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Abstract

Detecting Al-generated images is a challenging
yet essential task. A primary difficulty arises from
the detector’s tendency to rely on spurious pat-
terns, such as compression artifacts, which can
influence its decisions. These issues often stem
from specific patterns that the detector associates
with the real data distribution, making it diffi-
cult to isolate the actual generative traces. We
argue that an image should be classified as fake
if and only if it contains artifacts introduced by
the generative model. Based on this premise, we
propose Stay-Positive, an algorithm designed to
constrain the detector’s focus to generative arti-
facts while disregarding those associated with real
data. Experimental results demonstrate that de-
tectors trained with Stay-Positive exhibit reduced
susceptibility to spurious correlations, leading to
improved generalization and robustness to post-
processing. Additionally, unlike detectors that as-
sociate artifacts with real images, those that focus
purely on fake artifacts are better at detecting in-
painted real images. For implementation details,
please visit: https://anisundar18.github.io/Stay-
Positive.

1. Introduction

Recent advancements in deep generative modeling, partic-
ularly diffusion models (Sohl-Dickstein et al., 2015; Song
& Ermon, 2019) and flow-based models (Liu et al., 2023;
Lipman et al., 2022), have significantly improved image
generation capabilities. The combination of large-scale
datasets (Schuhmann et al., 2022) and architectural inno-
vations (Dhariwal & Nichol, 2021; Esser et al., 2024) has
enabled modern systems to generate high-quality images
(Pernias et al., 2023; Labs; Podell et al., 2024), often con-
ditioned on auxiliary inputs such as text. While these ad-
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vancements have expanded the potential applications of
generative models, they also raise concerns about misuse,
including misinformation and fraud. Image forensics aims
to address these risks by developing methods to reliably
detect Al-generated images.

Significant progress has been made in fake image detec-
tion, with detectors trained to generalize across CNN-based
generators (Wang et al., 2020) and extended to unseen archi-
tectures (Ojha et al., 2023). However, reliably detecting fake
images from a known generator family remains a challenge.
A key difficulty arises when images undergo post-processing
(e.g., compression), as demonstrated by Rajan et al. (2025),
where detectors trained on images generated by latent dif-
fusion models (Vahdat et al., 2021; Rombach et al., 2022)
exhibited reduced effectiveness in detecting post-processed
images. Specifically, detectors trained by Corvi et al. (2023)
and Rajan et al. (2025) were found to spuriously associate
WEBP compression artifacts with real images, which nega-
tively impacted their performance. In this work, we focus
on improving the detection of fake images generated by a
known model family by mitigating the impact of spurious
correlations. The most effective approach for developing a
fake image detector is to train a neural network-based binary
classifier. However, its performance is highly dependent on
the training data, and any discriminative feature associated
with the data, including subtle post-processing artifacts, can
influence the detector’s decisions. A common source of
such issues is the use of real images for training, which are
often collected from online platforms and may have under-
gone unknown operations such as compression and resizing
prior to upload. As a result, detectors can learn spurious
correlations. Such issues with compression artifacts were
also observed in the widely adopted Genlmage benchmark
(Zhu et al., 2024), as reported by Grommelt et al. (2024).

In addition to robustness against post-processing, it is es-
sential for detectors to accurately identify images generated
by newer models within the same generator family. We
observe that reliance on spurious correlations hinders gener-
alization to such models. During training, detectors often
focus on differences in image quality between real and fake
images, leading them to associate certain artifacts with real
images. However, such hypotheses are often incorrect, as
the same artifacts can appear in fake images generated by
improved models within the same family. This reliance on
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such artifacts limits the detector’s ability to generalize to
newer generators. For instance, a detector trained on images
generated by Latent Diffusion Models (LDM) (Rombach
et al., 2022) (Corvi et al., 2023) struggles to generalize to
images generated by FLUX (Labs) for this very reason.

Our main idea is that images generated by a specific genera-
tor family should contain distinct artifacts. An ideal detector
should focus exclusively on these fake artifacts, with their
absence indicating that the image does not originate from
a generator of that family. Relying on artifacts associated
with real images is, at best, unnecessary and, at worst, mis-
leading. We show detectors perform better when real image
features do not affect decisions.

To identify features linked to real images, we make the fol-
lowing assumptions: the output of the entire network passes
through a ReLU activation before the final layer, and the
final output is passed through a sigmoid activation for bi-
nary classification, where class 1 represents fake images
and class 0 represents real images. Under these conditions,
we show that features connected to negative weights in the
final layer correspond to patterns found in real images. To
mitigate the influence of these features, we propose a simple
yet highly effective algorithm that retrains the last layer to
minimize the loss while ensuring that the weights remain
strictly non-negative. This adjustment forces the detector
to make its decision using only fake image patterns, ignor-
ing spurious real image artifacts. As a result, the detector
shows improved generalization. This approach also enables
our detectors to effectively detect partially inpainted real
images, unlike conventional detectors, which may be influ-
enced by real-image features. We validate our method by
improving the performance of detectors from Corvi et al.
(2023) and Rajan et al. (2025). Ultimately, we hope our
findings contribute to the community’s broader efforts to
combat misinformation.

2. Background

In this section, we first define the problem, describe the gen-
eral details of training a fake image detector, and introduce
the notation used throughout the paper.

2.1. Problem Definition

The task of fake image detection is a binary classification
problem. Given a dataset D = {(x;, y;)}X; of N labeled
samples, where each x; € R7*W*C represents an image
of height H, width W, and C channels, and y; € {0,1}
is the corresponding label, the goal is to learn a mapping
[ REXWXC 5 L0 1}, The label y; = 0 denotes a real
image, while y; = 1 indicates a fake image generated by a
neural network.

2.2. Learning-Based Fake Image Detection

Given a known generative model family of interest, the
well-established method of training a fake image detector
involves the following steps. First, a set of real images,
usually sourced online, is selected, while fake images are
typically generated using the targeted generative model. A
neural network detector fy is then trained to solve the binary
classification task.

In our work, we assume the following neural network struc-
ture for fy. The network is composed of three components:
(i) a feature extraction network, g4 : REXWXC _, Rd
which encodes the input image x into a d-dimensional fea-
ture vector, where ¢ represents the parameters of the feature
extraction network; (ii) a ReLU activation function, applied
element-wise to the extracted features, denoted by ~; and
(iii) a linear classifier, parameterized by w € R% and b € R,
followed by a sigmoid activation function. The parameters
of the network are § = {¢, w, b}.

Formally, the output of fy is given by
fo(x) = a(w " y(g4(x)) + ),

where o(-) denotes the sigmoid function. This network is
trained using the binary cross entropy loss.

3. Issues with Associating the Presence of
Specific Features with Real Images

In this section, we first examine how unknown post-
processing artifacts in real training images negatively impact
detector performance. We then address the broader issues
associated with linking specific artifacts to real images.

3.1. Case Study 1: Post-Processing Artifacts

Detectors can inadvertently let subtle differences between
real and fake training distributions, such as spurious features
like compression or resizing artifacts, influence their deci-
sion. Real images, often sourced from online platforms, may
have undergone unknown post-processing, making it diffi-
cult to determine which features the detector may associate
with real images. We explore this issue below.

In their study on fake image detection for latent diffusion
models, Corvi et al. (2023) and Rajan et al. (2025) trained
a ResNet-50 (He et al., 2016) using real images from the
LSUN (Yuetal.,2016) and COCO (Lin et al., 2015) datasets.
The LSUN images were compressed using the WEBP algo-
rithm but saved in the lossless PNG format by the dataset
creators. The fake images used to train the detectors did
not contain these WEBP artifacts, leading the detectors to
associate WEBP compression with the real distribution. We
demonstrate this issue in the following experiment.

Experiment Details: We aim to test whether the detector
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Figure 1. Sensitivity to WEBP Compression. Using the LSUN
dataset, which contains WEBP compressed images, as part of the
real distribution makes the network highly vulnerable to WEBP
compression.

confuses WEBP-compressed fake images with real images,
and if this confusion is driven by the inclusion of LSUN
images in the real distribution. To do so, we adopt the ex-
perimental setup proposed by Rajan et al. (2025), where
fake images are generated by reconstructing real images
through the LDM (Rombach et al., 2022) autoencoder. We
train two detectors: one that includes LSUN images in the
real distribution and another that excludes them, training
only on COCO images. For testing, we use 500 real images
from the Redcaps dataset (Desai et al., 2021) and 500 fake
images generated by Stable Diffusion 1.5. Various levels of
WEBP compression are applied to the fake images, while
the real images remain uncompressed. We evaluate the
average precision (AP), where a drop in AP with increas-
ing compression levels would suggest that the detector is
confusing WEBP-compressed fake images with real ones.

Analysis: The results of the experiment are shown in Fig. 1.
In the training data, LSUN images are WEBP compressed,
while the fake images lack WEBP artifacts. This dataset im-
balance leads the detector to associate WEBP compression
with real images, as evidenced by the drop in AP as WEBP
Compression Quality decreases (i.e., there is more WEBP
compression). Excluding the LSUN images mitigates this
issue. However, such details will not always be known,
making it challenging to filter the data effectively. Thus,
an algorithm is needed to eliminate spurious correlations
associated with the real distribution.

3.2. Case Study 2: Beyond Post-Processing Artifacts

We next argue that any pattern the detector associates with
the real distribution could be spurious. We begin by explain-
ing our intuition.

Hypothesis: Consider a detector trained on real images
versus LDM-generated fake images. Models based on 4-
channel autoencoders, like LDM, struggle to reconstruct fine
details in real images, such as text, as noted by prior work
(Dai et al., 2023). As a result, the detector may associate the
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Figure 2. Image Quality-Based Spurious Features. Corvi out-
puts a higher real score for Flux reconstructions compared to LDM
reconstructions demonstrating the spurious nature of these real fea-
tures. Fake Score reduces due to the use of a different generator.

presence of certain fine details with real images. However,
this hypothesis does not hold, as Dai et al. (2023) also show
that 16-channel autoencoder-based models, such as FLUX,
can reconstruct such details, indicating these features do not
determine if an image is real. We highlight a similar issue
with Corvi (Corvi et al., 2023).

Real and Fake Score: We aim to demonstrate that artifacts
the detector associates with real images can also appear in
fake images from the same generator family, influencing
the detector’s decision. To achieve this, we first develop
a method to measure the impact of these artifacts on the
detector’s decision.

Consider a trained fake image detector as described in Sec-
tion 2.2. Given an arbitrary fake image x, we define the
extracted feature as h = y(g4(x)), h € RZ,. Where v
is the ReLU activation. Our final network output can be
written as follows,

Z w;h; —i—b).

w; <0
N——

Increases sum, fakeness ~ Decreases sum, realness

ey

We assume that a fake image x is associated with the label
1 whereas a real image has the label 0. We also assume
that the final score (added with the bias) is passed through
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Figure 3. Our key idea involves 2 steps. (1) We first train a fake image detector in the standard way without any modifications. This
detector focuses on both real and fake features. (2) We re-train the last layer of the network such that it only focuses on the fake features

to make a decision.

a monotonically increasing sigmoid function, therefore we
can infer that the final score, represented as wTh, for an
ideal detector must be higher for a fake image than for a
real image. Our use of the ReLU activation ensures that the
extracted feature vector h is a vector with only non-negative
values. Based on this, for a dimension ¢, if w; < 0, we can
conclude that the weighted contribution w;h; < 0. This
operation reduces the final score, thus making the image
more likely to be classified as real. Similarly, if w; > 0,
the presence' of this feature h; increases the likelihood of
the image being classified as fake. Based on this, we can
define a score which quantifies the presence of real and fake
features in an image.

Real Score = Z w;h;, Fake Score = Z w;h;.

w; <0 w; >0
Experiment Details: Corvi (trained on LDM-generated im-
ages) struggles with detecting FLUX.1-dev (Labs) generated
images. To investigate the cause, we use 3,000 real images
from the COCO dataset, which were also part of Corvi’s
training. Since Corvi was trained on LDM-generated im-
ages, we reconstruct these images using the autoencoders
of both LDM and FLUX.1-dev. Importantly, both LDM
and FLUX reconstructions have the same semantic content,
differing only in autoencoder capability. Our aim is to show
that Corvi assigns a higher “real” score to FLUX-generated
images compared to LDM-generated images, indicating that
features associated with real images are also present in fake
images generated by FLUX, which belongs to the same
generator family as LDM.

Analysis: The results are presented in Fig. 2. The real
scores of FLUX-generated images (bottom plot) are often
higher in magnitude than those of LDM-generated images.
This is problematic, as it suggests that features associated
with real images by Corvi are also present in fake im-

I presence of a feature refers to h; having a non-zero value, as
opposed to absence where it would have a 0 value.

ages generated by FLUX. Furthermore, compared to LDM-
generated fake images, FLUX-generated images have signif-
icantly lower fake scores (top plot). As a result, the majority
of decisions for FLUX-generated images are influenced by
the presence of real features, supporting our argument.

4. Stay-Positive: Learning to Ignore Real
Features

In Section 3, we showed that associating specific patterns
with the real distribution can undermine the detector’s effec-
tiveness. Building on this, we argue that an image should be
classified as fake if it contains artifacts linked to the genera-
tive model of interest, while the absence of these artifacts
indicates that the image is real. Consequently, we require
an algorithm that forces the detector to focus solely on the
patterns associated with the fake distribution. This intuition
is illustrated in Figure 3.

Real and Fake Features: Fundamentally, the presence of
a real feature in an image should increase the likelihood of
the detector classifying the image as real. In Section 2.2,
under certain assumptions, we demonstrated that the sign
of the weights corresponding to each feature can be used to
determine whether the presence of that feature enhances the
probability of an image being classified as real. Specifically,
the indices of h that are multiplied by positive values of w
correspond to fake features Zy,., while the indices multi-
plied by negative values of w correspond to real features
Tea1. We formalize this below,
Treal = {Z | w; < 0}7 Liake = {'L ‘ w; > O}
This perspective allows us to train the detector to focus only
on the features that distinguish fake images.

Stay-Positive to Ignore Real Features: Based on our anal-
ysis in Section 3.2, we aim for the real score to be O for
all images. By definition, avoiding negative connections
in the last layer guarantees this outcome. We achieve this
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Algorithm 1 Re-training the last-layer while staying posi-
tive
Input: Pretrained g4, learning rate 7, iterations T'
Initialize w = 0,6 =0
Freeze g
fort =1toT do
Sample {x;,y;}
h; = (g4 (x:))
fg(Xi) = J(WThZ' + b)
L= —y;log(fo(xi)) — (1 —y;)log(1l — fo(xi))
W w — Vel

B
i=1

# where v denotes ReLU

b+ b—nVyL
w <+ max(w, 0)
end for

Output: w, b

by constraining the last-layer weights during optimization,
overwriting any negative values with zero. This ensures that
the network relies solely on Zg, to fit the training data. In
our experiments, we found that training the entire network
with this constraint negatively impacted the classification
accuracy of real images. We report these results in Section
5.5. We hypothesize that when the entire network is trained,
it may learn to link the absence of spurious real features
to fake images, using negations. We discuss this further
in Appendix A.6. To avoid this, we perform last-layer re-
training instead. The details are outlined in Algorithm 1.
The algorithm illustrates a simple SGD update, though it is
independent of the optimizer used.

We use validation accuracy to select the model and deter-
mine the stopping condition, as outlined in Appendix A.1.

5. Experiments

In this section, we evaluate whether ignoring real features
can improve the performance of existing detectors. We con-
sider the following state-of-the-art baselines: The Corvi
detector (Corvi et al., 2023), which is based on a ResNet-50
network trained on real images from MSCOCO and LSUN,
and fake images generated by LDM with prompts corre-
sponding to the real data. Similarly, the Rajan detector
(Rajan et al., 2025) uses the same real images as Corvi, but
instead trains on fake images generated by LDM reconstruc-
tions of the real images.

Both detectors are trained using the best practices suggested
by Gragnaniello et al. (2021), with details provided in Ap-
pendix A.1. We apply Algorithm 1 to both detectors while
using the same datasets as Corvi and Rajan. The result-
ing detectors are referred to as Corvi® (Ours) and Rajan®
(Ours). We also conduct some of these experiments with de-
tectors trained on GAN-generated images, and these results
are included in Appendix A.7.
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Figure 4. Improved Robustness to WEBP Compression. Com-
pared to the original Corvi and Rajan, our detectors Corvid and
Rajan® show increased robustness towards WEBP Compression.

5.1. Mitigating Post-Processing based Spurious
Correlations

5.1.1. COMPRESSION-BASED ARTIFACTS

Both Corvi and Rajan suffer from the spurious correlations
studied in Section 3.1, where WEBP compressed images
are detected as real images.

Experiment Details: To study the sensitivity of Corvi®
(Ours) and Rajan® (Ours) to WEBP compression we utilize
the same setting used in Section 3.1.

Analysis: We report the results in Figure 4. Compared
to Corvi and Rajan, our detectors are much more robust
to WEBP compression. Additionally, our detectors, while
ignoring real features, are still able to separate generated
images from real images, as indicated by the AP scores.
It is important to note that our solution does not require
any prior knowledge about specific spurious features, unlike
data augmentation-based solutions.

5.1.2. RESIZING-BASED ARTIFACTS

Corvi struggles with downsized fake images, as noted by
Rajan et al. (2025). This issue arises from the data augmenta-
tion strategy used during training, where real images, which
typically have higher resolutions, are randomly cropped and
downsized to 256x256. This augmentation causes the detec-
tor to associate downsizing with real images. We also repeat
this experiment using images from the Synthbuster dataset
(Cozzolino et al., 2024), details of which can be found in
Appendix A.3.

Experiment Details: With this experiment, we want to com-
pare the robustness of Corvid (Ours) with the original Corvi
with respect to downsizing. To do so, we randomly select
500 real images from whichfaceisreal (whi) and generate
fake images using SDv2.1. All images have a resolution
of 1024x1024. We downsize the fake images to different
scales and plot AP vs. the scaling factor.

Analysis: We plot AP with respect to the scaling factor in
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Table 1. AP of existing detectors before and after last-layer retraining. The large improvements on FLUX and aMUSEd suggest that
existing detectors are harmed by spurious correlations unrelated to post-processing, which our algorithm circumvents. Additionally, on
settings where Corvi, Rajan already perform well, our method performs the same if not slightly better. AVG is the equally weighted AP

average across all generators.

METHOD SD MJ] KD PG PixArRT LCM FLUX WUERSTCHEN AMUSED ‘ AVG
CORVI 99.97 99.46 99.98 97.42 99.99 99.94 57.25 100 89.18 94.23
CORVI® (OURS) 99.98 99.79 99.99 99.99 99.99 99.99 99.33 99.99 99.80 99.88
RAJAN 99.89 99.90 99.98 99.94 100 99.99 80.64 95.13 87.20 96.22
RAJAN® (OURS) 99.99 99.93 99.99 99.99 99.99 99.99 90.50 97.99 98.11 98.65
AP Scores Across Models (Pernias et al., 2023); x. aMUSEd: 3,150 images from
10 Amused/amused-512 (Patil et al., 2024).
5 09 The dataset includes the latest latent space models: aMUSEd
g os (autoregressive) and others (diffusion/flow-based). We gen-
E 0.7 erate images for FLUX, Wuerstchen, and aMUSEd, while
g 06 the rest come from Rajan et al. (2025)’s test set. The real im-
< - Convi age set covers scenery, art, and faces, with post-processing
0.5 Corvi® (Ours) . .. .. . .
(compression, resizing, color jitter) to ensure diversity. We
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Figure 5. Improved Robustness to Downsizing. Compared to the
original Corvi, our Corvi® shows increased robustness towards
downsampling.

Figure 5. By training on the same dataset, Corvi® (Ours) is
much more robust to downsizing operations in comparison
to Corvi. Similar to the case of WEBP compression, we
are able to mitigate a spurious correlation without using
information about the cause.

5.2. Mitigating other Spurious Correlations

Section 3.2 discussed how real features can affect gener-
alization. In this section, we test if Corvi® (Ours) and
Rajan® (Ours) improve over the original versions.

5.2.1. DATASET

To test our hypothesis, we use the following dataset: i.
Real: 6,000 images from Redcaps (Desai et al., 2021),
WikiArt (wik), LAION-Aesthetics (?), and whichfaceis-
real (whi), including 3,000 post-processed images. ii. SD:
3,000 images from SDv1.5, InstructPix2Pix (Brooks et al.,
2023), and Nights (Fu et al., 2023); iii. MJ: 3,000 im-
ages from MidJourney v4 and v5 (mid); iv. Kandin-
sky: 3,100 images from Kandinsky 2.1 (Razzhigaev et al.,
2023); v. PG: 3,150 images from Playground v2.5 (Li
et al., 2024); vi. PixArt: 3,150 images from PixelArt-«
(Chen et al., 2024b); vii. LCM: 3,146 images from Simian-
Luo/LCM _Dreamshaper_v7 (Luo et al., 2023); viii. FLUX:
3,000 images from Black-Forest-Labs/FLUX.1-dev (Labs);
ix. Wuerstchen: 3,150 images from warp-ai/wuerstchen

demonstrate that our selected real image dataset, represents
a wide range of real image types in Appendix A.2. We aim
to show that base detectors, Corvi and Rajan, also learn
spurious real features unrelated to post-processing, harm-
ing performance. To ensure our experimental results are
free from these effects, we use fake images that haven’t
undergone any post-processing.

5.2.2. DISCUSSION

We present the AP values for the original Corvi and Rajan,
alongside our versions incorporating last-layer retraining, in
Table 1. Our methods show substantial improvements in AP
on FLUX-generated images. Corvi® (Ours) and Rajan®
(Ours) outperform the original detectors by 42.08 and 9.86,
respectively, on FLUX, and by 10.62 and 10.91, respectively,
on aMUSEd. As our fake images lack post-processing ar-
tifacts, the performance gap is likely due to the spurious
correlations discussed in Section 3.2. These improvements
suggest that while the original detectors can identify fea-
tures distinguishing fake images from FLUX and aMUSEd,
learning real features hinders the detection of these fake
images. Importantly, in settings where Corvi and Rajan
perform well (e.g., SD, KD, LCM), our method matches
or outperforms them, showing that the detector does not
lose performance by ignoring real features. The rightmost
column reports the mean average precision aggregated over
all settings.

5.3. Comparison with State-of-the-Art Fake Detectors

Next, we compare the performance of our detector with
state-of-the-art fake detection methods. We use the same
dataset from Section 5.2, but to simulate a real-world set-
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ting, we create post-processed versions of the fake images.
For FLUX, Wuerstchen, and aMUSEd, we randomly apply
compression, resizing, and color jittering, and add these
modified images to the dataset. Images for the other models
are taken from the dataset provided by Rajan et al. (2025).
Additionally, we evaluate our detector on the widely used
Genlmage benchmark (Zhu et al., 2024), with results pre-
sented in Appendix A.4, as well as on latent diffusion and
autoregressive models from the UFD benchmark (Ojha et al.,
2023), with results shown in Appendix A.5.

5.3.1. BASELINES

From the family of zero-shot fake image detectors we select
i. AEROBLADE (Ricker et al., 2024). From the CLIP
linear-probing paradigm, we select: ii. UFD-ProGAN
(Ojha et al., 2023): trained on ProGAN images, represent-
ing the baseline method in this paradigm; iii. UFD-LDM
(Ojha et al., 2023): trained on LDM images, extending the
original setup to a different generative domain; iv. ClipDet:
a follow-up work by Cozzolino et al. (2024) that refines the
linear-probing approach for LDM images. Additionally, we
include v. DRCT: a recent method by Chen et al. (2024a)
that employs DDIM inversion to reconstruct both real and
fake images, combined with a contrastive training objective
for better generalization, using a ConvNext (Liu et al., 2022)
backbone trained on images from SDv1.4. We also com-
pare against the original Corvi and Rajan, the detectors on
which our method is based, to benchmark the improvements
our approach introduces.

5.3.2. DISCUSSION

We present our results in Table 2 and observe that detectors
relying on full-network fine-tuning, such as DRCT, Corvi,
and Rajan, along with our improved baselines, outperform
CLIP-based and zero-shot approaches. In comparison to
Corvi, our Corvi® (Ours) shows large improvements. On
PG and FLUX generated images, our version outperforms
the original Corvi by 6.47 and 19.66 respectively. On FLUX
generated images, our version outperforms the original Ra-
jan by 4.05. Notably, the AP scores of the original Corvi
and Rajan on FLUX and aMUSEd improve compared to the
values reported in Table 1, indicating that post-processed
fake images from these generators were actually easier to
detect compared to fake images without post-processing.
This suggests that the fake images used in Table 1 contain
artifacts that harm the performance of Corvi and Rajan.
Post-processing these images can remove these artifacts,
improving both detectors’ performance. Given their sensi-
tivity to post-processing, these are likely low-level artifacts
affecting detector performance, similar to those described
in Section.3.2. Unlike the original Corvi and Rajan, our
versions are unaffected by such discrepancies.

Original

Figure 6. Example of an image which has been recursively in-
painted. The first/second row shows the inpainted image and the
inpainted region, respectively.

5.4. Improved Detection of Partially Inpainted Images

Prior experiments consider fake images that are completely
generated. However, a user can take real images and par-
tially modify them. While most regions of such images are
“real”, they could be created with malicious intent, making
their detection important. Intuitively, detectors that depend
on real features would struggle to detect these modified im-
ages, since a portion of these images is real. Here, we study
the sensitivity of our approach to such images.

5.4.1. EXPERIMENT DETAILS

We use the Stable Diffusion inpainted dataset from Conde
et al. (2024), where a real image is modified by masking
and inpainting a region. Following Conde et al. (2024),
we group images by the percentage of inpainted pixels. In
recursive inpainting (refer Fig 6), the same region can be
inpainted multiple times, so the number of inpainted pixels
may exceed the total (e.g., 150%). Each group has 300
inpainted images. We calculate AP with respect to the 6000
real images from Section 5.2.

5.4.2. ANALYSIS

We report our results in Table 3. At the 50-level, all ap-
proaches barring Corvic® and Rajan® fail to detect these
inpainted images. This is perhaps unsurprising since these
images are “real” for the most part. Our detectors on the
other hand, do not suffer from these issues as indicated
by the AP score. The performance of Corvi and Rajan
improves with more inpainting, highlighting the harmful
impact of real features on their performance.

5.5. Ablations

In this section, we ablate other possible alternatives to final-
layer re-training. We experimented with two other variants,
(i) + clamped (no retrain) where we clamp the detector’s
weights to stay-positive without re-training the whole net-
work and (ii) + clamped (retrain): where we re-train the
whole network with the stay-positive algorithm applied on
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Table 2. AP of state-of-the-art detectors on post-processed fake images. Methods trained by our algorithm, Corviép and Rajan®
outperform their base detectors as well as other state-of-the-art detection approaches on recent generators such as FLUX and Wuerstchen.
Additionally, on settings where Corvi, Rajan already perform well, our method performs the same if not slightly better. AVG is the equally

weighted AP average across all generators.

Method SD MJ KD PixArt LCM FLUX Wuerstchen aMUSEd ‘ AVG
AEROBLADE (Ricker et al., 2024) 90.81 96.48 94.03 71.53 87.84 89.99 60.34 85.93 88.39 85.03
UFD-ProGAN (QOjha et al., 2023) 6193 61.72 7488 7023 69.81 70.86 37.54 86.30 88.84 64.73
UFD-LDM (Ojha et al., 2023) 62.02 5233 6533 6236 6239 6552 35.18 86.46 90.98 69.12
ClipDet (Cozzolino et al., 2024) 71.63 7372 7471 7553 76.61 72.06 81.438 90.11 87.61 78.16
DRCT (Chen et al., 2024a) 96.09 90.74 95.86 83.83 78.39 8843 76.60 85.40 87.87 87.02
Corvi (Corvi et al., 2023) 97.87 9481 9538 9140 9445 9633 74.57 95.83 94.57 92.80
Corvi (Ours) 98.94 9492 9771 97.87 9859 98.73 94.23 98.16 95.47 97.17
Rajan (Rajan et al., 2025) 9940 98.30 98.18 98.62 98.64 99.79 87.80 94.51 95.38 96.73
Rajan® (Ours) 99.22 9698 98.22 9853 99.11 99.57 91.85 94.74 97.26 96.96

Table 3. AP on partially-inpainted fake images. Corvi and Rajan
struggle to detect partially-inpainted fake images, as they focus on
real image features. Our detectors overcome this limitation.

METHOD 50% 100% 150%
CORVI 6.13 83.36 98.05
CORVI® (OURS) 97.48 99.92 99.98
RAJAN 49.69 99.93 100
RAJAN® (OURS) 99.66 99.99 100

the final layer. We calculate the average precision (AP) and
report the values in Table 4.

We evaluate these ablated models under the same setting
described in Section 5.3. Our results, similar to those in
Table 2, show that clamping without retraining leads to sub-
optimal performance, likely due to improper reweighting of
fake features. Training the entire backbone while clamping
the final layer underperforms on FLUX images, likely due
to the emergence of newly learned spurious fake features as
discussed in Appendix A.6.

5.6. Robustness to other Post-Processing Artifacts

We also conduct tests testing the senstitivty of our detector
to post-processing operations. We use JPEG Compression,
additive gaussian noise and low-pass filtering to account for
some of the common post-processing operations. We report
our results in Appendix A.3.

6. Limitations

Our approach enhances existing detectors by ensuring that
the final layer ignores features associated with the real distri-
bution. However, patterns linked to the fake distribution can
also be spurious. For instance, Rajan et al. (2025) observed
that Corvi incorrectly associates upsampled images with the

fake distribution. We find that Corvi® (Ours) exhibits a
similar issue. To illustrate this, we take 500 Redcaps images
(512x512), upsample them, and analyze how their upsam-
pled versions affect the logit score. As shown in Fig. 7, we
can see that upsampled images are more likely to be clas-
sified as fake. Despite the improvements we demonstrate,
we emphasize that greater care must be taken when curating
the set of real and fake images to avoid such behavior.

Our method encourages the detector to ignore features that
are specific to real images. However, after the first stage
of training, these features can still implicitly influence the
detector’s understanding of what constitutes a fake. For
example, the model may learn that the absence of certain
real-specific cues is indicative of a fake image, effectively
using real image features in a negative sense. We observe
such behavior in our own detector. To illustrate this ef-
fect, we include a simple toy example in Appendix A.6.
These limitations suggest that better generalization could
be achieved by extending this approach to train the entire
network, as opposed to just the final layer.

7. Related Work

Training-based methods create effective fake image detec-
tors. Wang et al. (2020) demonstrated that data augmenta-
tions during training improve generalization. Odena et al.
(2016) demonstrated identifiable artifacts, like checkerboard
patterns, in the Fourier transforms of fake images. Build-
ing on this, Zhang et al. (2019) trained on Fourier images,
leading to improvements. Chai et al. (2020) improved de-
tection using patch-based classification. Gragnaniello et al.
(2021) removed downsampling in the initial layers and ap-
plied patch-wise training for further gains. These techniques
were extended to the LDM setting by Corvi et al. (2023).
Additionally, works such as Chen et al. (2024a) and Rajan
et al. (2025) also use reconstructions of real images as part
of the training data. These approaches struggle to general-
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Table 4. AP for different ablations. We experiment with different ways of applying the stay-positive algorithm. We observe that in both
settings, freezing the backbone of the network while re-training the last-layer performs the best. AVG is the equally weighted AP average

across all generators.

Method SD MJ KD PG PixArt LCM FLUX Wauerstchen aMUSEd ‘ AVG
Corvi 97.87 9481 9538 9140 9446 9633 74.57 95.83 94.57 92.80
Corvi + clamped (no retrain)  85.75 76.44 8541 8228 9321 85.12 63.60 85.71 66.70 80.47
Corvi + clamped (retrain) 98.93 9538 9542 97.64 9498 9554 69.50 96.76 95.80 93.33
Corvi® (Ours) 98.94 9492 9771 97.87 9859 98.73 94.23 98.16 95.47 97.18
Rajan 99.40 9830 98.18 98.62 98.64 99.79 87.80 94.51 95.38 96.73
Rajan + clamped (no retrain) 95.01 90.83 92.72 94.57 98.87 96.50 70.47 81.71 72.85 88.17
Rajan + clamped (retrain) 99.19 9630 9549 98.66 9593 9695 58.68 88.73 94.66 91.62
Rajan® (Ours) 99.22 9698 9822 98.53 99.11 99.57 91.85 94.74 97.26 97.28

ize across architectures. To address this, Ojha et al. (2023) Real Images

proposed using general-purpose visual encoders like CLIP MO — convi

(Radford et al., 2021) for fake image detection. Unlike ours, b 08 Convi@ (Ours)

these methods explicitly rely on real features. g 0.6

Contrary to prior approaches, GenDet (Zhu et al., 2023) %‘ 04

treats fake image detection as an anomaly detection prob- 0.2

lem, similar to ours, but focuses on learning the real image 0.0

1.0 1.2 1.4 1.6 1.8 2.0

distribution. Another paradigm suggests generators recon-
struct fake images more easily than real ones. For recon-
struction, Pasquini et al. (2023) use GAN inversion (Xia
etal., 2022), DIRE (Wang et al., 2023), ZeroFake (Sha et al.,
2024) apply DDIM inversion (Song et al., 2021), and AER-
OBLADE (Ricker et al., 2024) leverages a latent diffusion
autoencoder. However, these methods at times struggle with
detecting post-processed images (Rajan et al., 2025). A
contrasting approach, akin to image reconstruction, was re-
cently proposed by Cozzolino et al. (2025), who use neural
image-compression networks (Cao et al., 2020) to model
real distribution likelihood, assuming fake images are less
likely to be part of it. While this method models the real
distribution, we argue the focus should be on detecting fake
image artifacts instead.

In the literature on mitigating spurious correlations, two-
stage training strategies have been previously proposed. Liu
et al. (2021) select samples with high training loss in the
first stage and re-train the network on these samples in the
second stage. Kirichenko et al. (2023) employ a last-layer re-
training in a strategy. However, while these approaches rely
on data curation in the second stage to force the network to
focus on relevant features, our approach instead constrains
the network architecture itself, encouraging it to focus on
patterns that are present in fake images.

8. Conclusion

We showed that learning patterns from the real distribu-
tion can harm fake image detection and propose a last-layer
fine-tuning strategy to improve performance. By ignoring

Scaling Factor

Figure 7. Vulnerability to Spurious Fake Features. Our method
Corvi® is not able to mitigate spurious correlations pertaining to
the fake distribution, where just like the original Corvi, it continues
to associate upsampled images with the fake distribution.

real-distribution features, the model reduces susceptibility to
spurious correlations, enhancing robustness. Additionally,
models trained this way excel on partially inpainted real
images. While this work focuses on detecting Al-generated
images, we believe that our core idea — that specific pat-
terns should not be associated with the real distribution
could be applicable to other forms of media forensics, such
as audio and video. We leave these directions to future re-
search. We hope our study contributes to developing more
robust detectors with positive societal impact.
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A. Appendix
A.1. Implementation Details

We follow the training recipe used by Corvi et al. (2023). We train on 96 x 96 crops of the whole image using a batch size of
128. The data augmentations include random JPG compression and blur from the pipeline proposed by Wang et al. (2020).
Following Gragnaniello et al. (2021), grayscale, cutout and random noise are also used as augmentations. Finally, in order
to make the network invariant towards resizing, the random resized crop was added. For the baseline detectors as well as our
re-trained variant, we report the average across two trained networks. When applying Algorithm 1, we use a batch size of
1024 to perform last-layer retraining. The rest of the training recipe does not differ from the original model. The second
stage training on average converges in about 15 epochs, which takes an additional 4 hours.

We use the validation set provided by Corvi et al. (2023) for our training. Just like our training set, the real images come
from COCO/LSUN and the fake images are generated at 256 x 256 using LDM. During training, if the validation accuracy
does not improve by 0.1% in 10 epochs the learning rate is dropped by 10x. The training is terminated at learning rate 105,
We adopt this following Wang et al. (2020).

During inference, we do not to crop/resize the image to a fixed resolution. This is possible since the ResNet-50 uses a
Spatially-Adaptive Average Pooling layer before inference.

A.2. Performance on Real Images

When testing our models effectiveness in detecting images coming from various kinds of generators, we use a real image
dataset which consists of both natural real images (Redcaps), artistic real images (wikiart and LAION-Aesthetics) as well as
face images (whichfaceisreal). We also post-process the images to simulate a real world setting. However, in this section,
we test whether this set of real images is truly representative of the multiple real distributions present. In order to verify this,
we plot the distributions of various kinds of real images.

A.2.1. DATASET

i. Test Real: 6,000 images previously used in the main paper, containing artistic and natural images. ii. GTA: 6,382 GTA
landscape images from the IMLE dataset (Li et al., 2019), providing a diverse range of synthetic scenes. iii. ImageNet:
8,000 real images from the Genlmage benchmark, originally part of the ImageNet dataset, to capture standard real-world
content. iv. Cubism: 2,235 images in the Cubism style sourced from the WikiArt dataset, adding a distinct artistic domain. v.
Pop Art: 1,483 images in the Pop Art style from WikiArt, expanding the artistic domain with vibrant and modern aesthetics.
vi. Modern Art: 4,334 images of Modern Art from WikiArt, offering a rich and varied artistic representation.

GTA Modern Art Pop Art Cubism R ImageNet

Figure 8. Example of different kinds of real images that we consider.

This dataset ensures a wide range of testing scenarios, from standard real-world distributions to highly diverse artistic and
CG (but not neural network generated) domains. An example of the images used can be found in Figure 8.

A.2.2. RESULTS

We pass the real images through Corvi® (Ours) and Rajan® (Ours) and plot the logit score (output of the network) in
the form of violin plots in Fig 9. We observe that the fakeness scores of our test distribution indicated by “Test Real” is
extremely similar to the other distributions of real images such as GTA, Cubism etc. This shows that the test-set which we
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Figure 9. Distribution of different kinds of real images. The violin plots of Corvi® (left) and Rajan® (right) show that the test set used
in our experiments accounts for a wide variety of real image types.

use in the main paper is representative of various different types of real image families. It is important to note that these
real images are vastly different, belonging to different domains such as realistic scenes, art styles and video game rendered
environments. However, the thing in common is the absence of the generator artifacts which is indicated by the low logit
score in these violin plots.

A.3. Robustness Analysis

In the main paper, we show that our method shows improved robustness to WEBP Compression and downsizing. In this
section, we test the robustness of our detector to JPEG Compression, additive gaussian noise and low-pass filtering. For
JPEG and additive noise, we follow the same experimental setting adopted by Rajan et al. (2025). Instead of AP, we report
the logit scores. This way, we study the behaviour of the detector on both post-processed real and fake images,

We report the results from robustness tests in Fig 10. We can observe that our variants perform similar to the original models,
which is not surprising since all of these perturbations were seen during training. Additionally, our real distribution shows
very little variance unlike the distribution of the original baselines since our method does not rely on specific features to
call an image real. Additionally, we also test the robustness to resizing using the SynthBuster dataset (akin to Fig 8 from
Cozzolino et al. (2024)) and we report our results in Fig 11.

A 4. Performance on Genlmage
A.4.1. EXPERIMENTAL SETUP

In this section, we evaluate the performance of various detectors on the Genlmage benchmark (Zhu et al., 2024). We
consider the same baselines which we use in Section 5.3. The scope of our work is detecting images from the same kind of
generative model (latent diffusion models), therefore we consider the Genlmage testsets from Midjourney (mid), VQDM
(Gu et al., 2022), SDv1.4, SDv1.5 (Rombach et al., 2022), Wukong (MindSpore).

Genlmage has a set of real images and a set of fake images for each category, to ensure uniformity, we report the
accuracy. However, the real images are always sourced from ImageNet, therefore, we also report the AP with respect to the
corresponding real distribution. For accuracy, we use a common threshold of 0.5.

A.4.2. RESULTS

In Table 5 we report the accuracy (left) and AP (right). Based on the AP values, we can conclude that the methods which
finetune the whole network represented by DRCT, Corvi, Rajan, along with our improved detectors perform better than
the CLIP-based techniques represented by ClipDet and the original UFD methods. Furthermore, the AP in detecting
VQDM generated images, improves for Rajan® (Ours) by 4.15%. VQDM is a latent diffusion model which has a
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Table 5. Accuracy and AP of existing detectors on latent diffusion images from the GenIlmage benchmark. Accuracy is computed
with a fixed threshold, while AP is computed with respect to the real distribution (ImageNet). Whole network training-based methods
(DRCT, Corvi, Rajan, Corvi®, Rajan®) outperform CLIP-based methods (UFD, ClipDet). On VQDM-generated images, Corvid (Ours)
and Rajan® (Ours) demonstrate improvements over their original counterparts. Additionally, on settings where Corvi, Rajan already
perform well, our method performs the same if not slightly better.

ACCURACY (%) ‘ MJ SD1.4 SD1.5 WUKONG VQDM AP (%) MJ SD1.4 SD1.5 WUKONG VQDM

UFD-PROGAN 68.17 78.60 78.60 81.05 81.34 UFD-PROGAN 74.46 89.19 88.91 93.03 95.52
UFD-LDM 56.24 63.75 63.56 71.05 85.43 UFD-LDM 74.61 86.56 86.19 91.34  96.65
CozzoLINO-LDM [67.91 85.32 85.71 78.40 82.70 CozzoLINO-LDM 87.28 96.31 96.38 93.76  95.78
DRCT-CONVNEXT|94.43 99.37 99.19 99.25 76.84 DRCT-CONVNEXT 99.39 99.99 99.98 99.99 96.71

CORVI 99.67 99.99 99.89 99.97 80.86 CORVI 99.99 99.99 99.98 99.99 98.68
CORVI® (OURS) [99.31 99.76 99.63 99.73  98.97 CORVI® (OURS)  99.94 99.99 99.96 99.99 99.94
RAJAN 96.58 99.88 99.85 99.87 74.67 RAIJAN 99.54 99.99 99.94 99.99 95.11

RAJAN® (OURS) [98.68 99.83 99.79 99.79  90.02 RAJAN® (OURS) 99.91 99.99 99.96 99.99 99.26

Table 6. UFD Benchmark AP Scores across various diffusion models and detectors. Detectors trained with our improved algorithm
(Corvied, Rajand®) consistently outperform their base versions and other models across all UFD benchmark settings, demonstrating
superior generalization and robustness.

GLIDE ADM | DALLE LDM AVG
METHOD 100-27 100-10 50-27 100 200  200-cFG
CORVI 79.28  86.52 83.95|44.51| 97.15 | 99.90 100.00 99.99 |86.41
Corvié (OURS) 88.61 91.17 89.24 | 74.52 | 99.50 |100.00 100.00 99.99 |92.88
RAJAN 71.51  77.57 77.54|44.63| 89.19 | 99.90 100.00 99.99 |82.54

RAJAN® (OURS) 80.43 83.50 83.36 |62.32| 98.63 |100.00 100.00 99.99 |88.53

different architecture compared to LDM. This improvement further demonstrates the effect of ignoring real image artifacts.
Furthermore, the accuracy measurements demonstrate that without calibrating the threshold, our detectors are able to detect
latent diffusion generated images in the Genlmage benchmark.

A.5. Performance on the UFD Benchmark

A.5.1. EXPERIMENTAL SETUP

In this section, we evaluate Corvi & (Ours) and Rajan & (Ours) on pixel-space diffusion models such as ADM (Dhariwal
& Nichol, 2021) and GLIDE (Nichol et al., 2022), as well as on autoregressive models such as DALL-E (Ramesh et al.,
2021) and Stable Diffusion (Rombach et al., 2022). Since our focus is on comprehensive detection of images from a known
generator family, we do not consider GAN-generated images in this evaluation.

A.5.2. RESULTS

We report the results in Table 6. Both Corvi® and Rajan® demonstrate substantial improvements over their original
counterparts in terms of AP on images generated by GLIDE, ADM, and DALL-E. These results indicate that, even when
generalizing to entirely unseen settings, disregarding real-image features remains an effective strategy.

A.6. Spurious Correlations in the Real Distribution Could Influence Fake Features

In our work, we demonstrated that features associated with the real distribution harm the detectors performance, and
proposed a way to mitigate such an issue by ignoring the real features under certain assumptions. However, our method
relies on re-training the final layer of the neural network. We demonstrate a way in which such a detector can still suffer
from the effects of features associated with the real distribution. We rely on a toy example, hypothesizing such a case.
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A.6.1. A Toy EXAMPLE

Let us consider the dataset used to train the detector by Rajan et al. (2025). The training data contains real images from
COCO and LSUN. The LSUN images are WEBP compressed. The precise details can be found in Section 3. In the main
paper, we demonstrate that the existing detector can associate the presence of WEBP compression artifacts with real images.
However, we hypothesize that the detector can actually also associate the absence of WEBP compression artifacts with fake
images.

To explain our intuition, we consider a simple feedforward neural network, with ReLU activations. This network has been
trained using the dataset described above. We illustrate the network in Fig 12.

WEBP Artifact Sensitivity Neural networks, such as ResNet-50, exhibit sensitivity to WEBP compression artifacts,
suggesting the presence of a neuron that selectively activates in response to images containing such artifacts. Given a ReLU
activation function, this neuron outputs a high activation magnitude for WEBP-compressed images from the real distribution,
particularly LSUN images, while producing a low or zero activation magnitude for images without WEBP compression,
such as COCO images and those from the fake distribution.

Flipping the Activation to Detect Absence of WEBP If this activation is multiplied by a negative weight, followed by
the addition of an appropriate bias and the application of a ReLU activation, the network can learn a transformed version of
this neuron that activates only when WEBP artifacts are absent. This means the network could, in principle, learn to detect
images that have not undergone WEBP compression by repurposing the same underlying feature.

Combining WEBP and LDM Artifacts to Learn an AND Condition Beyond compression artifacts, the network also
exhibits sensitivity to generative model artifacts, such as those present in latent diffusion model (LDM)-generated images. A
similar mechanism can be hypothesized for LDM artifacts, where a neuron activates in response to their presence. During
training, for a fake image, both the absence of WEBP artifacts and the presence of LDM artifacts hold. If the network learns
to associate this specific combination with the fake class, it effectively learns an AND condition—where a fake image is
recognized only when WEBP artifacts are absent and LDM artifacts are present.

Impact on Detector Robustness If the detector associates both the presence of LDM-artifacts AND the absence of WEBP
artifacts with fake images, applying WEBP compression to a fake image during inference could contradict this learned
AND condition. The addition of WEBP artifacts could weaken the distinguishing signal, reducing the activation of the
fake-detecting neuron and thereby lowering the fake score. In fact, such a situation does arise in our experiments.

To illustrate this we revisit some of our previous experiments, in Fig. 1 from Section 3.1, we show that excluding WEBP-
compressed real images during training can yield strong detector performance, as seen in the method labeled Rajan (only
COCO). This suggests that removing WEBP-related biases from the training data allows the model to generalize better,
avoiding reliance on compression artifacts as a shortcut for classification.

In Fig. 4, our method shows improvements over the baseline, demonstrating that explicitly mitigating spurious correlations
can enhance detector performance. However, despite this improvement, the detector is still not as robust as Rajan (only
COCO). This can be explained by our earlier toy example: if the model has learned an implicit rule where the absence
of WEBP artifacts is a necessary condition for an image to be classified as fake, then introducing WEBP compression to
fake images weakens the fake classification signal. Consequently, while removing WEBP-compressed real images from
training reduces bias, it does not fully eliminate the underlying vulnerability, since the model may still rely on other spurious
correlations to distinguish real from fake.

A.7. Improved Detection of GAN-generated Images

Our work in the main paper focused on improving the detection of LDM (Rombach et al., 2022) generated images. In this
section, we extend the results to the detection of images generated by GANs (Goodfellow et al., 2014). We consider a
baseline ResNet-50 trained using the dataset created by Wang et al. (2020). This dataset consists of 360k real images taken
from LSUN and 360k images generated by ProGAN (Karras et al., 2018). We use the same training recipe described in
Appendix A.1, however, we do not employ the random resized crop data augmentation in this case. We train a ResNet-50 on
this dataset. We refer to this baseline as GAN-Baseline, we re-train the last layer of this detector to ignore real features. We
refer to this model as GAN-Baseline® (Ours).
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Table 7. Accuracies of various detectors on CNN-generated images. In most settings, our method GAN-Baseline®, outper-
forms/maintains performance with respect to the original detector. Additionally, on most settings where GAN-Baseline already perform
well, our method performs the same if not slightly better.

METHOD PROGAN STYLEGAN STYLEGAN2 GAUGAN  BIGGAN  CYCLEGAN STARGAN DEEPFAKE SAN CRN IMLE  WFCIR \ AVG
UFD-PROGAN 99.81 84.92 74.96 99.47 95.07 98.33 95.74 68.56 56.62 56.58 69.10 87.20 82.20
UFD-LDM 93.18 83.20 83.95 90.75 87.90 94.62 84.36 54.46 79.22 74.33 85.00 70.35 81.78
CLIPDET 72.96 70.49 70.86 83.94 74.10 87.28 54.95 50.87 77.62 53.10 53.69 53.10 66.91
GAN-BASELINE 100.00 99.52 93.34 95.53 96.65 93.14 99.54 55.43 54.33 99.96 99.87 100.00 90.61
GAN-BASELINE® 100.00 99.82 98.96 94.52 95.02 93.30 99.77 68.17 75.57 86.75 86.75 99.70 91.53

Table 8. AP of various detectors on CNN-generated images. In most settings, our method GAN-Baseline®, outperforms/maintains
performance with respect to the original detector. Additionally, on most settings where GAN-Baseline already perform well, our method
performs the same if not slightly better.

METHOD PROGAN STYLEGAN STYLEGAN2 GAUGAN BIGGAN CYCLEGAN STARGAN DEEPFAKE SAN CRN IMLE WFCIR
UFD-PROGAN 99.99 97.56 97.89 99.98 99.26 99.79 99.37 81.76 78.80 96.58 98.60 97.27
UFD-LDM 99.68 93.36 92.56 99.78 98.04 99.83 97.51 70.52 90.40 83.96 93.88 96.77
CLIPDET 91.29 78.13 76.47 90.19 80.04 89.51 81.07 65.98 85.65 64.63 55.66 64.63
GAN-BASELINE 100.00 99.99 99.99 99.78 99.74 98.73 99.98 94.27 88.79  99.99 99.99 100.00
GAN-BASELINEG  100.00 99.99 99.99 99.30 99.03 98.93 99.99 95.45 94.46 99.99 99.99 99.99

A.7.1. IMPROVED ROBUSTNESS TO WEBP COMPRESSION

Our dataset uses real images from LSUN. Consequently, our baseline detector (GAN-Baseline) also associates WEBP
compression artifacts with the real distribution, similar to the observations recorded in Section 3.1. We conduct an experiment
to compare our retrained detector GAN-Baseline® (Ours) with the original detector.

Experiment Details: With this experiment, we intend to measure the sensitivity of the original GAN-Baseline to WEBP
compression and measure if our method can mitigate these issues. We use the StyleGAN (Karras et al., 2019) test set
provided by Wang et al. (2020). We sample 500 real images and 500 fake images randomly. We apply different levels of
WEBP compression to the fake images and compute the AP, analogous to our measurement in Section 3.1.

Analysis: We present the results in Fig. 13. WEBP compression significantly degrades the performance of the baseline
detector. In contrast, our detector demonstrates enhanced robustness to WEBP compression. This provides further evidence
suggesting that avoiding reliance on real features can improve robustness against such spurious correlations.

A.7.2. GENERAL PERFORMANCE

In this section, we study the generalization ability of the detector in comparison to other baseline detectors. We use the
dataset consisting of CNN generated images from Wang et al. (2020). The dataset consists of ProGAN (Karras et al., 2018),
StyleGAN (Karras et al., 2019), StyleGAN2 (Karras et al., 2020), GauGAN (Park et al., 2019), BigGAN (Brock et al., 2019),
CycleGAN (Zhu et al., 2017), StarGAN (Choi et al., 2018) as well as Deepfakes (Rossler et al., 2019), super-resolution
(SAN) (Dai et al., 2019) as well as networks which use a perceptual loss to refine images, such as CRN (Chen & Koltun,
2017) and IMLE (Li et al., 2019). It also consists of high quality GAN-generated faces in WFIR (whi). This test set comes
with both real and fake images for each generator category. Therefore, we report both accuracy with a 0.5 threshold and the
AP.

We report the accuracy and AP scores in Tables 7 and 8, respectively. Consistent with our findings in Table 2, we observe
that the full-network training paradigm represented by GAN-Baseline and GAN-Baseline ® (Ours) outperforms the CLIP-
linear probing paradigm represented by the UFD methods and ClipDet. Our method, GAN-Baseline®, outperforms the
GAN-Baseline detector by 5.67 AP on images generated through super-resolution. Since super-resolution operates on real
images, we hypothesize that the real features in these images harm the performance of the GAN-Baseline detector. However,
our method is able to better detect such images since it does not rely on real features. Interestingly, our method shows lower
accuracy on the CRN and IMLE test sets. Upon closer inspection, we find that the real distribution in these test sets consists
of video game images from the GTA series, which differ significantly from the natural distribution. Notably, some patterns
that the detector associates with fake images are also present in these video game images. To verify this, we conduct an
experiment similar to the one in Section A.2. Except for the class “Test Real”, all other classes use the same images as
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described in Section A.2. We sample the ‘Test Real’ distribution from the real images in the StyleGAN test set. We observe
that most of the real images, except for the GTA images, exhibit similar logit scores. This shows that our model still does a
good job in generalizing to different domains of real images, however, the performance on some unrelated domains can
drop.
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(c) Low-Pass Filtering

Figure 10. Robustness to Common Post-Processing Artifacts. We observe similar trends across various corruptions (JPEG compression,
additive noise, and low-pass filtering) between the original detectors and our improved versions. Note that these perturbations were part of
the training data augmentations. More importantly, the real image distribution exhibits very uniform logit scores, since our approach relies
on the absence of generator artifacts to identify these images.
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Figure 11. Robustness to Resizing (SynthBuster) We can observe that our detector, Corvic shows improved robustness to downsizing
compared to the original Corvi
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Figure 12. Spurious Fake Features. In this neural network, the circles demonstrate neurons, some neurons are bigger in size for
demonstration purpose. For such a case, the detector can associate the absence of a spurious real image artifact, such as WEBP
compression with fake images.
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Figure 13. Improved Robustness to WEBP compression (GAN case). Compared to the original GAN-Baseline, our model displays an
improved robustness to WEBP compression.
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Figure 14. Distribution of different kinds of real images. We observe that most types of real images are assigned a similar value of
fakeness. An exception is the GTA-based images which has a relatively higher score indicating the presence of spurious fake features.
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