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Abstract— For navigation of robots, image segmentation is an
important component to determining a terrain’s traversability.
For safe and efficient navigation, it is key to assess the
uncertainty of the predicted segments. Current uncertainty
estimation methods are limited to a specific choice of model
architecture, are costly in terms of training time, require
large memory for inference (ensembles), or involve complex
model architectures (energy-based, hyperbolic, masking). In this
paper, we propose a simple, light-weight module that can be
connected to any pretrained image segmentation model, regard-
less of its architecture, with marginal additional computation
cost because it reuses the model’s backbone. Our module is
based on maximum separation of the segmentation classes by
respective prototype vectors. This optimizes the probability
that out-of-distribution segments are projected in between the
prototype vectors. The uncertainty value in the classification
label is obtained from the distance to the nearest prototype.
We demonstrate the effectiveness of our module for terrain
segmentation.

I. INTRODUCTION

Safe and efficient robot off-road navigation highly depends
on accurate and actionable information of the environment.
Semantic segmentation is a common component to deter-
mining the terrain’s traversability with images (e.g. [1]).
This segmentation provides information about the current
environment such as types of surfaces (e.g. puddles vs. dirt)
or obstacles (e.g. tall grass vs. tree) that could impact robot
navigation. If this segmentation model can run (almost) real-
time on the robot, it can be used for path planning or
replanning.

Not only the labels themselves are important, but also an
estimate of their uncertainty. Such an uncertainty estimation
enables online reasoning in path planning, e.g. uncertain
areas can be avoided or entered more carefully. Such an
approach is e.g. shown by Cai et al. [2] where traversability
estimates obtained by traction parameters of the platform
are used for risk estimation, and by Hakobyan et al. [3]
who proposed risk-aware motion planning and control Using
conditional value-at-risk (CVaR)-Constrained Optimization.

Standard methods for semantic segmentation focus on
label accuracy and not on the accuracy of the uncertainty
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estimate. Segmentation models that provide uncertainty are
not optimized for robotics and embedded scenarios [4], [5],
where uncertainty quantification needs to be fast, compact,
and without impacting the segmentation accuracy.

The approach presented in this paper consist of a simple,
lightweight module for uncertainty estimation for image
segmentation. This module, dubbed Simplex Semantic Seg-
mentation, can be connected to any pretrained semantic seg-
mentation model as it is architecture agnostic. Our approach
is based on the prototypes approach that was developed
for classification, often on imbalanced datasets with rare
classes [6]–[11]. In this paper, we apply this prototype
approach to obtain the uncertainty for semantic segmentation,
where each pixel of an input image needs to be labeled.

This paper is organized as follows: Section II presents our
method for the prototype module and the uncertainty estima-
tion. In Section III, these proposed methods are evaluated.
In Section IV, the findings are summarized and discussed.

II. PROPOSED APPROACH

A. Rationale

To estimate the uncertainty of image segmentation, we
propose a simple, light-weight module that can be connected
to any pretrained segmentation model. The module only
needs a feature map and is independent of the underlying
architecture. As the module is only an extra model head, it
only adds a marginal computation cost. Our module builds on
the prototypes approach, that is commonly used to improve
classification of imbalanced datasets with rare classes [6]–
[8]. In the standard prototype approach, each segmentation
class is represented by its respective prototype vector. In our
proposed method, we apply this prototype approach to obtain
the uncertainty for semantic segmentation, where each pixel
of a given input image is labeled to a specific class. In the
proposed method, we apply this prototype approach to obtain
the uncertainty the labeled pixel. During training, these
prototypes are incorporated to maximize distance between
classes. In the inference phase, samples are then classified
based on their distance to prototypes. The prototype approach
maximizes the probability that pixels of unknown image
segments will be projected in the void space between the
unknown classes. The uncertainty is inferred from the dis-
tance to the nearest prototype vector. Figure 1 provides an
overview of our approach and how the proposed module is
connected to any segmentation model.



Fig. 1: This figure describes our ability to predict segmentation classes with uncertainty. The input image consists of regions
that are in-distribution and areas that are out-of-distribution. We are able to extend a traditional segmentation model (a) by
estimating uncertainty through distances to the nearest prototype vector (b). In this example, we are able to detect out-of-
distribution areas (fire) through our uncertainty estimation.

B. Method

The starting point of our approach is a given pretrained
image segmentation model h: X → Y which classifies
image pixels xn into N respective classes yn using a set
of classification parameters Wc. We rewrite h(·;Wc) =
g(f(·;Wf );Wg), where f(·;Wf ) is the model’s backbone
which outputs a feature map, and g(·;Wg) is the pixel
classification head that transforms the feature map into class
predictions. Wf and Wg are the parameters connected to the
functions f and g, respectively. Our objective is to predict
the uncertainty of the labels using parameters Wu by the
module U = u(f(·;Wf );Wu), with Wu the uncertainty
estimation parameters. Note that this uncertainty function U
can be applied to any spatial feature map f , without loss
of generality, which makes our approach applicable to any
segmentation model.

The uncertainty function U can be further separated using
prototype vectors P

U = m(l(·,Wu) · P ) (1)

where m is a fixed mapping and l(·,Wu) a neural network
that projects pixel features onto the respective class proto-
type to maximize the output value for the pixel’s correct
segmentation class [8].

The prototype vectors are maximally separated on the
(N−1) dimensional hypersphere. The derivation is recursive
[12]:

P1 =
(
1 −1

)
∈ R1×2 (2)

Pk =

(
1 − 1

k1
T

0
√
1− 1

k2 Pk−1

)
∈ Rk×(k+1) (3)

with 0 and 1 respectively the 0 and 1 column vectors. The
columns of Pk are k + 1 equidistant vectors on the unit

sphere in Rk. With N classes, the prototypes are obtained by
constructing PN−1, yielding N vectors in N−1 dimensions.
The rationale is that if the pixel’s projection is further away
from the prototype vector, it is more uncertain.

The uncertainty is inversely proportional to the maximum
of a pixel’s scores across the class prototypes: m(x) = 1 −
σ(max(x)), where x are the pixel’s prototype scores from
l(·,Wu) · P , and σ is the softmax operator. Note that this
uncertainty is not calibrated yet.

To predict uncertainty, the module needs to learn the
classes first. Therefore, the learning objective is to align the
outputs of l(f(xi),Wu) with the class prototypes Pyi , with
xi and yi from the training set S, using the cosine loss:

L = −
M∑
i=1

m(l(f(xi),Wu)) · Pyi

∥m(l(f(xi),Wu))∥ · ∥Pyi
∥

(4)

After learning to project a pixel’s feature onto the proto-
type vector, at inference we can tell if a test pixel is projected
far away from such a vector. The further away, the more
uncertain the pixel’s classification. We hypothesize that this
works best if the prototype vectors are maximally apart.

III. EXPERIMENTS

A. Base dataset

Since we target off-road applications, we use a base
dataset recorded in off-road environments with a diverse
range of objects and terrain types. From the online avail-
able datasets [13]–[15] we choose Rellis3D [14], which is
collected in an off-road environment with 6,235 annotated
images. The classes in this dataset are Concrete, Asphalt,
Gravel, Grass, Dirt, Sand, Rock, Rock Bed, Water, Bushes,
Tall Vegetation, Trees, Poles, Logs, Void, Sky, Sign. The
environment is complex and differs between images. To
segment the images in terms of traversability, we adopt the



six classes from [16]: Smooth, Rough, Bumpy, Forbidden,
Obstacles and Background.

B. Model training

For the experiments, we select DeepLabV3+ [17] for its
simplicity and broad usage. DeepLabv3+ contains a decoder
that refines the segmentation using atrous convolutions and a
spatial pyramid pooling. As a backbone, we select a Resnet50
[18] pretrained on ImageNet [19], as this is one of the most
commonly used backbones. The images are resized to 512
× 512 pixels and augmented with standard transformations:
horizontal flip, shift, scale, rotate and color jitter (all at a
probability of 0.5). The batch size is 4. The model is trained
for 25 epochs, at a learning rate of 0.001. All weights,
including the backbone, are optimized during training. The
segmentation results and accuracy of the segmentation are
presented in the Appendix.

C. Uncertainty estimation

For the uncertainty estimation, we start by comparing
the uncertainty values measured in the test set of Rellis3D
and the uncertainty values measures in images from other
datasets. The uncertainty values should be higher for datasets
that are different. For simplicity, we assume that all pixels
in an image are certain for Rellis3D and uncertain for other
datasets, because for these datasets we do not have detailed
annotations of certain or uncertain image segments. This
assumption is often violated, because images from the other
datasets may have segments that are very similar to Rellis3D.
We compare against the DeepLabV3+ baseline, which is the
same model, but without our uncertainty module. Its outputs
are transformed into uncertainty values by the mapping m(·)
from Equation 4. This methods is referred to a standard
method in the remainder of this paper.

The uncertainty performance is measured by the 1) Re-
ceiver Operator Characteristic (ROC) curve (graph), in which
the true positive rate is plotted against the False Positive
Rate and the 2) Area Under the Curve (AUC). The best
performance will be found if the left upper corner is reached,
in which case the AUC is 1.

The AUC scores for both methods for all datasets is shown
in Table I. The ROC curves can be seen in Figure 6 in the
Appendix. On all datasets, our method shows a better un-
certainty estimation performance than the standard method.
On CUB-200, MS-COCO and KITTI, the performance is
very similar with the standard method. These datasets are
reasonably different from Rellis3D, but often contain vege-
tation, streets, humans and cars, which are also in Rellis3D.
For WiderPerson and Fukuoka, our method is favorable,
which can be explained by respectively the different view-
point (aerial) and environment (indoor). The most prominent
insight is that our method is uncertain about fog and fire,
whereas the standard method is as certain as it is for Rellis3D
on which it was trained. This result demonstrates the merit
of our method for uncertainty estimation in practical cases.

TABLE I: AUC for the standard method and the proposed
method. The datasets are ordered from low to high difference
with Rellis3D.

Dataset Contents standard our
method method

MS-COCO [20] common objects 0.766 0.794
WiderPerson [21] aerial 0.796 0.846
KITTI [22] self-driving cars 0.853 0.859
SceneParse150 [23] common segments 0.770 0.861
Fukuoka [24] indoor robot 0.847 0.904
CUB-200 [25] birds 0.841 0.856
Fog and Fire outdoor anomalies 0.478 0.881

D. Segment-specific uncertainty

We evaluate the uncertainty estimation for respective
segment classes across images. In the SceneParse150 [23]
dataset, most segmentation classes are semantically and
visually different from the Rellis3D classes. The performance
is measured by the AUC on uncertainty values per segment
class in comparison to Rellis3D uncertainty values. The
segmentation classes that are most uncertain are shown in
Figure 2. Indeed, these classes are most different from
Rellis3D, hence are expected to yield high uncertainties. In
comparison to the standard method, our method yields higher
uncertainty values for the segmentation classes that deviate
from the training dataset.

E. Uncertainty visualization

It is also possible to show the uncertainty per pixel.
An example is shown in Figure 1. Here the Input image
shows both in-domain (vegetation, sky) and out-of-domain
(fire) regions. Output1 shows the segmentation and Output2
shows the resulting uncertainty values: low (black) for the
in-domain image segments and high (white) for the out-
of-domain image segments. This is the desired behaviour:
the robot can make navigation decisions about the image
segments where it is certain, while operating in safe mode at
the uncertain segments. It can be seen that the more uncertain
values are found around the edges of segments, which is as
expected as these pixels might contain information from both
of these segments, and the labeling will often be based on
surrounding pixels. This can also be seen in Figure 3 for two
images from the SceneParxe10 dataset, where the uncertainty
found for the unknown class of the pigs is much higher with
our proposed method than with the standard method. More
examples are presented in Figure 5 in the Appendix. In the
bottom image, it can also be seen that the uncertainty for the
field is much smaller for our method than for the standard
method. This smaller uncertainty will allow for better path
planning and faster navigation, by avoiding paths with high
uncertainty.

F. Inference computational costs

Regarding the computational cost of inference on a test
image, our method is advantageous. The most common
method for uncertainty evaluation is to use Monte-Carlo
dropout [26]. Although very effective, this requires a number
of repeated feed-forward calculations of the model with



Fig. 2: Segments from SceneParse150 for which our model (trained on Rellis3D) assigns the highest uncertainties.

uncertainty uncertainty
test image ours standard

Fig. 3: Our model (middle) yields high uncertainty values
for the tree, pigs and fence, whereas the uncertainty obtained
with the standard method is scattered (right).

randomly sampled weight parameters, which needs much
computation power and can cause long latency. In our
experiments, the model is DeepLabV3+ which has 11.9M
weights. Instead of running this model multiple times, our
module is low-cost and has to be run only once. For six
traversability classes, our module has 1285 weights, i.e.
0.01% of the total model. These weights are required to
transform the model’s feature map (the final upscaling layer),
a tensor of 512 × 512 × 256 dimensions, into 512 × 512
× 5 dimensions. This transformation is l(·,Wu) in Equation
1. It is implemented as a channel-wise convolution from 256
to 5 dimensions. The mapping P from Equation 1 projects
the output of l(·,Wu) from 5 to 6 dimensions, which are
the 6 traversability classes. This projection is a fixed matrix
multiplication, no learnable weights, implemented as a highly
efficient vectorized operation.

IV. CONCLUSIONS AND DISCUSSION

We propose an extra, lightweight module for a semantic
segmentation network, which provides a high quality seg-
mentation label per pixel and an uncertainty estimate for
these labels. The module first optimizes the segmentation
by maximizing the separation of the different classes in the
training phase. In the inference phase, the uncertainty of a
pixel can be estimated as the distance of the current pixel
to the center of the class it is labeled to. We have shown
that our approach performs on par (with GA-Nav-r8) or just
a little (for DeepLabV3++) better than standard models. We
have shown high uncertainty values for data that really differs
from the Rellis3D data we trained on. This indicates that the
added module provides a good uncertainty estimate for pixels
and segments in an image.

In future work, We will evaluate the uncertainty estimation
in a more quantitive way by estimating the ’ground truth
uncertainty’ using monte carlo estimations. Next to that,
we will compare our approach against existing uncertainty
estimation approaches. We will also focus on on calibrating
the uncertainty. The uncertainty visualisation shows that our
labeling is more uncertain on edges in the image. When
using the labeling and uncertainty estimation for navigation,
this means that these areas can be avoided when possible.
In future work we will implement this simplex semantic
segmentation and uncertainty approach for robust long-
distance navigation on a physical robot, both for providing
trusted generalized features for self-supervised traversability
prediction as in [27] and informing risk-based planning such
as CVaR-Conditional optimization mentioned earlier. This
will provide information on how well this uncertainty can
actually be used for navigation purposes.
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APPENDIX: ILLUSTRATIONS

In this appendix, we show some figures illustrating the
results presented earlier.

In Figure 4 the segmentation results on test images from
the Rellis3D dataset are shown. These cases are in-domain.
When comparing the results to the ground-truth labels, it can
be seen they are mostly correct. The uncertainty estimation
for our method and the standard method are also shown.
It can be seen that larger uncertainty values are assigned
to unclear boundaries between segments for the standard
method (last than for our method.

In Figure 5 The uncertainty estimation for our method
and the standard method are shown for images with out-
of-domain regions: for two images from our own dataset,
and four images from the SceneParse150 [23] dataset.The
uncertainty estimates with our method are higher than those
obtained with the standard method.

In Figure 6 the ROC curves for six datasets are shown.
These graphs show that our method shows a better uncer-
tainty estimation performance than standard method.

A. Segmentation results and accuracy

To evaluate the segmentation results of our proposed
method, we compare the results with two state-of-the-art
methods: DeepLabV3+ as our method is added on top of
this method and GA-Nav [16]. We report the Intersection
over Union (IoU) for each class i and the mean IoU (mIoU).

Table II shows that our method performs on par with
GA-Nav-r8. Surprisingly, our model performs better than
the reported DeepLabV3+ in [16], which has the same
architecture and setup as model, but was trained with other
settings. We hypothesize that some of our design choices are
better suited for Rellis3D. One of the differences with [16] is
that they train with a smaller batch size (2 instead of 4). Their
image size is 375 × 600 pixels, which corresponds less with
the aspect ratio of the images in the dataset (1600 × 1920

https://math.stackexchange.com/q/714781
https://arxiv.org/abs/2111.09768
https://arxiv.org/abs/2111.09768
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Fig. 4: In-domain cases from the Rellis3D dataset. The segmentation predictions are often correct (third column) and larger
uncertainty values are assigned to unclear boundaries between segments for the standard method (last column) than our
method (fourth column).

TABLE II: Segmentation results for the Rellis3D dataset [14]
in mIoU for all classes for the DeepLabV3+ [16], [17] model,
the GA-Nav-r8 [16] model and our approach.

Model
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nd
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DeepLabV3+ 65.8 79.8 19.7 47.5 64.9 95.9 62.3
GA-Nav-r8 78.5 88.3 37.3 72.3 74.8 96.1 74.4

Our method 84.7 86.8 59.9 80.2 43.5 97.0 75.3

pixels) than our image size (512 × 512 pixels). Possibly
the biggest advantage is that we use more augmentations.
Where [16] uses only horizontal flip and random crop, we
add scale, rotate and color jitter. Especially the scale changes
in the dataset are sometimes large, which we address by the
scale augmentation. Some of the images are recorded under
a slight tilt, because the robot might be on a slope. This
is addressed with rotation augmentations during training.
Examples of the segmentation images are shown in the
Appendix in Figure 4.
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Fig. 5: Visualisation of the uncertainty for images with out-of-domain regions: two images from our dataset (fog and fire)
and four images from the SceneParse150 [23] dataset (building, house and countryside).



MS-COCO: common objects WiderPerson: aerial

KITTI: self-driving cars Fukuoka: indoor robot

CUB-200: birds Fog and fire: anomalies

Fig. 6: Out-of-distribution performance of our uncertainty estimation on various datasets. The AUC values are also reported
in Table I


	Introduction
	Proposed approach
	Rationale
	Method

	Experiments
	Base dataset
	Model training
	Uncertainty estimation
	Segment-specific uncertainty
	Uncertainty visualization
	Inference computational costs

	Conclusions and discussion
	References
	Segmentation results and accuracy


