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ABSTRACT

Previous model inversion (MI) research has demonstrated the feasibility of re-
constructing images representative of specific classes, inadvertently revealing
additional feature information. However, there are still two remaining challenges
for practical black-box MI: (1) reconstructing a high-quality input image tailored
to the observed prediction vector, and (2) minimizing the number of queries made
to the target model. We introduce a practical black-box MI attack called Targeted
Model Inversion (TMI). Our approach involves altering the mapping network in
StyleGAN, so that it can take an observed prediction vector and transform it into a
StyleGAN latent representation, which serves as the initial data point for subse-
quent MI steps. Later, TMI leverages a surrogate model that is also derived from
StyleGAN to guide instance-specific MI by optimizing the latent representation.
These mapping and surrogate networks work together to conduct high-fidelity MI
while significantly decreasing the number of necessary queries. Our experiments
demonstrate that TMI outperforms state-of-the-art MI methods, demonstrating a
new upper bound on the susceptibility to black-box MI attacks.

1 INTRODUCTION

MI refers to an adversarial attack that reconstructs training data or class-representative instances
based on the output from a target machine learning (ML) model. Assuming an adversary who is
able to eavesdrop or obtain an output prediction from a target model, successful MI attacks involve
reconstructing an input image corresponding to that specific output or generating a representative
image belonging to the same class that the prediction indicates. Consequently, these reconstructed
images expose privacy-sensitive features that the model owners or its users did not anticipate revealing
through the output predictions. Prior studies have vastly investigated the feasibility and efficacy of
MI against deep neural networks (DNNs) (Fredrikson et al., 2015; He et al., 2019). Recently, Yang
et al. (2019) proposed a training-based attack that utilizes a DNN generator, enabling it to reconstruct
an image based on a given prediction vector. Subsequent works focused on improving the fidelity
of reconstructed images by adopting generative adversarial networks (GANs) (Zhang et al., 2020b;
Chen et al., 2021; Kahla et al., 2022; Yuan et al., 2023; Han et al., 2023) or StyleGANs (Wang et al.,
2021; An et al., 2022; Struppek et al., 2022).

We posit that there still remains large room for improvement in conducting practical black-box MI
attacks. Specifically, we propose two key challenges to overcome: (1) minimizing the number of
necessary queries to a target model and (2) enabling instance-specific reconstruction. Numerous
studies have assumed a strong white-box adversary who is able to access target model parameters,
thereby leveraging gradients in performing MI (Fredrikson et al., 2015; Zhang et al., 2020b; Wang
et al., 2021; An et al., 2022; Struppek et al., 2022). Moreover, existing black-box MI attacks (Yang
et al., 2019; Kahla et al., 2022; Han et al., 2023) require an excessive number of queries for a target
model, rendering them impractical. For example, An et al. (2022) required 160k queries to reconstruct
a single image. Furthermore, previous researchers have focused on reconstructing class-representative
images rather than the original input images specific to the corresponding prediction vector. Class-
representative images often omit intra-class differences within their class, which undermines the
chances of reconstructing privacy-sensitive features. For instance, when a target task for MI is
gender classification, class-representative images display a generic female face, not a specific woman
involved in training (Melis et al., 2019). The difficulty is even exacerbated when a target task involves
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large variances in each class. For example. we observed that, with the NIH Chest X-ray dataset (Wang
et al., 2017), previous methods are unable to reconstruct task-agnostic features such as gender or age.

To tackle the aforementioned challenges, we introduce Targeted Model Inversion (TMI), a novel MI
framework that performs instance-specific reconstruction while leveraging only a restricted set of
black-box queries to a target model. TMI consists of two steps: preparation and inversion. In the
preparation step, TMI employs a StyleGAN (Karras et al., 2020) network trained on a dataset in
which the underlying distribution is similar, yet different from the training set of the target model.
Then, its mapping and discriminator networks are modified to project the prediction vector to the
StyleGAN latent space and to act as a surrogate model, respectively. These networks are trained using
StyleGAN-generated images and their corresponding predictions from the target model, eliminating
the need for an additional dataset. In the inversion step, TMI locates the initial StyleGAN latent
corresponding to a target prediction vector observed from the target model by using the new mapping
network. It then optimizes this latent to generate an image that prompts the surrogate model to emit a
prediction vector similar to the target prediction vector.

The core idea of TMI is to construct a new mapping network that approximates a style latent
corresponding to the target prediction vector, which is then further optimized through signals from the
surrogate model. Both distilled from a benign StyleGAN network, these two modified components
help significantly reduce the number of required queries for successful MI while conducting instance-
specific inversion for a given prediction vector.

We evaluate TMI by comparing it with other state-of-the-art white-box and black-box MI attacks. We
demonstrate the superiority of TMI even with a much smaller query budget; TMI attains 0.2067 in
terms of class-wise coverage, significantly surpassing the performance of existing state-of-the-art MI
attacks. These experiment results demonstrate that the TMI attack enables practical black-box MI
with high fidelity without requiring white-box access to a target model.

2 MODEL INVERSION ATTACK

An MI attack refers to an adversarial attempt to reconstruct an input image x ∈ X based on the target
output prediction ŷt ∈ Y obtained from a target classifier f : X 7→ Y . The reconstructed image
x′ may inadvertently leak privacy-sensitive features that were never expected by the model owner
or its users. Formally, the adversary’s objective is to compute an inversion image x′ satisfying the
following equation:

x′ = argmin
x∈X

Lpred(f(x), ŷt) (1)

with a loss function Lpred (e.g., cross-entropy loss or ℓ2 loss) that quantifies the dissimilarity between
the observed prediction vector ŷt and the target model output f(x).

To overcome the challenge of reconstructing high-fidelity images in an input space (i.e., R3×2242)
based on a prediction vector in a limited model output space (i.e., RK, where K refers to the number
of classes in f ), previous researches have explored different attack methods. Early MI studies
focused on reconstructing low-resolution grayscale facial images or simple datasets like MNIST.
For instance, Fredrikson et al. (2015) applied an analytic method of finding x′ in Equation 1. Later,
Yang et al. (2019) proposed using a dedicated neural network consisting of multiple transposed
convolutional layers that directly map the observed prediction vectors onto the input space, expanding
the attack vector of MI to relatively complicated neural networks. However, their attack focused on
reconstructing low-resolution gray-scale input images.

To further improve MI, subsequent studies have proposed leveraging the GAN generators (Zhang
et al., 2020b; Chen et al., 2021; Wang et al., 2021; An et al., 2022; Struppek et al., 2022; Kahla et al.,
2022; Yuan et al., 2023; Han et al., 2023). The generator g : Z 7→ X operates as an image prior,
generating input images in X from Gaussian latent vectors in Z . Instead of directly optimizing in
the input image space X as in Equation 1, GAN-based approaches perform optimization within a
more constrained space Z . Recent MI researchers have adopted StyleGANs (Karras et al., 2019;
2020) to attain higher-fidelity reconstruction (An et al., 2022; Struppek et al., 2022); they perform
optimization in a newly introduced intermediate latent spaceW .

Note that the optimization process in MI typically requires computing gradients using the target
model, thereby assuming the presence of a white-box adversary who is able to access the target
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model parameters. Follow-up studies have proposed attack methods to simulate the optimization
using only black-box queries. These attack techniques include genetic algorithms (An et al., 2022),
decision boundary estimation (Kahla et al., 2022), and reinforcement learning (Han et al., 2023) as
proxies for the optimization process. Although achieving state-of-the-art performance compared
to traditional black-box approaches, we argue that all the existing methods still fail to address two
following challenges: practicality and instance-specific inversion.

Practicality. Existing black-box MI methods still demand a prohibitively large number of queries
to the target model. This poses practical challenges, particularly when considering the limitations
imposed by Machine Learning as a Service (MLaaS) providers. These providers often enforce rate
limits on API calls, restricting the number of queries (e.g., Clarifai - 5000/day, DatumBox - 1000/day).
The requirement for a high volume of queries not only tampers with the practicality of MI but also
raises the risk of attack detection because an abnormal number of queries can potentially be flagged.

Instance-specific inversion. Test-time MI attacks can be categorized into two groups (Yang et al.,
2019): instance-specific MI and class-representative MI. The former refers to a scenario in which
the attacker infers a victim’s input instance for an observed prediction output. On the other hand,
class-representative MI focuses on reconstructing generic images for a single output class in a target
model. Whereas a larger volume of previous research focused on conducting class-generic MI that
reveals class-bound features (Fredrikson et al., 2015; Yang et al., 2019; Zhang et al., 2020b; Chen
et al., 2021; Wang et al., 2021; An et al., 2022; Struppek et al., 2022; Kahla et al., 2022; Yuan et al.,
2023; Han et al., 2023), instance-specific MI has been largely understudied. Due to the difficulty of
instance-specific MI that requires the reconstruction of subtle and instance-specific image features, it
was deemed possible under specific conditions, such as the collaborative inference setting, where
intermediate representations and gradients are accessible to the adversary (Melis et al., 2019; He et al.,
2019; 2020). For instance, class-generic MI reveals only class-bound features, including race, gender,
and age, in facial recognition tasks. On the other hand, the instance-specific MI seek reconstruction
of additional instance-specific features, such as accessories, facial expressions, or posture, as well as
the class-bound features.

3 THREAT MODEL

We assume a target classifier f , providing black-box access where the adversary (Eve) is able to
query an input image x to obtain ŷ, where ŷ is the corresponding output prediction in the form of a
confidence vector. The designed goal of TMI is to reconstruct the specific input x that produced the
target prediction ŷt. In general, one does not anticipate an output prediction to convey subtle details
of the corresponding input, so they are regarded less confidential compared to the input data itself.
This trend is evident in regulations like HIPAA, where the guidelines for storage and transmission
of medical images are more strict than the rules regarding diagnostic predictions (Moore & Frye,
2019). Furthermore, in the field of confidential computing that protects the privacy of user input to
a cloud-provided ML service, the prediction outputs are excluded from encryption, allowing direct
access from cloud providers with malicious intents (Gu et al., 2018; Narra et al., 2019). Accordingly,
ŷt is often leaked, eavesdropped, forged, or carelessly exposed to cloud service providers or man-
in-the-middle adversaries in real-world scenarios. These exemplary scenarios also include users
posting their prediction results on social media (Yang et al., 2019), split inference settings where
the inference result is sent to different parties (He et al., 2019), or medical professionals sharing
diagnosis predictions for educational or consultative purposes.

Eve leverages an auxiliary dataset Daux of which the underlying distribution is similar to those of
the original dataset D upon which f is trained. She uses Daux to train their her StyleGAN network.
Alternatively, Eve can leverage a pretrained StyleGAN network available on the Internet, which
removes the need for Daux. We also evaluate TMI on using Daux with a significant deviation from
the input distribution of f (see §A.2.3). Lastly, Eve is a black-box adversary who cannot access the
model parameters, gradients, or intermediate results while performing MI. Eve is only permitted to
send a limited number of benign input queries to f and use their output predictions. We emphasize
that Eve is bound to a predefined query budget.

We note that Eve is even capable of populating an arbitrary prediction vector ŷ or using only labels
for conducting targeted MI. Under this scenario, Eve can apply label smoothing (Müller et al., 2019)
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Figure 1: An overview of the TMI attack workflow (right), compared with the original StyleGAN
network (left). The StyleGAN components modified for TMI (m′ and f ′) are highlighted in red.

to hard-coded prediction outputs, each of which represents a corresponding class, then conduct the
TMI attack. Please refer to §A.2.4 for further details.

4 DESIGN

The TMI attack consists of two distinct phases: preparation and inversion. Given query access to a
target model f , the adversary leverages a pretrained StyleGAN network and alters its two components,
the mapping network m and the discriminator D, during the preparation phase. Once preparation is
complete, any observed prediction output can be fed into the modified network to perform a offline
MI attack to reconstruct its corresponding input image. The original and modified StyleGANs are
illustrated in Figure 1.

4.1 PREPARATION PHASE: TWEAKING THE STYLEGAN NETWORK

StyleGAN. In a StyleGAN network, the generator is composed of two parts: a mapping network
m : Z 7→ W and a synthesis network g : W 7→ X . Unlike traditional GAN generators that take
a random Gaussian vector z from the latent space Z and pass it through the synthesis network, a
mapping network m first projects z to an intermediate latent space w ∈ W . The synthesis network g,
consisting of consecutive style blocks, takes w as the input for each style block. The style blocks
synthesize images in a progressive manner, starting from low-resolution images and progressively
refining them to higher resolutions. The discriminator D in the StyleGAN network receives the
final result from g and determines whether this image is a real image or a synthesized sample. The
minimax game between D and g gradually makes D to better distinguish fake samples.

An important characteristic of the intermediate latent spaceW in StyleGAN is that image features
are disentangled, meaning that different features are represented by separate dimensions inW . This
characteristic is encouraged during the StyleGAN training phase because (1) generating realistic
images is easier when the representation is disentangled, which allows independent control over
different image attributes, and (2) the separation of style blocks causes different subsets ofW to
contribute to different levels of styles, enabling fine-grained control over the generated images. This
characteristic of disentangled image features inW has been found to be beneficial not only for style
mixing (Karras et al., 2019) or editing (Abdal et al., 2019), but also as an effective basis for MI
attacks. By manipulating specific dimensions inW , an adversary is able to exert control over certain
features of the generated image, enabling the reconstruction of input images corresponding to specific
prediction vectors.

Tailoring StyleGAN. In TMI, the adversary leverages a publicly available StyleGAN network, or
trains their own using Daux. In the evaluation section, we consider scenarios, including the use of
pretrained StyleGAN networks, to assess the performance and effectiveness of the TMI attack.

The original mapping network m is trained to convert a Gaussian vector z into an intermediate latent
w. Therefore, the adversary trains a new mapping network m′ : Ŷ 7→ W to emit w directly from
an observed prediction vector ŷ. For this, the adversary exploits the StyleGAN network to generate
triplets, each of which consists of an image x generated via the generator using a random vector z,
the intermediate latent w used to generate x, and a prediction vector ŷ obtained from f by querying
x. That is, the adversary generates Dgen = {(w, x, ŷ) | z ∈ Z, w = m(z), x = g(w), ŷ = f(x)}.
After the dataset is complete, m′ is trained to minimize the following loss function:

Lm′ = E
[
(w − ŵ)2

]
, where ŵ = m′(ŷ). (2)
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Although this training procedure does not require white-box access to f , it still requires sending
a number of queries (i.e., |Dgen|) to f during Dgen construction. We set this number to be 100k
throughout our main evaluation, which is significantly smaller than the number of required queries in
prior works summarized in Table 1.

The new mapping network m′ plays a key role in locating an initial latent point for each observed
prediction ŷ. We expect m′ to learn a way of distilling a style given a prediction vector during its
training procedure, which the adversary exploits in the later inversion phase (§4.2). We exemplify the
efficacy of m′ in selecting a reliable initial latent point w0 with high fidelity and the superiority of
this approach compared to the prior MI methods.

Lastly, the adversary conducts transfer learning, to make a surrogate model f ′ : X 7→ Ŷ from the
original discriminator D in the StyleGAN network with its last layer changed to match the number of
classes in f . The training of f ′ minimizes the following loss:

Lf ′ = E
[
(ŷ − f ′(x))2

]
. (3)

The goal of f ′ is to emit a prediction vector similar to the one produced by f for each x ∈ Dgen. This
process does not send additional queries to f as it only leverages Dgen which is already obtained
from the previous step of training m′.

4.2 INVERSION PHASE: RECONSTRUCTING INPUT IMAGES

Algorithm 1 TMI Attack

1: procedure ATTACK(target ŷt, iteration n, step
size η, exploration e, mix probability δ)

2: w0 ← m′(ŷt)
3: ℓbest ←∞
4: for i ∈ {0, . . . , n} do
5: xi ← g(wi)
6: y′i ← f ′(xi)
7: ℓi ← Distance(y′i, ŷt) ▷ ℓ2 Loss
8: if ℓi < ℓbest then
9: xbest, ℓbest ← xi, ℓi

10: end if
11: wi+1 ← wi − η∇wℓi
12: if i is multiple of e then
13: wi+1 ← RandomMix(wi+1, δ)
14: end if
15: end for
16: return xbest
17: end procedure

Once the preparation phase is complete, the ad-
versary can launch the inversion phase on any
observed target prediction ŷt to reconstruct its
input image. In TMI, white-box optimization
using f ’s gradients is replaced with repetitive
approximated optimization, starting from w0 de-
rived from the renewed mapping network m′:

wt+1 := wt − η∇w [f ′ (g(wt))− ŷt]
2
. (4)

Algorithm 1 describes the overall process of the
inversion phase. The adversary starts by obtain-
ing an initial latent representation w0 = m′(ŷt)
usingm′ obtained from the previous phase (Line
2). This initial latent is fed into g to generate
an image x (Line 5). In Lines 6–7, this synthe-
sized image is fed into f ′ to produce a predic-
tion result y′, and it then computes the distance
between y′ and ŷ. In Line 11, w is optimized
via gradient descent so that the generated image
produces an approximated prediction y′ that is

closer to ŷ.

For every e steps, TMI performsRandomMix, where subsets ofw are reset tow0 with the probability
δ. This is done to avoid w from overfitting only to a specific style, which leads to unnatural images.
RandomMix prevents the optimization routine from getting trapped in a local minimum and allows
it to explore different styles and combinations. Finally, the algorithm returns x that recorded the
closest y′ to ŷt.

Note that in TMI, the adversary exploits f ′ in an offline manner to refine the initial latent vector w0,
which is also obtained by an offline single-pass to m′. Therefore, TMI does not generate any queries
or require white-box access to f throughout the inversion phase. This makes the attack completely
passive once the preparation phase is complete.

4.3 SUMMARY AND DIFFERENCES TO PRIOR MI ATTACKS

1We use 100k as default for evaluations. We also tested different query budgets that start from 5k.
2LO-MI does not have an explicit query limit on Prep, however we observed it to have the highest number

of queries in practice. Hence, we regard it as the upper-bound among baselines.
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Figure 2: Latent space exploration of TMI versus
baseline methods.

Table 1: Comparison of the required queries. The
number of queries under the Attack is required
for each attack attempt, whereas numbers under
Prep is required once in the preparation phase.

Method Query Count Image
PriorPrep Attack

AMI |Daux| 0 None
TMI (ours) |Dgen|1 0

Style-
GAN

MIRROR-w 100k 160k
P&P 5k 34k

MIRROR-b 100k 10k
RLB-MI 0 80k GAN
LO-MI 100k2 2k

Previous studies have focused on reconstructing class-generic images, overlooking the reconstruction
of instance-specific features. This trend comes from the fact that GAN- and StyleGAN-based MI
performs optimization from either a random initial latent (Kahla et al., 2022; Han et al., 2023) or
the latent that yields the maximum target confidence (An et al., 2022; Struppek et al., 2022; Yuan
et al., 2023). Such initial points tend to be biased toward singularities and become far from the
optimal point as shown in Figure 2. Prior works overcome this issue by performing a large number of
optimization steps, which naturally demand an excessive number of input queries, thus undermining
the practicality of MI. Table 1 shows the number of queries for each MI approach. Furthermore, using
a large number of optimization steps frequently leads to convergence to local optima due to the nature
of greedy updates. In contrast, we employ the customized mapping network m′ to directly project the
predictions to the latent space. By pinpointing a reliable starting point via m′, TMI bypasses most of
the early optimizations present in existing MI attack methods.

The choice of constructing f ′ also brings benefits compared with a naive black-box migration of
white-box methods, which would be to train a surrogate model from scratch as a substitute for f in
the optimization routine. Transfer learning from D offers a more reliable and generalized surrogate
model due to the fact that D has already been exposed to numerous styles of images during the
training of StyleGAN. We show that a surrogate model trained from scratch is insufficient to imitate
the optimization path of the target model f , in our ablation study (see §A.2.1).

5 EXPERIMENTS

We conducted a comprehensive comparison of the inversion capability of TMI with state-of-the-art
MI attacks, including both black-box and white-box methods. The black-box methods include
MIRROR-b, RLB-MI (Han et al., 2023), LB-MI (Kahla et al., 2022), and AMI (Yang et al., 2019),
while the white-box methods include MIRROR-W and P&P (Struppek et al., 2022). MIRROR-b and
MIRROR-w represent the black-box and white-box MI methods using MIRROR (An et al., 2022),
respectively.

5.1 EXPERIMENTAL SETUP

We selected two tasks for MI: facial recognition and chest X-ray diagnosis. For facial recognition,
we prepared target networks trained on the FaceScrub (Ng & Winkler, 2014) and CelebA (Liu et al.,
2015) datasets. We used ResNeSt-101 (Zhang et al., 2020a) as the architecture for f in our main
experiments. Refer to § A.2.2 for experiment results on other architectures. As for the adversary’s
StyleGAN network, we used a publicly available StyleGAN2 (Karras et al., 2020) network trained on
the Flickr-Faces-HQ (FFHQ) (Karras et al., 2019) dataset. We note that the underlying distribution
of the StyleGAN network is different from that of the target networks, reflecting a practical attack
setting. We have verified that TMI remains effective under conditions of an even greater distribution
shift; these findings are detailed in § A.2.3. For chest X-ray diagnosis, we used a StyleGAN2 network
trained on the NIH Chest X-ray dataset (Wang et al., 2017). The target network was trained using
the PadChest (Bustos et al., 2019) dataset. Similar to the facial recognition task, datasets used for
training the two parties (adversary and target network) have different distributions. We employed
same StyleGAN2 networks as image priors in all baseline methods using StyleGAN. For other attacks
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that incorporate GANs (Kahla et al., 2022; Han et al., 2023), we trained their GANs using the same
dataset used to train StyleGANs. For more details on the datasets and models, please refer to § A.1.

5.2 EVALUATION METRICS

To evaluate the effectiveness of TMI, we used several metrics to assess the quality of the inversion
results and the instance-specific MI capabilities. Accuracy and feature distance are commonly
used metrics in the MI literature (An et al., 2022; Struppek et al., 2022; Wang et al., 2021; Zhang
et al., 2020b). We also used two additional metrics, class-wise coverage and attribute accuracy, to
demonstrate the capabilities of instance-specific MI.

Accuracy (Acc@1 and Acc@5). To assess the resemblance of the reconstructed images to the target
image class, we computed the proportion of reconstructed images that were classified into the same
class as the target image by fE , an evaluation classifier using Inception-v3 (Szegedy et al., 2016)
trained on the same dataset as f . This proportion represents the accuracy of the reconstruction process,
indicating how well the reconstructed images capture the features of the target class in general.

Feature distance (F-dist). The feature distance metric captures the similarity between two images
at an intermediate representation layer (Dosovitskiy & Brox, 2016) of fE , which quantifies the
perceptual similarity between the images. Specifically, we computed the average ℓ2 distance between
features extracted from the penultimate layer of a fE , hence computing the similarity in high-level
visual features perceived by the classifier (Zhao et al., 2021).

Class-wise coverage (Cover). We adopted the class-wise coverage metric to assess whether the
reconstructed samples successfully captured the intra-class diversity, which is crucial in the instance-
specific MI task. We use a slightly modified version of the original notion introduced by Naeem
et al. (2020). This metric evaluates the extent to which the reconstructed samples cover the range of
variations within each target class. It measures the fraction of target images that have a reconstructed
sample in close proximity, providing insight into how well the reconstruction process captures the
intra-class diversity. The class-wise coverage is formally defined as follows:

Cover =
1

N

N∑
i=1

1∃ j s.t. Yj ∈ B(Xi, NNDk(Xi)). (5)

where N and 1(·) are the number of samples and the indicator function, respectively. Whereas the
original notation considered the intermediate representations of real and fake samples as Xi and
Yi, we replaced them with the intermediate representations of the target and reconstructed images,
respectively. B(x, r) indicates a sphere in the representation space around x with radius r, and
NNDk(Xi) denotes the distance from Xi to its kth nearest neighbor. We used k = 1 throughout our
evaluations.

Attribute accuracy. To evaluate the success of feature reconstruction, we trained attribute classifiers
using the Inception-v3 architecture (Szegedy et al., 2016), where the final layer of the classifier
was adjusted to accommodate the number of categories for each attribute. Specifically, we trained
attribute classifiers using the respective attribute labels available in CelebA and the gender and age
information in PadChest.

5.3 EXPERIMENTAL RESULTS

Figure 3 shows the inversion results obtained by other MI methods and TMI. It is evident that the
samples reconstructed using TMI are visually more similar to their corresponding original images,
making it easier to identify them as the same identity. We also note that TMI reconstructs facial
expressions (columns 1, 2, 4), and instance-specific attributes (columns 3, 5) such as glasses. The
other methods did succeed in reconstructing some general features of the original images. However,
they failed to capture the fine and specific characteristics of the original image. Moreover, we
observed that RLB-MI, LO-MI, and AMI methods are not suitable for real-world MI attacks on high-
dimensional images. While the authors had demonstrated their success on R3×642 tightly-cropped
images, we found that these black-box attacks experienced difficulties in reconstructing R3×2242

input images. In contrast, the white-box attacks exhibited high accuracy since they explicitly took
into account the classification loss on the target model during their optimization steps.

7



Ta
rg
et

O
u
rs

M
IR
R
O
R
-b

R
LB
-M

I
LO

-M
I

A
M
I

P&
P

M
IR
R
O
R
-w

B
la
ck
-b
o
x

W
h
it
e
-b
o
x

Figure 3: Comparison of the inversion results on facial recognition (left) and chest X-ray diagnosis
(right). Gender and age information for each X-ray target images are shown in red.

Table 2: Inversion performance of TMI and SOTA methods. The top five MI methods are black-box
attacks, and the remaining ones are white-box attacks. The best performing black-box attack metrics
are marked in bold.

Fa
ci

al
re

co
gn

iti
on

Method Acc@1 ↑ Acc@5 ↑ F-dist ↓ Cover ↑
TMI (ours) .3408±.0061 .6255±.0092 .2950±.0009 .2067±.0126

AMI .0443±.0179 .0906±.0278 .3860±.0011 .0033±.0009

MIRROR-b .2026±.0267 .4533±.0394 .3564±.0058 .0613±.0059

RLB-MI .2568±.0172 .5044±0246 .3804±.0049 .0514±.0038

LO-MI .2611±.0079 .5155±.0115 .3921±.0008 .0536±.0038

P&P .7779±.0308 .9476±.0076 .2470±.0029 .1440±.0059

MIRROR-w .8129±.0228 .9531±.0085 .2491±.0038 .1257±.0048

C
he

st
X

-r
ay

di
ag

no
si

s Method Acc@1 ↑ Acc@5 ↑ F-dist ↓ Cover ↑
TMI (ours) .5158±.0127 .9999±.0004 .0851±.0006 .2415±.0396

AMI .0743±.0080 .8717±.0103 .1788±.0008 .0002±.0002

MIRROR-b .7786±.0757 .9983±.0049 .1094±.0183 .0172±.0154

RLB-MI .0790±.0000 .8988±.1026 .1827±.0069 .0002±.0000

LO-MI .0790±.0000 .9860±.0000 .1769±.0006 .0002±.0000

P&P .7250±.2769 .9960±.0057 .1155±.0211 .0084±.0074

MIRROR-w .8634±.1339 .9983±.0049 .1138±.0264 .0137±.0140

Table 2 provides the quantitative evaluation results of TMI, along with state-of-the-art MI methods.
The experimental results clearly demonstrate that TMI outperformed all other black-box MI attacks
according to the reported metrics. These results confirm the superiority of TMI in conducting practical
black-box MI.

We emphasize the significant decrease in the number of required queries in performing MI. When
assuming a scenario in which the adversary aims to generate 530 class facial images in the FaceScrub
dataset, TMI requires the default query budget of only 100k queries to a target model in achieving
the reported metrics in Table 2. In contrast, MIRROR-w and MIRROR-b, which performed the
best beside TMI, required 84900k = 100k + 160k× 530 and 5400k = 100k + 10k× 530 queries,
respectively. Outside of AMI which failed to produce any meaningful results, LO-MI required the
least number of queries among the baselines: 1160k = 100k + 2k× 530, which is still significantly
higher than the one that TMI required.

In addition, we conducted experiments to investigate the change in reconstruction performance while
varying the size of Dgen that is used during the preparation phase to train m′ and f ′. In Figure 4, we
compared the MI performance of TMI with different query budgets: 5k, 10k, 50k, and 100k (default).
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Observe that with only 5k queries, TMI attained similar performance to the one of MIRROR-b that
required a total of 5400K queries, resulting in a 1,080 times decrease in the query budget.

For chest X-ray diagnosis, TMI significantly outperformed all other methods by a large margin. The
performance gains can be attributed to the unique characteristics of the chest X-ray classifier. Unlike
facial recognition, where each class corresponds to a single identity, the classes in the chest X-ray
classifier encompass a diverse range of identities and features. For example, the pneumonia class
includes samples from both male and female individuals, and the age of the subjects spans across
various age groups. In this particular context, we argue that traditional metrics such as Acc@1 and
Acc@5 are not indicators of instance-specific privacy leakage. Thus, we additionally used intra-class
metrics (i.e., F-dist, Cover, and attribute accuracy) to evaluate TMI.

Figure 3 presents a comparison of the inversion results on chest X-ray images. Notably, TMI
successfully captures private information such as gender and body shape. For example, the highlighted
TMI inversion results in the second row clearly shows a female X-ray image, even to the human eye,
due to the accurate reconstructions of the chest shape when comparing its reconstruction quality with
the other baseline results.

To emphasize the capability of targeted MI, we further conducted comparison evaluations that measure
the attribute accuracy across instance-specific attributes in Figure 5. As the figure shows, TMI strictly
outperformed all other methods in capturing subtle and intra-class features. For example, the attribute
classifier for checking glasses on the TMI reconstructed facial images reported an accuracy of 80.7%
while MIRROR-b and P&P reported 69.8% and 68.3%, respectively. Also, when inferring the ages of
the reconstructed chest X-ray images, TMI-generated images contribute to reporting a mean absolute
error (MAE) of 8.1198, significantly outperforming all other methods. These results highlight the
capability of TMI to capture instance-specific private information compared to the baselines.

6 CONCLUSION

We have proposed TMI, a novel black-box MI attack that achieves instance-specific MI using a limited
query budget. TMI alters the mapping network of a benign StyleGAN network to find a reliable
initial latent point corresponding to a target prediction output, then performs further optimization by
leveraging a surrogate model distilled from the StyleGAN discriminator. TMI significantly decreases
the number of required queries while improving the reconstruction quality over state-of-the-art
black-box MI methods.

9



REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
4431–4440, 2019.

Shengwei An, Guanhong Tao, Qiuling Xu, Yingqi Liu, Guangyu Shen, Yuan Yao, Jingwei Xu,
and Xiangyu Zhang. Mirror: Model inversion for deep learning network with high fidelity. In
Proceedings of the 29th Network and Distributed System Security Symposium, 2022.

Aurelia Bustos, Antonio Pertusa, José María Salinas, and María de la Iglesia-Vayá. Padchest: A large
chest x-ray image dataset with multi-label annotated reports. CoRR, abs/1901.07441, 2019. URL
http://arxiv.org/abs/1901.07441.

Si Chen, Mostafa Kahla, Ruoxi Jia, and Guo-Jun Qi. Knowledge-enriched distributional model
inversion attacks. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 16178–16187, 2021.

Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics based
on deep networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 658–666, 2016. URL https://proceedings.neurips.cc/paper/2016/
hash/371bce7dc83817b7893bcdeed13799b5-Abstract.html.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security, pp. 1322–1333, 2015.

Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Ankita Lamba, Dimitrios Pendarakis, and Ian
Molloy. Securing input data of deep learning inference systems via partitioned enclave execution.
arXiv preprint arXiv:1807.00969, pp. 1–14, 2018.

Gyojin Han, Jaehyun Choi, Haeil Lee, and Junmo Kim. Reinforcement learning-based black-box
model inversion attacks. CoRR, abs/2304.04625, 2023. doi: 10.48550/arXiv.2304.04625. URL
https://doi.org/10.48550/arXiv.2304.04625.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative inference.
In Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162,
2019.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Attacking and protecting data privacy in edge–cloud
collaborative inference systems. IEEE Internet of Things Journal, 8(12):9706–9716, 2020.

Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler, Bo Chen, Weijun Wang,
Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun Zhu. Searching for
mobilenetv3. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, pp. 1314–1324. IEEE, 2019. doi: 10.1109/ICCV.
2019.00140. URL https://doi.org/10.1109/ICCV.2019.00140.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 2261–2269. IEEE Computer Society, 2017.
doi: 10.1109/CVPR.2017.243. URL https://doi.org/10.1109/CVPR.2017.243.

Mostafa Kahla, Si Chen, Hoang Anh Just, and Ruoxi Jia. Label-only model inversion attacks via
boundary repulsion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15045–15053, 2022.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for gen-
erative adversarial networks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 4401–4410.
Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00453. URL

10

http://arxiv.org/abs/1901.07441
https://proceedings.neurips.cc/paper/2016/hash/371bce7dc83817b7893bcdeed13799b5-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/371bce7dc83817b7893bcdeed13799b5-Abstract.html
https://doi.org/10.48550/arXiv.2304.04625
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/CVPR.2017.243


http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_
Style-Based_Generator_Architecture_for_Generative_Adversarial_
Networks_CVPR_2019_paper.html.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015, pp. 3730–3738. IEEE Computer Society, 2015. doi: 10.1109/ICCV.2015.425. URL
https://doi.org/10.1109/ICCV.2015.425.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In 2019 IEEE symposium on security and privacy (SP),
pp. 691–706. IEEE, 2019.

Wilnellys Moore and Sarah Frye. Review of hipaa, part 1: history, protected health information, and
privacy and security rules. Journal of nuclear medicine technology, 47(4):269–272, 2019.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Advances
in neural information processing systems, 32, 2019.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. In International Conference on Machine
Learning, pp. 7176–7185. PMLR, 2020.

Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav Balasubramaniam, and Murali Annavaram.
Privacy-preserving inference in machine learning services using trusted execution environments.
arXiv preprint arXiv:1912.03485, 2019.

Hongwei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In 2014
IEEE International Conference on Image Processing, ICIP 2014, Paris, France, October 27-30,
2014, pp. 343–347. IEEE, 2014. doi: 10.1109/ICIP.2014.7025068. URL https://doi.org/
10.1109/ICIP.2014.7025068.

Lukas Struppek, Dominik Hintersdorf, Antonio De Almeida Correira, Antonia Adler, and Kristian
Kersting. Plug & play attacks: Towards robust and flexible model inversion attacks. In International
Conference on Machine Learning, pp. 20522–20545. PMLR, 2022.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pp. 2818–2826. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.308. URL
https://doi.org/10.1109/CVPR.2016.308.

Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, and Alireza Makhzani. Variational
model inversion attacks. Advances in Neural Information Processing Systems, 34:9706–9719,
2021.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M.
Summers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pp. 3462–3471. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.369. URL
https://doi.org/10.1109/CVPR.2017.369.

Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. Neural network inversion in adversarial
setting via background knowledge alignment. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pp. 225–240, 2019.

11

http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1109/ICIP.2014.7025068
https://doi.org/10.1109/ICIP.2014.7025068
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2017.369


Xiaojian Yuan, Kejiang Chen, Jie Zhang, Weiming Zhang, Nenghai Yu, and Yang Zhang. Pseudo
label-guided model inversion attack via conditional generative adversarial network. CoRR,
abs/2302.09814, 2023. doi: 10.48550/arXiv.2302.09814. URL https://doi.org/10.
48550/arXiv.2302.09814.

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He,
Jonas Mueller, R. Manmatha, Mu Li, and Alexander J. Smola. Resnest: Split-attention networks.
CoRR, abs/2004.08955, 2020a. URL https://arxiv.org/abs/2004.08955.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret revealer:
Generative model-inversion attacks against deep neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 253–261, 2020b.

Xuejun Zhao, Wencan Zhang, Xiaokui Xiao, and Brian Lim. Exploiting explanations for model
inversion attacks. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV, pp.
682–692, 2021.

12

https://doi.org/10.48550/arXiv.2302.09814
https://doi.org/10.48550/arXiv.2302.09814
https://arxiv.org/abs/2004.08955


A APPENDIX

A.1 EXPERIMENTAL DETAILS

All experiments took place on an Ubuntu 20.04.1 system with CUDA 11.3, on top of 512GBs of
RAM, two Intel Xeon Gold 6258R CPUs, and four RTX 3090 GPUs. We used Python 3.10.11
with PyTorch 1.12.1 and Torchvision 0.13.1. Please refer to our source code for further information
regarding auxiliary Python packages and versions used throughout the experiments.

A.1.1 DATASETS AND MODELS

We used the official bounding-box information for FaceScrub and use its 530 identities as each
class for classification. For CelebA, we randomly selected 1000 identities from the entire CelebA
dataset for classification. We applied 108×108 center-crop to the aligned version of CelebA images
to align them with the FaceScrub images. For Chest X-ray, we used only the front-facing X-ray
images, and selected the seven most frequent findings (normal, pneumonia, tuberculosis sequelae,
emphysema, heart insufficiency, pulmonary fibrosis, COPD signs) from the PadChest dataset for
disease classification. Throughout the experiments, the input to the target models were unified
to 224×224, and 299×299 for the evaluation classifiers. Input images were resized to match the
respective input dimensions. We used bilinear interpolation for every resizing operation. StyleGAN
generated images given as input to f during the preparation phase should also be cropped & resized
appropriately. We applied 180×180 crop, then resized them to match the input image size (224×224
or 299×299). We used pretrained ImageNet checkpoints provided by Torchvision or PyTorch Hub as
initial weights for the target and evaluation classifiers, and replaced their final fully-connected layer
to match the number of classes in respective datasets. 10% of each dataset were used as the test split.

As for the StyleGAN image prior, we used a pretrained StyleGAN2 available online 3 to attack the
facial recognition domain. For targeting the chest X-ray diagnosis task, we used a custom StyleGAN2
network trained upon the NIH Chest X-ray dataset. For simplicity, we unified the StyleGAN networks
to generate 256×256 images. We kept the GAN architecture of the original implementation for
baselines RLB-MI and LO-MI. For each baseline, we used GANs custom-trained on FFHQ and NIH
Chest X-ray images, respectively. Pretrained networks uploaded by their authors were unusable since
they used a much tighter crop compared to the FaceScrub official bounding-box. We also observed
worse results when the image priors were replaced with StyleGAN.

Note that the TMI adversary has no knowledge of the cropping or resizing logic of f , as it is processed
inside the black-box service. Accordingly, f ′ : X 7→ Ŷ receives the full images generated from
StyleGAN, whereas the actual Ŷ is calculated inside f upon cropped & resized versions.

A.1.2 TMI ATTACK

In constructing Dgen, we applied the truncation trick, which is a generally used technique to promote
natural image generation with StyleGAN (Karras et al., 2019). Specifically, we generated images with
truncation ψ = 0.7 in order to avoid unnatural synthesis results. To increase the dispersion between
confidence values for easier training of m′ and f ′, we apply natural logarithm to the prediction
vectors from f .

Throughout the inversion phase of the TMI experiments, we used n = 5000, η = 10−5, e = 500,
δ = 0.05 for Algorithm 1. Note that despite these hyperparameters can be fine-tuned to each attack
scenario, we fixed them for simplicity and to demonstrate the robustness of TMI.

In addition, to bound the reconstructed images to the natural image domain, we applied a clipping
technique right afterRandomMix in Line 13 of Algorithm 1. Formally, we computed the dimension-
wise mean µ and deviation σ ofW from Dgen, then:

w(i) = max( min(w(i), µ(i) + σ(i)), µ(i) − σ(i)), (6)

where ·(i) denotes the ith dimension. Note that removing the clipping logic results in similar metric
scores, however the reconstructed images often appears visually unnatural.

3https://github.com/rosinality/stylegan2-pytorch
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For each evaluation scenario, we attacked 1000 randomly selected samples from the test split of
f ’s dataset. This simulates the real-world attack, where the target images correspond to one of f ’s
classes, however not directly included in its training set. For TMI and AMI in Table 2, we repeated
the experiment 8 times and reported the mean and standard deviation of each metrics. For the other
baseline attacks, we selected the 8 best candidates from their final output and report their mean and
standard deviation.

A.2 ADDITIONAL EXPERIMENTS

In this section, we demonstrate results of experiments outside of the main experiment in § 5 in order
to provide deeper understanding on the behaviour of TMI under different situations.

A.2.1 ABLATION STUDY

Table 3: MI performance comparison between initialization methods. Best cases are marked in bold.

Method Acc@1 Acc@5 F-dist Cover
m′ only .0840 .2620 .1523 .0817
Maximum target confidence .0900 .2200 .4135 0
Random initialize .0010 .0100 .4941 .0309

Effect of the New Mapping Network. In order to assess the efficacy of the new mapping network
m′ in locating a reliable initial latent point (w0), we evaluated the synthesis result directly from w0

(i.e., g(w0)) without the optimization steps, and compared it with initialization techniques of existing
methods. The results in Table 3 suggest that w0 is closer to the target image in terms of F-dist and
Cover compared to random initialization or maximum target confidence.

Target

TMI

(a)

Performance degradation
Acc@1 ↑ 0.3408→0.1100 (67.72% ↓)
Acc@5 ↑ 0.6255→0.2660 (57.47% ↓)
F-dist ↓ 0.2950→0.3816 (29.35% ↑)
Cov ↑ 0.2067→0.0982 (52.49% ↓)

(b)

Figure 6: Qualitative (a) and quantitative (b) comparison of TMI and f ′′. In (b), values under
parenthesis indicate the percentage of degradation from TMI to f ′′.

Effect of the Surrogate Model. A naive black-box migration of the white-box approaches would be
to train a surrogate model from scratch, instead of using f ′ (which is transfer-learned from D of the
StyleGAN network). Similar to f ′, this new surrogate model works as a substitute for f , removing
the white-box requirement. We refer to such MI attack scenario as f ′′. Here, we demonstrate that f ′′
is insufficient, thus justifying the use of f ′. We empirically found that f ′′ is insufficient to provide
reliable optimization. As shown in Figure 6, the reconstructions from f ′′ only succeeds in capturing
some general coarse-grained features, failing to reconstruct the instance-specific details or even the
identity. We argue that it is necessary to use f ′ and take advantage of its pre-exposure to various
styles during the StyleGAN training.
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Table 4: MI performance across scenarios involving different target domains and f .4

Scenario Arch Acc@1 Acc@5 F-dist Cover

FFHQ
↓

FaceScrub

MobileNet-v3 .3380 .6390 .2878 .1813
ResNeSt-101 .3408 .6255 .2950 .2067
DenseNet-169 .3265 .6035 .3027 .1967

FFHQ
↓

CelebA

MobileNet-v3 .2080 .4345 .9215 .2343
ResNeSt-101 .2880 .5520 .8503 .2738
DenseNet-169 .2015 .4335 .5751 .2965

CXR14
↓

PadChest

MobileNet-v3 .3540 .9880 .1161 .2316
ResNeSt-101 .5158 .9999 .0851 .2415
DenseNet-169 .4840 .9940 .1188 .1972

A.2.2 DIFFERENT TARGET MODEL ARCHITECTURES.

In addition to ResNeSt-101, we further investigated how MI performance varies across different
architectures for f . Specifically, we investigated DenseNet-169 (Huang et al., 2017) and MobileNet-
v3 (Howard et al., 2019) across different target domains and observed that the tendency of the results
were constant to the main evaluation throughout all configurations (Table 4). For example, in the
FFHQ→FaceScrub scenario, TMI surpassed all black-box baselines in every metric. This suggests
that TMI is generally applicable across various target systems under a truly black-box setting, i.e., in
a target model-agnostic manner.

A.2.3 Daux WITH SIGNIFICANT DEVIATION FROM D

Figure 7: Target FaceScrub images (top) and TMI-reconstructed using StyleGAN trained on art-style
face portraits (bottom).

Sometimes the TMI adversary may not be able to obtain Daux with a distribution similar to D. In this
experiment, we show that TMI is robust enough to capture features of the target images x ∈ D that are
embedded in the distribution of Daux, even when D and Daux as a whole have distinct distributions.
We used a StyleGAN trained on art portraits 5 as the image prior to attack a ResNeSt-101 network
trained to classify FaceScrub identities. From Figure 7 clearly demonstrates that TMI can successfully
reconstruct input images with high fidelity, including facial features, posture, and rough color.

A.2.4 LABEL-ONLY TMI

Real-world MLaaS services often returns only the predicted label instead of the full confidence vector.
A slight modification to the TMI workflow extends the attack to support these situations. Specifically,
we implement label smoothing on each prediction output received from the target model, converting
each label prediction into a confidence vector. Given the confidence vector, TMI can operate in
the same way as the original version. Table 5 demonstrates that TMI is still effective in label-only

4Under Scenario, A→B indicates that the attacker utilizes an image prior (i.e., StyleGAN) obtained from A
to attack f that was trained to classify B images.

5https://github.com/ak9250/stylegan-art
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Table 5: MI performance on label-only setting. The original TMI and MIRROR-b experient results
are also included for comparison.

Method Acc@1 Acc@5 F-dist Cover
TMI (original) .3804 .6255 .2950 .2067
Label-only TMI .2399 .4800 .3637 .1167
MIRROR-b .2026 .4533 .3564 .0613

situations. While there is a slight drop in performance compared to the original use-case, notice that
the attack continues to surpass the capabilities of MIRROR-b in all metrics outside of F-dist.
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