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Figure 1: Illustration of the research question: Insights from cognitive science (left) — fixations
focus on task-relevant cues; With demonstration devices (right) — how is gaze behavior influenced?

Abstract:1

Imitation learning for acquiring generalizable policies often requires a large vol-2

ume of demonstration data, making the process significantly costly. One promis-3

ing strategy to address this challenge is to leverage the cognitive and decision-4

making skills of human demonstrators with strong generalization capability, par-5

ticularly by extracting task-relevant cues from their gaze behavior. However, imi-6

tation learning typically involves humans collecting data using demonstration de-7

vices that emulate a robot’s embodiment and visual condition. This raises the8

question of how such devices influence gaze behavior. We propose an experimen-9

tal framework that systematically analyzes demonstrators’ gaze behavior across a10

spectrum of demonstration devices. Our experimental results indicate that devices11

emulating (1) a robot’s embodiment or (2) visual condition impair demonstrators’12

capability to extract task-relevant cues via gaze behavior, with the extent of impair-13

ment depending on the degree of emulation. Additionally, our proof-of-concept14

experiments reveal that gaze data collected using devices that capture natural hu-15

man behavior improves the task success rate of imitation learning policies from16

18.8% to 68.8% under environmental shifts.17

Keywords: Gaze Behavior, Demonstration Devices, Imitation Learning18

1 Introduction19

End-to-end visuomotor imitation learning has gained significant attention for enabling robots to per-20

form complex and dexterous manipulation tasks autonomously. Current mainstream imitation learn-21

ing policies are trained in a supervised manner, where visual observations serve as inputs and actions22

as outputs. Typically, policies trained on large-scale datasets with higher data collection cost [1]23

generalize better than those trained on small-scale datasets with lower data collection cost [2]. This24

presently observed trade-off between generalization and cost is expected to be resolved.25

The difficulty of realizing generalizations from small-scale datasets stems from their tendency to26

lack diversity compared to large-scale datasets. In this situation, the model is prone to learn infor-27
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mation containing biases unrelated to the task [3, 4]. In imitation learning, if an object consistently28

appears in the same shelf location, the policy might learn the visual spatial relationship between the29

end-effector and shelf rather than the relationship between the end-effector and object [5].30

To extract task-relevant cues even from small-scale datasets, one promising strategy is to leverage31

the cognitive and decision-making skills of human demonstrators with strong generalization capa-32

bilities [6, 7]. In particular, cognitive science studies have shown that eye movements are tightly33

coupled with motor tasks [8, 9, 10, 11]. Gaze tends to be directed toward task-relevant cues, as hu-34

mans prioritize the object being manipulated and naturally filter out task-irrelevant information [10].35

In imitation learning, there are various potential applications for acquiring generalizable policies36

from small-scale datasets, including extracting task-critical observations [10], mitigating the impact37

of irrelevant environmental variations (thus reducing computational resources) [7], and supporting38

hierarchical policy modeling by capturing subgoals [12, 13].39

However, in the context of imitation learning, where demonstrations are collected using specific40

demonstration devices, does simply measuring demonstrators’ gaze behavior actually improve pol-41

icy performance? Previous cognitive science studies [6, 7, 8, 9, 10, 11, 12, 13] primarily exam-42

ined scenarios in natural, unconstrained settings for humans. In contrast, imitation learning com-43

monly involves humans collecting data using demonstration devices that emulate the robot’s em-44

bodiment [14, 15, 16, 17, 18] and visual condition [19, 20] to minimize domain gaps for the policy.45

Therefore, prior studies do not necessarily provide insights into the demonstrators’ gaze behavior46

for all device types. In fact, relevant studies [21, 22] have reported that gaze behavior differs when47

individuals control a robot compared to when they move their own embodiment naturally.48

To address this question, we propose an experimental framework that systematically analyzes49

demonstrators’ gaze behavior across a spectrum of demonstration devices from those capturing nat-50

ural human behavior to those emulating the robot’s embodiment and visual condition. Our exper-51

imental results suggest that devices that capture natural human behavior enable demonstrators to52

extract task-relevant cues via gaze behavior more effectively than devices that emulate the robot’s53

embodiment and visual condition. Additionally, our proof-of-concept experiments reveal that imita-54

tion learning policies trained with gaze behavior collected using devices that capture natural human55

behavior improve task success rate from 18.8% to 68.8% under environmental shifts.56

Our key contributions are as follows:57

• Providing a review that connects insights on eye movement from cognitive science with the58

use of demonstration devices in imitation learning.59

• Introducing a novel experimental framework for analyzing demonstrators’ gaze behavior60

across a range of demonstration devices.61

• Identifying suitable demonstration devices that enable gaze behavior to highlight task-62

relevant cues effectively.63

• Demonstrating that gaze data collected from such suitable devices improves the robustness64

of imitation learning policies.65

2 Related Work66

2.1 Analysis of Eye Movements in Cognitive Science67

A study of eye movements has been explored extensively over the past five decades [23]. Early68

studies historically identified two primary components of eye movements: saccades, which rapidly69

redirect the gaze toward visual information, and fixations, which stabilize the gaze to extract that70

information. Later studies identified that task instructions play a critical role in determining when71

and where fixations occur [24]. Fixations tend to be directed toward task-relevant cues that opti-72

mize task performance regarding spatial and temporal demands rather than the most visually salient73

features [7, 10]. Approximately one-third of object fixations support four key monitoring functions:74

locating upcoming objects, guiding hand movement, aligning objects, and checking states [10]. In-75

terestingly, while specific cognitive events can elicit certain fixations, the fixations themselves do76
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not uniquely determine the underlying cognitive events [7]. This suggests that fixations provide77

spatiotemporal coordinates of task-relevant cues but do not directly provide particular information78

being extracted.79

Previous eye movement studies in cognitive science have primarily focused on natural human em-80

bodiment and visual condition scenarios. In contrast, our study investigates gaze behavior using a81

range of demonstration devices that emulate a robot’s embodiment and visual condition, providing82

novel insights that are directly applicable to imitation learning.83

2.2 Data Collection in Imitation Learning84

In manipulation-focused imitation learning, data is commonly collected using demonstration de-85

vices that emulate the robot’s embodiment and visual condition. Examples of embodiment emula-86

tion devices include the universal manipulation interface (UMI) [14], leader-only [15], and leader-87

follower [16, 17, 18]. These devices employ either a robot-mimetic mobile gripper or an actual88

robot to capture the coupling between visual observations and actions. An example of a visual con-89

dition emulation device is a head-mounted display (HMD). This device immerses the operator in90

the robot’s visual observations, while enabling gesture-based control of the robot’s actions [19, 20].91

An alternative paradigm that does not emulate embodiment or visual condition collects egocentric92

video using wearable cameras [25, 26].93

These commonly used demonstration devices in imitation learning have not been used to collect94

gaze data. In contrast, our study not only provides the first systematic analysis of demonstrator gaze95

behavior across different device types, but also establishes a concrete methodology for its collection.96

2.3 Leveraging Gaze Behavior in Machine Learning97

Several studies have leveraged drivers’ gaze behavior to improve machine learning models for au-98

tonomous driving [27, 28]. These studies demonstrate that gaze behavior can enhance the perfor-99

mance of behavior cloning and enable accurate modeling of driver attention. Similarly, in the context100

of Atari video games, prior studies have constructed gaze behavior datasets from human players and101

shown that incorporating gaze behavior can improve the performance of behavioral cloning [29, 30].102

In the domain of robot learning with manipulators, one study has analyzed demonstrators’gaze be-103

havior and utilized it for subtask prediction and reward learning [22]. While insightful, this study104

lies outside the core context of imitation learning and is limited in terms of the range of demonstra-105

tion device types. While another study successfully incorporated gaze information into imitation106

learning, it has not analyzed the properties of gaze behavior [15].107

These prior studies demonstrate the effectiveness of incorporating gaze behavior into machine learn-108

ing pipelines. However, to the best of our knowledge, no previous study has investigated how differ-109

ent types of demonstration devices influence the gaze behavior of human demonstrators in imitation110

learning. Our study is the first to systematically analyze this effect and to examine how understand-111

ing such characteristics can inform the design of gaze-informed imitation learning frameworks.112

3 Proposed Method113

We propose an experimental framework that comprehensively analyzes the demonstrators’ gaze be-114

havior across a spectrum of demonstration devices. Following the demonstration device paradigms115

in recent imitation learning, we selected three representative conditions: (A) wearable cameras for116

collecting egocentric video, (B) devices for embodiment emulation, such as UMI, leader-only or117

leader-follower, and (C) devices for visual condition emulation, such as HMDs. We regard (A)118

as a baseline that best captures natural human behavior. We hypothesize that both embodiment119

differences (A vs. B) and visual condition differences (A vs. C) independently influence the demon-120

strators’ gaze-based task-relevant cue extraction during demonstration.121
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Figure 2: Proposed experimental framework. (a) Wearable, UMI, and Leader setup, and (b) Leader-
Follower setup (both in the embodiment experiment). (c) Wearable, HMD-Ego, and HMD-Top-
down setup in the visual condition experiment. (d) Objects used in the experiments.

To examine this hypothesis, we pose the following research questions (RQs) and corresponding122

experimental designs:123

• RQ1: How do embodiment differences in demonstration devices influence gaze-based124

task-relevant cue extraction?125

• RQ2: How do visual condition differences in demonstration devices influence gaze-based126

task-relevant cue extraction?127

3.1 An experimental design to investigate how embodiment differences influence gaze128

behavior129

Focus: We design an experiment that provides a finer-grained analysis of embodiment differences.130

We list the demonstration devices by their degrees of embodiment emulation and examine how131

gaze behavior varies across these degrees. Ordered from the lowest degree of emulation, the de-132

vices are: Wearable (wearable cameras for collecting egocentric video [25, 31, 26], Fig. 2a), UMI133

(Fig. 2a) [14], Leader (leader-only [15], Fig. 2a), and Leader-Follower (Fig. 2b) [16, 17, 18]. As134

summarized in Tab. 1, these devices impose progressively stronger embodiment constraints on the135

demonstrator, ranging from Wearable to Leader-Follower.136

Task: Following a previous study involving skewering task [21], we use a pick-and-place task137

for evaluation for several reasons: (1) Pick-and-place is a substantial portion of real-world robotic138

tasks [32, 33]. (2) Pick-and-place requires more precise perception of hand-object and object-139

object spatial relationships compared to the skewering task. (3) Pick-and-place can better reveal140

embodiment-induced gaze behavioral differences by designing the environment to require dynamic141

changes in the end-effector’s pose between pick and place phases. We use commonly available142

Table 1: Constraint characteristics of demonstration devices with different embodiments.

Constraints Demonstration Devices
Wearable UMI Leader Leader-Follower

Offset gripper1 ✓ ✓ ✓
Low-DoF gripper2 ✓ ✓ ✓
Low-DoF arm3 ✓ ✓
Control latency4 ✓
Distant view5 ✓
Without haptics6 ✓

1Offset gripper: The offset distance between the demonstrator’s finger and robot’s gripper.
2Low-DOF gripper: A reduction in DoF from the human’s five fingers to the robot’s parallel gripper.
3Low-DoF arm: A reduction in DoF from the human’s seven DoF arm to the robot’s six DoF arm.
4Control latency: The delay in motion transmission from the leader to the follower.
5Distant view: Observing the robot from a distance (Fig. 2b).
6Without haptics: The lack of haptic feedback between the leader and follower.
7Egocentric view: The demonstrator performs the task from an egocentric view (Fig. 2c).
8Using an HMD: The demonstrator wears a heavy HMD with rendering latency.
9Top-down view: The demonstrator performs the task from a top-down view (Fig. 2c).
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Table 2: Characteristics of demonstration devices with different visual conditions.

Conditions Demonstration Devices
Wearable HMD-Ego HMD-Top-down

Egocentric view7 ✓ ✓
Using an HMD8 ✓ ✓
Top-down view9 ✓

household objects as task objects (Fig. 2d). The picked up targets are a pink fork and a blue spoon143

(IKEA KALAS), and their placement destinations are a green cup (IKEA KALAS) and left/right144

knife rests (IKEA TEJSTEFISK). The pick phase continues until the target is grasped, and the place145

phase ends when the target is successfully placed in/on the destination.146

Metrics: Based on insights from cognitive science (described in Sec. 2.1), where gaze-based mon-147

itoring functions such as locating objects and guiding hand movements were identified, we define148

task-relevant cue extraction as fixating on the target during the pick phase and destination during149

the place phase. In contrast, a previous study [21] reported that the gaze of an operator tends to150

be located at the robot’s end-effector during teleoperation. Therefore, we compute two Euclidean151

distances in the 2D image plane: (1) the distance between the gaze location and target or destination152

object and (2) the distance between the gaze location and end-effector. (The end-effector refers to153

the demonstrator’s hand in the Wearable setting, or the robot’s end-effector in all other settings.)154

These distances are averaged over each pick-and-place trial. By comparing these averaged values,155

we determine whether participants fixate more on the task-relevant cue or the end-effector. We156

quantified their capability to extract task-relevant cues by counting the number of trials in which157

they could fixate on the cue.158

Instruction: Participants first perform the task with only high-level task instructions. In a second159

condition, they receive additional gaze-relevant instructions directing their attention toward task-160

relevant objects (for example, look at the target during the pick phase and destination during the161

place phase). This evaluates whether simple verbal instruction can help align gaze with task-relevant162

cues.163

3.2 An experimental design to investigate how visual condition differences influence gaze164

behavior165

Focus: We examine how gaze behavior varies across demonstration devices with different visual166

conditions: Wearable (wearable cameras for collecting egocentric video [25, 31, 26], Fig. 2c),167

HMD-Ego (Egocentric view displayed on an HMD [19, 20], Fig. 2c), and HMD-Top-down168

(Robot’s top-down view displayed on an HMD, Fig. 2c). As summarized in Tab. 2, the Wear-169

able and HMD-Ego differ in the device type, while the HMD-Ego and HMD-Top-down differ in the170

viewpoint. All other aspects of the experimental setup, including the task, metrics, and instruction,171

are the same as described in Sec. 3.1.172

4 Experiments173

The following experiments were approved by the institution’s research ethics review board.174
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Figure 3: Effect of embodiment emulation devices on task-relevant cue extraction capability. Capa-
bility refers to the number of trials (out of eight) in which the demonstrator fixated on the target or
destination (defined in Sec. 3.1).
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Figure 4: Effect of embodiment emulation devices on NASA-TLX sub-indicator

4.1 An experiment on RQ1: Investigating how embodiment differences influence the175

capability to extract task-relevant cues176

The detailed experiment setup (participants, equipment, procedure, data collection, and annotation)177

is described in Appendix B.178

Results: (A) Analysis on RQ1: As previously defined, we measure the capability to extract task-179

relevant cues as the participant fixating on the target during the pick phase or the destination during180

the place phase (Sec. 3.1). Figure 3 shows the effect of embodiment emulation devices on the181

task-relevant cue extraction capability. The Wearable consistently exhibited the highest capability,182

followed by UMI, Leader, and Leader-Follower, under both gaze-relevant instruction conditions183

(Fig. 3a and Fig. 3b). Without gaze-relevant instructions, the Leader-Follower in the pick phase and184

the Wearable in the place phase showed large variance and outliers. Overall, providing gaze-related185

instructions improved the capability across most devices. Figures 7 and 8 show qualitative examples186

of gaze behavior for each device.187

(B) Analysis on Workload: To gain further insights, we conducted an additional workload anal-188

ysis, described in Appendix B. Table 3 shows the means and standard deviations of raw NASA-189

TLX (RTLX) scores [34], used for the repeated measures analysis of variance (repeated measures190

ANOVA). The analysis shows that device type is statistically significant (p < 1.0× 10−3), whereas191

the device usage order and the presence or absence of gaze-relevant instructions are not (p ≥ 0.10).192

Specifically, switching from the Wearable to UMI increased workload by approximately 10 points,193

from UMI to Leader by approximately 20 points, and from Leader to Leader-Follower by approxi-194

mately 20 points. These results align with intuition, showing that increasing embodiment constraints195

lead to increased workload.196

(C) Analysis on Sub-indicator: Figure 4 shows the effect of embodiment emulation devices on197

each NASA-TLX sub-indicator. Across all sub-indicators, scores increased stepwise from Wearable198

to UMI, Leader, and Leader-Follower. No sub-indicator contradicted the trend in total workload199

described in Sec. 4.1, result (B).200

Table 3: Workload means and standard deviations used for repeated ANOVA conditioned on device
order, gaze-relevant instructions (rows), and demonstration devices (columns).

Order Inst.
Demonstration Devices

Wearable UMI Leader Leader-Follower
Mean Std. Mean Std. Mean Std. Mean Std.

Fwd. w/o 0.25 0.29 9.17 8.47 20.13 12.54 44.54 27.41
w 1.92 0.78 12.29 6.29 33.46 21.57 50.58 33.26

Rev. w/o 0.54 0.98 12.83 7.21 39.08 12.01 62.63 26.56
w 4.58 4.15 14.58 8.42 36.96 11.55 67.00 15.49
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Figure 5: Effect of visual condition emulation devices on task-relevant cue extraction capability.
Capability refers to the number of trials (out of eight) in which the demonstrator fixated on the
target or destination (defined in Sec. 3.2).
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Figure 6: Effect of visual condition emulation devices on NASA-TLX sub-indicator.

Discussion: In response to RQ1, we found that embodiment emulation devices impair demonstra-201

tors’ capability to extract task-relevant cues, depending on the degree of emulation. In addition,202

we identified three key findings: (1) The degree of embodiment emulation influence the trade-off203

between capturing high-quality task-relevant cues and collecting effective demonstration data. De-204

vices with weaker embodiment emulation are better at extracting rich gaze-based task-relevant cues205

but tend to produce demonstration data with a larger domain gap [14]. Conversely, devices with206

stronger embodiment emulation extract fewer cues but generate demonstration data with a smaller207

domain gap [16]. To provide reliable task-relevant cues and demonstration data for a policy, our208

results suggest using the Wearable for cue extraction and the Leader-Follower for demonstration209

data collection. Although collecting data with the Wearable incurs additional costs, its lower work-210

load burden makes it a feasible approach. (2) No significant difference in workload was observed211

based on the presence or absence of gaze-relevant instructions. Thus, providing gaze-related in-212

structions is recommended whenever possible. (3) While gaze-relevant instructions improved the213

Leader-Follower’s capability, it still did not surpass the performance of the Wearable. Although214

the Leader-Follower allows intuitive operation and enables anyone to demonstrate fine manipulation215

tasks [16], the results suggest that gaze data should ideally be collected using more natural devices216

with fewer embodiment constraints.217

4.2 An experiment on RQ2: Investigating how visual condition differences influence the218

capability to extract task-relevant cues219

The detailed experiment setup (participants, equipment, procedure, data collection and annotation)220

is described in Appendix C.221

Results: (A) Analysis on RQ2: As previously defined, we measure the capability to extract task-222

relevant cues as the participant fixating on the target during the pick phase or the destination during223

the place phase (Sec. 3.2). Figure 5 shows the effect of visual condition emulation devices on the224

task-relevant cue extraction capability. Without gaze-relevant instruction (Fig. 5a), the Wearable and225

HMD-Ego exhibited higher capability, followed by HMD-Top-down. With gaze-relevant instruction226

(Fig. 5b), all devices demonstrated similar capabilities. Overall, providing gaze-related instructions227
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Table 4: Workload means and standard deviations used for repeated ANOVA conditioned on device
order, gaze-relevant instructions (rows), and demonstration devices (columns).

Order Inst.
Demonstration Devices

Wearable HMD-Ego HMD-Top-down
Mean Std. Mean Std. Mean Std.

Fwd. w/o 1.86 2.07 13.29 7.50 50.50 9.31
w 8.08 7.33 25.75 14.21 60.96 18.08

Rev. w/o 5.83 7.15 30.25 20.70 54.33 12.57
w 15.79 8.29 36.71 19.24 51.54 8.93

improved the capability across most devices. Figures 9 and 10 show qualitative examples of gaze228

behavior for each device.229

(B) Analysis on Workload: To gain further insights, we conducted an additional workload analysis,230

described in Appendix C. Table 4 shows the means and standard deviations of RTLX scores used for231

the repeated measures ANOVA. The analysis shows that both device type and the presence or ab-232

sence of gaze-relevant instructions are statistically significant (p < 0.05), whereas the device usage233

order is not (p ≥ 0.10). A larger effect size was observed for the device type (η2 = 0.6995), sug-234

gesting that its impact was greater than that of the presence or absence of gaze-relevant instructions235

(η2 = 0.0244). Specifically, switching from the Wearable to HMD-Ego increased workload by ap-236

proximately 20 points, and from HMD-Ego to HMD-Top-down by approximately 30 points. These237

results align with intuition, showing that the degree of deviation from the natural visual condition238

leads to increased workload.239

(C) Analysis on Sub-indicator: Figure 6 shows the effect of visual condition emulation devices on240

each NASA-TLX sub-indicator. Across all sub-indicators, scores increased stepwise from Wear-241

able to HMD-Ego to HMD-Top-down. No sub-indicator contradicted the trend of total workload242

described in Sec. 4.2, result (B).243

Discussion: In response to RQ2, we found that changing the viewpoint (from HMD-Ego to HMD-244

Top-down) impairs demonstrators’ capability to extract task-relevant cues when gaze-relevant in-245

structions are not provided. In addition, we revealed two key findings: (1) Changing the device type246

(from Wearable to HMD-Ego) significantly increases workload. This result suggests that HMDs247

should be avoided when remote viewing is not necessary. (2) No statistically significant difference248

in workload was observed based on the presence or absence of gaze-relevant instructions. Thus,249

providing gaze-related instructions is recommended whenever possible.250

5 Additional Experiments: Policy-Based Comparison251

Building on Sec. 4.1 and Sec. 4.2, we examined whether cognitive science-informed gaze behavior252

that extracts task-relevant cues improves policy robustness against environmental shifts. We evalu-253

ated performance on pick and place tasks in both in-distribution (ID) and out-of-distribution (OOD)254

environments (Fig. 12). The detailed setup (environments, tasks, policy, data) is in Appendix D.255

Table 5 shows that the policy that uses gaze behavior from Wearable achieved comparable perfor-256

mance to the Oracle, which uses manually annotated gaze data. While similar performance was257

expected for the Baseline (non-gaze) and Wearable in the ID-Pick, the Wearable surprisingly out-258

performed the Baseline. This result suggests that gaze facilitates the extraction of cues from small,259

hard-to-see objects. Additionally, the Wearable improved 50.0 points over the Baseline in OOD-Pick260

Table 5: Task success rates (%) conditioned on environment, task (rows), and gaze behavior data
source (columns). Oracle uses manually annotated gaze as ground truth.

Env. Task Baseline Oracle Gaze Behavior Data Source Used by the Policy
(non-gaze) (gt. gaze) Wearable UMI Leader Leader-Follower

ID Pick 43.8 75.0 75.0 75.0 37.5 0.0
Place 93.8 100.0 100.0 31.3 62.5 18.8

OOD Pick 18.8 75.0 68.8 75.0 31.3 0.0
Place 37.5 100.0 81.3 18.8 50.0 18.8
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and 43.8 points in OOD-Place. This result suggests that cognitive science-informed gaze behavior261

improves policy robustness. Unexpectedly, the UMI performed worse in ID- and OOD-Place. This262

result reveals the limitations of applying zero-shot style gaze prediction to policies (described in263

Appendix. D), motivating future work on more generalizable representations.264

6 Conclusion265

In this study, we propose an experimental framework that systematically analyzes demonstrators’266

gaze behavior across a spectrum of demonstration devices. Experimental results reveal that demon-267

stration devices with natural embodiment and visual conditions, such as the Wearable, are more268

effective in extracting task-relevant cues via gaze behavior. Additionally, to provide a policy with269

reliable task-relevant cues and demonstration data, the results suggest using the Wearable for the270

former and the Leader-Follower for the latter.271

One promising direction for future work is to explore policy architectures that can jointly learn from272

gaze behavior (in the form of egocentric video) and demonstration data by extending EgoMimic [26].273

Beyond extracting task-relevant cues, future research could leverage gaze to capture subgoals and274

apply this capability to hierarchical policy learning. We hope that our preliminary investigation of275

gaze behavior in imitation learning will contribute to the further advancement of the field.276
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A Limitations381

Evaluation by individual emulation: We found that devices emulating (1) a robot’s embodiment or382

(2) visual condition impair demonstrators’ capability to extract task-relevant cues via gaze behavior,383

depending on the degree of emulation. However, devices that emulate both embodiment and visual384

condition have not yet been explored. While we assume that simultaneous constraints in both em-385

bodiment and visual condition impair gaze-based task-relevant cues extraction, future work should386

further investigate this assumption to uncover unexpected findings.387

Focused Task Exploration: We conducted experiments using the pick-and-place task, which con-388

stitutes a significant portion of robot tasks. However, more complex and dexterous tasks have not389

yet been explored. For instance, we are particularly interested in human gaze behavior during tasks390

where avoiding collisions with the environment is critical, and in the cues that can be extracted from391

such gaze behavior.392

B Detailed experimental setup: Investigating how embodiment differences393

influence the capability to extract task-relevant cues394

Participants: We conducted an experiment to investigate how demonstration devices with different395

embodiments influence task-relevant cue extraction. Eight able-bodied participants (six males and396

two females, aged in their 20s to 40s) were recruited from within the institution. Participants were397

not limited to robotics researchers. To eliminate sequence effects, the participants were divided into398

two groups: one group followed the order (Wearable, UMI, Leader, Leader-Follower), and the other399

followed the reverse order (Leader-Follower, Leader, UMI, Wearable), with four participants in each400

group. All participants provided informed consent.401

Equipment: We used Tobii Pro Glasses 3 as the eye tracker. This equipment captures eye movement402

and forward-facing camera video simultaneously, and shows where participants look in the video.403

In the Wearable setting, Tobii Pro Glasses 3 was also used as a wearable camera (Fig. 2a). For the404

UMI setting, we extracted and used the gripper part of ALOHA [16], as shown in Fig. 2a. For the405

Leader and Leader-Follower settings, we used ALOHA [16], as shown in Fig. 2a and 2b.406

Procedure: Participants performed a pick-and-place task using multiple demonstration devices over407

up to three hours. The experiment consisted of two phases: first, using devices without gaze-related408

instructions; and second, with gaze-related instructions. For each device, a non-time-limited prac-409

tice session was provided to reduce the effect of unfamiliarity, followed by a proficiency evaluation.410

Participants who passed the evaluation, indicating a certain skill level, proceeded to the actual mea-411

surements.412

Each experimental trial followed a consistent sequence. Participants first stepped on a foot pedal413

to show an instruction on the display (Fig. 2a and Fig. 2b) and memorized it. They then stepped414

on the pedal again to clear the display and indicate the start of gaze measurement. Finally, they415

performed the pick-and-place task, moving the target to the destination based on the memorized416

instruction. Each device was used for eight such trials during the actual measurements. Table 6 lists417

the instructions used in the eight trials. Participants could use either left or right end-effector but418

Table 6: High-level task instructions for embodiment experiment.
Trial Instruction

1 Pink fork -> Green cup
2 Blue spoon -> Left knife rest
3 Pink fork -> Right knife rest
4 Blue spoon -> Green cup
5 Blue spoon -> Left knife rest
6 Pink fork -> Green cup
7 Blue spoon -> Right knife rest
8 Pink fork -> Left knife rest
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Pick Place

(a) Wearable

Pick Place

(b) UMI

Pick Place

(c) Leader

Pick Place

(d) Leader-Follower

Figure 7: Gaze sequences w/o gaze-relevant instructions in the embodiment experiment. The gaze
collecting with higher degrees of embodiment emulation devices in (c) and (d) impairs the extraction
of task-relevant cues (target and destination) and is instead directed toward the end-effector.

were required to use the same hand throughout a trial. No constraints were imposed on the direction419

or orientation when placing the target at the destination.420

After all measurements, participants completed a survey assessing workload via NASA-TLX. Al-421

though not directly related to the RQ, this survey provided valuable insights. NASA-TLX measures422

workload based on six sub-indicators: mental demand (MD), physical demand (PD), temporal de-423

mand (TD), performance (P), effort (E), and frustration (F).424

Data Collection and Annotation: As described in Sec. 3.1, data were collected and manually425

annotated for the end effector, target, and destination. The end effector was annotated at the point426

between the fingers grasping the object, the target at the grasped position, and the destination at the427

center of the placement area. Annotation for one participant required approximately six hours.428

C Detailed experimental setup: Investigating how visual condition429

differences influence the capability to extract task-relevant cues430

Participants: We conducted an experiment to investigate how demonstration devices with different431

visual conditions influence task-relevant cues extraction. Eight able-bodied participants (four males432

and four females, aged in their 20s to 40s) were recruited from within the institution. Participants433

were not limited to robotics researchers. To eliminate sequence effects, the participants were divided434

into two groups: one group followed the order (Wearable, HMD-Ego, HMD-Top-down), and the435

other followed the reverse order (HMD-Top-down, HMD-Ego, Wearable), with four participants in436

each group. All participants provided informed consent.437
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Pick Place

(a) Wearable

Pick Place

(b) UMI

Pick Place

(c) Leader

Pick Place

(d) Leader-Follower

Figure 8: Gaze sequences w/ gaze-relevant instruction in the embodiment experiment. Providing
gaze-related instructions enhances the extraction of task-relevant cues (target and destination).

Equipment: We used Tobii Pro Glasses 3 and HTC VIVE Pro Eye as the eye tracker. Tobii Pro438

Glasses 3 captures eye movement and forward-facing camera video simultaneously, and shows439

where participants look in the video. HTC VIVE Pro Eye captures eye movement and video si-440

multaneously, and shows where participants look in the video. In the Wearable setting, Tobii Pro441

Glasses 3 was also used as a wearable camera (Fig. 2c). For the HMD-Ego setting, we used HTC442

VIVE Pro Eye with ego view camera, as shown in Fig. 2c. For the HMD-Top-down setting, we used443

HTC VIVE Pro Eye with top-view camera, as shown in Fig. 2c.444

Procedure: Participants performed a pick-and-place task using multiple demonstration devices over445

up to two hours. The experiment consisted of two phases: first, using the devices without gaze-446

related instructions; and second, with gaze-related instructions. For each device, a non-time-limited447

practice session was provided to reduce the effect of unfamiliarity, followed by a proficiency evalu-448

Table 7: High-level task instructions for visual condition experiment.
Trial Instruction

1 Pick up the pink fork and place it in the green cup.
2 Pick up the blue spoon and place it on the left knife rest.
3 Pick up the pink fork and place it on the right knife rest.
4 Pick up the blue spoon and place it in the green cup.
5 Pick up the blue spoon and place it on the left knife rest.
6 Pick up the pink fork and place it in the green cup.
7 Pick up the blue spoon and place it on the right knife rest.
8 Pick up the pink fork and place it on the left knife rest.

15



Pick Place

(a) Wearable

Pick Place

(b) HMD-Ego

Pick Place

(c) HMD-Top-down

Figure 9: Gaze sequences w/o gaze-relevant instructions in the visual condition experiment. The
gaze collecting with top-down viewing in (c) impairs the extraction of task-relevant cues (target and
destination) and is instead directed toward the end-effector.

ation. Participants who passed the evaluation, indicating a certain skill level, proceeded to the actual449

measurements.450

Each experimental trial followed a consistent sequence. Participants first memorized the instructions451

read aloud by the experimenter. They then looked at a marker on the desk (Fig. 2d) to indicate the452

start of gaze measurement. Finally, they performed the pick-and-place task, moving the target to the453

destination based on the memorized instruction. Each device was used for eight such trials during454

the actual measurements. Table 7 shows the instructions used in the eight trials. Participants could455

use either left or right end-effector but were required to use the same hand throughout a trial. No456

constraints were imposed on the direction or orientation of placing the target at the destination.457

After all measurements, participants completed a survey assessing workload via NASA-TLX. Al-458

though not directly related to the RQ, this survey provided valuable insights. NASA-TLX measures459

workload based on six sub-indicators: MD, PD, TD, P, E, and F.460

Data Collection and Annotation: As described in Sec. 3.1, data were collected and manually461

annotated for the end effector, target, and destination. The end effector was annotated at the point462

between the fingers grasping the object, the target at the grasped position, and the destination at the463

center of the placement area. Annotation for one participant required approximately four hours.464

D Detailed experimental setup: Policy-Based Comparison465

Focus: In this experiment, we compare gaze behavior in the embodiment experiment without gaze-466

related instruction, as outlined in Sec. 4.1. This focus is motivated by the fact that gaze behavior467

varies significantly depending on the degree of embodiment emulation by the demonstration devices,468

which might affect policy performance. Under this condition, the Wearable exhibits the most cog-469

nitive science-informed gaze behavior for extracting task-relevant cues, followed by UMI, Leader,470

and Leader-Follower.471

Environments and Tasks: We compare these gaze behaviors based on the task “pick up the pink472

fork and place it on the green cup,” in accordance with the embodiment experiment described in473
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Pick Place

(a) Wearable

Pick Place

(b) HMD-Ego

Pick Place

(c) HMD-Top-down

Figure 10: Gaze sequences w/ gaze-relevant instruction in the visual condition experiment. Provid-
ing gaze-related instructions enhances the extraction of task-relevant cues (target and destination).

Sec. 4.1. We used a CNN-based Diffusion Policy (DP) [2], which is commonly used in imitation474

learning. Note that, because DP employs a ResNet backbone, it lacks temporal modeling capa-475

bilities. As a result, the policy struggles to capture the transition of the task object from the pink476

fork (pick) to the green cup (place). To address this limitation, we trained separate policies for the477

pick and place phases and evaluated them independently. Figure 12 shows the in-distribution (ID)478

and distractor object-induced out-of-distribution (OOD) environments, as well as the pick and place479

tasks, used for evaluation. The task success rate was calculated from the results of 16 trials.480

Policy and Data: Following the findings regarding trade-offs discussed in Sec. 4.1, we col-481

lected gaze behavior data (image-gaze pairs) for each demonstration device and demonstration data482

(observation-action pairs) for the Leader-Follower. Figure 11 illustrates the data collection and483

training pipeline, which consists of two phases: (1) We performed the pick-and-place task with each484

demonstration device and collected the corresponding image-gaze pairs over 40 episodes (Fig. 11a,485

top). As a model to estimate gaze behavior collected using each device, we trained egocentric gaze486

estimation model, Global-Local Correlation (GLC) [35], using each image-gaze pair (Fig. 11a, bot-487

tom). (2) We performed the pick-and-place task with the Leader-Follower and collected observation-488

action pairs over 40 episodes (Fig. 11b, top). We then estimated gaze behavior on the demonstration489

(a) (b)
Figure 11: Data collection and training pipeline. (a) The egocentric gaze estimation model (GLC) is
trained on gaze behavior data. (b) The DP is trained on gaze-based augmented demonstration data.
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Table 8: Hyperparameters for DP [2].
Parameter Value

Ctrl Pos
To 2
Ta 8
Tp 16
ImgRes 1x320x240
CropRes 1x228x216
#D-Params 67 millions
#V-Params 22 millions
Lr 1e-4
WDecay 1e-6
D-Inters Train 100
D-Inters Eval 8

Table 9: Hyperparameters for GLC [35].

Parameter Demonstration Device-dependent values
Wearable UMI Leader Leader-Follower

Pick sampling rate 2 4 9 12
length 0.9 1.9 3.7 5.2

Place sampling rate 3 5 6 15
length 1.3 2.1 2.5 6.3

data using each GLC model in a zero-shot manner. As a policy, we trained a CNN-based DP using490

gaze-based augmented data (Fig. 11b, bottom). We applied gaze-based augmentation to enhance the491

policy’s robustness in extracting task-relevant cues guided by gaze behavior.492

The gaze-based augmentation procedure was as follows: We computed the pixel-wise distance D493

from the predicted gaze coordinate (x, y) using Eq. 1. A hybrid weighting strategy was used: a494

hard value was applied within a threshold radius r, and a soft Gaussian decay was applied beyond495

r, as shown in Eq. 2. The decay according to distance was controlled by the parameter σ. The496

resulting weight map W was then normalized. Using the normalized weight map, we performed497

spatially-aware data augmentation: High-weight regions retained more of the original image, while498

low-weight regions retained more of the images augmented using PixMix [36], a fractal pattern-499

based augmentation method. In this experiment, we used r = 30.0 and σ = 100.0.500

D(i, j) =
√

(i− x)2 + (j − y)2 (1)

W (i, j) =

{
1 if D(i, j) ≤ r

exp
(
− (D(i,j)−r)2

2σ2

)
otherwise

(2)

Tables 8 and 9 show the hyperparameters used for training. sampling rate is a GLC parameter501

determined by Eq. 3. length denotes the duration in seconds required to complete a pick or place.502

frame rate refers to the frame rate of the gaze behavior data. ratio determines the temporal503

segment within the duration length from which time-series images are sampled. num frames504

is a GLC parameter indicating the number of images to be sampled. In this experiment, we used505

frame rate = 24, ratio = 0.8, and num frames = 8.506

sampling rate =
(length× frame rate× ratio)

num frames
(3)
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(a) ID-Pick (b) ID-Place (c) OOD-Pick (d) OOD-Place

Figure 12: Evaluation environments and tasks. In the ID environments, the same pink fork, green
cup, and knife rest as in Sec. 4 are used. In the OOD environments, distractor objects induce the
distribution shift.
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