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Abstract

Medical imaging super-resolution is critical for improving diagnostic utility and
reducing costs, particularly for low-cost modalities such as portable Optical Co-
herence Tomography (OCT). We propose OCTDiff, a bridged diffusion model
designed to enhance image resolution and quality from portable OCT devices.
Our image-to-image diffusion framework addresses key challenges in the condi-
tional generation process of denoising diffusion probabilistic models (DDPMs).
We introduce Adaptive Noise Aggregation (ANA), a novel module to improve
denoising dynamics within the reverse diffusion process. Additionally, we integrate
Multi-Scale Cross-Attention (MSCA) into the U-Net backbone to capture local
dependencies across spatial resolutions. To address overfitting on small clinical
datasets and to preserve fine structural details essential for retinal diagnostics, we
design a customized loss function guided by clinical quality scores. OCTDiff out-
performs convolutional baselines and standard DDPMs, achieving state-of-the-art
performance on clinical portable OCT datasets. Our model and its downstream
applications have the potential to generalize to other medical imaging modalities
and revolutionize the current workflow of ophthalmic diagnostics. The code is
available at https://github.com/AI4VSLab/OCTDiff.

1 Introduction

Medical image analysis has been transformed by recent deep learning advances, including disease
classification [/1} 2], tissue and cellular segmentation [3]], and contrast enhancement [4]]. However,
most existing models are trained on data from high-end imaging systems, making them less effective
and even unusable in low-resource or point-of-care settings. One critical domain with this limitation
is ophthalmology, where high-quality Optical Coherence Tomography (OCT) systems can cost
over 50,000 dollars and weigh more than 50 pounds, significantly reducing their accessibility in
underdeveloped regions.

Convolutional neural networks (CNNs) and generative adversarial networks (GANs) have been
widely applied for OCT image enhancement tasks including super-resolution (SR) and denoising.
For instance, an early approach [5] built on ESRGAN [6] and MedGAN [[7] demonstrated promising
visual improvements on simulated low-resolution OCT images. However, it suffered from mode
collapse and generated unwanted artifacts; hence, its generalizability to real-world clinical scans
remains untested. CNN-based super-resolution methods have also been applied on other medical
imaging modalities such as computed tomographpy (CT) and magnetic resonance imaging (MRI)
[8, 9. Though quantitative performance improves, these models tend to hallucinate fine details and
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fail to preserve delicate anatomical structures, which are essential for accurate diagnosis. Medical
visual tasks for diagnostic assistance such as anatomical segmentation and motion correction have
achieved clinically-usable performance [10,|11], but SR remains challenging due to the inherent low
contrast of low-resolution images and the scarcity of large-scale patient datasets with low-resolution
and high-resolution pairs, despite well-established SR benchmarks on natural images [[12].
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Figure 1: Pipeline of our study. The clinical low-resolution dataset was captured with a portable OCT
device and then underwent necessary filtering, preprocessing, and registration. The synthetic dataset
[5]] was obtained by matching the histogram of the commercial OCT data to that of the portable OCT
data, convolving the resulting data with the Point Spread Function (PSF) of the portable OCT, and
then downsampling the data by a factor of 4 [6]. OCTDiff super-resolves both datasets and generates
high-resolution outputs for downstream classification of ophthalmic diseases such as glaucoma and
age related macular degeneration (AMD).

Diffusion-based generative modeling, i.e. denoising diffusion probabilistic models (DDPMs) [13]],
has demonstrated superior performance over convolutional models and GANSs in terms of both
generative quality and training stability [|14} |I5]. DDPM variants such as latent diffusion models
(LDMs) [16] and conditional DDPMs (CDMs) [17] extend the power of DDPMs by incorporating
guided conditioning to generate more controlled outputs. However, they are still not guaranteed to
reliably translate images between different domains when conditioning on a target image. A more
recent approach, the bridged Brownian diffusion model (BBDM) [18]], emphasizes conditioning by
directly using the reference image as the initial point in the reverse diffusion process. This architecture
is particularly well-suited for image-to-image tasks such as style transfer and semantic synthesis.
Nevertheless, its potential for super-resolution and its effectiveness when training on medical images,
which are small in dataset size and large in spatial resolution [19], remains relatively unexplored.

To address these limitations, we propose OCTDiff, an image-to-image super-resolution conditional
diffusion model for portable OCT enhancement. OCTDiff builds upon the bridged framework
originated from BBDM. We propose two novel components: (1) an Adaptive Noise Aggregation
(ANA) algorithm that stabilizes the reverse denoising trajectory by aggregating noise predictions
from previous time steps in the reverse process; and (2) a Multi-scale Cross-Attention (MSCA) UNet
backbone that enables cross-resolution feature interaction between encoder and decoder to better
capture both global anatomy and fine retinal details. (3) During model training, we also introduce
a custom loss function with modulation from a clinical quality score to guide the model toward
perceptually and diagnostically meaningful outputs.

In summary, our main contributions are:
* We propose OCTDiff, which significantly outperforms baseline methods in both quantitative met-
rics and qualitative structural fidelity on real-world OCT datasets. The computational efficiency
and training speed are also preserved, as demonstrated in Section .1}

* We are the first to address the semantic misalignment issue [20] in conditional DDPMs through
temporal fusion across denoising steps, enabling stronger conditioning guidance throughout the
generation process. This strategy is uniquely feasible within the bridged diffusion framework,
where the conditioning image directly anchors the reverse process.

* Clinically, OCTDiff pioneers a new direction at the intersection of Al and healthcare, tailored
for ultra-low-resolution images from portable devices. Its utility in downstream classification
tasks (Section[4.3)) shows OCTDiff’s potential to deliver affordable and reliable vision care to



under-served and remote populations, and to generalize to other resource-constrained medical
imaging settings.

2 Related Work

Heuristic Optimization in Diffusion Models Early improvements in diffusion models relied
heavily on heuristic strategies for loss weighting, noise scheduling, and sampling. Hybrid loss
designs [21} 22} [23|[24]] combine pixel-wise noise prediction with latent-space objectives to balance
reconstruction accuracy and perceptual realism. For noise scheduling, linear or cosine 3; schedules
[25] are commonly used, while more recent works [26l |27]] propose handcrafted tuning based on
empirical settings that better align with DDPM’s denoising capacity across timesteps. Additionally,
timestep reweighting prioritizes intermediate steps where gradients are more stable [21] 25/ 28}, |29,
30]. These heuristic strategies improve sample diversity and convergence without modifying model
architecture, but they are inherently static and task-agnostic, often relying on fixed schedules and an
assumption that certain timesteps are more important than others. In contrast, our Adaptive Noise
Aggregation (ANA) module in OCTDiff dynamically aggregates multiple denoising predictions
across timesteps, assigning different noise schedules to different images. This temporal fusion
captures complementary information from various noise levels that represent multi-scale features,
which is conceptually similar to ensemble learning. ANA is only realizable within a bridged
diffusion framework, being particularly effective for conditional tasks such as super-resolution and
reconstruction for degraded OCT images.

Learnable noise modulation MuLAN [31]] learns per-sample noise schedules by predicting the
optimal noise scale ¢ for each input, while other methods [32} [33]] use auxiliary networks or learned
noise embeddings to refine denoising behavior. ANA also aims to improve signal-noise alignment but
achieves this through temporal fusion rather than direct modulation. Unlike MuLAN’s learned noise
schedules, ANA adapts noise dynamically per image without introducing additional supervision,
making it well-suited for resource-constrained applications. While ANA may sacrifice flexibility in
handling highly variable noise patterns compared to MuLAN, it offers a simpler and more efficient
solution, particularly for OCT scans that require consistent, low-complexity adaptations.

Attention and Diffusion Recent works increasingly integrate attention mechanisms into diffusion
models. Transformer-based architectures such as latent diffusion [16], ImageCraft [34]], and CDM
[35]] incorporate self- and cross-attention to enhance spatial coherence. Other designs introduce hier-
archical [36], spatially-aware [37]], or multi-scale attention 38}, 39]] to improve structure preservation
while maintaining efficiency. Some models further combine attention with guidance signals (e.g., text,
edge maps) for stronger control [40, 41]]. While prior multi-scale works stack features within encoder
or decoder branches or process them in parallel at a single resolution, our MSCA introduces explicit
cross-attention between encoder and decoder features at different scales, enabling context-aware
guidance across resolutions.

Temporal Ensembling and Recurrent Denoising We introduce the ANA as a regularizing prior
across timesteps, inspired by previous aggregation algorithms. For example, temporal ensembling
reduces prediction variance and enhances consistency in semi-supervised learning [42]; and recurrent
denoising benefits from multi-step integration to avoid error explosion [43[. The idea of combining
global and local features in medical images also resembles multi-scale fusion of frequency components
via weighted aggregation [44]. Our work is also distinctive from differential-equation—based methods
[45]] because ANA is discrete-time, controllable (with attenuation «v) and operates during inference
(not training). Also rather than modifying the noise sampler like DPM-Solver[46], ANA assumes a
fixed noise schedule (e.g., linear or cosine) and aggregates the previously-sampled noise vectors.

3 Method

3.1 Adaptive Noise Aggregation

Our OCTDiff builds upon bridged diffusion [[18] that learns the translation between two image
domains directly through a bidirectional diffusion process. We propose Adaptive Noise Aggregation
(ANA) strategy to improve the stability of the reverse denoising process. Noise predictions at



different time steps ¢ encode complementary information particularly for high-frequency retinal
details. Aggregating different noise levels basically leverages different image scales’ information.
ANA with adaptive weights enhances fine structure reconstruction, especially when the input is
severely degraded as in portable OCT scans.

The reverse process starts from the high-resolution condition £ = y, and iteratively estimates
intermediate latent states &, to recover a clean image o over 1" denoising steps. At each step ¢, the
model defines the reverse transition as:

p9<xt ‘ xt+17y) ~ N(M@(xt+l7t7 y)7 29($t+1, t7y)) (1)

where py is a learned Gaussian distribution with parameters predicted by the U-Net backbone. The
noise component is estimated as é; = €g (141, t,y), where &g is the noise prediction network. This
predicted noise ¢ is then used to reconstruct an intermediate clean estimate 2, which subsequently
informs the mean function 9 (x¢11,t,y) in the reverse transition.

To improve the robustness of the reverse process, our ANA algorithm does not rely solely on the
current noise prediction. Instead, it adaptively aggregates noise predictions from all previous time
steps in the reverse process {é, f;tl using exponential decay. This temporal fusion yields a more
stable and informative estimate €;. The aggregation is formally defined as:

1
=7 > exp(—alr — 1)) - &, )

where the weight function w(7,t) = exp(—a(7 — t)) introduces a time-decay prior, emphasizing
predictions closer to step ¢ while still leveraging long-range information. The scalar a > 0 controls
how fast the weight decays over time. We discuss the impact of different o values in an ablation study

(Section . The normalization term Z; ensures the aggregated weights sum to 1: Zz;tl %ft) =1.
This updated ¢; forms soft temporal fusion of noise estimates.

An intuitive explanation for ANA is the exponential moving average (EMA) [47]. We adapt the
EMA principle to the spatially-structured noise tensor space, making ANA a temporally-aware
ensemble over latent signals within diffusion. In OCTDiff, the forward process generates a sequence
of interpolated images (“bridges”) between the low-resolution input and high-resolution target. This
bridging mechanism ensures all intermediate steps are structurally meaningful and semantically
anchored. Therefore, aggregating noise predictions across time is more stable and informative here.
On the contrary, in standard DDPMs, reverse steps are inherently noisy in early steps and often
sensitive to prediction errors, which makes temporal aggregation less stable.

The proposed ANA strategy enables the model to leverage not only the current noise prediction but
also aggregated predictions across future steps. This stabilizes the reverse trajectory and enhances
final image quality. The ANA algorithm is summarized in Algorithm 1.

- i i i Refinement Module: To improve robustness
Algorithm 1 Adaptive Noise Aggregation | at early stages (t > T'/2), we apply a gradient-

(ANA) based refinement:
Require: High-resolution input £ = y, total . .
steps 1T’ € < €& — 1 Ve, Laenoise,

Ensure: Super-resolved output & where 7) is a small step size and Lgenoise denotes
l: fort =T—-1to0do a pixel-level loss against a pseudo-ground truth.
2: € < €9 (It-l—lv t) . . .

3: if t > T'/2 then Reconstruction Module: Given %, and the
4: €, < Refine(é;, VLienoise) aggregated noise €;, we use the DDIM [48] in-
5 end if version rule:

~ T-1 R
6: G >, exp(—a(r—1t)) ¢ 1

t LHT=1 o ~t A . — -

7: 9:56 — RecAonstlzltlct(i:tH, €, 1) To = NG (1 —VI-as-&),
8: Ty < po(Teq1, Th, t) . )
9: end for to approximate the clean image at step 0. Then

10: return 7 %} is used to compute the posterior mean Z; as

in the DDPM/DDIM formulation.
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Figure 2: The Adaptive Noise Aggregation (ANA) process in reverse diffusion.

3.2 Multi-Scale Cross Attention

We implement multi-scale cross-attention (MSCA) in the UNet backbone of our OCTDiff model.
The MSCA enables encoder features at each scale to attend to decoder features at different scales.
This cross-scale interaction is particularly important for our super-resolution task on OCT images.
Medical image scans such as OCT often contain crucial diagnostic patterns in small, localized patches
observed at different scales. For example, at a scale of 32 x 32, only the vessels may be visible,
while at 128 x 128, the scan may show larger structures like the retina and tissue. The MSCA helps
preserve fine retinal structures while capturing global context in OCT.

For each encoder query Q3.

(K3, Vi) from different scales s’ € Sgec Where s’ # s. The attention is computed by the softmax
of the scaled dot product between the query and the key. The output of the attention is then added to
the original query Q. to preserve the residual connection. (Eq. (3)) depicts the MSCA mechanism:

A s gnc(Kage,c)T s’
Qenc = g E sne 1+ Softmax — Ve 3)
S$E€ESenc 8 €Syec
s'#s

at scale s € Sepc, the attention is computed with key-value pairs

3.3 Loss Function with Clinical Quality Score

Due to the physical constraints of portable OCT devices, some acquired OCT scans are highly
degraded. We thus incorporate clinical expert knowledge into model training by introducing a
quality-aware loss function. Each high-resolution training image is assigned a perceptual quality
score S(gllxzﬂity derived from subjective ratings provided by ophthalmologists. These ratings (e.g., from
1 to 10) are aggregated via voting and normalized to form a continuous score, reflecting the perceived
clinical value of each target OCT image. We design a focal-style loss that enables high-quality scans
to have a larger impact during model training. This is formulated as a perceptual quality modulated
mean squared error:

N
1 i v N
MSEfocal = N Z (]- - Séu?ﬂity) : (xz - xi)2 “)
i=1
Here, v < 0 is a focusing parameter that controls the degree to which high-quality samples are
prioritized, usually being set in [-2, -1]. The modulation term (1 — Séfl)amy)“f prevents the model from
being confused by relatively suboptimal OCT data.

3.4 Datasets and Experiments

Synthetic 500 Dataset We use two medical OCT datasets in our experiments: one synthetic and
one clinical. The synthetic dataset is referred to as the Synthetic 500 dataset that contains 524 pairs of
OCT B-scans and was designed to simulate the imaging characteristics of portable OCT devices. The
high-resolution images were acquired from a Carl Zeiss® Cirrus HD-OCT 5000 machine and serve
as ground truth. The low-resolution scans were generated by first matching the intensity histograms
of high-resolution scans, then convolving them with the Point Spread Function (PSF) derived from a
Lumedica portable OCT device, and finally downsampling by a factor of 4 as used in ESRGAN [6]]
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Figure 3: Illustration of the Multi-scale Cross-Attention (MSCA) mechanism. Encoder features at
each scale attend to decoder features at different scales, enabling cross-scale information fusion.

experiments. The Synthetic 500 dataset serves as a controlled setting for proof-of-concept evaluation
and comparison with baselines to demonstrate the superiority of OCTDiff.

Philophos 84 Dataset Due to the lack of publicly available low-resolution OCT datasets, we
collected our own real-world dataset with the Philophos® KUOS-0100 portable OCT device. OCT
B-scans were captured from patients who visited Columbia Ophthalmology from May through July
2024. To obtain paired high-resolution scans under consistent physical and clinical conditions, each
participant also underwent an additional OCT scan using a commercial device (Zeiss Cirrus 5000)
during the same visit. The portable device has significantly limited imaging capabilities: shallower
imaging depth of 2.0 mm (commercial: 2.9 mm), smaller field of view 6.5 x 6.5 mm (commercial:
>8 mm), and reduced spatial resolution of 562 x 1286 (commercial: >3k).

These hardware limitations result in low-resolution, high-noise, low-contrast images, often with off-
centered or partially missing retinal structures. We first filtered out technically corrupted or clinically
irrelevant scans, then applied an unsupervised denoising approach [49)] to all images. Next, affine
registration was performed using ImFusion© software [50] to align remaining scans to a standard
OCT template and resizing to 256 for model training. Then we conducted augmentation including
flipping, scaling, rotation, elastic deformation, and contrast enhancement. After preprocessing, we
obtained 504 paired B-scans from 84 patients, forming the Philophos 84 Dataset that presents realistic
challenges for low-quality portable OCT enhancement. OCTDiff is proposed to faithfully super-
resolve these degraded scans from “unusable” to “usable”, thereby making portable OCT devices
clinically valuable.

4 Results

We present quantitative and qualitative results of our OCTDiff against baseline models. We conduct
ablation studies to analyze the effects of the ANA and MSCA modules and the quality-score informed
loss on model performance, complexity, and training efficiency, including different cross-attention
types and the exponential decay rate o in ANA. To demonstrate real-world applicability, we perform
downstream disease classification using images generated by OCTDiff, comparing results with those
from original low-resolution and target high-resolution scans. Finally, we discuss the limitations of
our approach and directions for future work.
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Figure 4: Two examples of reconstructed images from baseline models and our proposed OCTDiff.
The first row shows a left-eye (OS) scan, and the second row shows a right-eye (OD) scan. The
first and last columns correspond to the input low-resolution image and the ground truth (GT) high-
resolution image, respectively. Baseline methods include SRCNN [52]], VDSR [53]], CycleGAN [54],
Swin2SR [55]], CDM [35]], and BBDM [[I8]|. Red boxes highlight regions with notable degradation
or artifacts compared to GT. Each image is annotated with its BRISQUE score [56] to quantify
perceptual quality.

Table 1: Quantitative comparison of models on Philophos 84 and Synthetic 500 datasets. Arrows
indicate the desirable direction for each metric.

Philophos 84 Dataset Synthetic 500 Dataset
Model SSIM% 1t PSNR 1 LPIPS% | SSIM% 1 PSNRT LPIPS% |
SRCNN 39.7 18.4 49.3 91.7 28.2 9.2
VDSR 26.1 17.9 47.7 85.2 33.0 12.7
CycleGAN 58.4 29.2 28.3 95.3 30.3 17.9
Swin2SR 78.8 359 18.3 96.9 38.2 4.7
CDM 71.9 332 31.5 98.6 34.2 14.3
BBDM 87.2 353 27.9 98.1 42.7 6.2
OCTDiff(ours) 93.6 38.8 16.1 98.9 41.0 1.7

4.1 Performance

OCTDiff is trained and tested separately on the Philophos 84 and Synthetic 500 dataset. Training is
conducted on a Lambda Labs Vector server equipped with two NVIDIA©A6000 GPUs, requiring
approximately 48 hours to complete from scratch with input images resized to 256x256 pixels and
a total diffusion time step 7' = 1000. For quantitative evaluation, we employ structural similarity
index measure (SSIM) [57], peak signal-to-noise ratio (PSNR), and Learned Perceptual Image Patch
Similarity (LPIPS) [58]] to comprehensively assess reconstruction fidelity, pixel-level accuracy, and
perceptual quality, respectively.

The baseline convolutional models include SRCNN [52]] and VDSR [53]]. Since previous work [J5]]
on Synthetic 500 dataset implemented ESRGAN and MedGAN, we include CycleGAN [54] for
comparison. The Swin2SR is chosen as a state-of-the-art transformer-based super-resolution
model leveraging hierarchical self-attention and shifted windows to compare with our MSCA strategy.
Regarding diffusion models, we implement CDM and the bridged model BBDM as a
foundation for our work. All models are trained from scratch under the same training strategy without
pretraining to ensure a fair comparison.

Quantitative Results Our OCTDiff achieves the best performance in terms of SSIM (0.936 and
0.989 on the Philophos 84 and Synthetic 500 datasets, respectively) and attains the highest PSNR of
38.8 on the Philophos 84 dataset, as shown in Tablem Most baseline models perform well on the
Synthetic 500 dataset and achieve over 0.95 SSIM, which is comparable to OCTDiff, with BBDM
reaching the highest PSNR of 42.7. This is likely because the Synthetic 500 dataset preserves scaling
and local structural information during the synthesis process from high-resolution to low-resolution
images, making the super-resolution task relatively easier for models employing local upsampling
techniques such as convolutional kernels. Model performances drop on the Philophos 84 dataset,
while our OCTDiff outperforms all baselines.



Table 2: Ablation study on ANA and MSCA Table 3: Ablation study on ANA exponential

in OCTDiff on Philophos 84 dataset. decay rate o on Philophos 84 dataset.
ANA MSCA SSIM% 1  Params (M) FLOPs (G) a SSIM% 1 PSNR 1
86.1 22.8 406.2 0.1 91.2 37.1
v 90.7 22.8 451.3 0.3 93.6 37.8
v 88.0 23.7 613.9 0.6 84.6 38.8
v v 93.6 23.7 762.6 1.0 82.8 38.0

Qualitative Outcome Figure [4] visualizes two representative examples of outputs generated by
all models on the Philophos 84 dataset. Each image is annotated with its BRISQUE score [50], a
reference-less perceptual quality metric for which lower values indicate better visual quality. Red
boxes highlight regions of structural deviation from the ground truth. Convolution-based models
SRCNN and VDSR fail to produce structurally stable outputs, often introducing artifacts and distorted
anatomical layers. The CycleGAN generates visually-coherent results but tends to average out fine-
grained variations, missing subtle retinal layers especially at the bottom of the scan. The Swin2SR
produces smooth and consistent textures but over-flattens important curvature details that compromise
anatomical realism. Diffusion-based models like CDM and BBDM better reconstruct the global
retinal structure but struggle with precise local detail, leading to extra peaks, dips, or distortions
around the fovea region, which are critical in clinical interpretation. Our OCTDiff not only preserves
global coherence but also recovers sharp structural boundaries close to the ground truth, although it
cannot replicate small subject-specific variations.

4.2 Ablation Study

Impact of ANA and MSCA Modules To evaluate the contribution of the ANA and MSCA modules,
we tested on different combinations of them and measured their impact on model performance, size
(number of trainable parameters), and training cost (in FLOPs) [59], as summarized in Table [2]
Another example of output image and corresponding residual maps compared to the ground truth
are shown in Figure[5] While ANA does not visibly alter the residual ratio, it effectively suppresses
fundamental errors (i.e., the discontinuities in retinal layers) that occur when only MSCA is present.

ANA introduces no additional trainable parameters but increases FLOPs, offering a trade-off that
results in SSIM increase. In contrast, MSCA yields more modest performance improvements but is
crucial for maintaining spatial consistency, particularly for medical images that require structural
integrity for diagnosis. In summary, ANA serves as the primary driver of performance gain and MSCA
provides structural regularization. Both components together give rise to the superior performance of
OCTDiff.

Weight Decay Factor Another key hyperparameter in ANA is the exponential decay rate «, which
controls how quickly the adaptive noise modulation weights diminish as introduced in Section
[3.1] Table[3|reports the results with varying « values. When « is low (e.g., 0.1), the model keeps
dependency on noise from earlier time steps over a longer duration and yields relatively high SSIM
but slightly lower PSNR, reflecting good structural preservation but less sharpness. Increasing «
further (e.g., 1.0) makes the model focus on the most recent two to three steps. This over-smoothing
causes loss of fine structural details. This trade-off suggests that a moderate o achieves the best
balance, and thus we selected @ = 0.3 for our experiments.

Choices of Cross Attention To justify our MSCA design of using encoder features as queries to
attend to decoder features, we provide an empirical analysis to compare different cross attentions
(CA), including unidirectional and bidirectional CA. The results are reported in Table 4]

Reverse CA (Decoder—Encoder) performed marginally worse though it converges faster, possibly
due to the decoder lacking detailed structural localization at early stages that makes the query
less efficient. Bidirectional CA is computationally expensive (twice as many attention layers per
scale), with limited benefits. Unidirectional CA (Encoder—Decoder) yields the most significant
improvement. The cost and scalability are also key impact factors for our decision when connecting
two scales, as our ultimate goal is to deploy OCTDiff onto clinical OCT devices to achieve real-time
image processing. We thus prioritized encoder-to-decoder attention in our task.



Table 4: Ablation study on cross attention
types in OCTDiff on Philophos 84 dataset.

Table 5: Comparison of loss with and without
quality score on Philophos 84 dataset.

MSCA Type SSIM% 1 Params (M) FLOPs (G) Metric No QS With QS
No CA 86.1 22.8 406.2 SSIM% 1 74.1 93.6
Enc — Dec CA 88.4 23.7 613.9 PSNR 1 349 38.8
Dec — Enc CA 87.2 23.7 607.7 LPIPS% | 22.4 16.1
Bidirectional CA 87.8 25.2 678.4 BRISQUE | 31.7 24.5

Quality Score in Loss Function To quantify how much the clinical input contributed to the overall
performance, we compared all metrics with and without quality-aware loss as illustrated in[3.3] The
results are in Table[5} the quality score significantly improved performance. This highlights how
domain knowledge is required for the perceptual and structural understanding of OCT images.

MSCA ANA

Input Low-res

MSCA + ANA

GT High-Res

Residual
Map

25.44%

Pixels > thr (0.1): 3.36% 2.13% 1.37%

Figure 5: Example output images when toggling MSCA and ANA. The second row shows the

corresponding residual maps of the images in the first row compared with GT on the right. At bottom,
the ratio of pixels that have a difference over 10% are shown.

4.3 Downstream Disease Classification

Table 6: Accuracy (%) on downstream disease classification using high-resolution images from
commercial OCT, low-resolution images from portable OCT, images generated from our OCTDiff
and BBDM models, in columns 1, 2, 3 and 4, respectively. The * indicates p-value < 0.05 compared
to the OCTDiff-generated input. The numbers are in the format of mean =+ standard deviation.

Disease Class Model High Res.  Low Res. OCTDiff BBDM
ViT 74.4 +1.9 50.1 £1.8% 74.5 +£3.1 62.0 +2.5%

Glaucoma CNN2D 934450 83.3+22* 935405  81.0+1.0%
SwinT ~ 75.5 £2.6% 49.5+3.1* 55.6+4.3 57.1 £3.2
ViT 86.5+1.9 489 +2.7* 858 +£1.6 79.5+2.1

AMD CNN2D 94.6 +£0.9% 83.0+1.4* 96.4+04  91.8 +0.7*
SwinT 823 +1.4* 494 4+2.4* 66.3+1.8 649 £2.6

We perform downstream disease classification using images generated by OCTDiff to directly
demonstrate its real-world utility in clinical applications. To reduce model bias, we trained three
classification architectures: ViT [60]], vanilla CNN, and SwinT [61] on three types of inputs: (1)
high-resolution images from commercial OCT devices, (2) low-resolution images from portable
OCT devices, (3) OCTDiff super-resolved images, and (4) BBDM super-resolved images. The
pretrained weights on ImageNet1K are imported. We performed 5-fold cross-validation for each
model-dataset pair, with the results shown in Table [6] and we conducted Mann-Whitney U tests [[63]
to assess statistical significance. This evaluation was conducted independently for two representative
ophthalmic tasks: glaucoma diagnosis and age-related macular degeneration (AMD) classification,



both of which are widely studied in AI ophthalmology [64} |65} 66|67, 68|, as they are the top two
causes of blindness worldwide.

Among the six models trained on high-resolution images, three showed no statistically significant dif-
ference, with the simplest vanilla CNN performing equally well in accuracy compared to counterparts
trained on OCTDiff-generated images. In contrast, models trained on low-resolution portable OCT
images exhibited a statistically significant drop. BBDM is selected as a representative of SR baselines,
which is outperformed by OCTDiff in 5 out of 6 rows. These comparisons highlight OCTDiff’s
ability to transform previously suboptimal portable OCT scans into diagnostically reliable images,
indicating that our method can closely match gold-standard OCT-image quality, or even exceed the
performance achieved by commercial high-resolution scans.

4.4 Limitations and Future Work

While OCTDiff demonstrates SOTA performance within each clinical dataset, the cross-dataset
generalization, such as training on Synthetic 500 and testing on Philophos 84 and vice versa, is still
under investigation due to the limited amount of data in each set. While OCTDiff is not positioned
to be a general-purpose SR benchmark, further experiments on widely used natural image SR
datasets are still needed to more comprehensively prove the advantages of the OCTDiff algorithm.
Additionally, although OCTDiIff is effective, the model remains relatively large and computationally
demanding, leading to longer training times. The cross-scale attention mechanism shows promising
benefits, but its performance is sensitive to the choice of scale combinations. Currently, only scales
of 128, 64, and 32 have been explored.

Future work will focus on overcoming current limitations by exploring latent-space methods [[16]
such as LDM, pre-training the model using natural images, and cross-dataset evaluations to further
validate OCTDiff’s generalizability. Toward system-level advancement, future work will include
integrating OCTDiff into physical portable OCT devices using edge computing platforms like
NVIDIA®Jetson Orin Nano [69] to enable real-time image enhancement for point-of-care clinical
applications. Safeguarding against hallucination in generated OCT images will be addressed in future
work via posthoc clinical quality assessment.

We plan to extend OCTDiff to other medical imaging and broader fields. OCT shares core signal
degradation characteristics with radiological imaging modalities, particularly speckle noise, which is
also prevalent in ultrasound and low-dose CT. Also our algorithm’s novel modules (ANA and MSCA)
are not restricted to a specific image type. For these reasons OCTDiff has potential for cross-modal
generalization. There are no publicly available portable OCT datasets to our knowledge, and portable
medical datasets are very rare in general, indicating the paradigm-shifting role of AI’s entry into this
field. Our work paves the way for the growing trend of developing tandem Al + imaging technology:
making Al algorithms more scalable, interoperable, and easier to deploy within a portable form factor,
enabling accessibility for the broadest populations at point-of-care.

5 Conclusion

We propose OCTDiff, a bridged diffusion framework specifically designed for enhancing portable
OCT images. We further propose Adaptive Noise Aggregation (ANA) to improve noise scheduling
within the diffusion process, allowing the model to adaptively leverage information from multiple
time steps.We incorporate Multi-Scale Cross-Attention (MSCA) to effectively capture spatial de-
pendencies at multiple resolutions. To mitigate overfitting on limited clinical datasets and preserve
diagnostically critical structures, we introduce a customized loss function guided by clinical quality
scores. Downstream disease classification demonstrates that OCTDiff significantly improves image
quality and makes low-cost OCT scans clinically usable. Our work lays the groundwork to revolu-
tionize the current workflow of ophthalmic diagnostics with AI’s power, making it more accessible
and cost-effective, ultimately improving healthcare outcomes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state our proposal of OCTDiff, a bridged diffusion model for super-
resolution and enhancement of portable OCT images, along with the introduction of key
components such as Adaptive Noise Aggregation (ANA)[3.1] Multi-Scale Cross-Attention
(MSCA) 3.2] and a customized loss function [3.3] with clinical quality score. The results
include improved image quality, quantitative metrics .1} downstream clinical applications
[.3]and ablation studies [4.2] The claims in the abstract are well supported by our results and
align with the content presented throughout the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly acknowledge several limitations in Section .4}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

15



3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work is primarily empirical and methodological, focusing on developing
and evaluating the OCTDiff model for OCT image super-resolution and enhancement. It
does not present new theoretical results that require formal proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary details on the model architecture in Figures [2]and 3]
training procedure including dataset splits, hyperparameters (including the weight decay
factor «v), and evaluation protocols. This will enable reproduction of the main experimental
results supporting the paper’s claims. Additionally, the code and sample data (through
figures in this publication) are now being made publicly available in this camera-ready
version.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code URL is being provided in this camera-ready version of the paper,
with clear instructions and documentation. The complete clinical dataset is currently under
IRB restrictions and ongoing collection, and will be made publicly available in a separate
publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clearly specify the training details including the data splits, o hyperparam-
eter settings in Section #.2] GPU usage and rationale behind their selection. These details
provide sufficient transparency to understand and reproduce the results. Other details such
as batch size and optimizer option will be upon each user’s preference.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical significance in Section 4.3 and we have updated the
results using the Mann—Whitney U test in this camera-ready version.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify computational cost of models (Section and hardware specifica-
tions such as GPU (Section[4.2)) and training time (Section 4.2).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our work complies fully with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We emphasized and evaluated the significant societal impacts of our work
in AI healcare (Section [I] [4.3] .4 and [5). OCTDiff has the potential to revolutionize the
current workflow of ophthalmic diagnostics with AI’s power, making it more accessible and
cost-effective, ultimately improving industrial healthcare outcomes.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our work focuses on medical image enhancement and does not involve high-
risk generative models such as large language models or general-purpose image generators.
The model is intended solely for clinical research use. The data used are de-identified
and subject to IRB protocols, and the release of code will be accompanied by clear usage
disclaimers to prevent misuse outside intended medical and academic contexts.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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12.

13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets used in the paper, including OCT imaging devices
(Philophos and Zeiss) pretrained models (e.g., ViT, SwinT) and datasets (e.g., ImageNet1K),
are properly cited with corresponding references. Their usage complies with the original
licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced (e.g. the OCTDiff model, the Adaptive Noise
Aggregation (ANA) module, and a clinical-quality-guided loss function) are thoroughly
documented in the main text. In this camera-ready paper, we are now releasing the full
source code with comprehensive instructions. A sample dataset will also be provided, while
the full clinical dataset will be released separately due to IRB constraints

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Our work does not involve crowdsourcing or direct research with human
subjects. All human-related data (retinal OCT scans) were retrospectively collected under
IRB-approved clinical protocols, with appropriate anonymization and ethical safeguards. No
compensation was provided, and no participants were recruited specifically for this study.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: All clinical OCT data used in our study were collected under Institutional
Review Board (IRB) approval number IRB-AAAV 1311, in accordance with ethical standards
for research involving human subjects. The data were fully deidentified before Al training.
No additional risks were posed to participants beyond standard OCT scanning, and informed
consent was obtained as part of the data collection protocol.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our work does not employ large language models (LLMs) as part of its core
methodology or experimental process. Any use of LLMs was limited to writing and editing
assistance that does not affect the scientific novelty or originality of our research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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