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ABSTRACT

This paper presents a new graph neural network architecture over which reinforce-
ment learning can be performed to yield online policies for an important class of
multi-robot task allocation (MRTA) problems, one that involves tasks with dead-
lines, and robots with ferry range and payload constraints and multi-tour capa-
bility. While drawing motivation from recent graph learning methods that learn
to solve combinatorial optimization problems of the mTSP/VRP type, this paper
seeks to provide better convergence and generalizability specifically for MRTA
problems. The proposed neural architecture, called Covariant Attention-based
Model or CAM, includes three main components: 1) an encoder: a covariant
compositional node-based embedding is used to represent each task as a learn-
able feature vector in manner that preserves the local structure of the task graph
while being invariant to the ordering of graph nodes; 2) context: a vector rep-
resentation of the mission time and state of the concerned robot and its peers;
and 2) a decoder: builds upon the attention mechanism to facilitate a sequen-
tial output. In order to train the CAM model, a policy-gradient method based
on REINFORCE is used. While the new architecture can solve the broad class
of MRTA problems stated above, to demonstrate real-world applicability we use
a multi-unmanned aerial vehicle or multi-UAV-based flood response problem for
evaluation purposes. For comparison, the well-known attention-based approach
(designed to solve mTSP/VRP problems) is extended and applied to the MRTA
problem, as a baseline. The results show that the proposed CAM method is not
only superior to the baseline AM method in terms of the cost function (over train-
ing and unseen test scenarios), but also provide significantly faster convergence
and yields learnt policies that can be executed within 2.4ms/robot, thereby allow-
ing real-time application.

1 INTRODUCTION
In multi-robot task allocation (MRTA) problems, we study how to coordinate tasks among a team of
cooperative robotic systems such that the decisions are free of conflict and optimize a quantity of in-
terest (Gerkey & Matarić, 2004). The potential real-world applications of MRTA are immense, con-
sidering that multi-robotics is one of the most important emerging directions of robotics research and
development (Yang et al., 2018; Rizk et al., 2019), and task allocation is fundamental to most multi-
robotic or swarm-robotic operations. Example applications include disaster response (Ghassemi
& Chowdhury, 2018), last-mile delivery (Aurambout et al., 2019), environment monitoring (Es-
pina et al., 2011), and reconnaissance (Olson et al., 2012)). Although various approaches (e.g.,
graph-based methods (Ghassemi & Chowdhury, 2018; Ghassemi et al., 2019), integer-linear pro-
gramming (ILP) approaches (Nallusamy et al., 2009; Toth & Vigo, 2014; Cattaruzza et al., 2016;
Jose & Pratihar, 2016), and auction-based methods (Dias et al., 2006; Schneider et al., 2015)) have
been proposed to solve the combinatorial optimization problem underlying MRTA operations, they
usually do not scale well with number of robots and/or tasks, and do not readily adapt to complex
problem characteristics without tedious hand-crafting of the underlying heuristics. In the recent
years, a rich body of work has emerged on using learning-based techniques to model solutions or
intelligent heuristics for combinatorial optimization (CO) problems over graphs. The existing meth-
ods are mostly limited to classical CO problems, such as multi-traveling salesman (mTSP), vehicle
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routing (VRP), and max-cut type of problems. In this paper, we are instead interested in learning
policies for an important class of MRTA problems (Korsah et al., 2013) that include characteristics
such as tasks with time deadlines, robots with constrained payload and ferry-range, and ability to
conduct multiple-tours.

In this paper, we show how such MRTA problems can be modeled as a Markov Decision Process
over graphs, allowing us to learn task allocation policies by performing reinforcement learning (RL)
over graphs. We specifically focus on a class of MRTA problems that falls into the Single-task
Robots, and Single-robot Tasks (SR-ST) class defined in (Gerkey & Matarić, 2004; Nunes et al.,
2017). Here, a feasible and conflict-free task allocation is defined as assigning any task to only one
robot (Ghassemi et al., 2019)). Subsequently, we propose a new covariant attention-based model
(aka CAM), a neural architecture for learning over graphs to construct the MRTA policies. This
architecture builds upon the attention mechanism concept and innovatively integrates an equivariant
embedding of the graph to capture graph structure while remaining agnostic to node ordering.

1.1 MULTI-ROBOT TASK ALLOCATION

The MRTA problem can be formulated as an Integer Linear Programming (ILP) or mixed ILP.
When tasks are defined in terms of location, the MRTA problem becomes analogical to the Multi-
Traveling Salesmen Problem (mTSP) (Khamis et al., 2015) and its generalized version, the Vehicle
Route Planning (VRP) problem (Dantzig & Ramser, 1959). Existing solutions to mTSP and VRP
problems in the literature (Bektas, 2006; Braekers et al., 2016) have addressed analogical problem
characteristics of interest to MRTA, albeit in a disparate manner; these characteristics include limited
vehicle capacity, tasks with time deadlines, and multiple tours per vehicle, with applications in the
operations research and logistics communities (Azi et al., 2010; Wang et al., 2018). ILP-based
mTSP-type formulations and solution methods have also been extended to task allocation problems
in the multi-robotic domain (Jose & Pratihar, 2016). Although the ILP-based approaches can in
theory provide optimal solutions, they are characterized by exploding computational effort as the
number of robots and tasks increases (Toth & Vigo, 2014; Cattaruzza et al., 2016). For example, for
the studied SR-ST problem, the cost of solving the exact ILP formulation of the problem, even with a
linear cost function (thus an ILP), scales withO(n3m2h2), where n, m, and h represent the number
of tasks, the number of robots, and the maximum number of tours per robot, respectively (Ghassemi
et al., 2019). As a result, most practical online MRTA methods, e.g., auction-based methods (Dias
et al., 2006) and bi-graph matching methods (Ghassemi & Chowdhury, 2018), use some sort of
heuristics, and often report the optimality gap at least for smaller test cases compared to the exact
ILP solutions. Recently, it has been shown that Graph Neural Networks (GNNs) can provide an
alternative method with a computational efficient run-time (Kool et al., 2019).

1.2 LEARNING OVER GRAPHS

Neural network based methods for learning CO can be broadly classified into: (i) Reinforcement
Learning (RL) methods (Kool et al., 2019; Barrett et al., 2019; Khalil et al., 2017); and (ii) supervised
learning (often combined with RL) methods (Kaempfer & Wolf, 2018; Mittal et al., 2019; Li et al.,
2018; Nowak et al., 2017). The supervised learning approaches typically address problem scenarios
where samples are abundant (e.g., influence maximization in social networks (Mittal et al., 2019))
or inexpensive to evaluate (e.g., TSP (Kaempfer & Wolf, 2018)), and are thus unlikely to be readily
applicable to solve complex problems over real-world graphs. RL based techniques to learn on
graphs include attention models with REINFORCE (Kool et al., 2019) and deep Q-learning (Khalil
et al., 2017; Barrett et al., 2019), among others, with some extending solutions to multi-agent settings
(Jiang et al., 2020) In this work, we are interested in the first class of the methods (i.e., RL methods
over graph space).

Dai et al. (2017) showed that a combination of graph embedding and RL methods can be used to
approximate optimal solutions for combinatorial optimization problems, as long as the training and
test samples are drawn from the same distribution. Mittal et al. (2019) presented a new framework
to solve a combinatorial optimization problem. In this framework, Graph Convolutional Network
(GCN) performs the graph embedding and Q-Learning learns the policy. The results demonstrated
that the proposed framework is able to learn to solve unseen test problems that have been drawn
from the same distribution as that of the training data-set. More importantly, it has been shown that
using a learnt network policy instead of tree search, both methods are using the same embedding
GCN, showed a speedup of 5.5 for a problem size of 20,000. Similarly, the effectiveness of learning

2



Under review as a conference paper at ICLR 2021

a network policy using Q-Learning to solve the Max Cut problem (a combinatorial problem) has
been demonstrated by Barrett et al. (2019).

Recently, there has been a growing interest in using sequence-to-sequence models (e.g., pointer
networks and attention mechanism) to encode and learn the combinatorial optimization problems
in graph space (Kaempfer & Wolf, 2018; Kool et al., 2019). Kool et al. (2019) implemented a
framework using an encoder/decoder based on attention mechanism and REINFORCE algorithm for
solving a wide variety of combinatorial optimization problem as graphs, with the main contribution
being flexibility of the approach on multiple problems with the same hyper parameters. Majority of
the above methods solve classical problems (i.e., mTSP, VRP and Max-Cut type of problems) with-
out physical, real-world constraints. Taking into account additional physical characteristics such
as robots with payload capacity and range constraints and tasks with time deadline requires fun-
damental modification of the encoding and decoding mechanisms in the neural architecture, which
motivates the research presented here.

In this paper, a new neural architecture is proposed that combines the attention mechanism with an
enhanced encoding network (embedding layers), where the latter is particularly designed to capture
local structural features of the graph in an equivariant manner. The embedding layer is a variation
of Covariant Compositional Networks (CCN), introduced by Hy et al. (2018). This node-based
embedding has been chosen since it: i) operates on undirected graph; ii) uses receptive field and
aggregation functions based on tensor product and contraction operations (which are equivariant),
which leads to a permutation- and rotation-invariant embedding; and iii) provides an extendable
representation (n-th order tensor representation can be useful to extend the work to multi-level net-
works, e.g., involving multiple node properties). We found an exact implementation of the CCN to
be computationally burdensome for learning policies in large MRTA problems, and hence a variation
of the CCN is proposed in this work.
1.3 CONTRIBUTIONS OF THIS PAPER

The general SR-ST problem studied here considers location-encoded tasks, meaning each task is
defined as a robot visiting a location and dropping a payload (the payload dropping time is ignored
for simplicity of implementation). This setting can also be generalized to multi-agent problems
addressing last-mile delivery applications. Unlike a single agent setting, the multi-agent setting
leads to a combinatorial optimization problem with additional complexities, attributed to resolving
conflicts between agents’ decisions. Apart from the multi-agent setting, we also consider additional
constraints for tasks and robots/agents. Each task-i in N is associated with a time deadline ti,
by which the task has to be done in order for it to be considered as successfully completed. The
constraints for the robots include: 1) Each robot has a limited range of distance that it can travel
with full charge, i.e., in one tour; and 2) Each robot has a maximum capacity of payload it can carry
(bounding the max number of tasks it can perform in one tour).

With the above context, the primary contributions of this paper can be stated as: 1) Formulating
the studied class of MRTA problems as a Markov Decision Process or MDP over graphs, such
that the optimal (task allocation) policy can be learned using an RL approach. 2) Extending the
attention-based mechanism (AM) (Kool et al., 2019), serving as a decoder, and associated context
to a multi-agent combinatorial optimization setting; and 3) Incorporating a covariant compositional
mechanism for node-based embedding (aka encoder) of the graph such that local structural informa-
tion and associated task properties are preserved. The resulting CAM architecture is evaluated on
a large representative (simulated) MRTA problem, which involves coordinating a team of multiple
unmanned aerial vehicles (UAVs) to respond to flood victims by dropping survival packages. The
simulation results provide important evidence of the promising convergence of the CAM method,
and its advantage over the standard attention mechanism approach, in terms of the MRTA cost func-
tion and scalability of the learnt policy with number of tasks. The remaining portion of the paper
is organized as follows. Section 2 describes the MRTA problem definition and its formulation as
a MDP over graphs. Section 3 presents our proposed new graph neural network for the MRTA
problem. Section 5 describes simulation settings and different case studies. Results, encapsulating
the performance of these methods on different-sized problems and various analyses of the proposed
method, are presented in Section 6. The paper ends with concluding remarks.

2 MRTA: PROBLEM DEFINITION AND FORMULATIONS
The multi-robot task allocation (MRTA) problem is defined as the allocation of tasks and resources
among several robots that act together without conflict in the same environment to accomplish a
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common mission. The optimum solution (decision) of the MRTA problem is a sequence of tasks
(conflict-free allocation) that maximizes the mission outcome (or minimize the mission cost) sub-
ject to the robots’ capacity/trip bounds. Here, the following assumptions are made: 1) All robots
are identical and start/end at the same depot; 2) There are no environmental uncertainties; 3) The
location (xi, yi) of task-i and its time deadline ti are known to all robots; 4) Each robot can share its
state and its world view with other robots; and 5) There is a depot (Task-0), where each robot starts
from and visits if no other tasks are feasible to be undertaken due to the lack of available range or
payload. Each tour is defined as departing from the depot, undertaking at least one task, and return-
ing to the depot. This MRTA problem is a class of combinatorial optimization problems, which are
expressed generally in graph space. In this section, we express the MRTA problem as MDP over a
graph. Then, MRTA is formulated as an optimization problem.

2.1 MDP OVER A GRAPH

The MRTA problem can be represented as a complete graph G = (V,E), which contains a set of
nodes/vertices (V ) and a set of edges (E) that connect the vertices to each other. Each node is
a task, and each edge connects a pair of nodes. The weight of the edge (ωij) represents the cost
(e.g., distance) incurred by a robot to take task-j after achieving task-i. For MRTA with N tasks,
the number of vertices and the number of edges are N and N(N − 1)/2, respectively. Node i is
assigned a 3-dimensional feature vector di = [xi, yi, ti].

In order to perform learning, the MRTA problem is defined as a Markov Decision Process (MDP)
for each individual robot, which can be expressed as a tuple < S,A,Pa,R >. The components of
the MDP are defined below. State Space (S): A robot at its decision-making instance uses a state
s ∈ S, which contains the following information: 1) the current mission time, 2) its current location,
3) its remaining ferry-range (battery state), 4) its remaining payload, 5) the planned (allocated) tasks
of its peers, 6) the remaining ferry-range of its peers, 7) the remaining payload of its peers, and 8) the
states of tasks. The states of tasks contain the location, the time deadline, and the task status – active,
completed, and missed (i.e., deadline is passed). Action Space (A): The set of actions is represented
as A, where each action a is defined as the index of selected task, {0, . . . , N} with the index of the
depot as 0. The task 0 (the depot) can be selected by multiple robots, but the other tasks are allowed
to be chosen once if they are active (not completed or missed tasks). Pa(s

′|s, a): A robot by taking
action a at state s reaches the next state s′ in a deterministic manner (i.e., deterministic transition
model is defined). Reward (R): The reward function is defined as −fcost and is calculated when
there is no more active tasks (all tasks has been visited once irrespective of it being completed or
missed). Transition: The transition is an event-based trigger. An event is defined as the condition
that a robot reaches its selected task or visits the depot location.

2.2 MRTA AS OPTIMIZATION PROBLEM

The exact solution of the MRTA problem can be obtained by formulating it as the following integer
nonlinear programming problem:

min fcost = r − u(−r)e−d
2
r (1)

subject to A set of integer linear constraints (Ghassemi et al. (2019)) (2)

A detailed formulation of the exact ILP constraints that describe the MRTA problem with capacity
and range restrictions, multi-tours per robot and tasks with deadlines, can be found in this recent
work on decentralized MRTA (Ghassemi et al., 2019). Note that, in our paper we use a slightly
different objective/cost function to better reflect the general problem setting presented here.

Here, we craft the objective function (Eq. (1)) such that it emphasises maximizing the completion
rate (i.e., the number of completed tasks divided by the total number of tasks); and if perfect com-
pletion rate (100%) is feasible, then the traveled cost is also considered. In Eq. (1), u(.) is the step
function. The term of 1 − r is defined as task completion rate; i.e., the number of completed tasks
(Nsuccess) divided by the total tasks (N ) or r = N−Nsuccess

N . dr is a normalized value of the total dis-
tance traveled by all robots in the team. The term dr is the average travelled distance over all robots

(i.e., dr =
∑Nr

i=1 dtotal
i√

2 N
). The terms Nr and dtotal

i represent respectively the number of robots and the
total traveled distance by robot-i during the entire mission. The above objective function (Eq. (1))
gives positive value if the completion rate is lower than 100%, otherwise it gives negative value.
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3 COVARIANT ATTENTION-BASED NEURAL ARCHITECTURE
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Figure 1: Deployment of the MRTA policy model based on the CAM
architecture. a) Robot-1 at t0. b) Robot-2 at t1; here, the CAM output
for previously selected task (e.g., task 2 in (b)) is set at 0.

Before describing the tech-
nical components of the
proposed Covariant Atten-
tion Model, the so-called
CAM neural architecture,
we provide an illustration
and summary description
here of how this policy ar-
chitecture is used by robots
during an SR-ST operation.
The CAM model for task
allocation is called by/for
each robot right when it
reaches its current destina-
tion (task location or de-
pot), in order to decide its
next task or destination. Since full-observability is assumed across the multi-robot team and
the policy-model execution-time is almost negligible, the current setup is agnostic to whether
the online CAM model is executed centrally off-board or on-board each robot. As an exam-
ple, Figure 1 illustrates how robot-1 and robot-2 uses the CAM policy model to choose a task
at two different decision-making instances (t = t0 and t = t1, respectively). Here, the in-
puts to the CAM model includes 1) the task graph information (i.e., the location of each task
and its associated time deadline), 2) the current mission time, 3) the state of robot-r, and 4)
the states of robot-r’s peers. The CAM model then generates the probability of selecting each
task as its output. A greedy policy to choose the task with the highest probability is used here,
which thus provides the next destination to be visited by that robot. It should be noted that
the probability values for completed tasks and missed tasks (i.e., missed deadline) are set at 0.
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Figure 2: The architecture of the context, en-
coder and decoder for CAM.

Figure 2 shows the detailed architecture of CAM.
As shown in this figure, the CAM model con-
sists of three key components, namely: Context,
Encoder, and Decoder. The context includes the
current mission time, the states of robot-r, and
the states of robot-r’s peers. The encoder and de-
coder components are described below.

3.1 CCN-INSPIRED NODE ENCODER

The main function of the encoder is to repre-
sent the properties of each graph node and pre-
serving its structural information into a contin-
uous feature vector of dimension dembed, which
is digestible in the decoder. Each node i, has
three properties which are the x-coordinate, y-
coordinate, and the time deadline of the task. The
encoding for each node should include its prop-
erties and the its positional association with its
neighboring nodes. We implement a variation of
CCN Hy et al. (2018). We determine the near-
est k (here we take k = 5) neighbors of a node
(Nbi) based on the positional coordinates (x and
y). The first step is to compute a feature vector by linear transformation for each node i.

To encode the node properties, we do a linear transformation of di to get a feature vector F d
i for all

i ∈ [1, N ], as shown in Eq. (3).
F d
i =W ddTi + bd (3)

where W d ε Rdembed×3, bd ε Rdembed×1. For effective decision making, we also need to preserve the
structural information. Therefore we define a matrix dNb

i as defined in Eq. (4).

dNb
i = Concat(dTj ), j ∈ Nbi (4)
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We do a linear transformation of dNb
i to get FNb

i (as shown in Eq. (5)), which we believe captures
the closeness of a node with its neighbours in terms of the node properties.

FNb
i =WNb(dNb

i − dTi ) + bNb (5)

where WNb ε Rdembed×3, bNb ε Rdembed×1. FNb
i captures the information about how close the node

properties of neighbor nodes of node i is to itself, which shows a representation of how important
node i is to its neighbors. We compute the final embedding for each node using Eq. (6).

Fi = Aggregate(Wf (Concat(F d
i , F

Nb
i )) + bf ) (6)

Here, Wf ε Rdembed×dembed , bf ε Rdembed×1. Thus finally we get an embedding Fi for each node,
where Fi ε Rdembed×1. W d, bd, WNb, bNb, Wf , and bf are learnable weights and biases. The
Aggregate function here is the summation across all the columns of a matrix. This summation along
with the relative difference in node properties, as in Eq. (5), preserves permutation-invariance and the
structural properties (cognizance of inter-node distances for example) of the graph. Note that, these
operations make the encoded state (w.r.t. a given node) insensitive to the order of the neighboring
nodes, and thus the overall state space becomes independent of the indexing of tasks or to rotations
of the graph. These permutation-invariance characteristics are important for the consistency of the
state space encoding, and further helps in the generalizability of the learnt policies (which should be
cognizant of the structure of the task-space graph) over unseen scenarios.

3.2 ATTENTION-BASED DECODER

Kool et al. (2019) presented an attention mechanism-based model for solving combinatorial op-
timization problem, where an attention-based encoder and decoder are implemented. Attention
mechanism became popular because of it successful implementation in natural language process-
ing. The intuition behind attention mechanism, is to focus on the most relevant part (in terms of
language translation). The same concept can be applied for a combinatorial optimization problem
with sequential decision making.

The main objective of the decoder is to use the information from the encoder, and the current state as
context, choose the best task by calculating a probability value for each node. The first step is feeding
the output from the encoder (as key-values) and information from the current state (as context) to a
multi-head attention (MHA) layer. The context for the MHA layer in this experiment consist of the
following seven features: 1) Current time; 2) Available range of the robot taking decision; 3) Current
location of robot taking decision; 4) Current payload delivery capacity; 5) Current destination of
other robots; 6) Available range for other robots; and 7) Current payload delivery capacity for other
robots. Figure 2 illustrates the structure of the decoder. Attention mechanism can be described as
mapping a query (Q) to a set of key-value (K,V ) pairs. The inputs, which are the query (Q), key
(K), and values (V ), are all vectors. The output is a weighted sum of the values V , weight vector is
calculated by the compatibility function:

Attention(Q,K, V ) = softmax(QKT /
√
dk)V (7)

where dk is the dimension of K or V . In this work we implement a multi-head attention (MHA)
layer in order to determine the compatibility of Q with K and V . The MHA implemented in this
work is the same as the one implemented in (Kool et al., 2019) and (Vaswani et al., 2017). As shown
in (Vaswani et al., 2017) the MHA layer can be defined as:

Multihead(Q,K, V ) = Linear(Concat(head1 . . . headh)) (8)

where headi = Attention(Q,K, V ) and h is the number of heads. The feed-forward layer is to
convert the output from the MHA layer to a dimension that can be taken in for the next process. The
final softmax layer outputs the probability values for all the nodes. The next task to be done will be
chosen based on a greedy approach, which means the node which has the highest probability will
be chosen. The nodes which are already visited will be masked such that it will not be chosen in the
future time steps of the simulation.

4 LEARNING FRAMEWORK
Both the CCN-inspired encoder and the attention-based decoder consist of learnable weight matrices
as explained in Sections 3.1 and 3.2. In order to learn these weight matrices, both supervised and
unsupervised learning methods can be used. However, supervised learning methods are not tractable
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since the computational complexity of the exact I(N)LP solution process required to generate labels.
The complexity of the ILP formulation of the MRTA problem scales with O(n3m2h2), where n, m,
and h represent the number of tasks, the number of robots, and the maximum number of tours per
robot, respectively Therefore, we use a reinforcement learning algorithm to conduct the learning.

Algorithm 1 CAM - Training Algorithm
Inputs: Nepoch: # of epochs, B: Batch size, Ntr: Train-
ing data size, Nvl: Validation data size; θCAM: CAM
model; θBL

CAM: Baseline CAM model.
1: for epoch = 1..Nepoch do
2: Dtr,Dvl ← GenerateScenarios(Ntr, Nvl)
3: for step = 1..bNtr/Bc do
4: Dtr,b ← RandSample(Dtr,M)
5: aBL, fBL

cost ← CalCost(θBL
CAM,Dtr,b)

6: a, fcost ← CalCost(θCAM,Dtr,b)

7: ∇L ← 1
B

∑B
i=1(fcost,i −

fBL
cost,i) log softmax(ai)

8: θCAM ← ADAM(∇L, θCAM)

9: aBL
vl , f

BL
cost,vl ← CalCost(θBL

CAM,Dvl)
10: a, fcost ← CalCost(θCAM,Dvl)
11: if (

∑Nvl
i=1 f

BL
cost,i >

∑Nvl
i=1 fcost,i) ∧

(T-Test(avl,a
BL
vl ) > ε) then

12: θBL
CAM ← θCAM

13: procedure CALCOST(θ,D)
14: a, fcost ← [ ], [ ]
15: for i = 1..|D| do
16: ai, fcost,i ← Simulation(θ,Di)
17: a← a ∪ ai
18: fcost ← fcost ∪ fcost,i

19: return a, fcost

Learning Method: In this work we implement a
simple policy gradient method (REINFORCE) as
the learning algorithm with greedy rollout base-
line, which also enables us to compare the effec-
tiveness of our method with that of (Kool et al.,
2019). For each epoch, two sets of data are used
which are the training set and the validation set.
The training data set is used to train the training
model (θCAM) while the validation data set is used
to update the baseline model (θBL

CAM). The size of
the training data and the validation data used for
this paper is mentioned in Section 5.1. Each sam-
ple data from the training and validation data-set
consist of a graph as defined in Section 2.1. The
pseudo code of the training algorithm for our ar-
chitecture is shown in Alg. 1. It should be noted
that the policy gradient method requires the eval-
uation of a cost function, which is defined to be
same as in Eq. (1). Policy: We define the policy
such that if the robot r does not satisfy the con-
straints in Eqs. (2), it returns to depot (i.e., a = 0).
Otherwise the robot r runs the learnt CAM net-
work and chooses the output (task) based on a
greedy approach (selects a task with the highest
probability value), as shown in Fig. 1.

5 CASE STUDIES
In this paper, we consider a flood disaster response application, where a team of UAVs deliver
survival kits to flood victims. Here we assume that the information on the locations of victims
(tasks) is available a priori. We design and execute a set of numerical experiments to investigate
the performance of our proposed learning-based algorithm over graph space (CAM) and compare
it with an extended version of a state-of-the-art graph learning-based algorithm proposed by Kool
et al. (2019), so called attention-based (AM) approach. In order to test and validate the approaches,
a set of numerical experiments is designed to mimic flood scenarios. The results are compared in
terms of the cost function (Eq. (1)), and completion rate.

5.1 DESIGN OF EXPERIMENTS & LEARNING PROCEDURES

Figure 3: Sample scenario showing de-
pot location (red star) and task locations
(squares) colored by their time dead-
lines.

To evaluate the proposed CAM method, we define an
MRTA case study with 20 UAVs and 200 task (flood vic-
tims) locations. A 2D environment with 1 sq. km area
is used for this purpose, with the time deadline of tasks
varied from 0.1 to 1 hour. A randomized sample case sce-
nario is shown in Fig. 3, which depicts the task locations,
depot location and task time deadlines. The UAVs are as-
sumed to have a range of 4 km, a maximum capacity of 10
payloads and a nominal speed of 10 km/h. We assume in-
stantaneous battery swap and payload replenishment are
provided at depot location, which is used when UAVs re-
turn to depot since they have either exhausted their (sur-
vival kit) payloads or were running low on battery. It
is important to note that the flood victim application is
used here merely for motivation, and the CAM architec-
ture is in no way restricted to this application, but can
rather solve problems in the broad (important) class of capacity/range-constrained and timed task-
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constrained SR-ST problems. Moreover, even the policies learnt here for CAM demonstration on
the described case settings can generalize to related SR-ST problems with up to 200 tasks, which
represents a fairly large MRTA problem in reference to the existing literature in the MR domain.

To perform learning and testing of the learned model, we proceed as follows: Learning Phase: We
use a policy gradient reinforcement learning algorithm (REINFORCE with rollout baselines in this
case) for learning the optimal policy. The learnable parameters in this architecture includes all the
weights in the encoder and the decoder. The training is carried out for a total of 200 epochs. Each
epoch consists of 10,000 random training samples, which are evaluated and trained in batches of
100 samples. Testing Phase: In order to provide a statistically insightful evaluation and comparison,
100 random test scenarios are generated for the 20-uav-200-task case study, such that the number of
flood victims are constant (200) but their locations and time deadlines are different.

5.2 MODIFICATIONS TO AM
The attention-based mechanism (AM) reported by Kool et al. (2019) has been shown to solve a few
different classes of single-agent/robot combinatorial optimization problems. To be able to imple-
ment the AM method for our problem (for comparison with our CAM method), the AM method is
adapted to a multi-robot setting. For this purpose, we make the following three changes to the AM
method: (i) The node properties that are defined in Section 2.1 are used in AM; (ii) The context for
the attention mechanism is modified to be the same as that used for CAM; and (iii) The cost function
used for training is changed to that in Eq. (1).

5.3 SIMULATION AND FRAMEWORK SETTINGS

The ”Python” 3.7 and the 64-bit distribution of ”Anaconda 2020.02” are used to imple-
ment the MRTA approaches. The environment, CAM architecture, training algorithm, and
the evaluation of the trained model, are all implemented in Pytorch-1.5. The attention-
based architecture was also implemented in Pytorch. With the help of Pytorch, the
training was deployed on two GPUs (NVIDIA tesla v100-pcie-16gb) with 16 GB RAM.
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Figure 4: Convergence plot comparing CAM and
AM for 200 epochs

6 RESULTS AND DISCUSSION
Learning Curve: In order to compare the sam-
ple efficiency of the proposed CAM method
with that of the AM approach, we run both
methods with similar settings and plot their
learning curve (convergence history), as shown
in Fig. 4. As seen from this figure, our
CAM method converges faster and to a sig-
nificantly better (by 69.4%) optimal cost func-
tion value (f∗cost,CAM = 0.029) compared to AM
(f∗cost,AM = 0.093). In contrast to the 73 epochs
taken by AM to converge, CAM reached the best cost value of AM only after 7 epochs and reached
its final converged value in 35 epochs. These results clearly demonstrate the better sample efficiency
of our proposed method, CAM, in comparison to AM. As described later the computational cost of
each epoch for our CAM method is also ∼2 minutes smaller than that of the AM method. Overall,
our proposed approach reaches better cost function values significantly faster in terms of number of
training epochs, with the benefits being more pronounced in terms of wall time. The higher cost of
AM could be in part attributed to directly implementing the encoding architecture of a transformer
network (Vaswani et al. (2017)); this transformer mechanism was designed for machine translation
and thus consists of multiple layers of Multi-head attention computations with a feed-forward struc-
ture. In contrast, our CAM model uses simple linear transformations of the node properties and its
relative differences in local neighborhoods to capture structural information. Thus the total number
of learnable parameters in AM (almost 393600 weights) is significantly larger than that in our CAM
architecture (almost 17400 weights), leading to slower convergence of the former.

Real-time Performance: Based on the epoch information in Section 5.1, the average time to com-
plete a training epoch was found to be 12.48 min for AM and 10.17 min for CAM. The average
decision making time of both methods are also comparable at ∼2.3-2.4 ms.

Generalizability Analysis: Figure 5 shows the performance of the CAM and AM approaches for
100 unseen test scenarios in terms of cost function (the lower the better) and completion rate (the

8
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higher the better). It can be seen from Fig. 5 that our proposed CAM method outperforms the AM ap-
proach by achieving 84% and 5% better median values of the cost function and the completion rate,
respectively. We posit that the generalizability benefits of the CAM architecture can be attributed
to its covariant compositional encoding, which is able to aggregate local node neighborhoods while
remaining agnostic to node ordering. The local structure of the graph is not only important to effec-
tive decision-making, but also expected to be shared across various problems settings drawn from
the same distribution, thereby promoting generalizability of policies when adequately captured.
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Figure 5: Generalizability analysis: The per-
formance of the algorithms over 100 unseen
test case scenarios. Each scenario includes 200
tasks and the swarm size is set at 20 robots.

Scalability Analysis: In order to study how
the performance of the learnt model is gener-
alizable to new unseen scenarios with differ-
ent different task-space size (50 to 200 tasks),
a set of tests are conducted with the 20-robot
swarm. For each task size, 100 random sce-
narios are generated and tested. The results
are shown in Fig. 6. In this figure, the dashed
horizontal line shows the threshold value of 0,
where any cost below that line depicts a per-
fect completion rate (100%); when imperfect,
the net traveled distance is taken into consider-
ation. The performance of both CAM and AM
approaches improved by decreasing the number
of total tasks. It can be seen from Fig. 6 that
our primary method, CAM, outperforms the AM approach in all case scenarios. The proposed
CAM method provided a 100% completion rate for 50-, 100-, and 150-task cases, while the
AM method provides a 100% completion rate for 50- and 100-task cases. In terms of the cost
function, the CAM method achieves up to 435% better values compared to the AM method.

7 CONCLUSION
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Figure 6: Varying task size for a 20-robot
swarm: The performance of the CAM, and AM
algorithms over varying task size for 100 un-
seen test case scenarios per task size. The solid
line shows the mean value and the shaded area
shows the 95% confidence interval. The dashed
gray line shows the threshold value of 0, where
any cost below of this line means a 100% com-
pletion rate.

In this paper, we proposed a new graph neural
network architecture, called CAM, for a multi-
robot task allocation problem with a set of com-
plexities, including tasks with time deadline and
robots with ferry range and payload capacity con-
straints. This new architecture incorporates an
encoder based on covariant node-based embed-
ding and a decoder based on attention mecha-
nism. To learn the features of the encoder and
decoder, the problem has been imposed as a re-
inforcement learning problem and it has been
solved using a policy simple gradient algorithm,
REINFORCE. In addition, to compare the per-
formance of the proposed CAM method, an
attention-based approach (aka AM) has been ex-
tended to be able to handle a multi-agent combi-
natorial optimization problem (i.e., a multi-robot
task allocation problem).

To evaluate the performance of the proposed architecture, and the extended version of AM are
trained for 200 epochs and tested on 100 unseen case studies. Performance was analyzed in terms of
cost function and completion rate. The new proposed architecture showed a better sample efficiency
than AM by reaching a better cost value only after 7 epochs versus 73 epochs of AM. Our primary
method, CAM, outperformed the AM approach by achieving (up to) 84% better cost function value
(in term of the mean value). The computational cost analysis showed that the proposed CAM model
takes a few milliseconds to take a decision; hence, it is an excellent choice for online decision making
(here, task allocation). A further study on the performance of both AM and CAM approaches on
case studies with different number of tasks demonstrated that our proposed CAM method is superior
to AM in all case studies. While the current method is operational over varying task size (the upper
bound is the number of tasks that model has been trained on), it is not invariant to the size of swarm.
One immediate future work is to expend the architecture to have a swarm size invariant model.
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