can set d = 1. The larger d is, the denser the cell distri-
bution is. Meanwhile, the smaller each cell will be. For each

Fig. 2. Partitioning o3 into cell trajectories.

Fig. 3. Cell trajectories and GR-tree architecture.

XU ETAL.: FRAMEWORK TO SUPPORTCONTINUOUS RANGE QUERIES OVER MULTI-ATTRIBUTE TRAJECTORIES 1123

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

cell, we maintain leaf nodes storing trajectories located
inside the cell. As cells become smaller, they may contain
fewer or no trajectory. In fact, the maximum value of d cor-
responds to the minimum number of cells such that only
one leaf node suffices to store all trajectories inside a cell. It
makes no sense to have cells without any trajectory inside.
As a result, the upper bound is derived by

nðdÞ ¼ dP
d2
e
 1) d � d

ffiffiffiffi
P
p
e: (2)

Let NðdÞ be the number of leaf nodes under d. We have

NðdÞ ¼ d2 if d
 d ffiffiffiffiPp e
d2 � nðdÞ ¼ dPe else ðd 2 f2; . . . d ffiffiffiffiPp e � 1gÞ

�
:

(3)

The task is to find an optimal granularity d such that

d� ¼ argminNðdÞ ^ d� ¼ minf1; 2 . . . :;
ffiffiffiffi
P
p
g: (4)

We analyze that if d > d ffiffiffiffiPp e, NðdÞ exhibits quadratic
growth. If d <

ffiffiffiffiPp , NðdÞ is in fact independent of d.

Lemma 1. The optimal granularity

d� ¼ d
ffiffiffiffi
P
p
e
 2; where P ¼ jOj � Tavg

K � f in which :

(5)

jOj is the number of trajectories, f is the node capacity, K is
the number of partitions over time and Tavg is a value from the
set f1; . . . ; Kg.

Proof. (i) If d > d�, we have NðdÞ = d2 > ðd�Þ2 = Nðd�Þ as the
value increases exponentially with d. (ii) If d < d�, without
loss of generality we have d = d� - 1.

NðdÞ �Nðd�Þ ¼ ðd� � 1Þ2 � nðdÞ � ðd�Þ2

 ðd� � 1Þ2 � 2� ðd�Þ2

¼ ðd�Þ2 � 4 � d� þ 2

let gðd�Þ ¼ ðd�Þ2 � 4 � d� þ 2 ¼ ðd� � 2Þ2 � 2;

gðd�Þ is a monotonic increasing function when d�
 2
and gðd�Þ> 0 for all d� > 3.

d� ¼ d
ffiffiffiffi
P
p
e > 3) jOj � Tavg

K � f > 9) jOj � Tavg

K
> 9 � f

we have Tavg 2 f1; . . . ; Kg
and the conditionNðdÞ > Nðd�Þholds

as long as
jOj
K

> 9 � f:

tu
Theoretically, one can set a relatively large K (e.g., K =

jOj) such that the condition jOj
K > 9 � f does not hold. In

practice, we can easily achieve the condition by setting an
appropriate K for a large number of trajectories as jOj 9 �
f . One solution is to choose K such that each time partition
is equivalent to the average time interval of all trajectories.
We do not make any assumption about data distribution,
i.e., trajectories can be uniformly or non-uniformly distrib-
uted in space and time.

4.2 The Attribute Structure

The relation Ratt records attribute values of multi-attribute
trajectories in GR-tree nodes. The attribute values of a leaf
node are obtained by accessing the underlying data and the
values of a non-leaf node are obtained by performing the
union on values of its child nodes. The schema of the rela-
tion is Ratt (nid, a_tr, b).

Each tuple indicates an attribute value contained by a
node, in which nid is a node id, a_tr is a transformed attri-
bute value and b is a bitmap. The transformed value is
uniquely achieved by interleaving the binary representation
of the attribute id and the attribute value. We use a bitmap
with the size l1 + l2 in which l1 bits are for attribute ids and
l2 bits are for attribute values. For example, we have two
attributes AD and VEHICLE such that l1 = 1 is enough, i.e.,
0 for AD and 1 for VEHICLE. The attributes AD and VEHI-
CLE have two and three values, respectively. As a result,
l2 = 2 is sufficient. Combining l1 + l2 bits can represent all
attribute values and each one is unique.

We create a B-tree on Ratt by combining nid and a_tr to
form the key. The bitmap records the entries of a node con-
taining a particular attribute value, enabling us to only
access qualified entries instead of performing a sequential
scan. We perform different mapping strategies determined
by the size of the bit array jbj and the maximum number of
entries in a GR-tree node f (i.e., the fanout): (i) jbj
 f , each
bit maps to a unique entry. We set b½i� = 1 if the ith 2 [0, f)
entry contains the value. Otherwise, b½i� = 0. (ii) jbj < f ,
each bit maps to a range of entries and entries for the ith bit

are calculated by ½i � d fjbje; ðiþ 1Þ � d fjbje�. We define b½i� = 1 if

one of the entries contains the value.

Fig. 4. Coarse and fine grid granularities.

1124 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

The bitmap index incurs little storage overhead and
determines qualified entries by performing the bitwise
operation AND. Note that the bitmaps do not define attri-
bute values contained by the node. This method will inhibit
the performance due to the limitation of the bitmap size, in
particular, when the number of attribute values is large. In
contrast, we perform the mapping between the bitmap and
entries of a node. The number of entries in a node is limited
by f , depending on the page or block size. The number of
attribute values may be large for some applications but f is
usually not. Thus, we do not need a long bit array for f . Let
jNj be the total number of GR-tree nodes. We need
OðjdomðAÞj � jN jÞ tuples in Ratt.

Example 4. We report Ratt by referring to Fig. 5 in which
attribute values and bitmaps for the root node Nr are pro-
vided. Both original attribute values and transformed val-
ues are reported. Let N denote a GR-tree node. Consider
Qa = (Passenger, Request). We use “0” for the attribute
“Type” and “01” for the value “Passenger”. Combining
the two values we have “001”. The bitmap in Nr is “1111”
as {N1, N2, N3, N4} all contain Passenger. The attribute
value Request is transformed into “110” and the bitmap in
Nr is “0101” as N1 andN3 contain Request.

4.3 Updating the Index

Given a set of incoming multi-attribute trajectories, synchro-
nizing the GR2-tree includes: (i) inserting new arrival trajec-
tories into the GR-tree and (ii) updating the relation Ratt.
Part (i) is achieved by creating a subtree for a group of new
trajectories and then finding an appropriate node in the
existing GR-tree to locate the subtree. Part (ii) is achieved by
inserting new tuples into Ratt for the new subtree and
updating the tuples for attribute values. All nodes on the
path from the root node to the node where the subtree is
inserted are updated in terms of spatio-temporal data and
attributes.

We analyze the complexity of updating the index struc-
ture by measuring the number of node accesses. We restrict
the height of the subtree to 2 in order to limit the number of
incoming trajectories for one time updating. As a result,
there will be Oðf2Þ processed trajectories.

Update complexity. The cost of updating the index is

Oððf þHÞ � 1þ domðAÞ
b Þ

� �
, in which f is the R-tree node

capacity, H is the height of the historical R-tree and b is

the block size. tu
Proof. Part (i): creating a subtree needs Oðf þ 1Þ nodes in

total and inserting the subtree into the existing index
requires accessing OðHÞ nodes, leading to Oðf þHÞ. Part
(ii): One needs Oðf � domðAÞÞ tuples for storing attribute

values in the subtree, leading to O f�domðAÞ
b

� �
I/O cost.

Updating attribute values for nodes in the historical R-

tree requires O H�domðAÞ
b

� �
I/O cost. Then, we have

O ðfþHÞ�domðAÞ
b

� �
I/O cost for part (ii). Combining (i) and (ii),

the complexity isOððf þHÞ � 1þ domðAÞ
b Þ

� �
. tu

5 QUERY PROCESSING

5.1 An Outline

Employing the GR2-tree, we process the query in three
steps, as illustrated in Fig. 6.

Step 1 establishes the spatio-temporal area restricted by
oq and d, which is represented by a set of time-dependent
cells denoted by C3. We will present the structure in Sec-
tion 5.2. Step 2 performs a breadth-first traversal on the
GR2-tree to return a set of candidates, each of which is a cell
trajectory that (i) contains Qa and (ii) has the distance less
than d to oq. The distance is an approximate value calculated
by using the minimum bounding boxes of trajectories. A
candidate is marked if its maximum distance to oq is less
than d. Step 3 iteratively checks the accurate distance
between each candidate and the query. If the candidate is
marked, we directly put it into the result set. Otherwise, the
actual value is computed. Two trajectories are mapped into
pieces at the same time interval. A trajectory may be split
because only the piece of movements fulfilling the distance
condition is considered. Since step 3 is trivial, we focus on
steps 1 and 2 in the following.

5.2 Time-Dependent Cells

We can quickly determine the cells within the d-distance to
the query by utilizing the grid partition. This is achieved by
computing the distance between the 2-D bounding box of
the query trajectory and the cell.Whenwe traverse the index,
the GR-tree nodes that do not intersect the cells can be safely
pruned. Usually, a cell is not always within the d-distance to
the query as the location of the trajectory changes over time.
We report time-dependent cells maintained by a composite
structure including three components: cell tree, cell set and cell
list, denoted by C3. Let Ci be the set of cells intersecting a cell
trajectory oq½i�. Note that oq½i� is restricted in a cell but we
include cells whose borders intersect oq½i�.
� cell tree. A binary tree is used to record items of the form

(T ðoq½i�Þ, Ci). Each node stores the time interval of oq½i� and
the cells intersecting oq½i�. Items are increasingly sorted on

Fig. 5. Example of the attribute relation Ratt for Nr.

Fig. 6. The query procedure.

XU ETAL.: FRAMEWORK TO SUPPORTCONTINUOUS RANGE QUERIES OVER MULTI-ATTRIBUTE TRAJECTORIES 1125

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

time. The cell tree reports all cells within the d-distance to the
query during a given time interval.
� cell set. The structure stores all cells within the d-dis-

tance to oq and there is no duplicate result, i.e.,
S

Ci.
We define marked cells that the cell list maintains.

Definition 5.Marked cell
Let maxdistðc, oq½i�Þ denote the maximum distance between

a cell and a cell trajectory. A cell c is marked if maxdist(c,
oq½i�) < d.

� cell list. A list of pairs (c, T) is maintained. Each pair con-
tains a marked cell and a time interval. The structure deter-
mines whether all trajectories in a leaf node are within the
d-distance to the query. If positive, the exact distance compu-
tation can be avoided as a leaf node stores trajectories whose
movements are restricted in the cell. Given a leaf node, if its
cell ismarked and the time is contained by the cell list, all trajec-
tories in the node fulfill the distance condition.

The procedure of constructing C3 is provided in Algorithm
1. We start by creating the cell tree (lines 2-5). Next, for each
node in the tree, we iteratively insert each cell into the cell set
and determine whether the cell is marked or not. We insert
themarked cell into the list and update the time accordingly.

Algorithm 1. TCell

Input: query trajectory oq, distance threshold d and grid
Output: time-dependent cells C3
1: let CellðoqÞ return cell trajectories of the query;
2: Tr ? ; ⊳ initialize the cell tree
3: for all o½i� 2 CellðoqÞ do
4: search the grid to determine Ci such that8 c 2 Ci : mindist(c,

o½i�) < d and c is marked if maxdist(c, o½i�) < d;
5: insert (T ðo½i�Þ, Ci) into Tr;
6: S ? , L ? ; ⊳ initialize the cell set and cell list
7: for all ðT ðo½i�Þ, CiÞ 2 Tr do
8: for all c 2 Ci do
9: S c;
10: if c is marked then
11: if (c, T ðo½i�Þ) =2 L then
12: L (c, T ðo½i�Þ);
13: else
14: if 9ðc0, T 0) 2 L: c0 = c then
15: T 0 T 0 [T ðo½i�Þ;
16: return C3 (Tr, S, L);

We now analyze the time complexity of building the struc-
ture C3 for a query trajectory oq. This depends on two factors:
(i) the number of cell trajectories and (ii) the number of cells
intersecting each cell trajectory. Part (i) is calculated by

T ðoqÞ
1=K

�XðoqÞ
1
d

� Y ðoqÞ
1
d

: (6)

Consider part (ii). Given a cell trajectory oq½i�, we return
the cells intersecting oq½i� the area of which is a rectangle
achieved by enlarging XðoqÞ and Y ðoqÞwith 2 � d. Among all
cell trajectories, the maximum number of cells intersecting
oq½i� is calculated by

Xðoq½i�Þmax þ 2 � d
1
d

� Y ðoq½i�Þmax þ 2 � d
1
d

: (7)

Time complexity. Given a query trajectory oq, building the
structure C3 requires OðCoq � logCoqÞ time, in which Coq is
the overall number of processed cells, calculated by

Coq ¼
T ðoqÞ
1=K

�XðoqÞ
1
d

� Y ðoqÞ
1
d

�

Xðoq½i�Þmax þ 2 � d
1
d

� Y ðoq½i�Þmax þ 2 � d
1
d

:

tu
Proof. The structure C3 consists of three parts: (i) cell tree,

and (ii) cell set and (iii) cell list. Creating (i) needs OðCoq �
logCoqÞ. Then, for each cell in the tree, we insert it into cell
set and cell list, both of which contain OðCoqÞ cells and
each insertion requires OðlogCoqÞ and Oð1Þ time costs for
the cell set and the cell list, respectively. To sum up, we
need the timeOðCoq � logCoq Þ to construct the structure. tu

Example 5. By referring to Fig. 7a in which we have K = 4
({T1, T2, T3, T4}) and d = 8, we enlarge the bounding box of
o3 in both x and y dimensions to find all cells within the
d-distance to the query (depicted in gray). Two dashed lines
are depicted to help figure out the cells. The time interval
T ðo3Þ intersects {T1, T2, T3}. The cells {c5;1, c5;2, c6;1, c6;2, c7;2}
are within the d-distance to the query at T1, but they should
not be considered at T3. There are three marked cells {c5;5,
c6;3, c7;4} at T2 [T3. Thus, the cell trajectory of o1 in c5;5 and
the cell trajectory of o4 in c7;4 can be directly returned with-
out performing the accurate distance computation (the
attribute condition is not considered here). The structure of
the time-dependent cells is reported in Fig. 7b. The cell set
consists of three parts C1, C2 and C3, partitioned by time
intervals. The cell tree is built on cells with corresponding
time intervals. Since cells {c5;5, c6;3, c7;4} are marked cells,
they are put into the cell list with time intervals.

5.3 Traversing GR2-Tree

This step performs a breadth-first traversal on the index to
prune the search space by taking into account both spatio-
temporal parameters and attribute values. Given a GR-tree
node N , we retrieve its cell bitmap denoted by CBM(N) and
determine the cells intersecting the node denoted by cell
(CBM(N)). The node can be pruned if there is no overlap
between cell(CBM(N)) and the cell set C3:S.
Lemma 2.We can prune a node N if cell(CBMðNÞÞ \ C3:S = ;.
Proof. 8c 2 cell(CBMðNÞÞ: c =2 C3:S) dist(c, oq) > d. tu

Let T ðNÞ return the time extent of a node. We utilize the
cell tree C3:Tr to report all cells during T ðNÞ. These cells are
within the d-distance to the query oq. The following pruning
strategy is used.

Lemma 3. Let cellðC3:Tr, T ðNÞÞ return the cells at T ðNÞ in the
cell tree. We can prune N if cell(CBMðNÞÞ \ cellðC3:Tr,
T ðNÞÞ = ;.

Proof. 8 c 2 cell(CBMðNÞÞ: c =2 cellðC3:Tr, T ðNÞÞ) T ðNÞ \
T ðoqÞ = ; _ dist(c, oq, T ðNÞ \T ðoqÞ) > d. tu
When a leaf node is processed, we iteratively access each

cell trajectory in the node to compute the exact distance

1126 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

between each cell trajectory and the query trajectory. This
step can be avoided if the following condition holds.

Lemma 4. All trajectories in a leaf node N fulfill the distance
condition if 9 ðc0, T 0Þ 2 C3:L : cell(CBMðNÞÞ = c0 ^ T ðNÞ�
T 0, where C3:L is the cell list.

Proof. Each item ðc0, T 0Þ 2 C3:L represents a cell c0 such that
maxdist(c0, oq) < d at T 0. If the leaf node corresponds to
such a cell, all trajectories fulfill the condition and the dis-
tance computation is omitted. tu

Example 6. Using the example query, we consider C3(Tr, S,
L) and the GR-tree at T2. We report the structure C3 at T2

in Fig. 8a and illustrate the pruning procedure in Fig. 8b.
Starting from Nr, we process nodes level by level. Na and
Nb will be pruned because their cells do not intersect the
cell set (Lemma 2). Nc and Nd are further considered. For
Nc, we access each child node during which trajectories
in the node c6;3 are directly reported because the cell
exists in the cell list (Lemma 4). For Nd, we open the node
and process each child node during which all trajectories
in the node c7;4 are directly reported (Lemma 4) and the
node c8;2 is pruned because it is not within the d-distance
to o3 at T2 (Lemma 3).

Pruning by Attribute Values. Given a GR-tree node, we take
the node id and the attribute value a 2 Qa to create the key to
accessRatt. The following criterion is used for pruning.

Lemma 5. Given a node N and an attribute value a 2 Qa, let
r(nid, a_tr, b) 2Ratt denote the tuple for N such that a =
r:a_tr. We can prune N if

T
a2Qa

ðr:bÞ = ;.
Proof. Let N½i� be a child node. The tuple r:b defines the

entries of N containing r:a_tr. We have
T

a2Qa
ðr:bÞ = ;)

8N½i�: @ r1 . . . :; rjQaj 2 Ratt such that (r1:nid = N½i�
. . . rjQaj.nid = N ½i�) ^ (r1:a_tr = Qa½1� . . . rjQaj:a_tr = Qa

½jQaj�). tu
The algorithm of reporting candidates is given in Algo-

rithm 2. Let cell(O) be the overall cell trajectories. Starting
from the root node, we maintain a node list to visit the GR2-
tree level by level. A node is pruned if its cells do not inter-
sect the cells in C3 or it does not contain Qa (line 6). For a
non-leaf node, we retrieve each qualified child node accord-
ing to the bitmap (marking entries containing attributes)
and put it into the list for further consideration. For a leaf
node, we evaluate the approximate distance between the
query and each cell trajectory. A cell trajectory is marked if
its maximum distance to the query is less than d (Lemma 4).
Otherwise, we put the trajectory into the candidate set to
perform the accurate distance computation later.

5.4 Establishing Leaf Nodes

We observe that Algorithm 2 traverses the structure in a
top-down approach during which non-leaf nodes are
accessed at first and then leaf nodes. The returned trajecto-
ries are actually stored in leaf nodes. This motivates us to
determine the set of leaf nodes containing the result and
then directly access leaf nodes without performing the tra-
versal from the root level to leaf level.

Each leaf node only stores trajectories within one cell.
Thus, given a cell, all leaf nodes storing trajectories inside
the cell can be determined. This is calculated by the 2-D

Fig. 7. An example of C3.

Fig. 8. Example of pruning by C3.

XU ETAL.: FRAMEWORK TO SUPPORTCONTINUOUS RANGE QUERIES OVER MULTI-ATTRIBUTE TRAJECTORIES 1127

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

bounding box of a leaf node and the cell. Let fcell: C ! Set(N)
be a function that maps from cells to leaf nodes. Each leaf
node is of the format (nid, box) in which we store the 3-D
bounding box of a node. For example, in Fig. 9a fcellðc6, 3)
returns the node in which cell(o3) is stored. Given a large
number of trajectories, each cell corresponds to a set of leaf
nodes because one node may not be sufficient for all trajec-
tories located in the cell.

Algorithm 2. AccessGR2-Tree

Input: oq, d, Qa, C3, GR2-tree and cell(O)
Output: candidate trajectories
1: Cand ? ;
2: L GR2-tree.Root;
3: while L is not empty do
4: N GetNode(GR2-tree, L:topðÞ);
5: access Ratt by N and Qa;
6: ifN is not pruned by C3 andQa then ⊳ Lemmas 2, 3 and 5
7: for all entry in N according to

T
a2Qa

ðr:bÞ do
8: if N is a non-leaf node then
9: put the child node into L;
10: else
11: get the cell trajectory o 2 cell(O);
12: if o:Att contains Qa then
13: if Lemma 4 holds then
14: mark o and put it into Cand;
15: else
16: if mindistðoq, o, T ðoqÞ \ T ðoÞÞ < d then
17: Cand o;
18: return Cand;

The structure C3 contains all cells that are within the
d-distance to the target during the query time. Next, we
determine the leaf nodes for those cells. Note that the func-
tion fcell returns all leaf nodes for a cell but some of them
may not intersect the query time and should be pruned.
Based on the time-dependent cells returned from Algorithm
1, we provide the method that only accesses leaf nodes to
answer the query (see Algorithm 3).

Algorithm 3. AccessGR2-treeLeaf

Input: oq, d, Qa, C3, GR2-tree and cell(O)
Output: candidate trajectories
1: L ? ;
2: for all c 2 C3:S do
3: Nl fcellðcÞ;
4: for all n 2 Nl do
5: if n is not pruned by Lemmas 2 and 3 then
6: L n;
7: Cand ? ;
8: call lines 3-18 in Algorithm 2;

Example 7. Based on the time-dependent cells in Fig. 8a, we
provide the cell set C3:S in Fig. 9a. For each cell, we collect
its leaf nodes which are within the d-distance to the target
during the query time. In the example, we only access
those leaf nodes (depicted in gray) to collect the data
without accessing non-leaf nodes {Nr, Na,Nb, Nc, Nd}.

6 APPROXIMATE DISTANCE COMPUTATION

Since computing the exact distance between a cell trajectory
and the query trajectory is a costly procedure including map-
ping pieces of movements into the same time interval, split-
ting trajectories and determining the time-dependent distance
function, an approximate distance is typically used to filter
the data that cannot contribute to the result. The distance
between twominimum bounding boxes (MBBs) is computed,
called approximate distance computation. To increase the effi-
ciency of establishing the MBB of the query trajectory for a
time interval, a common method is to build a bounding box
tree (BB-tree) on all MBBs of query trajectory segments [9].
The BB-tree is essentially a binary tree in which each node is
associated with a time interval and a rectangle. For a leaf
node, the value is taken from the trajectory. For a non-leaf
node, the value is the union of its child nodes.

A minimum bounding box is represented by mbb = (xmin,
ymin, xmax, ymax). Given two MBBs mbb1 and mbb2, the union
operation that bounds the arguments by MBBs is defined by

unionðmbb1;mbb2Þ ¼
ðMinðmbb1:xmin;mbb2:xminÞ;Minðmbb1:ymin;mbb2:yminÞ;
Maxðmbb1:xmax;mbb2:xmaxÞ;Maxðmbb1:ymax;mbb2:ymaxÞÞ:

Let m be the number of segments in a query trajectory
and C be the total number of candidate cell trajectories
involved in the distance computation, respectively.

Time complexity. Employing the BB-tree, we need Oðmþ
C � ðlogmþ 1ÞÞ time to perform the computation. tu
Analysis. We need OðmÞ time to build the BB-tree as tra-

jectory segments are already sorted on time. For each cell
trajectory, we require the time Oðlogmþ 1Þ to traverse the
BB-tree and perform the union operation. The time interval
of a cell trajectory is usually less than T ðoqÞ. Thus, we need
to perform the union operation once to merge two MBBs at
different time intervals. As a result, the overall time is
Oðmþ C � ðlogmþ 1ÞÞ.

Fig. 9. Example of establishing leaf nodes.

1128 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

To enhance the performance, we propose a method to
efficiently retrieve the MBB for a cell trajectory by using a
bounding box array, called BB-array. This is a two-dimen-
sional array built on-the-fly with the size B � B (B � m).
First, we partition the query trajectory into B equal-size seg-
ments in terms of the time and assign a segment MBB for
each BB-array[i�½i] (i 2 f0; . . . ; B - 1}). Second, for each row
in the array we set BB-array[i�½j] (i < j ^ j 2 {iþ 1; . . . ; B -
1}) by performing the union from the ith to jth MBB. That is,

BB-array½i�½j� ¼ UnionðBB-array½i�½i�;mbbiþ1Þ
mbbiþ1 ¼ UnionðBB-array½iþ 1�½iþ 1�;mbbiþ2Þ;

. . .

mbbj ¼ UnionðBB-array½j� 1�½j� 1�;
BB-array½B� 1�½B� 1�Þ:

Example 8. We report the BB-array built on oq in Fig. 10 by
defining B = 3.

Space complexity. The BB-array’s storage cost is Oðm2Þ. tu
Given a cell trajectory intersecting the query, we are able

to retrieve the MBB at a constant cost by employing the BB-
array. The overall time of performing the approximate dis-
tance computation is as follows.

Time complexity. Employing the BB-array, we need
Oðm2 þ CÞ to process all cell trajectories. tu
Analysis. We need OðmþB2Þ = Oðmþm2Þ to create the

BB-array as one needs to perform the partition and create
the two-dimensional array. For each cell trajectory, its start
and end time points correspond to indexes i and j in the
BB-array and thus only a constant time cost is required to
report the MBB. To sum up, we require Oðm2 þ CÞ.
Lemma 6. The time complexity of approximate distance compu-

tation by using BB-array is less than that by using BB-tree.

Proof. We analyze their time complexities in the following.
The BB-tree needs Oðmþ C � ðlogmþ 1ÞÞ and the BB-
array needs Oðm2 þ CÞ.

mþ C � ðlogmþ 1Þ � ðm2 þ CÞ >
C � ðlogmþ 1Þ � ðm2 þ CÞ ¼ C � logm�m2:

As logm
 1 and Cm (the total number of candidates)
for large datasets, we have C � logm> m2. The cost of
BB-tree is the average time complexity, while the cost
of BB-array is the worst time complexity. Consequently,
the BB-array outperforms the BB-tree. tu

7 EXPERIMENTAL EVALUATION

We implement the proposal in C/C++ and perform the
evaluation in SECONDO [8]. A desktop PC (Intel(R) Core
(TM) i7-4770CPU, 3.4GHz, 4 GB memory, 2 TB hard disk)
running Suse Linux 13.1 (32 bits, kernel version 3.11.6) is
used. We use real GPS records of taxis from Beijing and
Shanghai [1], named BTAXI and STAXI, respectively. We
develop a tool to generate attributes for Beijing taxis. For
STAXI, each GPS record is associated with an attribute indi-
cating the company id. Table 3 summarizes the dataset sta-
tistics. For each attribute, the value is randomly selected
from the domain. The CPU time and I/O accesses are used
as performance metrics and the results are averaged over 20
runs.

7.1 Setup

In the system, the fanout of a GR2-tree node is 62. Such a
value is determined by the page size. In the attribute struc-
ture Ratt, each tuple defines a bitmap recording entries of a

Fig. 10. The BB-array built on oq.

TABLE 3
Datasets and Parameter Settings

Name #GPS Records jOj jAj dom(A) X range Y range

BTAXI 235,634,511 4,220,435 10 [1, 151] 21-119,958 0-119,653

STAXI 202,919,952 6,280,600 1 [1, 4] 0-99,749 0-99,980

Query settings

jQaj: {1, 2, 3, 4, 5} d (km): {1, 5, 10, 20, 50}

Fig. 11. Effect of d� for BTAXI and STAXI.

Fig. 12. Traverse the GR2-tree versus Access leaf nodes.

XU ETAL.: FRAMEWORK TO SUPPORTCONTINUOUS RANGE QUERIES OVER MULTI-ATTRIBUTE TRAJECTORIES 1129

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

node containing an attribute value. We set the length of a bit
array to be 32, that is, using a 32-bit integer. As a result, each
bit maps d6232e = 2 entries.

The Grid Granularity d. We evaluate the performance
affected by d and report the query cost in Fig. 11. According
to Lemma 1, the optimal granularities for BTAXI and STAXI
are d� = 11 and d� = 15, respectively. The number of parti-
tions over time are K = 259 and K = 446, respectively. The
experimental results confirm that our setting achieves the
best performance.

The Effect of Establishing Leaf Nodes. As expected, the pro-
cedure of accessing leaf nodes does not incur accessing non-
leaf nodes and require less CPU time and I/O accesses, as
reported in Fig. 12.

BB-Array versus BB-Tree. Part of BTAXI is chosen as the test-
ing dataset (2,888,278 GPS records and 44,653 trajectories).
The experimental results demonstrate up to an order of mag-
nitude speed up by BB-array, as shown in Fig. 13a. Since the
computation is executed many times in the query procedure
(81,878), the overall running time is reduced by half. As both
BB-tree and BB-array perform approximate distance compu-
tations, the relative error is calculated, that is the deviation
between the exact distance and the approximate distance. The
relative errors are 6 and 8 percent for BB-tree and BB-array,
respectively. As a further step, we demonstrate the effect of
the array size on the performance, as illustrated in Fig. 13b.
The array size has little effect on the efficiency and thus in the
followingwe setB = dm � 0:38e.

7.2 Performance Evaluation

We perform the evaluation by comparing our method with
six baseline methods in terms of scalability and efficiency:
(1) 3-D R-tree, (2) RIB [28], (3) 4-D R-tree, (4) IOC-Tree [12],
(5) HAGI [19] and (6) Att-online, an attribute index is built to
at first collect trajectories containing Qa. Then, a 3D R-tree is
built on-the-fly to perform the evaluation.

7.2.1 Scalability Evaluation

Scaling the Number of Trajectories. Different subsets of BTAXI
are selected, as summarized in Table 4. The performance
result is reported in Fig. 14. When the data size grows, the
costs of all methods rise proportionally, but our method
outperforms baseline methods by a factor of 5-50x on the
largest dataset. The method Att-online is only competitive
for a small dataset but the performance degrades signifi-
cantly for large datasets. This is because the attribute predi-
cate is not selective and thus a large number of trajectories
are returned to build the index. We provide the storage cost
of GR2-tree and the ratio of the index size to the data size.

Scaling Data Attributes. To investigate the effect of attrib-
utes on the performance, we choose the largest number of
trajectories and scale (i) the number of attributes jAj and (ii)
the domain dom(A), as reported in Table 5.

The results are reported in Figs. 15 and 16. The perfor-
mance decreases when jAj increases (also dom(AÞ) but enhan-
ces if jAj is set by 1 and dom(AÞ is enlarged. This is because the
attribute predicate becomes quite selective for a single attri-
bute with a large domain. In this setting, RIB is slightly better
than our solution, also when a small number of attribute val-
ues are defined. The index is built on trajectories grouped by
attribute values and a good locality is achieved in terms of
attributes. However, the performance suffers from dealing
with multiple attributes as it is difficult to achieve a good data
locality. Our method is superior to other methods inmost set-
tings for multiple attributes. The 3-D R-tree does not prune
the search space on attribute, and thus a large number of can-
didates may be returned, deteriorating the efficiency. The 4-D
R-tree enlarges the data set jAj times. This increases the index
overhead and also complicates the evaluation. Furthermore,

Fig. 13. BB-tree and BB-array.

TABLE 4
Datasets for Scaling jOj

Name jOj jAj dom(A) Size(O) (mb)

BT1 533,635 10 [1, 151] 2,631
BT2 1,009,579 4,983
BT3 1,424,273 7,041
BT4 2,757,312 13,678
BT5 4,220,435 20,910

Fig. 14. Scaling jOj.

TABLE 5
The Settings of jAj and dom(A)

jAj 2 5 10 15 20

dom(A) [1, 43] [1, 74] [1, 211] [1, 322] [1, 861]

jAj = 1

[1, 5], [1, 20], [1, 50], [1, 100], [1, 200], [1, 500]

1130 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

the method does not achieve good locality for multiple
attributes.

The IOC-tree associates attributes with all locations. Con-
sequently, each octree maintains all points of a trajectory.
This significantly increases the index storage overhead,
deteriorating the query performance. HAGI defines a loose
bound by min and max values and may work well for one
attribute. However, the method will process all trajectories
whose values are within the bound but are not equal to the
query. The bound does not make sense if several attributes
are defined because min and max values may be from differ-
ent attributes. The scope of the method Att-online is limited
as the performance is only competitive in a few settings,
e.g., jAj = 1 and dom(A) = 500. We will not include the
method in the following evaluation. We also report the sto-
rages of GR-tree and Ratt, respectively, see Figs. 15c and
16c. One can see that varying the attribute setting will only
incur the variation of Ratt’s storage.

7.2.2 Efficiency Study

Varying jQaj. We perform the evaluation by varying the
number of query attributes. The results, as reported in
Fig. 17, demonstrate that our method substantially outper-
forms baseline methods in all settings. When jQaj increases,
the performance becomes better as the attribute predicate is
more selective.

Varying the Distance d. We report the performance evalua-
tion affected by d in Figs. 19 and 20. When d increases, the
performance degrades as expected due to more data being
processed. The advantage of our method is significant in
BTAXI, while some baseline methods are competitive in
STAXI. That is, RIB achieves a good selectivity when there
is only one attribute. The result is consistent with scaling
the number of attributes.

Effect of T ðoqÞ. We do the evaluation by choosing query
trajectories with different distributions of time periods: short

Fig. 15. Scaling jAj and dom(A).

Fig. 16. Scaling dom(A) (jAj = 1).

Fig. 17. The effect of jQaj (BTAXI, d = 10km). Fig. 19. The effect of d (BTAXI, jQaj = 3).

Fig. 20. The effect of d (STAXI, jQaj = 3).Fig. 18. The effect of query time (BTAXI, d = 10km, jQaj = 3).

XU ETAL.: FRAMEWORK TO SUPPORTCONTINUOUS RANGE QUERIES OVER MULTI-ATTRIBUTE TRAJECTORIES 1131

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

time, random and long time. For example, we select 20 trajecto-
ries with the minimum time period as short time query trajec-
tories. The results are reported in Fig. 18. One can see that the
costs grow proportionally when T ðoqÞ increases, but our
method achieves the best performance in all settings. Further-
more, the performance deviates significantly for long trips.

Memory Costs. We report the average memory cost of
auxiliary structures C3, BB-array and GR-tree in Table 6.
When d increases, more cells will be involved during the
evaluation and the storage of C3 rises accordingly. The stor-
age of the BB-array depends on the query trajectory and
thus is not sensitive to d. We measure the memory cost of
GR-tree in terms of the number of accessed nodes during
the query evaluation. The largest query distance d = 50 km
incurs around 12mb memory cost.

7.2.3 Updating Evaluation

The performance is evaluated by scaling the number of new
trajectories. We build the historical database on part of the
dataset and take the rest as new trajectories, denoted by Ou.
As reported in Fig. 21a, jOj increases in several orders of mag-
nitude, but the updating cost only rises marginally. The cost
of BTAXI is higher than that of STAXI due to the number of
attributes. We also perform a series of updates, each of which
processes 50,000 trajectories. The overall update time is mea-
sured and the result is reported in an accumulated way, as
shown in Fig. 21b. The time cost increases slightly.

8 CONCLUSION

We studied multi-attribute trajectories to enrich the data
representation of trajectory data. A new query is proposed to
simultaneously evaluate the data in terms of spatio-temporal
and attribute predicates. We develop an optimal data parti-
tion method and build index structures with efficient query
algorithms. An approximate distance calculation method is
proposed accompanied with thorough theoretical analysis.
Extensive experimental results demonstrated that ourmethod

significantly outperforms alternative methods. The future
work is to consider join queries onmulti-attribute trajectories.

ACKNOWLEDGMENTS

Zhifeng Bao was supported by the ARC under Grant
DP200102611. This work was supported in part by the
NSFC under Grant 61972198 and in part by the Natural Sci-
ence Foundation of Jiangsu Province of China under Grant
BK20191273.

REFERENCES

[1] 2019. [Online]. Available: http://factory.datatang.com/en/
[2] J. Bercken, B. Seeger, and P. Widmayer, “A generic approach to

bulk loading multidimensional index structures,” in Proc. 23rd Int.
Conf. Very Large Data Bases, 1997, pp. 406–415.

[3] R. Cai, Z. Lu, L. Wang, Z. Zhang, T. Z. J. Fu, and M. Winslett,
“DITIR: Distributed index for high throughput trajectory insertion
and real-time temporal range query,” Proc. Very Large Data Bases
Endowment, vol. 10, no. 12, pp. 1865–1868, 2017.

[4] D. W. Choi, J. Pei, and T. Heinis, “Efficient mining of regional
movement patterns in semantic trajectories,” Proc. Very Large Data
Bases Endowment, vol. 10, no. 13, pp. 2073–2084, 2017.

[5] J. Dai, B. Yang, C. Guo, C. S. Jensen, and J. Hu, “Path cost distribu-
tion estimation using trajectory data,” Proc. Very Large Data Bases
Endowment, vol. 10, no. 3, pp. 85–96, 2016.

[6] Y. Fang, R. Cheng, W. Tang, S. Maniu, and X. S. Yang, “Scalable
algorithms for nearest-neighbor joins on big trajectory data,” in
Proc. 32nd Int. Conf. Data Eng., 2016, pp. 1528–1529.

[7] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis,
“Algorithms for nearest neighbor search on moving object
trajectories,” GeoInformatica, vol. 11, no. 2, pp. 159–193, 2007.

[8] R. H. G€uting, T. Behr, and C. D€untgen, “SECONDO: A platform
for moving objects database research and for publishing and inte-
grating research implementations,” IEEE Data Eng. Bull., vol. 33,
no. 2, pp. 56–63, Jun. 2010.

[9] R. H. G€uting, T. Behr, and J. Xu, “Efficient k-nearest neighbor
search on moving object trajectories,” Very Large Data Bases J.,
vol. 19, no. 5, pp. 687–714, 2010.

[10] R. H. G€uting, F. Vald�es, and M. L. Damiani, “Symbolic
trajectories,” ACM Trans. Spatial Algorithms Syst., vol. 1, no. 2,
pp. 1–51, 2015.

[11] R. H. G€uting et al., “A foundation for representing and querying
moving objects,” ACM Trans. Database Syst., vol. 25, no. 1, pp. 1–42,
2000.

[12] Y. Han, L. Wang, Y. Zhang, W. Zhang, and X. Lin, “Spatial key-
word range search on trajectories,” in Proc. Database Syst. Adv.
Appl., 2015, pp. 223–240.

[13] Q. Hao, L. Chen, F. Xu, and Y. Li, “Understanding the urban pan-
demic spreading of COVID-19 with real world mobility data,” in
Proc. 26th ACM Int. Conf. Knowl. Discov. Data Mining, 2020, pp.
3485–3492.

[14] Y. Luo et al., “DeepTrack: Monitoring and exploring spatio-tem-
poral data - A case of tracking COVID-19 -,” Proc. Very Large Data
Bases Endow., vol. 13, no. 12, pp. 2841–2844, 2020.

[15] C. Parent et al., “Semantic trajectories modeling and analysis,”
ACM Comput. Surv., vol. 45, no. 4, pp. 1–32, 2013.

[16] Z. Shang, G. Li, and Z. Bao, “DITA: Distributed in-memory trajec-
tory analytics,” in Proc. SIGMOD Int. Conf. Manage. Data, 2018,
pp. 725–740.

[17] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou, “Calibrating
trajectory data for similarity-based analysis,” in Proc. SIGMOD
Int. Conf. Manage. Data, 2013, pp. 833–844.

[18] H. Su et al., “Making sense of trajectory data: A partition-and-
summarization approach,” in Proc. Int. Conf. Data Eng., 2015,
pp. 963–974.

[19] Y. Su, Y. Wu, and A. L. P. Chen, “Monitoring heterogeneous near-
est neighbors for moving objects considering location-indepen-
dent attributes,” in Proc. Int. Conf. Database Syst. Adv. Appl., 2007,
pp. 300–312.

[20] Y. Tong et al., “The simpler the better: A unified approach to pre-
dicting original taxi demands based on large-scale online
platforms,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2017, pp. 1653–1662.

Fig. 21. The performance of updating GR2-tree.

TABLE 6
The Memory Costs of C3, BB-Array and GR-Tree

d (km) 1 5 10 20 50

C3 (kb) 0.27 0.28 0.8 4.56 28.52

BB-array (kb) 18.17 10.45 15.62 38.9 24.45

B 15 15 17 23 20

GR-tree(�4kb) 72 299 1,292 1614 2,760

1132 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

http://factory.datatang.com/en/

[21] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” Proc. Very Large
Data Bases, vol. 11, no. 11, pp. 1633–1646, 2018.

[22] G. Trajcevski and P. Scheuermann, “Triggers and continuous
queries in moving objects database,” in Proc. Int. Workshop Data-
base Expert Syst. Appl., 2003, pp. 905–910.

[23] F. Vald�es and R. H. G€uting, “A framework for efficient multi-attri-
bute movement data analysis,” Very Large Data Bases J., vol. 28,
no. 4, pp. 427–449, 2019.

[24] F. Vald�es and R. H. G€uting, “Index-supported pattern matching
on tuples of time-dependent values,” GeoInformatica, vol. 21, no. 3,
pp. 429–458, 2017.

[25] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, M. Sanderson, and X.
Qin, “Answering top-k exemplar trajectory queries,” in Proc. Int.
Conf. Data Eng., 2017, pp. 597–608.

[26] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, and G. Cong, “Reverse k
nearest neighbor search over trajectories,” IEEE Trans. Knowl. Data
Eng., vol. 30, no. 4, pp. 757–771, Apr. 2018.

[27] S. Wang et al., “Torch: A search engine for trajectory data,” in Proc.
Int. Conf. Res. Develop. Inf. Retrieval, 2018, pp. 535–544.

[28] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint top-k spatial
keyword query processing,” IEEE Trans. Knowl. Data Eng., vol. 24,
no. 10, pp. 1889–1903, Oct. 2012.

[29] D. Xie, F. Li, and J. M. Phillips, “Distributed trajectory similarity
search,” Proc. Very Large Data Bases, vol. 10, no. 11, pp. 1478–1489,
2017.

[30] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer,
“SeMiTri: A framework for semantic annotation of heterogeneous
trajectories,” in Proc. Int. Conf. Extending Database Technol., 2011,
pp. 259–270.

[31] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer,
“Semantic trajectories: Mobility data computation and annotation,”
ACMTrans. Intell. Syst., vol. 4, no. 3, pp. 49:1–49:38, 2013.

[32] C. Zhang, J. Han, L. Shou, J. Lu, and T. F. la Porta, “Splitter: Min-
ing fine-grained sequential patterns in semantic trajectories,”
Proc. Very Large Data Bases, vol. 7, no. 9, pp. 769–780, 2014.

[33] J. Zhang, B. Tang, and M. L. Yiu, “Fast trajectory range query with
discrete frechet distance,” in Proc. Int. Conf. Extending Database
Technol, 2019, pp. 634–637.

[34] B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. W. Sadiq, and X. Zhou,
“Approximate keyword search in semantic trajectory database,”
in Proc. Int. Conf. Dtabase Eng., 2015, pp. 975–986.

[35] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang, “Towards efficient
search for activity trajectories,” in Proc. Int. Conf. Dtabase Eng.,
2013, pp. 230–241.

[36] K. Zheng and H. Su, “Go beyond raw trajectory data: Quality and
semantics,” IEEE Data Eng. Bull., vol. 38, no. 2, pp. 27–34, Jun.
2015.

Jianqiu Xu is currently a professor with the Nanj-
ing University of Aeronautics and Astronautics,
China. His research interests include spatial
databases and moving objects databases. He
was on the program committees for conferences,
including the KDD, DASFAA, and MDM.

Zhifeng Bao is currently an associate professor
with RMIT University, Australia. His research inter-
ests include data usability, spatial database, data
integration, and cleaning. He was on the program
committees for conferences, including the SIG-
MOD, PVLDB, ICDE, andKDD.

Hua Lu (Senior Member, IEEE) is currently a pro-
fessor with the Department of People and Technol-
ogy, Roskilde University, Denmark. His research
interests include database and data management,
and geographic information systems. He was on
the program committees for conferences, including
the PVLDB, ICDE, and KDD.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XU ETAL.: FRAMEWORK TO SUPPORTCONTINUOUS RANGE QUERIES OVER MULTI-ATTRIBUTE TRAJECTORIES 1133

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 30,2023 at 14:22:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

