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Abstract

This paper studies the gradient flow dynamics that arise when training deep homogeneous
neural networks assumed to have locally Lipschitz gradients and an order of homogeneity
strictly greater than two. It is shown here that for sufficiently small initializations, during
the early stages of training, the weights of the neural network remain small in (Euclidean)
norm and approximately converge in direction to the Karush-Kuhn-Tucker (KKT) points of
the recently introduced neural correlation function. Additionally, this paper also studies the
KKT points of the neural correlation function for feed-forward networks with (Leaky) ReLU
and polynomial (Leaky) ReLU activations, deriving necessary and sufficient conditions for
rank-one KKT points.

1 Introduction

Neural networks have achieved remarkable success across various tasks, yet the precise mechanism driving this
success remains theoretically elusive. The training of neural networks involves optimizing a non-convex loss
function, where the training algorithm typically is a first-order method such as gradient descent or its variants.
A particularly puzzling aspect is how these training algorithms succeed in finding a solution with good
generalization capabilities despite the non-convexity of the loss landscape. In addition to the choice of the
training algorithm, the choice of initialization in these algorithms plays a crucial role in determining the neural
network performance. Indeed, recent works have made increasingly clear the benefit of small initializations,
revealing that neural networks trained using (stochastic) gradient descent with small initializations exhibit
feature learning (Yang & Hu, 2021) and also generalize better for various tasks (Chizat et al., 2019; Geiger
et al., 2020; Woodworth et al., 2020); see Section 2 for more details into the impact of initialization scale.
However, for small initializations, the training dynamics of neural networks is extremely non-linear and not
well understood so far. Our focus in this paper is on understanding the effect of small initialization on the
training dynamics of neural networks.

In pursuit of a deeper understanding of the training mechanism for small initializations, researchers have
uncovered the phenomenon of directional convergence in the neural network weights during the early phases
of training (Maennel et al., 2018; Luo et al., 2021). The authors of Maennel et al. (2018) study the gradient
flow dynamics of training two-layer Rectified Linear Unit (ReLU) neural networks, and demonstrate that
in the early stages of training, the weights of two-layer ReLU neural networks converge in direction while
their norms remain small. This phenomenon is referred to as early directional convergence. In a recent
work, Kumar & Haupt (2024) further established early directional convergence for two-homogeneous1 neural

1A neural networkH is defined to be L-(positively) homogeneous, if its outputH(x; w) satisfiesH(x; cw) = cLH(x; w), ∀c ≥ 0,
where x is the input and w is a vector containing all the weights.
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networks, illustrating the importance of homogeneity for such types of phenomenon (as opposed to the specific
choice of activation function or architecture).

To describe the phenomenon of early directional convergence for two-homogeneous neural networks, Kumar
& Haupt (2024) introduced the notion of the Neural Correlation Function (NCF). For a given neural network
and a vector, the NCF quantifies the correlation between the output of neural network and the vector; we
provide a more precise definition in Section 3. They show that in the early stages of training, the weights
of the neural network remain small and converge in direction to a KKT point of the constrained NCF, an
optimization problem that maximizes the NCF on unit sphere.

So far, all the works on the early stages of training dynamics of neural networks for small initialization have
only considered two-layer neural networks (or more broadly, two-homogeneous networks). In contrast, our
understanding for deep neural networks is much more limited. In the first part of this work, we establish early
directional convergence for deep homogeneous neural networks. We particularly consider L-homogeneous neural
networks, where L > 2, that have locally Lipschitz gradients, and our main result can be summarized as follows:

• In Theorem 1 we describe the gradient flow dynamics of deep homogeneous neural networks, with
order of homogeneity strictly greater than two, trained with small initializations. Specifically, for
square and logistic losses, we show that if the initialization is sufficiently small, then in the early
stages of training the weights remain small and either approximately converge in direction to a
non-negative KKT point of the constrained NCF defined with respect to the labels in the training
set, or are approximately zero.

It is worth noting that we assume neural networks to have locally Lipschitz gradients, which excludes
deep ReLU networks. However, it does include deep linear networks (Arora et al., 2019a; Saxe et al.,
2014), and deep neural networks with differentiable and homogeneous activation such as polynomial ReLU
φ(x) := max(x, 0)p for p ≥ 2 (Gribonval et al., 2022; Klusowski & Barron, 2018; Zhong et al., 2017) and
monomials (Livni et al., 2014; Soltanolkotabi et al., 2019). We also discuss the challenges in extending our
results for deep ReLU networks in Appendix D.

The second part of our paper studies the KKT points of the constrained NCF for feed-forward homogeneous
neural networks. For such networks, we observe empirically that, along with converging towards a KKT
point of the constrained NCF during the early stages of training, the hidden weights also exhibit a rank
one structure. Motivated by this observation, we mathematically characterize the rank-one KKT points of
feed-forward homogeneous neural networks. Our second main result can be summarized as follows:

• In Section 5, we derive sufficient conditions for a rank-one KKT point of the constrained NCF for
feed-forward neural network with activation function σ(x) = max(x, αx)p, for some p ∈ N, α ∈ R and
arbitrary training data. We also provide matching necessary conditions under additional assumptions
and validate these assumptions empirically. Our results also provide a method to obtain rank-one
KKT points of the constrained NCF using KKT points of a smaller optimization problem.

2 Related Works

Understanding the training dynamics of neural networks has been the subject of numerous investigations,
including (Arora et al., 2019b; Chizat & Bach, 2020; Chizat et al., 2019; Jacot et al., 2018; Mei et al., 2019).
These investigations have revealed two contrasting viewpoints depending on the scale of initialization. For
large initialization regimes, the training dynamics of wide neural networks are effectively captured by a
kernel referred to as Neural Tangent Kernel (NTK) Jacot et al. (2018). In this regime, the weights remain
close to initialization during training, and neural networks behave like their linearizations around their
initializations (Chizat et al., 2019). On the other hand, in small initialization regimes, the training dynamics
are extremely non-linear, and the change in weights during training is significant (Chizat & Bach, 2018;
Geiger et al., 2020; Mei et al., 2019; Yang & Hu, 2021). Moreover, studies like Chizat et al. (2019); Geiger
et al. (2020) have observed improved generalization with decreasing initialization scale for various tasks,
which makes understanding the dynamics of neural networks in the small initialization regime crucial for
better understanding of practical success of deep networks.
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While considerable progress has been made on understanding the dynamics of neural networks in the large
initialization regime, the theoretical investigations into the small initialization regime have been comparatively
limited, primarily due to the extremely non-linear dynamics during training. Such investigations have
predominantly focused on linear neural networks (Arora et al., 2019a; Gunasekar et al., 2017; Woodworth
et al., 2020) and shallow non-linear neural networks (Chizat & Bach, 2018; 2020; Mei et al., 2019; Rotskoff &
Vanden-Eijnden, 2018). Even for these networks, a comprehensive understanding of the gradient descent
dynamics is further limited to diagonal linear networks (Woodworth et al., 2020), shallow matrix factorization
(Jin et al., 2023; Stöger & Soltanolkotabi, 2021), and two-layer (Leaky) ReLU networks under various
simplifying assumptions on the datasets (Boursier et al., 2022; Brutzkus & Globerson, 2019; Lyu et al., 2021;
Min et al., 2024; Wang & Ma, 2023). Our work could be the first step towards a greater understanding of the
training dynamics of deep neural networks.

The phenomenon of early directional convergence for small initializations was first investigated by Maennel
et al. (2018) for two-layer ReLU neural networks. This was later extended to two-homogeneous neural
networks by Kumar & Haupt (2024), which includes, in addition to two-layer ReLU neural networks, single
layer squared ReLU neural networks and deep ReLU neural networks with only two trainable layers. Other
empirical investigations have observed early directional convergence in some deeper networks as well. For
example, Zhou et al. (2022) looks at the early training dynamics of three-layer ReLU neural networks and
observe that weights converge along some specific orientations. Also, Atanasov et al. (2022) empirically show
an alignment effect in the kernel of the neural network during early stages of the training. However, rigorous
investigations thus far have been limited to shallow neural networks. Despite focusing solely on the early
phases of training, these works demonstrate that interesting behaviors begin to emerge very early in the
training dynamics. Moreover, these insights into the initial stages of training have been useful towards a
comprehensive understanding of the entire training dynamics in some special cases (Boursier et al., 2022;
Min et al., 2024; Lyu et al., 2021; Wang & Ma, 2023).

3 Problem Formulation

Notation: For any N ∈ N, we let [N ] = {1, 2, . . . , N} denote the set of positive integers less than or equal
to N . We let ‖ · ‖2 denote the `2 norm for a vector and the spectral norm for a matrix. For a vector
z ∈ Rn, zi denotes its ith entry, |z| = [|z1|, |z2|, · · · , |zn|]>, and zq = [zq1 , z

q
2 , · · · , zqn]>, where q ∈ N. We write

ẋ(t) =: dx(t)
dt , and for the sake of brevity we may remove the independent variable t if it is clear from context.

For any locally Lipschitz continuous function f : X → R, its Clarke sub-differential is denoted by ∂f(x). For
σ : R→ R and p ∈ N, σp(·) denotes the function resulting from composing σ(·) with itself p times, and we
assume σ0(x) = x. We define a KKT point of an optimization problem to be a non-negative (non-zero) KKT
point if the objective value at that KKT point is non-negative (non-zero).

Problem setup: We adopt a supervised learning framework for training, where we assume {xi, yi}ni=1 is the
training dataset, and let X = [x1, . . . ,xn] ∈ Rd×n and y = [y1, . . . , yn]> ∈ Rn. For a neural network H, its
output is denoted by H(x; w), where x is the input and w ∈ Rk is the vector containing all the weights, and
∇H(x; w) denotes the gradient of H(x; w) with respect to w. We let H(X; w) = [H(x1; w), . . . ,H(xn; w)]> ∈
Rn be the vector containing the output of neural network for all inputs, and J (X; w) : Rk → Rn denotes the
Jacobian of H(X; w) with respect to w.

The following assumptions formalize the properties of neural networks considered in this paper.

Assumption 1. We make the following tripartite assumption on the neural network function: (i) For
any fixed x, H(x; w) is locally Lipschitz and is definable under some o-minimal structure that includes
polynomials and exponential.2 (ii) For all c > 0, H(x; cw) = cLH(x; w), for some L > 2 (i.e., the network is
L-homogenous). (iii) H(x; w) is differentiable in w and its gradient, ∇H(x; w), is locally Lipschitz.

2We note that definability in some o-minimal structure is a mild technical assumption and is satisfied by all modern deep
neural networks. It allows us to ensure convergence of certain gradient flow trajectories (Ji & Telgarsky, 2020).
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In this paper, we consider the minimization of

L (w) =
n∑
i=1

` (H(xi; w), yi) , (1)

where `(ŷ, y) is the loss function, and ∇ŷ`(ŷ, y) is assumed to be locally Lipschitz in ŷ, which is sat-
isfied by typical loss functions such as square and logistic losses. For z,y ∈ Rn, we define `′(z,y) =
[∇ŷ`(z1, y1), . . . ,∇ŷ`(zn, yn)]> ∈ Rn. We minimize eq. (1) using gradient flow, which leads to the following
differential equation

ẇ(t) = −∇L(w(t)),w(0) = δw0, (2)

where δ is a positive scalar that controls the scale of initialization, and w0 is a vector.

Following Kumar & Haupt (2024), for a fixed vector z ∈ Rn and neural network H, the Neural Correlation
Function (NCF) is defined here as

Nz,H(w) = z>H(X; w),

and measures the correlation between the vector z and the output of the neural network. The constrained
NCF refers to the following constrained optimization problem

max
‖w‖2

2=1
Nz,H(w).

4 Early Directional Convergence

4.1 Main Result

The following theorem establishes the approximate directional convergence in the early stages of training
L-homogeneous neural networks with small initializations.
Theorem 1. Let w0 be a fixed unit vector. Under Assumption 1, for any ε ∈ (0, η/2), where η is a positive
constant, there exists Tε, B̃ε and δ > 0 such that the following holds: for any δ ∈ (0, δ) and solution w(t) of
eq. (2) with initialization w(0) = δw0, we have

‖w (t)‖2 ≤ B̃εδ, for all t ∈
[
0, Tε/δL−2] .

Further, for T ε = Tε/δ
L−2, either

‖w(T ε)‖2 ≥ δη/2, and u>∗ w(T ε)/‖w(T ε)‖2 ≥ 1− (1 + 3/η) ε,

where u∗ is a non-negative KKT point of

max
‖u‖2

2=1
N−`′(0,y),H(u) = max

‖u‖2
2=1
−`′(0,y)>H(X; u), (3)

or ‖w(T ε)‖2 ≤ 2δε.

The above theorem first shows that for a given ε, we can choose δ small enough such that for t ∈ [0, Tε/δL−2]
the norm of the weights increases at most by a multiplicative factor. Thus, for small δ the weights will remain
small for t ∈ [0, Tε/δL−2]. Furthermore, since L > 2, for smaller δ the weights will stay small for a longer
duration of time.

Next, the theorem describes what happens at T ε = Tε/δ
L−2, the duration for which the norm of the weights

remain small. There are two possible scenarios. In the first scenario, the weights approximately converge
in direction along a non-negative KKT point of eq. (3), which is the constrained NCF defined with respect
to −`′(0,y) and neural network H. Thus, in the early stages of training, the weights of the neural network
converge in direction while their norm remains small. In the second scenario, the weights approximately
converge to 0, which can be observed by noting that ‖w(T ε)‖2 ≤ 2δε, where we can choose ε to be arbitrarily
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small. This is in contrast with the first scenario, where ‖w(T ε)‖2 ≥ δη/2 and η is a constant that does not
depend on δ. This shows that in the second scenario, compared to the first scenario, the weights become much
smaller. The second scenario arises due to the convergence of the gradient dynamics of the NCF towards 0;
see the proof for more details. We also note that for a fixed training data and neural network, w0 determines
which of the above two scenarios will occur. In addition to this, the positive constant η in the above theorem
is also determined by w0 and is independent of δ.

It can be shown that for square loss, `(ŷ, y) = 1
2 (ŷ − y)2 and −`′(0,y) = y, and for logistic loss, `(ŷ, y) =

ln(1 + e−ŷy) and −`′(0,y) = y/2. Therefore, for square and logistic loss, the objective function of the
constrained NCF in eq. (3) will be y>H(X; u). We also study KKT points of the constrained NCF for
feed-forward neural networks in Section 5, which some readers may find helpful.

Overall, the phenomenon of early directional convergence in deep homogeneous networks is similar to two-
homogeneous networks (Kumar & Haupt, 2024, Theorem 5.1), except for one difference. The amount of time
required for directional convergence in deep homogeneous networks has an additional factor of 1/δL−2. Thus,
directional convergence takes longer as depth increases.

4.1.1 Proof Sketch of Theorem 1

We next provide a brief proof sketch of the above theorem. We begin by describing the (positive) gradient
flow dynamics of the NCF.

For a given vector z and a neural network H, the gradient flow resulting from maximizing the NCF is

u̇ = ∇Nz,H(u),u(0) = u0, (4)

where u0 is the initialization. Note that the NCF may not be bounded from above. Therefore, gradient
flow may potentially diverge to infinity. However, the following lemma shows that the gradient flow either
converges in direction to a KKT point of the constrained NCF, or converges to 0.
Lemma 2. Under Assumption 1, for any solution u(t) of eq. (4), one of the following two possibilities is
true.

1. There exists some finite T ∗ such that limt→T∗ ‖u(t)‖2 = ∞. Further, limt→T∗ u(t)/‖u(t)‖2 exists
and is equal to a non-negative KKT point of the optimization problem

max
‖u‖2

2=1
Nz,H(u) = z>H(X; u). (5)

2. For all t ≥ 0, ‖u(t)‖2 < ∞, and either limt→∞ u(t)/‖u(t)‖2 exists or limt→∞ u(t) = 0. If
limt→∞ u(t)/‖u(t)‖2 exists then it is equal to non-negative KKT point of eq. (5).

To prove the above lemma, we require the neural networks to be definable with respect to an o-minimal
structure. Such a requirement allows us to use the unbounded version of Kurdyka-Lojasiewicz inequality
proved in Ji & Telgarsky (2020) for establishing directional convergence. A similar result was demonstrated in
Kumar & Haupt (2024) for two-homogeneous networks. However, in that instance, the solution u(t) remains
finite for all finite time (see Lemma 18), whereas in our case, u(t) may become unbounded at some finite time.
Also, for our proof, we had to derive the rate at which u(t) grows, showing that, if u(t) becomes unbounded,
then ‖u(t)‖2 ≥ κ/(T ∗ − t)1/(L−2), for some κ > 0 and for all t near T ∗.

We next explain our proof technique for Theorem 1 assuming square loss is used for training. The evolution
of w(t) is governed by the differential equation

ẇ =
n∑
i=1

(yi −H(xi; w))∇H(xi; w) = J (X; w)> (y−H(X; w)) ,w(0) = δw0, (6)

where (as mentioned) δ > 0, and recall J (X; w) : Rk → Rn is the Jacobian of the function H(X; w) with
respect to w. We define s(t) = 1

δw
(

t
δL−2

)
; then, s(0) = w0. Further, by using the L-homogeneity of H (X; w)
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and (L− 1)-homogeneity of J (X; w) (Lemma 9), we can derive the evolution of s(t) as follows

ds
dt

= d

dt

(
1
δ

w
(

t

δL−2

))
= 1
δL−1 ẇ

(
t

δL−2

)
= 1
δL−1J

(
X; w

(
t

δL−2

))>(
y−H

(
X; w

(
t

δL−2

)))
= J

(
X; 1

δ
w
(

t

δL−2

))>(
y− δLH

(
X; 1

δ
w
(

t

δL−2

)))
.

Overall, this implies
ṡ = J (X; s)> (y− δLH (X; s)), s(0) = w0. (7)

Now, we compare the dynamics for s(t) in eq. (7) with the dynamics of gradient flow of the NCF defined
with respect to y and neural network H,

u̇ = ∇Ny,H(u) = J (X; u)>y,u(0) = w0. (8)

Observe that if δ = 0, then the two dynamics are exactly the same, and since s(0) = w0 = u(0), we have that
s(t) and u(t) will also be same. For δ > 0, there is an extra term δLH (X; s) present in eq. (7). For small δ,
we show that this extra term is small and while s(t) and u(t) are not exactly the same, the difference between
them is small, i.e., ‖s(t)− u(t)‖2 is small. Moreover, we show that the difference can be made sufficiently
small for a sufficiently long time by choosing δ small enough. We combine this fact with Lemma 2 to prove
Theorem 1. Specifically, from Lemma 2, we know that u(t) will either converge to 0 or converge in direction
to a KKT point of the constrained NCF. Therefore, we first choose a time (say T ) such that u(T ) has
approximately converged in direction to a KKT point of the constrained NCF or is in the neighborhood of 0.
Then, we choose δ sufficiently small such that ‖s(t)−u(t)‖2 is small for all t ∈ [0, T ]. Since s(t) = 1

δw
(

t
δL−2

)
,

we have that ‖ 1
δw
(

T
δL−2

)
− u(T )‖2 is also small. Finally, since δ is a positive scalar, and u(T ) approximately

converges in direction to a KKT point of the constrained NCF or is approximately 0, it follows that w
(

T
δL−2

)
also approximately converges in direction to a KKT point of the constrained NCF or is approximately 0.

As a quick aside, we note that there are two key aspects in the definition s(t) = 1
δw
(

t
δL−2

)
. First, we have

divided by δ. We know that δ controls the scale of initialization and is assumed to be small. Dividing by
δ removes that scaling and makes s(t) a constant scale vector. More importantly, dividing by δ does not
alter the direction, i.e., the direction of s(t) and w(t) are always the same. Thus, establishing directional
convergence of s(t) will also imply directional convergence of w(t). Second, we rescale the time by δL−2. To
understand the importance of this time rescaling, let us look at the magnitude of the gradient of the loss
at initialization in terms of δ. Since δ is small and w0 has unit norm, ‖J (X; w(0))> (y−H(X; w(0))) ‖2 ≈
‖J (X; w(0))>y‖2 = O(δL−1), where in the last equality we used (L− 1)-homogeneity of the Jacobian. We
observe that for initialization of scale δ, the gradient scales as δL−1. Thus, in the early stages the gradient
will have negligible effect on the weights, in terms of both magnitude and direction. Moreover, based on the
relative scaling of the gradient and the initialization, the gradient will only start impacting the weights after
O(1/δL−2) time has elapsed. Hence, for smaller initialization, the gradient flow will take longer to make an
impact on the weights. Thus, in a way, rescaling time by δL−2 brings the time of s(t) to a “constant scale”.
We also highlight the importance of homogeneity. It allows the above two changes to interact nicely with the
gradient flow and results in dynamics of s(t) that are essentially independent of δ, provided δ is small.

Finally, in comparison to Kumar & Haupt (2024), which studies early directional convergence for two-
homogeneous neural networks, the main conceptual innovation in this paper is the time rescaling by δL−2. In
fact, the proof in that work relies on showing that the difference between w(t)/δ and u(t) remains small for a
sufficiently long time. To see a motivation for this, note that we can get eq. (7) from eq. (6) for L = 2 as well.
However, for L = 2, the time rescaling factor δL−2 will become unity, yielding s(t) = w(t)/δ. Now, since the
gradient flow dynamics for the NCF of two-homogeneous neural networks also converges to a KKT point of
the constrained NCF, to establish early directional convergence one must show that the difference between
w(t)/δ and u(t) remains small for a sufficiently long time. Another notable difference with Kumar & Haupt
(2024) is in the gradient flow dynamics of the NCF. As mentioned previously, from Lemma 2, we know that
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(a) (b)

Figure 1: Early training dynamics of a squared-ReLU neural network. Panel (a): the evolution of training loss
(normalized with respect to loss at initialization) and the `2-norm of all the weights with iterations. Panel
(b): the evolution of ∇N (w̃(t))>w̃(t)/‖∇N (w̃(t))‖2 (a measure of directional convergence of w(t)). Note
that the loss has barely changed, and the norm of weights has increased by a constant factor but remains
small. Also, the weights approximately converge in direction to a KKT point of the constrained NCF.

for L > 2, the gradient flow dynamics of the NCF can become unbounded at some finite time, whereas for
L = 2, the dynamics remains finite for finite time. This difference necessitates a more careful analysis of the
early stages of training in order to ensure directional convergence for deep homogeneous neural networks.

Challenges for non-differentiable neural networks: Theorem 1 holds for neural networks with locally
Lipschitz gradient, and thus excludes ReLU neural networks. We briefly describe the challenges in extending
Theorem 1 to ReLU networks in Appendix D, which also includes an empirical evidence that early directional
convergence also occurs in ReLU networks.

4.1.2 A Closer Look at the Weights

In this section, we use a toy example to highlight the emergence of additional structural properties in the
weights during the early stage of training that are not explained by Theorem 1.

We train the following 3−homogeneous neural network H(x; v,U) = v>max(Ux,0)2, where v ∈ R20×1

and U ∈ R20×10, by minimizing the square loss with respect to the output of a smaller neural network
H∗(x; v∗,U∗) = v>∗ max(U∗x,0)2, where the entries of v∗ ∈ R2×1, U∗ ∈ R2×10 are drawn from the standard
normal distribution. The training data has 100 points sampled uniformly from unit sphere in R10. Let w be
a vector containing all the entries of v and U, and w̃ = w/‖w‖2. We train for 50360 iterations using gradient
descent with step-size 2 · 10−2, and the initialization w(0) = δw0, where δ = 0.05 and w0 is a random unit
norm vector. Figure 1a depicts the evolution of training loss and `2−norm of the weights. Note that the loss
almost remains the same, and the norm of the weights has increased but only by a constant factor and is
still small. A unit norm vector is a KKT point of the constrained NCF if the vector and the gradient of the
NCF at that vector are parallel (see Lemma 11). Hence, to measure the directional convergence of w to the
KKT point of the constrained NCF, in Figure 1b we plot the evolution of the inner product between w̃(t)
and ∇N (w̃(t))/‖∇N (w̃(t))‖2, where N (·) denotes the NCF for this example. Clearly, in accordance with
Theorem 1, the weights approximately converge in direction to a KKT point of the constrained NCF.

We next take a closer look at the weights of the neural networks at iteration 50360, i.e., when the weights
have approximately converged in direction to a KKT point of the constrained NCF. In Figure 2, we plot the
normalized absolute value of the weights at initialization and at iteration 50360. At initialization the weights
appear to be random, as expected, but at iteration 50360, they are more structured. The hidden weights
(U) appear to be of rank-one as only one row is non-zero, and the outer weight (v) has a single non-zero
entry. This suggests that weights converged towards a KKT point of the constrained NCF that have low-rank
hidden weights. Similar behavior is observed with deeper networks and other activation functions as well (see
Section 5.3), and has also been observed in some previous works (Zhou et al., 2022; Atanasov et al., 2022).
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(a) At initialization (b) At iteration 50360

Figure 2: Normalized absolute value of the weights at different stages of training.

Since the constrained NCF is a non-convex problem with potentially multiple KKT points, an important
question arising from the above observation is why gradient descent converges towards low-rank KKT points.
A more basic question, addressed in the next section, is whether low-rank KKT points always exist for the
constrained NCF, and can they be characterized? Given the complex nature of the problem, their existence is
not immediately clear, especially for deep neural networks. We next study the KKT points of the constrained
NCF for feed-forward neural networks with Leaky ReLU and polynomial Leaky ReLU activation functions.
For arbitrary training data, necessary and sufficient conditions are derived for a set of weights to be a KKT
point of the NCF that have rank-one hidden weights.

5 KKT Points of Constrained NCF

This section presents necessary and sufficient conditions for a set of weights to be a KKT point of the
constrained NCF of feed-forward neural network that have rank-one hidden weights. For a given input x, the
output of an L-layer feed-forward neural network H is defined as

H(x; W1, · · · ,WL) = WLσ (WL−1 · · ·σ (W1x) · · · ) ∈ R, (9)

where Wl ∈ Rkl×kl−1 are the trainable weights, and k0 = d and kL = 1. The activation function σ(·) is
applied coordinate-wise to vectors, and in this section is assumed to be of the form σ(x) = max(αx, x)p, where
p ∈ N and α ∈ R, which includes deep ReLU and polynomial ReLU neural networks. The corresponding
constrained NCF is the following optimization problem:

max
W1,··· ,WL

N (W1, · · · ,WL) := y>H(X; W1, · · · ,WL), s.t. ‖W1‖2
F + · · ·+ ‖WL‖2

F = 1. (10)

Note that, we have considered the NCF in the above equation with respect to y for convenience, it may be
replaced with any other vector.

5.1 Leaky ReLU

We first consider the activation function of the form σ(x) = max(x, αx), for some α ∈ R.
Theorem 3. Let H be an L−layer feed-forward neural network as defined in eq. (9), where L ≥ 2 and
σ(x) = max(x, αx) for some α ∈ R. Let W1:L be defined as

W1:L := (W1, · · · ,WL−1,WL) = (a1b>1 , · · · ,aL−1b>L−1,w>), where ‖al‖2 = ‖bl‖2, for all l ∈ [L− 1].

(i) Suppose α 6= 1 and the entries of {al}L−1
l=1 , {bl}

L−1
l=2 are non-negative, then W1:L is a non-zero KKT

point of eq. (10) if and only if the following holds: ‖al‖2
2 = 1/

√
L, for all l ∈ [L− 1], ‖w‖2

2 = 1/L,
al = bl+1, for all l ∈ [L− 2], and qaL−1 = L1/4w, for some q ∈ {−1, 1}. Further, b1 is a non-zero
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KKT point of

max
u

n∑
i=1

yiσ
L−1(x>i u), such that ‖u‖2

2 = 1/
√
L. (11)

(ii) Next, suppose α = 1, then W1:L is a non-zero KKT point of eq. (10) if and only if the following
holds: ‖al‖2

2 = 1/
√
L, for all l ∈ [L − 1], ‖w‖2

2 = 1/L, qlal = bl+1, for all l ∈ [L − 2], and
qL−1aL−1 = L1/4w, where ql ∈ {−1, 1}. Further, b1 is a non-zero KKT point of

max
u

n∑
i=1

yiσ
L−1(x>i u), such that ‖u‖2

2 = 1/
√
L. (12)

In the above theorem, {ai,bi}L−1
i=1 are vectors used to build the rank-one hidden weights. In both cases,

we first provide the norm of these vectors. Next, for α 6= 1 and assuming the entries of {al}L−1
l=1 , {bl}

L−1
l=2

are non-negative, we present additional necessary and sufficient conditions, which can be divided in two
parts. First is the alignment: al = bl+1, for all l ∈ [L− 2], and qaL−1 = L1/4w, for some q ∈ {−1, 1}, which
implies that the column-space of Wl and row-space of Wl+1 must be aligned. The second part requires b1
to be a KKT point of eq. (11), a smaller optimization problem, where note that σL−1(·) denotes the function
resulting from composing σ(·) with itself (L− 1) times. The results for α = 1 are mostly similar, but do not
require any non-negativity assumption.

5.2 Polynomial Leaky ReLU

We next provide necessary and sufficient conditions for activation function of the form σ(x) = max(x, αx)p,
for some α ∈ R, p ≥ 2 and p ∈ N. In the following theorem, for a given p, we define p̂ := pL−1 +pL−2 + · · ·+1.
Theorem 4. Let H be an L−layer feed-forward neural network as defined in eq. (9), where L ≥ 2 and
σ(x) = max(x, αx)p for some α ∈ R, p ≥ 2 and p ∈ N. Let W1:L be defined as

W1:L := (W1, · · · ,WL−1,WL) = (a1b>1 , · · · ,aL−1b>L−1,w>), where ‖al‖2 = ‖bl‖2, for all l ∈ [L− 1].

(i) Suppose α 6= 1 and the entries of {al}L−1
l=1 , {bl}

L−1
l=2 are non-negative, then W1:L is a non-zero KKT

point of eq. (10) if and only if the following holds: ‖al‖4
2 = pL−l/p̂, for all l ∈ [L− 1], ‖w‖2

2 = 1/p̂,
bl = al−1/p

1/4, for 2 ≤ l ≤ L − 1, and w = qaL−1/(pp̂)1/4, for some q ∈ {−1, 1}. Further, for
1 ≤ l ≤ L− 1, each non-zero entry of al has identical values, and b1 is a non-zero KKT point of

max
u

n∑
i=1

yiσ
L−1(x>i u), such that ‖u‖2

2 =
√
pL−1/p̂. (13)

(ii) Suppose α = 1, then W1:L is a non-zero KKT point of eq. (10) if and only if the following holds:
‖al‖4

2 = pL−l/p̂, for all l ∈ [L− 1], ‖w‖2
2 = 1/p̂, bl = qlal−1/p

1/4,w = qLaL−1/(pp̂)1/4, if p is odd,
and bl = ql|al−1|/p1/4,w = qL|aL−1|/(pp̂)1/4, if p is even, where ql ∈ {−1, 1}, for all 2 ≤ l ≤ L.
Further, for 1 ≤ l ≤ L − 1, each non-zero entry of al has identical absolute values, and b1 is a
non-zero KKT point of

max
u

n∑
i=1

yiσ
L−1(x>i u), such that ‖u‖2

2 =
√
pL−1/p̂. (14)

Overall, the results are mostly analogous to Theorem 3, with one key difference: the non-zero entries of
{al}L−1

l=1 must have identical (absolute) values. This difference is also evident in Figure 3, which depicts
KKT points of 3-layer neural network with ReLU and squared-ReLU activation. For ReLU, in contrast with
squared-ReLU, multiple rows and columns of the weights are non-zero. Additionally, the KKT point exhibits
sparsity, with ReLU activation having multiple rows and columns with zero norm, while squared-ReLU
activation has only one non-zero row and column. We observe this difference consistently in our experiments.

9
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(a) ReLU activation

(b) Squared-ReLU activation

Figure 3: Absolute value of a KKT point
(
W1,W2,W3

)
of eq. (10) for ReLU activation (max(x, 0)) and

squared-ReLU activation (max(x, 0)2), where L = 3, n = 100 and xi ∼i.i.d N (0, I10), yi ∼i.i.d N (0, 1). For
ReLU, the non-zero rows/columns are scalar multiple of each other, implying the hidden weights have rank
one. For squared-ReLU, it is clear that the hidden weights have rank one.

The results of Theorem 3 and 4 contain sufficient conditions which imply that KKT points of the constrained
NCF with rank-one hidden weights always exists for arbitrary training data or depth of the neural network.
The sufficient conditions also provide an approach to obtain a KKT point of the constrained NCF using KKT
points of a smaller optimization problem. Additionally, they also contain matching necessary conditions,
where, for α 6= 1, we had to further assume that {al}L−1

l=1 , {bl}
L−1
l=2 have non-negative entries. This implies

that if, for α 6= 1, there is a KKT point with rank-one hidden weights such that {al}L−1
l=1 , {bl}

L−1
l=2 have

non-negative entries, then it must be of the form described in the above theorems. Interestingly, in our
experiments with random training data (Section 5.3), we found that the KKT points found via gradient-based
method generally satisfy this non-negativity assumption, along with having rank-one hidden weights.
Remark 1. In the above theorems, we focus on non-zero KKT points, because zero KKT points may not
have a rich structure. For instance, using Lemma 11, it can be shown that if the network’s output is always
zero, the corresponding weights are zero KKT points. For ReLU activation, the output is zero if the input is
non-positive. Thus, for an L-layer ReLU network, the output will be zero if any matrix in (W2, . . . ,WL−1)
has non-positive entries, making those weights zero KKT points.

5.3 Numerical Experiments

In the above theorems, we have made two main assumptions on the KKT points of the NCF (W1, · · · ,WL):

1. Rank-one hidden weights. Wl = alb>l , where ‖al‖2 = ‖bl‖2, for all l ∈ [L− 1].

2. Non-negative weights. If σ(x) = max(x, αx)p and α 6= 1, then {al}L−1
l=1 , {bl}

L−1
l=2 are non-negative.

To validate these assumptions, we conduct numerical experiments for two and three layer neural network
with activation function σ(x) = max(αx, x)p, where p ∈ {1, 2} and α ∈ {0, 0.1, 1}. For our experiments, we
generate a random set of training data, and then obtain a KKT point of the corresponding constrained NCF
by maximizing the NCF via gradient ascent with random initialization;3 more details are provided in the

3Since gradient ascent can become unbounded, we use projected gradient ascent, i.e., after every gradient ascent step we
normalize the weights to have unit norm. However, it also turns out that for homogeneous objectives, projected gradient ascent
with fixed step-size is equivalent to gradient ascent with adaptive step-size, up to a scaling factor (see Lemma 19).

10



Published in Transactions on Machine Learning Research (03/2025)

α = 0 α = 0.1 α = 1
p = 1 5.93 · 10−9 1.79 · 10−8 2.07 · 10−8

p = 2 1.76·10−10 1.67·10−10 6.86·10−11

Three-layer

α = 0 α = 0.1 α = 1
p = 1 2.97·10−12 1.22·10−11 1.9 · 10−10

p = 2 1.48·10−11 1.12·10−11 7.93·10−11

Two-layer

Table 1: The left table contains the maximum value of κ(W1,W2) across 30 different random instances for a
three-layer neural network with activation function max(x, αx)p, where (W1,W2,W3) is the KKT point of
the constrained NCF obtained via gradient ascent. The right table is similar but for two-layer neural network.

α = 0 α = 0.1
p = 1 4.44 · 10−16 3.28 · 10−16

p = 2 5.16 · 10−6 5 · 10−6

Three-layer

α = 0 α = 0.1
p = 1 1.82 · 10−7 2.77 · 10−7

p = 2 3.95 · 10−7 3.58 · 10−7

Two-layer

Table 2: Suppose (W1, · · · ,WL) is the KKT point of the constrained NCF obtained via gradient ascent for
an L−layer neural network, and let alb>l be the rank-one approximation of Wl such that ‖al‖2 = ‖bl‖2, for
all l ∈ [L − 1]. The left (right) table contains the maximum value of ρ(a1,a2b>2 , · · ·aL−1b>L−1) across 30
different random instances for a three-layer (two-layer) neural network with activation function max(x, αx)p.
Note that if alb>l is non-negative, then we can choose al and bl such that they are also non-negative. Hence,
showing a1,a2b>2 , · · ·aL−1b>L−1 are non-negative is equivalent to showing {al}L−1

l=1 , {bl}
L−1
l=2 are non-negative.

Appendix C.4. The results presented below are for 30 such random instances. Also, as discussed earlier, the
gradient flow of the training loss converges to the same KKT point as the gradient flow of the NCF. Thus,
using gradient ascent to find the KKT point of the constrained NCF also provides insights into the KKT
point towards which gradient flow of the training loss converges in the early stages of training.

Rank-one assumption: For any set of matrices {Z1, · · · ,Zp}, we use

κ(Z1, · · · ,Zp) =: max
1≤i≤p

(
1− ‖Zi‖2

‖Zi‖F

)
to measure how close are each of {Z1, · · · ,Zp} to being rank-one. If κ(Z1, · · · ,Zp) = 0, then each of
{Z1, · · · ,Zp} are rank one, and thus, for smaller κ(Z1, · · · ,Zp), they are approximately rank one. Also, κ(·)
is related to the notion of numerical rank (Rudelson & Vershynin, 2007), a stable relaxation of the rank.
Now, from the values in Table 1, we observe that for both two-layer and three-layer neural network, and with
different activation functions, each of the hidden weights in the KKT point obtained via gradient ascent are
approximately of rank one in all the instances considered (since we are reporting the maximum value of κ(·)
across all the random instances.)

Non-negativity assumption: For any set {Z1, · · · ,Zp} containing matrices and/or vectors, we use

ρ(Z1, · · · ,Zp) =: max
1≤i≤p

(
‖max(0,−Zi)‖F

‖Zi‖F

)
to measure how close are each of {Z1, · · · ,Zp} to being non-negative. Note that, if Zi is a vector, then
‖Zi‖F denotes its `2-norm. If ρ(Z1, · · · ,Zp) = 0, then each of {Z1, · · · ,Zp} are non-negative, and thus, for
smaller ρ(Z1, · · · ,Zp), they are approximately non-negative. From the values in Table 2, we observe that for
both two-layer and three-layer neural network, and with different activation functions, the appropriate set of
weights in the KKT point obtained via gradient ascent are approximately non-negative in all the instances
considered. Note that, we did not consider linear or monomial activation (σ(x) = xp) since in those cases we
did not make any non-negativity assumption.
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We conclude this section by again noting that under the rank-one and non-negativity assumption considered
here, the sufficient conditions of Theorem 3 and 4 are also necessary conditions, and thus, the KKT points
must be of the form described in those results. Since the rank-one and non-negativity assumption is satisfied
for all the instances considered, it implies the KKT points are of form described in Theorem 3 and 4 for all
the instances considered. Also, note that the constrained NCF is a non-convex problem and could have KKT
points that do not satisfy these assumptions, but gradient ascent seems to avoid them. Understanding this
phenomenon is an interesting future direction, which would require analyzing the dynamics of gradient ascent.

5.4 Proof Overview

We now provide a brief overview of the proof technique for the above theorems; the details can be found in
Appendix C. We start with the following lemma, which is important for our proof.
Lemma 5. Let H be an L-layer feed-forward neural network whose output is as defined in eq. (9), where L ≥ 2.
Suppose (W1, · · · ,WL) is a non-zero KKT points of the constrained NCF in eq. (10). If σ(x) = max(αx, x)p,
for some p ∈ N and α ∈ R, then

diag
(

WlW
>
l

)
= p · diag

(
W>

l+1Wl+1

)
, for all l ∈ [L− 1], (15)

and, if σ(x) = x, then

WlW
>
l = W>

l+1Wl+1, for all l ∈ [L− 1].

Furthermore, if (W1, · · · ,WL−1,WL) = (a1b>1 , · · · ,aL−1b>L−1,w>), where ‖al‖2 = ‖bl‖2, for all l ∈ [L−1],
then |al| = p1/4|bl+1|, for all l ∈ [L − 2], |aL−1| = (pp̂)1/4|w|, ‖al‖4

2 = pL−l/p̂, for all l ∈ [L − 1], and
‖w‖2

2 = 1/p̂, where p̂ = pL−1 + pL−2 + · · ·+ 1.

The above lemma implies |al| is parallel to |bl+1|. This is the first step towards establishing the alignment
conditions stated in the above theorems. Now, if al and bl+1 are non-negative, which is true in certain cases,
we get al is parallel to bl+1. We similarly use additional conditions to get alignment results for other cases.

We next describe how to show b1 is a KKT point of the smaller optimization problem. For this, we focus
on deep ReLU networks and assume that the alignment conditions are true, the proof of other activation
functions follow a similar approach. From the KKT conditions, we know W1 must satisfy

0 ∈λW1 + ∂W1

(
y>H(X; W1, · · · ,WL)

)
= λa1b>1 + ∂W1

(
y>H(X; W1, · · · ,WL)

)
. (16)

Since {al}L−1
l=1 , {bl}

L−1
l=2 have non-negative entries, ReLU is positively homogeneous, ‖al‖2

2 = 1/
√
L, and

al = bl+1, for all l ∈ [L− 2], qaL−1 = L1/4w, we can write

H(x; W1,W2 · · · ,WL) = WLσ
(
WL−1 · · ·W2σ (W1x) · · ·

)
= qa>L−1σ(aL−1a>L−2σ(aL−2a>L−3 · · ·σ(a2a>1 σ(W1x)) · · · )/L1/4

= q‖aL−1‖2
2‖aL−2‖2

2 · · · ‖a2‖2
2σ
L−2(a>1 σ(W1x))/L1/4

= q
(

1/
√
L
)L−2

σL−2(a>1 σ(W1x))/L1/4.

We use the above equality to simplify ∂W1

(
y>H(X; W1, · · · ,WL)

)
and use it in eq. (16) to prove b1 is a

KKT point of the smaller optimization problem. Also, note that since ReLU activation is non-differentiable, we
used the Clarke sub-differential in the KKT conditions. A challenging aspect of using Clarke sub-differentials
is that the chain rule does not hold with equality, instead it yields a set and the true sub-differential belongs
to that set (see Lemma 15). Consequently, it is not feasible to simplify ∂W1

(
y>H(X; W1, · · · ,WL)

)
using

the above equality by simply applying the chain rule. We follow a more direct approach to simplify the
Clarke sub-differential, which uses positive homogeneity of the activation function and non-negativity of a1.
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6 Conclusion and Future Directions

In this paper, we studied the gradient flow dynamics resulting from training deep homogeneous neural
networks with small initializations, and established the approximate directional convergence of the weights in
the early stages of training. However, these results are not applicable for ReLU networks, so one important
future direction would be to rigorously establish similar directional convergence for ReLU networks.

We also derived necessary and sufficient conditions for the KKT points of the constrained NCF that have
rank-one hidden weights, for feed-forward neural networks with Leaky ReLU and polynomial Leaky ReLU
activation functions. The constrained NCF is a non-convex problem and all KKT points may not be low-rank;
however, our experiments suggest that gradient ascent tends to converge towards low-rank KKT points.
Understanding this phenomenon is also an important area for future exploration, which will also help us
understand why gradient descent on training loss converges towards low-rank KKT points of the NCF in the
early stages of training. We hope our characterization of rank-one KKT points will aid in this exploration.
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A Key lemmata

In this section, we state some key lemmata that are important for our results.

A.1 Kurdyka-Lojasiewicz inequality for definable functions

The Kurdyka-Lojasiewicz Inequality is useful for demonstrating convergence of bounded gradient flow
trajectories by establishing the existence of a desingularizing function, which is formally defined as follows.
Definition A.1. A function Ψ : [0, ν) → R is called a desingularizing function when Ψ is continuous on
[0, ν) with Ψ(0) = 0, and it is continuously differentiable on (0, ν) with Ψ′ > 0.

In establishing the directional convergence of gradient flow trajectories of the neural correlation function,
where the trajectories may not be bounded, we will utilize the following unbounded version of the Kurdyka-
Lojasiewicz inequality.
Lemma 6. (Ji & Telgarsky, 2020, Lemma 3.6) Let f be a locally Lipschitz function, definable under an
o-minimal structure, and having an open domain D ⊂ {x|‖x‖2 > 1}. For any c, η > 0, there exists a ν > 0
and a definable desingularizing function Ψ on [0, ν) such that

Ψ′(f(x))‖x‖2‖∇f(x)‖2 ≥ 1, if f(x) ∈ (0, ν) and ‖∇⊥f(x)‖2 ≥ c‖x‖η2‖∇rf(x)‖2,

where ∇rf(x) =
〈
∇f(x), x

‖x‖2

〉
x
‖x‖2

and ∇⊥f(x) = ∇f(x)−∇rf(x).

A.2 Euler’s Theorem for homogeneous functions

The next lemma states two important properties of homogeneous functions.
Lemma 7. ((Lyu & Li, 2020, Theorem B.2), (Ji & Telgarsky, 2020, Lemma C.1)) Let F : Rk → R be locally
Lipschitz, differentiable, and L−positively homogeneous for some L > 0. Then,

1. For any w ∈ Rk and c ≥ 0,
∇F (cw) = cL−1∇F (w).

2. For any w ∈ Rk,
w>∇F (w) = LF (w).

A.3 Gronwall’s inequality

In our proofs, we will frequently use Gronwall’s inequality.
Lemma 8. Let α, β, u be real-valued functions defined on an interval [a, b], where β and u are continuous
and min(α, 0) is integrable on every closed and bounded sub-interval of [a, b].

• If β is non-negative and if u satisfies the integral inequality

u(t) ≤ α(t) +
∫ t

a

β(s)u(s)ds,∀t ∈ [a, b],

then

u(t) ≤ α(t) +
∫ t

0
α(s)β(s) exp

(∫ t

s

β(r)dr
)
ds,∀t ∈ [a, b].

• If, in addition, the function α is non-decreasing, then

u(t) ≤ α(t) exp
(∫ t

a

β(s)ds
)
,∀t ∈ [a, b].

We will mainly be using the second part of the above lemma.
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B Proofs omitted from Section 4.1

B.1 Proof of Lemma 2

Recall, for a given vector z and a neural network H, the NCF is defined as

Nz,H(u) = z>H(X; u). (17)

In this section, for the sake of conciseness, we will use N (u) in place of Nz,H(u). Further, u(t) satisfies for
all t ≥ 0

du
dt

= ∇N (u) = J (X; u)>z,u(0) = u0, (18)

where J (X; u) : Rk → Rn is the Jacobian of the function H(X; u). Let Sk−1 denote the unit sphere on Rk,
and define

β = sup{‖H(X; w)‖2 : w ∈ Sk−1}, and α = sup{‖J (X; w)‖2 : w ∈ Sk−1}. (19)

We will start by establishing some auxiliary lemmata. The following lemma follows from L-homogeneity of
N (u) and Lemma 7.
Lemma 9. For any u ∈ Rk and c ≥ 0, ∇N (u)>u = LN (u) and ∇N (cu) = cL−1∇N (u), and J (X; u)u =
LH(X; u) and J (X; cu) = cL−1J (X; u).

We next define Ñ (u), which plays an integral part in the proof, and its gradient.
Lemma 10. For any nonzero u ∈ Rk we define Ñ (u) = N (u)/‖u‖L2 , then,

∇Ñ (u) = ∇N (u)
‖u‖L2

− LN (u)u
‖u‖L+2

2
=
(

I− uu>

‖u‖2
2

)
∇N (u)
‖u‖L2

.

Proof. The first equality follows by differentiating Ñ (u) with respect to u; using Lemma 9 we get the second
equality.

We next describe the conditions for first-order KKT point of the NCF.
Lemma 11. If a vector u∗ ∈ Rk×1 is a first-order KKT point of

max
‖u‖2

2=1
N (u) = z>H(X; u), (20)

then
∇N (u∗) = J (X; u∗)>z = λ∗u∗, ‖u∗‖2

2 = 1, (21)
where λ∗ ∈ R is the Lagrange multiplier. Also, LN (u∗) = λ∗, which implies that λ∗ ≥ 0 for a non-negative
KKT point.

Proof. For eq. (20), the Lagrangian is

L(u, λ) = N (u) + λ(‖u‖2
2 − 1).

Hence, if u∗ is a first-order KKT point then ‖u∗‖2
2 = 1, and for some λ we have

∇N (u∗) + 2λu∗ = 0,

which implies

J (X; u∗)>z + 2λu∗ = 0.

We get eq. (21) by choosing λ∗ = −2λ. Further, by Lemma 9, we have

λ∗ = λ∗‖u∗‖2
2 = u∗>∇N (u∗) = LN (u∗).
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Lemma 12. For any t ≥ 0, we have

dN (u)
dt

= ‖∇N (u(t))‖2
2 = ‖u̇(t)‖2

2. (22)

Proof. Using u̇ = ∇N (u(t)), we have

dN (u)
dt

= ∇N (u(t))>u̇ = ‖∇N (u(t))‖2
2 = ‖u̇(t)‖2

2.

Lemma 13. For any t0 ≥ 0, if N (u(t0)) > 0, then, for all t ≥ t0, we have N (u(t)) ≥ N (u(t0)) > 0 and
‖u(t)‖2 ≥ ‖u(t0)‖2.

Proof. Using Lemma 12, we have

N (u(t))−N (u(t0)) =
∫ t

t0

‖u̇(s)‖2
2ds.

Therefore, for t ≥ t0, N (u(t)) ≥ N (u(t0)) > 0. The second claim is true since for all t ≥ 0

d‖u‖2
2

dt
= 2u>u̇ = 2u>∇N (u) = 2LN (u),

which implies

‖u(t)‖2
2 − ‖u(t0)‖2

2 = 2L
∫ t

t0

N (u(s))ds ≥ 0.

We now turn to proving Lemma 2.

Proof of Lemma 2: We begin by showing that either the limit of u(t)/‖u(t)‖2 exists or u(t) converges to 0.
For this, we consider two cases.

Case 1: N (u(0)) > 0.
In this case, we first show that u(t) becomes unbounded at some finite time. Suppose for the sake of
contradiction ‖u(t)‖2 <∞ for all finite t ≥ 0.

Let N (u(0)) = γ > 0, thus ‖u(0)‖2 > 0. Using Lemma 13, for all t ≥ 0,

‖u(t)‖2 ≥ ‖u(0)‖2 > 0.

Hence, Ñ (u(t)) (which we recall is equal to N (u(t))/‖u(t)‖L2 ) is defined for all t ≥ 0. Now, by Lemma 12,
for all t ≥ 0, we have

dN (u)
dt

= ‖u̇‖2
2, and u̇ = ∇N (u).

Therefore, using Lemma 10, for all t ≥ 0,

dÑ (u)
dt

= u̇>∇Ñ (u) = ∇N (u)>
‖u‖L2

(
I− uuT

‖u‖2
2

)
∇N (u) ≥ 0. (23)

For all t2 ≥ t1 ≥ 0, integrating the above equality on both sides from t1 to t2 we get

Ñ (u(t2))− Ñ (u(t1)) =
∫ t2

t1

∇N (u)>
‖u‖L2

(
I− uuT

‖u‖2
2

)
∇N (u)dt ≥ 0. (24)
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Thus, Ñ (u(t)) is an increasing function. Now if we define Ñ (u(0)) = γ̃, then for any t ≥ 0 we have

Ñ (u(t)) ≥ γ̃ > 0,

which implies

N (u(t)) ≥ γ̃‖u(t)‖L2 ,∀t ≥ 0.

From the above inequality, we have

1
2
d‖u‖2

2
dt

= u>u̇ = LN (u(t)) ≥ Lγ̃‖u(t)‖L2 ,∀t ≥ 0. (25)

Taking ‖u(t)‖L2 to the LHS and integrating both sides from 0 to t, we get

1
L/2− 1

(
1

‖u(0)‖L−2
2
− 1
‖u(t)‖L−2

2

)
≥ 2Lγ̃t,∀t ≥ 0.

Simplifying the above equation gives us

‖u(t)‖L−2
2 ≥ ‖u(0)‖L−2

2

1− tγ̃L(L− 2)‖u(0)‖L−2
2

,∀t ≥ 0.

The above inequality indicates that ‖u(t)‖2 is not bounded for all finite t ≥ 0, which leads to a contradiction.

Henceforth, we choose T ∗ to denote the time when u(t) becomes infinity. Formally, we assume that

lim
t→T∗

‖u(t)‖2 =∞, and ‖u(t)‖2 <∞, for all t ∈ [0, T ∗).

We now proceed to prove that limt→T∗ u(t)/‖u(t)‖2 exists by establishing that the length of the curve swept
by u(t)/‖u(t)‖2, given by ∫ T∗

0

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt,

is of finite length. This proof technique is inspired from Ji & Telgarsky (2020), and a similar technique was
also employed in Kumar & Haupt (2024).

From eq. (23) and eq. (24), we know Ñ (u(t)) is an increasing function in [0, T ∗). Further, since N (u) =
z>H(X; u) ≤ β‖z‖2‖u‖L2 , where the inequality follows from eq. (19), we have that Ñ (u) is bounded from
above. Thus, using monotone convergence theorem, we have limt→T∗ Ñ (u(t)) exists.

Now, for all t ∈ [0, T ∗), we know

d

dt

(
u
‖u‖2

)
=
(

I− uuT

‖u‖2
2

)
u̇
‖u‖2

=
(

I− uuT

‖u‖2
2

)
∇N (u)
‖u‖2

. (26)

Therefore, ∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2

=
∥∥∥∥(I− uuT

‖u‖2
2

)
∇N (u)

∥∥∥∥
2

1
‖u‖2

. (27)

Now, suppose limt→T∗ Ñ (u(t)) = f . If Ñ (u(t)) converges to f before T ∗, i.e., Ñ (u(T )) = f for some T < T ∗.
Then, for all t ∈ [T, T ∗),

dÑ (u)
dt

= 0,

which implies ∥∥∥∥(I− u(t)u(t)T
‖u(t)‖2

2

)
∇N (u(t))

∥∥∥∥
2

= 0,∀t ∈ [T, T ∗).
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Hence, from eq. (27), we have
d

dt

(
u
‖u‖2

)
= 0,∀t ∈ [T, T ∗),

which implies limt→T∗
u(t)
‖u(t)‖2

exists and is equal to u(T )
‖u(T )‖2

.

Thus, we may assume f − Ñ (u(t)) > 0, for all t ∈ [0, T ∗). We define g(u) = f − Ñ (u). Then, since

‖∇rÑ (u)‖2 = 0,

we have that
‖∇⊥g(u)‖2 ≥ 0 = ‖u‖2‖∇rg(u)‖2.

Hence, from Lemma 6, there exists a ν > 0 and a desingularizing function Ψ(.) defined on [0, ν) such that if
‖u‖2 > 1 and g(u) < ν, then

1 ≤ Ψ′(g(u))‖u‖2‖∇g(u)‖2 = Ψ′(f − Ñ (u))‖u‖2‖∇Ñ (u)‖2. (28)

Since limt→T∗ Ñ (u(t)) = f , and limt→T∗ ‖u(t)‖2 =∞, we may choose T large enough such that ‖u(t)‖2 > 1,
and g(u(t)) < ν, for all t ∈ [T, T ∗). Hence, for all t ∈ [T, T ∗), we have

dÑ (u)
dt

= ∇N (u)>
‖u‖L2

(
I− uuT

‖u‖2
2

)
∇N (u)

=
∥∥∥∥(I− uuT

‖u‖2
2

)
∇N (u)
‖u‖L−1

2

∥∥∥∥
2

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2

= ‖u‖2
∥∥∇Ñ (u)

∥∥
2

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
≥ 1

Ψ′(f − Ñ (u))

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
.

In the above chain of equalities and inequalities, we used Lemma 10 in the third equality, and the inequality
follows from eq. (28). Now, since f − Ñ (u(t)) ∈ [0, ν), for all t ∈ [T, T ∗), and Ψ′ > 0 on [0, ν), we can take
Ψ′(f − Ñ (u(t))) to the left hand side to get∥∥∥∥ ddt

(
u
‖u‖2

)∥∥∥∥
2
≤ −dΨ(f − Ñ (u))

dt
,∀t ∈ [T, T ∗).

Next, integrating the above inequality on both the sides from T to any t1 ∈ [T, T ∗), we have∫ t1

T

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt ≤ Ψ(f − Ñ (u(T ))−Ψ(f − f̃(u(t1)) ≤ Ψ(f − Ñ (u(T ))) <∞.

From the above inequality, we further have∫ T∗

0

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt =

∫ T

0

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt+

∫ T∗

T

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt

≤
∫ T

0

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt+ Ψ(f − Ñ (u(T )) <∞,

which completes the proof. We next show that there exists κ > 0 such that

‖u(t)‖2 ≥
κ

(T ∗ − t)1/(L−2) ,∀t ∈ [0, T ∗), (29)

which will be useful later. Define h(t) such that

u(t) = h(t)
(T ∗ − t)1/(L−2) .
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Our goal is to show ‖h(t)‖2 ≥ κ, for all t ∈ [0, T ∗) and for some κ > 0. Now, since ‖u(t)‖2 > 0, for all
t ∈ [0, T ∗), therefore, ‖h(t)‖2 > 0, for all t ∈ [0, T ∗) . We next show limt→T∗ ‖h(t)‖2 > 0. Since

1
2
d‖u‖2

2
dt

= LN (u) = LN
(

u
‖u‖2

)
‖u‖L2 ,

we have
1

‖u‖L−1
2

d‖u‖2

dt
= LN

(
u
‖u‖2

)
.

Integrating both sides from 0 to t ∈ (0, T ∗), we get

1
L− 2

(
1

‖u(0)‖L−2
2
− 1
‖u(t)‖L−2

2

)
=
∫ t

0
LN

(
u(s)
‖u(s)‖2

)
ds.

Re-arranging the above equation gives us

1
‖u(0)‖L−2

2
−
∫ t

0
L(L− 2)N

(
u(s)
‖u(s)‖2

)
ds = 1

‖u(t)‖L−2
2

. (30)

Substituting u(t) = h(t)/(T ∗ − t)1/(L−2), we get

1/‖u(0)‖L−2
2 −

∫ t
0 L(L− 2)N (u(s)/‖u(s)‖2)ds

(T ∗ − t) = 1
‖h(t)‖L−2

2
.

In LHS of the above equality, at t = T ∗, the denominator is obviously 0, and the numerator is also 0 since,
using eq. (30),

1
‖u(0)‖L−2

2
−
∫ T∗

0
L(L− 2)N

(
u(s)
‖u(s)‖2

)
ds

= lim
t→T∗

1
‖u(0)‖L−2

2
−
∫ t

0
L(L− 2)N

(
u(s)
‖u(s)‖2

)
ds = lim

t→T∗
1

‖u(t)‖L−2
2

= 0.

Therefore, using L’Hopital’s rule,

1
‖h(T ∗)‖L−2

2
= limt→T∗ −L(L− 2)N (u(t)/‖u(t)‖2)

−1 = lim
t→T∗

L(L− 2)N (u(t)/‖u(t)‖2) > 0.

Hence, ‖h(t)‖2 > 0, for all t ∈ [0, T ∗], which implies there exists some κ > 0 such that ‖h(t)‖2 ≥ κ, for all
t ∈ [0, T ∗) and proving eq. (29).

Case 2: N (u(0)) ≤ 0.
In this case, we may further assume that N (u(t)) ≤ 0, for all t ≥ 0, since if for some t, N (u(t)) > 0, then we
can choose t be the new starting time and use the proof for Case 1 to show that u(t) becomes unbounded at
some finite time and also converges in direction. Therefore, we assume N (u(t)) ≤ 0, for all t ≥ 0.

Now, since

1
2
d‖u‖2

2
dt

= u>u̇ = LN (u(t)) ≤ 0,∀t ≥ 0,

we have that ‖u(t)‖2 decreases with time, and limt→∞ ‖u(t)‖2 exists. Now, if limt→∞ ‖u(t)‖2 = 0, then we
have limt→∞ u(t) = 0 and our proof is complete.

Else, suppose limt→∞ ‖u(t)‖2 = η > 0. Then, we have ‖u(t)‖2 ≥ η, for all t ≥ 0, since ‖u(t)‖2 decreases with
time. We next show that limt→∞N (u(t)) = 0. From Lemma 12, we know

dN (u)
dt

= ‖u̇‖2
2,∀t ≥ 0.
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Thus, N (u(t)) increases with time. Since we have assumed N (u(t)) ≤ 0 for all t ≥ 0, by monotone
convergence we have that limt→∞N (u(t)) exists. Now, to show limt→∞N (u(t)) = 0, we assume for the sake
of contradiction that limt→∞N (u(t)) = −γ < 0. Then, for all t ≥ 0, we have N (u(t)) ≥ −γ, since N (u(t))
is an increasing function of time. Thus,

1
2
d‖u‖2

2
dt

= u>u̇ = LN (u(t)) ≤ −Lγ,∀t ≥ 0.

From the above equation we get that ‖u(t)‖2 would become smaller than η after some finite amount of time
has elapsed. Since ‖u(t)‖2 ≥ η, for all t ≥ 0, this leads to a contradiction. Therefore, limt→∞N (u(t)) = 0.
This also implies limt→∞ Ñ (u(t)) = 0.

We next prove that limt→∞ u(t)/‖u(t)‖2 exists. We first define û(t) = 2u(t)/η. Now, if û(t) converges in
direction, then u(t) also converges in direction. To prove û(t) converges in direction we can follow the same
approach as in Case 1, specifically from eq. (27) onward. This transformation is essential because, recall, to
use Lemma 6 in Case 1 we had to choose T large enough such that ‖u(t)‖2 > 1, for all t ≥ T . Here, ‖u(t)‖2
may never be greater than 1, but ‖û(t)‖2 ≥ 2, for all t ≥ 0.

So far we have established that either u(t)
‖u(t)‖2

converges, or u(t) converges to 0. We next show that if u(t)
‖u(t)‖2

converges to u∗, then u∗ must be a non-negative KKT point of the constrained NCF.

From the proof so far we already know that N (u∗) = Ñ (u∗) ≥ 0. Therefore, from Lemma 11, we only need
to show

LN (u∗)u∗ = ∇N (u∗), (31)

For the sake of contradiction assume that there exists some γ > 0 such that

‖∇N (u∗)− LN (u∗)u∗‖2 ≥ γ. (32)

For any ε > 0, we define the set uε = {u : ‖u− u∗‖2 ≤ ε}. Since N (u) has locally Lipschitz gradient, given
γ, we can choose sufficiently small ε ∈ (0, 1) such that for all u ∈ uε, we have

‖∇N (u)−∇N (u∗)‖2 ≤ γ/4. (33)

Since u(t)
‖u(t)‖2

converges to u∗ and N (u) is continuous, we choose T large enough such that for all t ≥ T ,

∥∥∥∥ u(t)
‖u(t)‖2

− u∗
∥∥∥∥

2
≤ ε,

∥∥∥∥ Lu(t)
‖u(t)‖2

N
(

u(t)
‖u(t)‖2

)
− Lu∗N (u∗)

∥∥∥∥ ≤ γ/4. (34)

From the two cases discussed above we know that if u(t)
‖u(t)‖2

converges, then are two scenarios: ‖u(t)‖2 either
goes to infinity or ‖u(t)‖2 remains finite, bounded away from 0, for all t ≥ 0 and Ñ (u(t)) converges to 0.
Now, if ‖u(t)‖2 goes to infinity, then we may assume T is large enough such that for some κ > 0

‖u(t)‖2 ≥
κ

(T ∗ − t)1/(L−2) ,∀t ∈ [T, T ∗), (35)

where limt→T∗ u(t)/‖u(t)‖2 = u∗. In the second scenario, we may assume that T is large enough such that
for some η > 0, we have

‖u(t)‖2 ≥ η,∀t ≥ T. (36)
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Now, for all non-zero u ∈ Rk we have∥∥∥∥(I− uu>

‖u‖2
2

)
∇N (u)
‖u‖L−1

2

∥∥∥∥
2

=
∥∥∥∥∇N (u)
‖u‖L−1

2
− LuN (u)
‖u‖L+1

2

∥∥∥∥
2

=
∥∥∥∥∇N ( u

‖u‖2

)
− Lu
‖u‖2

N
(

u
‖u‖2

)∥∥∥∥
2

≥
∥∥∥∥∇N (u∗)−

Lu
‖u‖2

N
(

u
‖u‖2

)∥∥∥∥
2
−
∥∥∥∥∇N ( u

‖u‖2

)
−∇N (u∗)

∥∥∥∥
2

≥ ‖∇N (u∗)− Lu∗N (u∗)‖2 −
∥∥∥∥Lu∗N (u∗)−

Lu
‖u‖2

N
(

u
‖u‖2

)∥∥∥∥
2

−
∥∥∥∥∇N ( u

‖u‖2

)
−∇N (u∗)

∥∥∥∥
2
,

where in the second equality we used (L − 1)-homogeneity of ∇N (u) and L-homogeneity of N (u). The
inequalities make repeated use of triangle inequality of norms. Hence, using eq. (32), eq. (33) and eq. (34),
for all t ≥ T , we have ∥∥∥∥(I− u(t)u(t)>

‖u(t)‖2
2

)
∇N (u(t))
‖u(t)‖L−1

2

∥∥∥∥
2
≥ γ/2.

Using the above inequality and eq. (23) we have

d

dt

(
N
(

u(t)
‖u(t)‖2

))
=
∥∥∥∥∥
(

I− u(t)u(t)>
‖u(t)‖2

2

)
∇N (u(t))
‖u(t)‖L/2

2

∥∥∥∥∥
2

2

≥ γ2‖u(t)‖L−2
2 /4.

Now, if ‖u(t)‖2 goes to infinity, then, from eq. (35), we have

d

dt

(
N
(

u(t)
‖u(t)‖2

))
≥ γ2κL−2

4(T ∗ − t) ,∀t ∈ [T, T ∗)

Integrating the above equation from T to t ∈ (T, T ∗), we get

N
(

u(t)
‖u(t)‖2

)
−N

(
u(T )
‖u(T )‖2

)
≥ γ2κL−2

4

∫ T∗

T

1
(T ∗ − t) = γ2κL−2

4 ln
(
T ∗ − T
T ∗ − t

)
.

As t approaches T ∗, the LHS remains finite but the RHS goes to infinity, leading to a contradiction. In the
second scenario, where ‖u(t)‖2 remains finite, bounded away from 0, for all t ≥ 0, we have, from eq. (36),

d

dt

(
N
(

u(t)
‖u(t)‖2

))
≥ γ2ηL−2/4,∀t ≥ T.

Integrating the above equation from T to t ≥ T , we get

N
(

u(t)
‖u(t)‖2

)
−N

(
u(T )
‖u(T )‖2

)
≥ γ2ηL−2(t− T )/4.

Since N (u/‖u‖2) is bounded, the above inequality can not be true for sufficiently large t, leading to a
contradiction. This completes our proof of Lemma 2.

Before proceeding to proof of Theorem 1, we state a useful lemma.
Lemma 14. Let u0 be a fixed vector and let u(t) be the solution of

du
dt

= ∇N (u) = J (X; u)>z,u(0) = u0. (37)
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If limt→∞ u(t) 6= 0, then there exists η > 0 and T ≥ 0 such that ‖u(t)‖2 ≥ η, for all t ≥ T . Further, for any
ε ∈ (0, 1) there exists Tε ≥ T and Bε such that

u(Tε)>u∗
‖u(Tε)‖2

≥ 1− ε, and ‖u(t)‖2 ≤ Bε,∀t ≤ Tε, (38)

where u∗ is a non-negative KKT point of

max
‖u‖2

2=1
N (u) = z>H(X; u). (39)

Proof. Similar to the proof of Lemma 2, we consider two cases.

Case 1: N (u(0)) > 0.
Let N (u(0)) = γ > 0, thus ‖u(0)‖2 > 0. From Lemma 13, ‖u(t)‖2 ≥ ‖u(0)‖2, for all t ≥ 0, which implies we
can choose η = ‖u(0)‖2 and T = 0.

Next, from Lemma 2 and its proof we know that for some finite T ∗, limt→T∗
u(t)
‖u(t)‖2

= u∗, where u∗ is a
non-negative KKT point of the constrained NCF eq. (39). Thus, for any ε ∈ (0, 1), we can choose Tε ≥ T = 0,
and large enough but less than T ∗ such that

u(Tε)>u∗
‖u(Tε)‖2

≥ 1− ε. (40)

Since for all t ∈ (0, T ∗), u(t) is finite, there exists Bε such that ‖u(Tε)‖2 ≤ Bε. We note that as ε gets smaller,
we may have to choose Tε closer to T ∗. This implies that, since limt→T∗ ‖u(t)‖2 = ∞, Bε will increase.
However, for a fixed ε, both Tε and Bε will be fixed.

Case 2: N (u(0)) ≤ 0.
In this case, we can also assume that N (u(t)) ≤ 0, for all t ≥ 0, since if N (u(t)) > 0, for some t, then from
Lemma 13, we know ‖u(t)‖2 ≥ ‖u(t)‖2, for all t ≥ t. Moreover, since N (u(t)) > 0 implies ‖u(t)‖2 > 0, we
can choose η = ‖u(t)‖2 and T = t. Also, in this case, from the proof of Lemma 2, we know that for some
finite T ∗, limt→T∗

u(t)
‖u(t)‖2

= u∗, where u∗ is a non-negative KKT point of the constrained NCF eq. (39).
Thus, similar to Case 1, for any ε ∈ (0, 1) we can choose Tε ≥ t and Bε as desired.

Hence, suppose N (u(t)) ≤ 0, for all t ≥ 0. Then, since

1
2
d‖u‖2

2
dt

= u>u̇ = LN (u(t)) ≤ 0,∀t ≥ 0,

we have that ‖u(t)‖2 is a decreasing function with time, and hence, limt→∞ ‖u(t)‖2 exists. Also,

‖u(t)‖2 ≥ lim
t→∞

‖u(t)‖2, for all t ≥ 0.

Since we have assumed limt→∞ u(t) 6= 0, we know limt→∞ ‖u(t)‖2 > 0, and we can choose η = limt→∞ ‖u(t)‖2

and T = 0. Further, since limt→∞
u(t)
‖u(t)‖2

= u∗, where u∗ is a non-negative KKT point of the constrained
NCF eq. (39), for any ε ∈ (0, 1), we can choose Tε large enough such that

u(Tε)>u∗
‖u(Tε)‖2

≥ 1− ε. (41)

Also, since ‖u(t)‖2 is a decreasing function with time, we have ‖u(t)‖2 ∈ [η, ‖u(0)‖2], for all t ≥ 0. Thus, we
can choose Bε = ‖u(0)‖2.
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B.2 Proof of Theorem 1

Proof. Let w0 be a fixed unit norm vector. Suppose u(t) is the solution of

du
dt

= ∇N−`′(0,y),H(u) = −J (X; u)> `′(0,y),u(0) = w0. (42)

From Lemma 2, we know that there are two possibilities. Either u(t) converges to 0, or u(t) converges in
direction to a non-negative KKT point of the constrained NCF.

If u(t) converges to 0, then we define η = 2. Then, for any ε ∈ (0, η/2), we define Bε = ε and choose Tε large
enough such that

‖u(Tε)‖2 ≤ Bε = ε. (43)

Else, if u(t) does not converge to 0, then from Lemma 14, there exists η̃ > 0 and T such that ‖u(t)‖2 ≥ η̃, for
all t ≥ T . We further define η = min(η̃, 1). Then, from Lemma 14, for any ε ∈ (0, η/2) there exists Tε ≥ T
and Bε such that

u(Tε)>u∗
‖u(Tε)‖2

≥ 1− ε, and ‖u(t)‖2 ≤ Bε,∀t ≤ Tε, (44)

where u∗ is a non-negative KKT point of

max
‖u‖2

2=1
N−`′(0,y),H(u) = −H (X; u)> `′(0,y).

Further, since Tε ≥ T , we have

‖u(Tε)‖2 ≥ η̃ ≥ η. (45)

We next define other ε dependent parameters which are useful in our proof. Let B̃ε = Bε + ε. Since H(x; w)
has locally Lipschitz gradient, there exists Kε > 0 such that if ‖w1‖2, ‖w2‖2 ≤ B̃ε, then

‖J (X; w1)− J (X; w2) ‖2 ≤ Kε‖w1 −w2‖2. (46)

Also, since ∇ŷ`(ŷ, y) is locally Lipschitz in ŷ, there exists β̂ such that if ‖z1‖2, ‖z2‖2 ≤ βB̃Lε , then

‖`′ (z1,y)− `′ (z2,y) ‖2 ≤ β̂‖z1 − z2‖2, (47)

where recall

β = sup{‖H(X; w)‖2 : w ∈ Sk−1}. (48)

We further define Cε = ββ̂B̃Lε , and

δ̄L = min
(

1, ε

4αB̃L−1
ε CεTεe2TεKε‖`′(0,y)‖2

)
, (49)

where recall

α = sup{‖J (X; w)‖2 : w ∈ Sk−1}. (50)

Now, for any δ ∈ (0, δ̄), let w(t) be the solution of

ẇ(t) = −∇L(w(t)),w(0) = δw0, (51)

then, we can rewrite the above differential equation as

ẇ = −
n∑
i=1
∇ŷ` (H(xi; w), yi)∇H(xi; w) = −J (X; w)>`′(H(X; w),y),w(0) = δw0. (52)
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We define ξ(t) := `′(H(X; w),y)− `′(0,y), then the dynamics of w(t) can be written as

ẇ ∈ −J (X; w)>`′(H(X; w),y) = −J (X; w)>(`′(0,y) + ξ(t)). (53)

Now, define s(t) = 1
δw
(

t
δL−2

)
, then s(0) = w0, and

ds
dt

= d

dt

(
1
δ

w
(

t

δL−2

))
= 1
δL−1 ẇ

(
t

δL−2

)
= − 1

δL−1J
(

X; w
(

t

δL−2

))>(
`′(0,y) + ξ

(
t

δL−2

))
= −J

(
X; 1

δ
w
(

t

δL−2

))>(
`′(0,y) + ξ

(
t

δL−2

))
= −J (X; s(t))>

(
`′(0,y) + ξ

(
t

δL−2

))
, (54)

where in third equality, from Lemma 9, we used (L− 1)-homogeneity of J (X; w). Using L-homogeneity of
H(X; w), we have

ξ(t/δL−2) = `′(H(X; w(t/δL−2)),y)− `′(0,y)
= `′(δLH(X; w(t/δL−2)/δ),y)− `′(0,y)
= `′(δLH(X; s(t)),y)− `′(0,y).

Let ξ̃(t) = ξ(t/δL−2), then
ṡ = −J (X; s(t))> (`′(0,y) + ξ̃(t)), s(0) = w0.

Next, we will show that ‖s(t)− u(t)‖2 ≤ ε, for all t ∈ [0, Tε]. We first note that, s(0) = u(0) = w0. Define

T δ = inf
t≥0
{t : ‖s(t)− u(t)‖2 = ε}.

Here, T δ indicates the time when ‖s(t)− u(t)‖2 becomes ε for the first time, and δ in the subscript indicates
that T δ could change with δ. By definition of T δ, for all t ∈ [0, T δ], ‖s(t)− u(t)‖2 ≤ ε. Now, if we can show
T δ > Tε, then we would have proved ‖s(t)− u(t)‖2 ≤ ε, for all t ∈ [0, Tε].

For the sake of contradiction, suppose T δ ≤ Tε. This implies that ‖u(t)‖2 ≤ Bε and ‖s(t)‖2 ≤ Bε + ε = B̃ε,
for all t ∈ [0, T δ]. Now, using eq. (46), we have

‖J (X; u(t))− J (X; s(t))‖2 ≤ Kε‖u(t)− s(t)‖2,∀t ∈ [0, T δ]. (55)

Next, since δ ≤ 1 and
‖H(X; s(t))‖2 ≤ β‖s(t)‖L2 ≤ βB̃Lε ,∀t ∈ [0, T δ],

using eq. (47), we have

‖ξ̃(t)‖2 = ‖`′(δLH(X; s(t)),y)− `′(0,y)‖2 ≤ δLβ̂‖H(X; s(t))‖2 ≤ δLβ̂βB̃Lε ,∀t ∈ [0, T δ].

Hence, by the definition of Cε, we have

‖ξ̃(t)‖2 ≤ CεδL, for all t ∈ [0, T δ]. (56)

Thus, for any t ∈ [0, T δ]

1
2
d‖s− u‖2

2
dt

= (s− u)>(ṡ− u̇)

= −(s− u)>(J (X; s)− J (X; u))>`′(0,y)− (s− u)>J (X; s)>ξ̃(t)
≤ Kε‖`′(0,y)‖2‖s− u‖2

2 + α‖s‖L−1
2 ‖s− u‖2‖ξ̃(t)‖2

≤ Kε‖`′(0,y)‖2‖s− u‖2
2 + αεB̃L−1

ε Cεδ
L,
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where the first inequality follows from eq. (55) and eq. (50). For the second inequality we used eq. (56), and
‖s(t)‖2 ≤ B̃ε, for all t ∈ [0, T δ]. Integrating the above inequality on both sides from 0 to t1 ∈ [0, T δ], we have

1
2‖s(t1)− u(t1)‖2

2 ≤ (αεB̃L−1
ε Cεδ

L)t1 +
∫ t1

0
Kε‖`′(0,y)‖2‖s(t)− u(t)‖2

2dt.

Then, using the second Gronwall’s inequality in Lemma 8, we have

‖s(T δ)− u(T δ)‖2
2 ≤ 2αεB̃L−1

ε Cεδ
LT δe

2T δKε‖`′(0,y)‖2 ≤ 2αεB̃L−1
ε Cεδ

LTεe
2TεKε‖`′(0,y)‖2 ,

where the second inequality is true since T δ ≤ Tε. By definition of T δ, we know ‖s(T δ)− u(T δ)‖2 = ε. Thus,
using the above inequality, and since δ < δ, where δ satisfies eq. (49), we have

ε2 = ‖s(T δ)− u(T δ)‖2
2 ≤ 2αεB̃L−1

ε Cεδ
LTεe

2TεKε‖`′(0,y)‖2 ≤ ε2/2,

which leads to a contradiction. Hence, T δ > Tε.

Since ‖s(t)− u(t)‖2 ≤ ε, for all t ∈ [0, Tε], we have

‖w(t/δL−2)‖2 ≤ δ(‖u(t)‖2 + ε) ≤ B̃εδ, ∀t ∈ [0, Tε].

We next prove the second part of the theorem. If u(t) converges to 0, then from eq. (43) we know ‖u(Tε)‖2 ≤ ε,
which implies ∥∥∥∥w

(
Tε
δL−2

)∥∥∥∥
2

= δ‖s(Tε)‖2 ≤ 2δε. (57)

Else, from eq. (44) and eq. (45), we know

u(Tε)>u∗
‖u(Tε)‖2

≥ 1− ε, and ‖u(Tε)‖2 ≥ η. (58)

Define T ε = Tε/δ
L−2. Since

∥∥ 1
δw
(

Tε
δL−2

)
− u(Tε)

∥∥
2 ≤ ε, then for some ζ ∈ Rk we have

w(T ε)
δ

= u(Tε) + ζ, (59)

where ‖ζ‖2 ≤ ε. From ε ∈ (0, η/2) and ‖u(Tε)‖2 ≥ η, we have ‖u(Tε) + ζ‖2 ≥ η/2, which implies∥∥w
(
T ε
)∥∥

2 ≥ δη/2.

Next, from eq. (59) we have

w(T ε)
‖w(T ε)‖2

= u(Tε) + ζ

‖u(Tε) + ζ‖2
.

Hence,

w(T ε)>u∗
‖w(T ε)‖2

= u(Tε)>u∗ + ζ>u∗
‖u(Tε) + ζ‖2

=
(

u(Tε)>u∗
‖u(Tε)‖2

)
‖u(Tε)‖2

‖u(Tε) + ζ‖2
+ ζ>u∗
‖u(Tε) + ζ‖2

≥ (1− ε) ‖u(Tε)‖2

‖u(Tε)‖2 + ‖ζ‖2
− 2ε

η

= (1− ε) 1
1 + ‖ζ‖2

‖u(Tε)‖2

− 2ε
η

≥ 1− ε
1 + ε

η

− 2ε
η
≥ (1− ε)

(
1− ε

η

)
− 2ε

η
≥ 1−

(
1 + 3

η

)
ε,

where in the first inequality we used eq. (58) along with the fact that ‖ζ‖2 ≤ ε and ‖u(Tε) + ζ‖2 ≥ η/2. The
second inequality follows since ‖ζ‖2 ≤ ε and ‖u(Tε)‖2 ≥ η.
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C Proofs omitted from Section 5

We first state some key lemmata which are used to prove Theorem 3 and Theorem 4.

C.1 Key Lemmata

Recall that for any locally Lipschitz continuous function f : X → R, ∇f(x) denotes its gradient at x ∈ X,
provided f is differentiable at x, and its Clarke Subdifferential is denoted by ∂f(x), which is defined as

∂f(x) := conv
{

lim
i→∞

∇f(xi) : lim
i→∞

xi = x,xi ∈ Ω
}
,

where Ω is any full-measure subset of X such that f is differentiable at each of its points. Note that if f is
differentiable everywhere, then ∂f(x) = {∇f(x)}.

To compute the Clarke subdifferentials of functions which are compositions of non-differentiable functions, we
use Clarke’s chain rule of differentiation described in the following lemma
Lemma 15. (Clarke, 1983, Theorem 2.3.9 ) Let h1, . . . , hn : Rd → R and g : Rn → R be locally Lipschitz
functions, and f(x) = g(h1(x), . . . , hn(x)), then,

∂f(x) ⊆ conv
{

n∑
i=1

αiζi : ζi ∈ ∂hi(x), α ∈ ∂g(h1(x), . . . , hn(x))
}
.

To prove our results, we will frequently require the gradients of the NCF with respect to weights of each
layer, which are derived next.
Lemma 16. For L ≥ 2, let H be an L-layer feed-forward neural network whose output is as defined in eq. (9).
For all l ∈ [L− 1] and i ∈ [n], define

φ0
i = xi,h1

i = W1φ
0
i , (60)

φli = σ(hli),hl+1
i = Wl+1φ

l
i, (61)

and let Al
i = diag

(
σ′(hli)

)4, where σ′(·) denotes the Clarke subdifferential of σ(·). Also, let

eli = Al
iW>

l+1 · · ·AL−1
i W>

Lyi and eLi = yi,

for all l ∈ [L− 1] and i ∈ [n], then

∂Wl

(
n∑
i=1

yiH(xi; W1, · · ·WL)
)
⊆

n∑
i=1

eli(φl−1
i )>, for all l ∈ [L].

Proof. We begin by noting that, for l ∈ [L],

∂Wl

(
n∑
i=1

yiH(xi; W1, · · ·WL)
)
⊆

n∑
i=1

∂Wl
(yiH(xi; W1, · · ·WL)) .

Thus, we need to prove

∂Wl
(yiH(xi; W1, · · ·WL)) ⊆ eli(φl−1

i )>, for all l ∈ [L].

For l = L, the above equation is true since

∂WL
(yiH(xi; W1, · · ·WL)) = ∂WL

(
yiWLφ

L−1
i

)
= yi

(
φL−1
i

)>
.

For l ∈ [L− 1], we have

∂Wl
(yiH(xi; W1, · · ·WL)) = ∂Wl

(
yiWLσ(WL−1 · · ·σ(Wlφ

l−1
i ) · · · )

)
⊆ eli(φl−1

i )>,

where the last inclusion follows from repeatedly applying the chain rule. This completes the proof.
4For non-differentiable activation functions such as ReLU, σ′ could be an interval, implying that Al

i is a set-valued mapping.
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We next restate and prove Lemma 5.
Lemma 17. Let H be an L-layer feed-forward neural network whose output is as defined in eq. (9), where
L ≥ 2. Suppose (W1, · · · ,WL) is a non-zero KKT points of the constrained NCF in eq. (10). If σ(x) =
max(αx, x)p, for some p ∈ N and α ∈ R, then

diag
(

WlW
>
l

)
= p · diag

(
W>

l+1Wl+1

)
, for all l ∈ [L− 1], (62)

and, if σ(x) = x, then

WlW
>
l = W>

l+1Wl+1, for all l ∈ [L− 1]. (63)

Furthermore, if (W1, · · · ,WL−1,WL) = (a1b>1 , · · · ,aL−1b>L−1,w>), where ‖al‖2 = ‖bl‖2, for all l ∈ [L−1],
then |al| = p1/4|bl+1|, for all l ∈ [L − 2], |aL−1| = (pp̂)1/4|w|, ‖al‖4

2 = pL−l/p̂, for all l ∈ [L − 1], and
‖w‖2

2 = 1/p̂, where p̂ = pL−1 + pL−2 + · · ·+ 1.

Proof. By KKT condition, for l ∈ [L− 1], we have

0 ∈ ∂Wl

(
n∑
i=1

yiH(xi; W1, · · ·WL)
)

+ λWl (64)

Multiplying the above equation by W>
l from the right, and using Lemma 16, we have

0 ∈
n∑
i=1

eli(φl−1
i )>W>

l + λWlW
>
l (65)

Since Wlφ
l−1
i = hli, we have

0 ∈
n∑
i=1

eli(hli)> + λWlW
>
l . (66)

Since eli = Al
iW
>
l+1 · · ·AL−1

i W>
Lyi, if we let qi = W>

l+1 · · ·AL−1
i W>

Lyi, then we have

0 ∈
n∑
i=1

Al
iqi(hli)> + λWlW

>
l . (67)

Next, similarly using the KKT condition for Wl+1, we have

0 ∈W>
l+1

n∑
i=1

el+1
i (φli)> + λW>

l+1Wl+1. (68)

Expanding el+1
i , we have

0 ∈
n∑
i=1

W>
l+1Al+1

i W>
l+2 · · ·AL−1

i W>
Ly>i (φli)> + λW>

l+1Wl+1, (69)

which implies

0 ∈
n∑
i=1

qi(φli)> + λW>
l+1Wl+1. (70)

We next show that

diag(Al
iqi(hli)>) = pdiag(qi(φli)>),∀i ∈ [n] and l ∈ [L− 1],
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which will prove the first part of the theorem. To show this, first note that since Al
i is a diagonal matrix, and

qi,hli are vectors, we have

diag(Al
iqi(hli)>) = Al

idiag(qi)diag(hli) = diag(qi)Al
idiag(hli)

= diag(qi)diag(σ′(hli))diag(hli)
= pdiag(qi)diag(σ(hli))
= pdiag(qi)diag(φli) = pdiag(qi(φli)>),

where in the third equality, we used the definition of Al
i and the fourth equality follows from the fact

σ′(x)x = pσ(x).

For σ(x) = x, note that Al
i will be identity and φli = hli, for all i ∈ [n] and l ∈ [L− 1]. Hence,

Al
iqi(hli)> = qi(φli)>,∀i ∈ [n] and l ∈ [L− 1],

which proves eq. (63).

We next prove the second part. From eq. (62), we have

‖W1‖2
F = p‖W2‖2

F = · · · = pL−1‖WL‖2
F .

Since

‖W1‖2
F + · · · ‖WL‖2

F = 1,

if we define p̂ = pL−1 + pL−2 + · · ·+ 1, then,

1 = ‖WL‖2
F (pL−1 + pL−2 + · · ·+ 1),

which implies ‖Wl‖2
F = pL−l/p̂, for all l ∈ [L]. Next, since ‖al‖2 = ‖bl‖2, we further get pL−l/p̂ = ‖al‖4

2, for
all l ∈ [L− 1] and ‖w‖2

2 = 1/p̂.

Now, using eq. (62), for all l ∈ [L− 2], we have

diag
(
‖bl‖2

2ala>l
)

= p · diag
(
‖al+1‖2

2bl+1b>l+1
)
, and diag

(
‖bL−1‖2

2aL−1a>L−1
)

= p · diag
(
ww>

)
which implies

|al| = p1/4|bl+1| and |aL−1| = (pp̂)1/4|w|, (71)

where the last equality uses pL−l/p̂ = ‖bL−1‖4
2. Hence, the proof is complete.

C.2 Proof of Theorem 3

From Lemma 5, we know ‖w‖2
2 = 1/L and

‖al‖2
2 = ‖bl‖2

2 = 1√
L
, for all l ∈ [L− 1]. (72)

For the remaining proof, we handle each of the cases individually, and begin by α = 1.
Case 1 (α = 1) : We begin by proving the “only if” part. From Lemma 5, we have

WlW
>
l = W>

l+1Wl+1,∀l ∈ [L− 1], (73)

which implies, for l ∈ [L− 2],

‖bl‖2
2ala>l = ‖al+1‖2

2bl+1b>l+1, and ‖bL−1‖2
2aL−1a>L−1 = ww>.
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Combining the above equality with eq. (72) we get

qlal = bl+1,∀l ∈ [L− 2], and qL−1aL−1 = L1/4w,

where ql ∈ {−1, 1}. Hence,

W1 = a1b>1 and Wl = ql−1ala>l−1, if 2 ≤ l ≤ L− 1.

Now, since (W1, · · · ,WL) is a non-zero KKT point of eq. (10), using Lemma 11, we have

0 = λa1b>1 +∇W1

(
y>H(X; W1, · · · ,WL)

)
, (74)

where λ 6= 0. Let q1:L−1 := q1q2 · · · qL−1. From Lemma 16, we have

∇W1

(
y>H(xi; W1, · · · ,WL)

)
=

n∑
i=1

W>
2 · · ·W

>
Lyix>i

= q1:L−1

n∑
i=1

a1a>2 a2a>3 · · ·aL−2a>L−1aL−1yix>i /L1/4

= q1:L−1

(
1√
L

)L−2 1
L1/4

n∑
i=1

a1yix>i . (75)

From eq. (74) and eq. (75), we have

0 = λb>1 + q1:L−1

(
1√
L

)L−2 1
L1/4

n∑
i=1

yix>i . (76)

Now, u∗ is a KKT point of

max
u

(
n∑
i=1

yix>i

)
u, such that ‖u‖2

2 = 1/
√
L, (77)

if there exists λ∗ such that
n∑
i=1

yixi + λ∗u∗ = 0, and ‖u∗‖2
2 = 1/

√
L. (78)

Hence, from eq. (76), and since ‖b1‖2
2 = 1/

√
L, we observe that b1 satisfies the KKT conditions in eq. (78).

We now turn towards proving the “if” part.

Note that (W1, · · · ,WL) = (a1b>1 , q1a2a>1 , · · · , qL−2aL−1a>L−2, qL−1a>L−1/L
1/4). Now, since b1 is a non-zero

KKT point of eq. (12), from Lemma 11, there exists λ∗ 6= 0 such that

n∑
i=1

yixi + λ∗b1 = 0, (79)

We will complete the proof by showing that for λ = q1:L−1λ
∗
(

1/
√
L
)L−2

/L1/4,

λWl +∇Wl

(
y>H(X; W1, · · · ,WL)

)
= 0,∀l ∈ [L]. (80)
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For l = 1, we have

λW1 +∇W1

(
y>H(X; W1, · · · ,WL)

)
= λa1b>1 +

n∑
i=1

W>
2 · · ·W

>
Lyix>i

= λa1b>1 + q1:L−1

n∑
i=1

a1a>2 a2a>3 · · ·aL−2a>L−1aL−1yix>i /L1/4

= λa1b>1 + q1:L−1

(
1√
L

)L−2 1
L1/4

n∑
i=1

a1yix>i

= λa1b>1 − q1:L−1λ
∗
(

1√
L

)L−2 1
L1/4 a1b>1 = 0,

where the penultimate equality follows from eq. (79). For 2 ≤ l ≤ L− 1, we have

λWl +∇Wl

(
y>H(X; W1, · · · ,WL)

)
= λql−1ala>l−1 +

n∑
i=1

W>
l+1 · · ·W

>
Lyix>i W>

1 · · ·W
>
l−1

= λql−1ala>l−1 + q1:l−2ql:L−1

L1/4

n∑
i=1

ala>l+1al+1a>l+2 · · ·aL−2a>L−1aL−1yix>i b1a>1 a1a>2 · · ·al−2a>l−1

= λql−1ala>l−1 + q1:l−2ql:L−1

L1/4

(
1√
L

)L−3
ala>l−1

n∑
i=1

yix>i b1.

= λql−1ala>l−1 −
q1:l−2ql:L−1

L1/4 λ∗
(

1√
L

)L−2
ala>l−1 = 0,

where the penultimate equality follows from eq. (79) and since ‖b1‖2
2 = 1/

√
L. Finally, for l = L, we have

λWL +∇WL

(
y>H(X; W1, · · · ,WL)

)
= λqL−1a>L−1/L

1/4 +
n∑
i=1

yix>i W>
1 · · ·W

>
L−1

= λqL−1a>L−1/L
1/4 + q1:L−2

n∑
i=1

yix>i b1a>1 a1a>2 · · ·aL−3a>L−2aL−2a>L−1

= λqL−1a>L−1/L
1/4 + q1:L−2

(
1√
L

)L−2 n∑
i=1

yix>i b1a>L−1

= λqL−1a>L−1/L
1/4 − q1:L−2λ

∗
(

1√
L

)L−1
a>L−1 = 0,

where the penultimate equality follows from eq. (79).

Case 2 (α 6= 1) : We begin by proving the “only if” part. Since σ(·) is 1−positively homogeneous, we have

σ(cp) = cσ(p), and σ(dq) = qσ(d), (81)

where c > 0, p is a vector, and d ∈ R, q is a vector with non-negative entries.

Now, from Lemma 5, for l ∈ [L− 2], we have

|al| = |bl+1|, and |aL−1| = L1/4|w|. (82)
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Now, since {al}L−1
l=1 , {bl}

L−1
l=2 are non-negative, aL−1 = L1/4|w|, and

al = bl+1,∀l ∈ [L− 2].

We next show that qaL−1 = L1/4w, for some q ∈ {−1, 1}. Since (W1, · · · ,WL) is a KKT point of eq. (10),
from Lemma 16, we have

0 ∈λWL + ∂WL

(
y>H(X; W1, · · · ,WL)

)
= λw> +

n∑
i=1

yi
(
φL−1
i

)>
, (83)

where φL−1
i = σ(WL−1 · · ·σ(W1xi) · · · ). Since {al}L−1

l=1 are non-negative, using eq. (81), we have

φL−1
i = σ(WL−1 · · ·σ(W1xi) · · · ) = σ(aL−1a>L−2σ(aL−2a>L−3 · · ·σ(a2a>1 σ(a1b>1 xi)) · · · )

= aL−1‖aL−2‖2
2‖aL−3‖2

2 · · · ‖a1‖2
2σ
L−1(b>1 xi).

Since ‖al‖2
2 = 1/

√
L,

0 = λw> +
(

1√
L

)L−2
(

n∑
i=1

σL−1(b>1 xi)yi

)
a>L−1.

From the above equality it is clear that w is parallel to aL−1. However, since aL−1 = L1/4|w|, we get
qaL−1 = L1/4w, for some q ∈ {−1, 1}.

From Lemma 16, we also have

0 ∈ λW1 + ∂W1

(
y>H(X; W1, · · · ,WL)

)
. (84)

Without loss of generality, we assume a11 > 0, where a11 denotes the first entry of a1. Let w11 denote the
first row of W. Then from the above equation we have

0 ∈ λa11b>1 + ∂w11

(
y>H(X; W1, · · · ,WL)

)
. (85)

Our goal is to simplify ∂w11

(
y>H(X; W1, · · · ,WL)

)
. Note that, for any W1, we have

H(xi; W1,W2, · · · ,WL) = qa>L−1σ(aL−1a>L−2σ(aL−2a>L−3 · · ·σ(a2a>1 σ(W1xi)) · · · ))/L1/4

= q‖aL−1‖2
2 · · · ‖a2‖2

2σ
L−2(a>1 σ(W1xi))/L1/4

= q

(
1√
L

)L−2
σL−2(a>1 σ(W1xi))/L1/4.

Next, choose W1 such that its equal to W1 everywhere except for the first row, and the first row is assumed
to be equal to w. Thus, we have

g(w) =: y>H(X; W1,W2, · · · ,WL)

= q

(
1√
L

)L−2 1
L1/4

n∑
i=1

yiσ
L−2

a11σ(w>xi) +
k1∑
j=2

a1jσ(a1jb>1 xi)

 .

Now, it is easy to see that

∂wg(a11b1) = ∂w11

(
y>H(X; W1, · · · ,WL)

)
. (86)

To compute ∂wg(a11b1), we first characterize g(w) near a11b1. If for some i ∈ [n], b>1 xi = 0, then

σL−2

a11σ(w>xi) +
k1∑
j=2

a1jσ(a1jb>1 xi)

 = σL−1(a11w>xi) = a11σ
L−1(w>xi).

33



Published in Transactions on Machine Learning Research (03/2025)

Next, if for some i ∈ [n], b>1 xi > 0, then w>xi > 0, if w is in a sufficiently small neighborhood of a11b1.
Further, since a11 > 0 and a1jσ(a1jb>1 xi) ≥ 0, for all j ≥ 2, we have

σL−2

a11σ(w>xi) +
k1∑
j=2

a1jσ(a1jb>1 xi)

 = σL−1(a11w>xi) + σL−2(
k1∑
j=2

a1jσ(a1jb>1 xi))

= a11σ
L−1(w>xi) + σL−2(

k1∑
j=2

a1jσ(a1jb>1 xi)).

The above equation can also be shown to be true if b>1 xi < 0 and w is in a sufficiently small neighborhood of
a11b1. Therefore, if w is in a sufficiently small neighborhood of a11b1, we have

∂wg(w) = q

(
1√
L

)L−2 1
L1/4 ∂w

(
a11

n∑
i=1

yiσ
L−1(w>xi)

)
= qa11

(
1√
L

)L−2 1
L1/4 ∂w

(
n∑
i=1

yiσ
L−1(w>xi)

)
.

Since a11 > 0 and
∑n
i=1 yiσ

L−1(w>xi) is 1−positively homogeneous in w, using Lemma 7,we get

∂wg(a11b1) = qa11

(
1√
L

)L−2 1
L1/4 ∂w

(
n∑
i=1

yiσ
L−1(a11b>1 xi)

)

= qa11

(
1√
L

)L−2 1
L1/4 ∂w

(
n∑
i=1

yiσ
L−1(b>1 xi)

)
. (87)

From eq. (86), eq. (85) and the above equation, we have

0 ∈ λb1 + q

(
1√
L

)L−2 1
L1/4 ∂w

(
n∑
i=1

yiσ
L−1(b>1 xi)

)
. (88)

Now, using Lemma 11, u∗ is a KKT point of

max
u

n∑
i=1

yiσ
L−1(x>i u), such that ‖u‖2

2 = 1/
√
L, (89)

if there exists λ∗ such that

0 ∈ ∂u

(
n∑
i=1

yiσ
L−1(x>i u∗)

)
+ λ∗u∗, and ‖u∗‖2

2 = 1/
√
L. (90)

Hence, from eq. (88), and since ‖b1‖2
2 = 1/

√
L, we get that b1 satisfies the KKT conditions in eq. (90).

We now turn towards proving the “if” condition.

Note that (W1, · · · ,WL) = (a1b>1 ,a2a>1 ,a3a>2 , · · · ,aL−1a>L−2, qa>L−1/L
1/4). Since b1 is a non-zero KKT

point of eq. (11), there exists a non-zero λ∗ such that

0 ∈ ∂u

(
n∑
i=1

yiσ
L−1(x>i b1)

)
+ λ∗b1. (91)

Multiplying the above inclusion by b>1 and using ‖b1‖2
2 = 1/

√
L, we get λ∗ = −

√
L
∑n
i=1 yiσ

L−1(x>i b1). We

will complete the proof by showing that for λ = qλ∗
(

1/
√
L
)L−2

/L1/4,

0 ∈ λWl + ∂Wl

(
y>H(X; W1, · · · ,WL)

)
,∀l ∈ [L]. (92)
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Let φli = σ(Wlσ(Wl−1 · · ·σ(W2σ(W1xi) · · · ))), for all i ∈ [n] and l ∈ [L−1]. Since {al}L−1
l=1 are non-negative,

using eq. (81), we have

φli = σ(Wlσ(Wl−1 · · ·σ(W2σ(W1xi) · · · )
= σ(ala>l−1σ(al−1a>l−2(· · ·σ(a2a>1 σ(a1b>1 xi)) · · · )
= ‖al−1‖2

2 · · · ‖a1‖2
2alσl(b>1 xi).

Now, using Lemma 16 and since ‖al‖2
2 = 1/

√
L, we have

λWL + ∂WL

(
y>H(X; W1, · · · ,WL)

)
= λqa>L−1/L

1/4 +
n∑
i=1

yi
(
φL−1
i

)>
= λqa>L−1/L

1/4 +
n∑
i=1

yi‖aL−2‖2
2 · · · ‖a1‖2

2a>L−1σ
L−1(b>1 xi)

=
(
qλ/L1/4 +

(
1√
L

)L−2 n∑
i=1

yiσ
L−1(b>1 xi)

)
a>L−1

=
(
qλ/L1/4 −

(
1√
L

)L−1
λ∗

)
a>L−1 = 0.

Next, for any Wl, where 2 ≤ l ≤ L− 1, we have

H(xi; W1, · · · ,Wl, · · ·WL) = WLσ(WL−1 · · ·σ(Wlσ(Wl−1 · · ·σ(W2σ(W1xi) · · · )
= qa>L−1σ(aL−1a>L−2 · · ·σ(Wlφ

l−1
i )/L1/4

= q

(
1√
L

)L−3
σL−l−1(a>l σ(Wlal−1σ

l−1(b>1 xi)))/L1/4.

Let wlj denote the j-th row of Wl, where j is arbitrary. Choose Wl such that it equal to Wl except for the
j-th row, and the j-th row is equal to wlj . Then

g1(wlj) =: y>H(X; W1, · · · ,Wl, · · ·WL)

= q

(
1√
L

)L−3 1
L1/4

n∑
i=1

yiσ
L−l−1

aljσ(w>ljal−1σ
l−1(b>1 xi)) +

∑
p=1,p6=j

a2
lp‖al−1‖2

2σ
l(b>1 xi)

 .

Thus, to prove eq. (92) for 2 ≤ l ≤ L− 1, we need to prove

0 ∈ λwlj + ∂wlj
(g1(wlj), ) for all j ∈ [kl].

Now, if alj = 0, then wlj = 0 and g1(wlj) is independent of wlj , which implies the above equation is
satisfied trivially. Now, if alj > 0, then w>ljal−1 = alj‖al−1‖2

2 > 0, which implies w>ljal−1 > 0 and hence,
σ(w>ljal−1σ

l−1(b>1 xi)) = w>ljal−1σ
l(b>1 xi), for all wlj in a sufficiently small neighborhood of wlj . Therefore,

g1(wlj) = q

(
1√
L

)L−3 1
L1/4

n∑
i=1

yiσ
L−l−1

aljw>ljal−1σ
l(b>1 xi) +

∑
p=1,p6=j

a2
lp‖al−1‖2

2σ
l(b>1 xi)


= q

(
1√
L

)L−3 1
L1/4

n∑
i=1

yiσ
L−1(b>1 xi)

aljw>ljal−1 +
∑

p=1,p6=j
a2
lp‖al−1‖2

2

 ,
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for all wlj in a sufficiently small neighborhood of wlj . The above equation implies

λwlj + ∂wlj
g1(wlj) = λaljal−1 + q

(
1√
L

)L−3 1
L1/4

n∑
i=1

yiσ
L−1(b>1 xi)aljal−1

= λaljal−1 − qλ∗
(

1√
L

)L−2 1
L1/4 aljal−1 = 0.

Now, for any W1, we have

H(xi; W1,W2, · · · , · · ·WL) = WLσ(WL−1 · · ·σ(W2σ(W1xi) · · · )
= qa>L−1σ(aL−1aL−2σ(· · ·a2a>1 σ(W1xi)/L1/4

= q

(
1√
L

)L−2
σL−2(a>1 σ(W1xi))/L1/4.

Let w1j denote the j-th row of W1, where j is arbitrary. Choose W1 such that it equal to W1 except for
the j-th row, and the j-th row is equal to w1j . Then

g2(w1j) =: y>H(X; W1,W2, · · · , · · ·WL)

= q

(
1√
L

)L−2 1
L1/4

n∑
i=1

yiσ
L−2

a1jσ(w>1jxi) +
∑

p=1,p6=j
a2

1pσ(b>1 xi)


Thus, to prove eq. (92) for l = 1, we need to prove

0 ∈ λw1j + ∂w1j (g2(w1j)) , for all j ∈ [k1].

Now, if a1j = 0, then w1j = 0 and g2(w1j) is independent of w1j , which implies the above equation is
satisfied trivially. If a1j > 0, then, using the same approach to get eq. (87), we get

∂w1jg2(w1j) = ∂wg2(a1jbj) = qa1j

(
1√
L

)L−2 1
L1/4 ∂w

(
n∑
i=1

yiσ
L−1(b>1 xi)

)
. (93)

Hence, using the above equation and eq. (91), we have

λw1j + ∂w1j

(
y>H(X; W1, · · · ,WL)

)
= λa1jb1 + ∂w1jg2(w1j)

= a1j

(
λb1 + q

(
1√
L

)L−2 1
L1/4 ∂w

(
n∑
i=1

yiσ
L−1(b>1 xi)

))
3 0,

which completes the proof.

C.3 Proof of Theorem 4

From Lemma 5 we know
pL−l/p̂ = ‖al‖4

2,∀l ∈ [L− 1], and ‖w‖2
2 = 1/p̂

where p̂ = pL−1 + pL−2 + · · ·+ 1.

Case 1 (α = 1) : We begin by proving the “only if” part. Since σ(·) is p−homogeneous,

σ(cp) = cpσ(p), σ′(p) = ppp−1 and σ(cp) = ppσ(c), (94)

where c ∈ R, p is a vector. Note that, in this case, σ(·) is positively and negatively homogeneous. Also, we
use (σq)′(·) to denote the derivative of σq(·), where q ∈ N.
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Now, from Lemma 5, for all l ∈ [L− 2],

|al| = p1/4|bl+1|, and |aL−1| = (pp̂)1/4|w| (95)

We next show that, for l ∈ [L − 1], each non-zero entry of al has identical absolute values. Let φli =
σ(Wl · · ·σ(W1xi) · · · ), for l ∈ [L− 1], then, using eq. (94),

φli = σ(Wl · · ·σ(W1xi) · · · ) = σ(alb>l σ(al−1b>l−1 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · )
= apl σ(b>l σ(al−1b>l−1 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · ) = apl c

l
i,

where cli := σ(b>l σ(al−1b>l−1 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · ) is a scalar. Since (W1, · · · ,WL) is a non-zero KKT
point of eq. (10), from Lemma 16 we have, for 2 ≤ l ≤ L− 1,

0 = λWl +∇Wl

(
y>H(X; W1, · · · ,WL)

)
= λalb>l +

n∑
i=1

eli
(
φl−1
i

)>
= λalb>l +

n∑
i=1

elicl−1
i

(
apl−1

)>
. (96)

Multiplying the above equation by a>l from the left gives us

0 = λ‖al‖2
2b>l +

(
n∑
i=1

a>l elicl−1
i

)(
apl−1

)>
. (97)

The above equation implies that bl is parallel to apl−1. Now, if p is even, then apl−1 is non-negative and thus,
the non-zero entries of bl must have same sign. Therefore, from eq. (95), we get

bl = ql|al−1|/p1/4, for some ql ∈ {−1, 1} and for all 2 ≤ l ≤ L− 1.

Else, if p is odd, then, apl−1 has the same sign as al−1, and thus, from eq. (95), we get

bl = qlal−1/p
1/4, for some ql ∈ {−1, 1} and for all 2 ≤ l ≤ L− 1.

The above equations and eq. (95), implies that a2
l−1 is parallel to a2p

l−1. Now, since p ≥ 2, therefore, for
l ∈ [L− 2], the non-zero entries of al have identical absolute values.

Choose l = L in eq. (96), and since eLi = yi, we get

0 = λw> +
n∑
i=1

yic
L−1
i

(
apL−1

)>
. (98)

Hence, w is parallel to apL−1. If p is even, then apL−1 is non-negative and thus, the non-zero entries of w must
have same sign. Therefore, from eq. (95), we get

w = qL|aL−1|/(pp̂)1/4, for some qL ∈ {−1, 1}.

Else, if p is odd, then, apL−1 has the same sign as al−1, and thus, from eq. (95), we get

w = qLaL−1/(pp̂)1/4, for some qL ∈ {−1, 1}.

The above equations and eq. (95), implies that a2
L−1 is parallel to a2p

L−1. Since p ≥ 2, the non-zero entries of
aL−1 have identical absolute values.

Next, from the KKT conditions, we have

0 = λW1 +∇W1

(
y>H(X; W1, · · · ,WL)

)
. (99)
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We now aim to simplify ∇W1

(
y>H(X; W1, · · · ,WL)

)
. For any W1, we have

H(xi; W1,W2, · · · ,WL) = WLσ(WL−1 · · ·σ(W2(σ(W1xi) · · · )
= w>σ(aL−1b>L−1 · · ·σ(a2b>2 σ(W1xi)) · · · )
= w>aL−1

(
ΠL−3
l=1 σ

l(b>L−la
p
L−l−1)

)
σL−2(b>2 σ(W1xi)).

Now,

∇W1σ
L−2(b>2 σ(W1xi)) = (σL−2)′(b>2 σ(W1xi))diag(σ′(W1xi))b2x>i ,

which implies, using eq. (94),

∇W1σ
L−2(b>2 σ(W1xi)) = (σL−2)′(b>2 ap1σ(b>1 xi))diag(σ′(a1b>1 xi))b2x>i

= (σL−2)′(σ(b>1 xi))(σL−2)′(b>2 ap1)σ′(b>1 xi)diag(σ′(a1))b2x>i
= (σL−1)′(b>1 xi)(σL−2)′(b>2 ap1)diag(σ′(a1))b2x>i ,

where the last equality follows by using chain rule on (σL−1)′(·). Let β1 = w>aL−1
(
ΠL−3
l=1 σ

l(b>L−la
p
L−l−1)

)
and β2 = (σL−2)′(b>2 ap1), then

∇W1

(
y>H(X; W1, · · · ,WL)

)
= β1β2

n∑
i=1

yi(σL−1)′(b>1 xi)diag(σ′(a1))b2x>i . (100)

Multiplying eq. (99) by a>1 from the left and using the above equation, we get

0 = λ‖a1‖2
2b>1 + β1β2

n∑
i=1

yi(σL−1)′(b>1 xi)a>1 diag(σ′(a1))b2x>i

= λ‖a1‖2
2b>1 + pβ1β2b>2 ap1

n∑
i=1

yi(σL−1)′(b>1 xi)x>i . (101)

Now, u∗ is a KKT point of

max
u

n∑
i=1

yiσ
L−1(x>i u), such that ‖u‖2

2 =
√
pL−1/p̂, (102)

if ‖u∗‖2
2 =

√
pL−1/p̂, and there exists λ∗ such that

0 =
n∑
i=1

yi(σL−1)′(x>i u∗)xi + λ∗u∗. (103)

From eq. (101) and since ‖b1‖2
2 =

√
pL−1/p̂, we observe that b1 is a non-zero KKT point of eq. (102).

We now turn towards proving the “if” part.

Note that (W1, · · · ,WL−1,WL) = (a1b>1 , · · · ,aL−1b>L−1,w>). Since b1 is a non-zero KKT point of

max
u

n∑
i=1

yiσ
L−1(x>i u), such that ‖u‖2

2 =
√
pL−1/p̂, (104)

then there exists λ∗ 6= 0 such that

0 =
n∑
i=1

yi(σL−1)′(x>i b1)xi + λ∗b1. (105)
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Our aim is to show that for some non-zero λ,

λWl +∇Wl

(
n∑
i=1

y>i H(xi; W1, · · · ,WL)
)

= 0,∀l ∈ [L]. (106)

Let λ̂ = y>H(X; W1, · · · ,WL), then, since
∑n
i=1 yiσ

L−1(b>1 xi) 6= 0, we get

y>H(X; W1,W2, · · · ,WL) =
n∑
i=1

yiw>σ(aL−1b>L−1 · · ·σ(a1b>1 xi) · · · )

= w>apL−1
(
ΠL−2
l=1 σ

l(b>L−la
p
L−l−1)

) n∑
i=1

yiσ
L−1(b>1 xi) 6= 0.

Define Zl = ∇Wl

(
y>H(X; W1, · · · ,WL)

)
. Since H(x; W1, · · · ,WL) is pL−l-homogeneous with respect to

Wl, from Lemma 7 we have

trace(W>
l Zl) = pL−ly>H(X; W1, · · · ,WL) = pL−lλ̂. (107)

Now, λ̂ 6= 0 implies ‖Zl‖F 6= 0, ∀l ∈ [L]. Suppose we are able to show

Zl/‖Zl‖F = Wl/‖Wl‖F ,∀l ∈ [L].

Then we can write Zl = αlWl, for some αl. Since ‖Wl‖2
F = pL−l/p̂, from eq. (107), we get

pL−lλ̂ = trace(W>
l Zl) = αl‖Wl‖2

F = αlp
L−l/p̂, (108)

which implies αl = p̂λ̂. Thus, eq. (106) holds for λ = −p̂λ̂. We next complete the proof by showing
Zl/‖Zl‖F = Wl/‖Wl‖F , for all l ∈ [L].

For any two matrices (or vectors) A,B, we say A ∝ B if A = sB, for some non-zero scalar s. We aim to
show Zl ∝Wl, which will imply Zl/‖Zl‖F = Wl/‖Wl‖F , for all l ∈ [L].

From eq. (100), eq. (105), and using eq. (94), we know

Z1 ∝
n∑
i=1

yi(σL−1)′(b>1 xi)diag(σ′(a1))b2x>i ∝ diag(σ′(a1))b2b>1 ∝ diag(ap−1
1 )b2b>1 . (109)

If p is odd, then p− 1 is even. In this case, since b2 = qla1/p
1/4 and the entries of a1 have identical absolute

values, diag(ap−1
1 )b2 ∝ b2 ∝ a1. Hence, Z1 ∝ a1b>1 ∝ W1. Now, if p is even, then p − 1 is odd. Since

b2 = q1|a1|/p1/4, we have diag(ap−1
1 )b2 ∝ a1, which implies Z1 ∝ a1b>1 ∝W1.

Next, as shown in eq. (98), we have

ZL ∝ (apL−1)>. (110)

If p is odd, then p− 1 is even. Since the entries of aL−1 have identical absolute values, the entries of (ap−1
L−1)

are identical and non-negative. Thus, apL−1 = diag(ap−1
L−1)aL−1 ∝ aL−1. Now, since w = qLaL−1/(pp̂)1/4, we

have apL−1 ∝ w, which implies ZL ∝WL. Next, if p is even, then apL−1 = |aL−1|p. Since the entries of aL−1

have identical absolute values, |aL−1|p ∝ |aL−1|. Also, since w = ql−1|aL−1|/(pp̂)1/4, we have apL−1 ∝ w,
which implies ZL ∝WL.

We next consider Zl, for 2 ≤ l ≤ L− 1, which requires some additional results. For any Wl, using eq. (94),

H(xi; W1, · · · ,Wl, · · ·WL) = WLσ(WL−1 · · ·σ(Wlσ(Wl−1 · · ·σ(W1xi) · · · )))
= w>σ(aL−1b>L−1 · · ·σ(Wlφ

l−1
i ))

= w>apL−1σ(b>L−1apL−2) · · ·σL−l−2(b>l+2apl+1)σL−l−1(b>l+1σ(Wlφ
l−1
i )),
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where

φl−1
i = σ(Wl−1 · · ·σ(W1xi) · · · ) = σ(al−1b>l−1σ(al−2b>l−2 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · ))

= apl−1σ(b>l−1σ(al−2b>l−2 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · ))
= apl−1σ

l−1(b>1 xi)σl−2(b>2 ap1) · · ·σ(b>l−1apl−2).

Hence,

Zl ∝ diag(σ′(Wlapl−1))bl+1(apl−1)> ∝ diag(ap−1
l )bl+1(apl−1)>.

Now, if p is odd, then p − 1 is even. Since the entries of al−1 have identical absolute values, (ap−1
l−1 )

have identical entries, and thus, apl−1 = diag(ap−1
l−1 )al−1 ∝ al−1. Also, since bl = ql−1al−1/p

1/4, we have
apl−1 ∝ bl. Furthermore, since bl+1 = qlal/p1/4 and the entries of al have identical absolute values,
diag(ap−1

l )bl+1 ∝ bl+1 ∝ al. Hence Zl ∝ alb>l ∝ Wl. Next, if p is even, then apl−1 = |al−1|p. Since the
entries of al−1 have identical absolute values, |al−1|p−1 have identical entries, and thus, |al−1|p ∝ |al−1|.
Also, since bl = ql−1|al−1|/p1/4, we have apl−1 ∝ bl. Furthermore, since bl+1 = ql|al|/p1/4, we have
diag(ap−1

l )bl+1 ∝ al, which implies Zl ∝ alb>l ∝Wl.

Case 2 (α 6= 1) : We begin by proving the “only if” part. Since σ(·) is p−positively homogeneous, therefore,

σ(cp) = cpσ(p), σ′(q) = pqp−1 and σ(dq) = qpσ(d), (111)

where c > 0, p is a vector, and d ∈ R, q is a vector with non-negative entries. Also, we use (σq)′(·) to denote
the derivative of σq(·), where q ∈ N.

From Lemma 5, for all l ∈ [L− 2],

|al| = p1/4|bl+1|, and |aL−1| = (pp̂)1/4|w|. (112)

Now, since the entries of {al}L−1
l=1 , {bl}

L−1
l=2 are non-negative, from eq. (112), we have bl = al−1/p

1/4, for
2 ≤ l ≤ L− 1, and |w| = aL−1/(pp̂)1/4.

We next show that, for l ∈ [L − 1], each non-zero entry of al has identical values. Let φli =
σ(Wl · · ·σ(W1xi) · · · ), for l ∈ [L− 1], for 1 ≤ l ≤ L− 1, then, using eq. (111),

φli = σ(Wl · · ·σ(W1xi) · · · ) = σ(alb>l σ(al−1b>l−1 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · )
= apl σ(b>l σ(al−1b>l−1 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · ) = apl c

l
i,

where cli := σ(b>l σ(al−1b>l−1 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · ) is a scalar. Since (W1, · · · ,WL) is a non-zero KKT
point of eq. (10), from Lemma 16 we have, for 2 ≤ l ≤ L− 1,

0 = λWl +∇Wl

(
y>H(X; W1, · · · ,WL)

)
= λalb>l +

n∑
i=1

eli
(
φl−1
i

)>
= λalb>l +

n∑
i=1

elicl−1
i

(
apl−1

)>
. (113)

Multiplying the above equation by a>l from the left gives us

0 = λ‖al‖2
2b>l +

(
n∑
i=1

a>l elicl−1
i

)(
apl−1

)>
. (114)

The above equation implies that bl is parallel to apl−1. Hence, from eq. (112), al−1 is parallel to apl−1. Now,
since p ≥ 2, and al has non-negative entries, we get that, for 1 ≤ l ≤ L− 2, the non-zero entries of al are
identical.
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From the KKT condition for l = L, we have

0 = λw> +
n∑
i=1

yicL−1
i

(
apL−1

)>
. (115)

Hence, w is parallel to apL−1. Since aL−1 has non-negative entries, we get that the entries of w have the same
sign. Therefore, from |w| = aL−1/(pp̂)1/4, we have w = qaL−1/(pp̂)1/4, for some q ∈ {−1, 1}. Also, aL−1 is
parallel to apL−1. Since p ≥ 2, and aL−1 has non-negative entries, the non-zero entries of aL−1 are identical.

Next, from the KKT conditions, we have

0 = λW1 +∇W1

(
y>H(X; W1, · · · ,WL)

)
. (116)

We now aim to simplify ∇W1

(
y>H(X; W1, · · · ,WL)

)
. For any W1, we have

H(xi; W1,W2, · · · ,WL) = WLσ(WL−1 · · ·σ(W2(σ(W1xi) · · · )
= w>σ(aL−1b>L−1 · · ·σ(a2b>2 σ(W1xi)) · · · )
= w>aL−1

(
ΠL−3
l=1 σ

l(b>L−la
p
L−l−1)

)
σL−2(b>2 σ(W1xi)).

Now,

∇W1σ
L−2(b>2 σ(W1xi)) = (σL−2)′(b>2 σ(W1xi))diag(σ′(W1xi))b2x>i ,

which implies, using eq. (111),

∇W1σ
L−2(b>2 σ(W1xi)) = (σL−2)′(b>2 ap1σ(b>1 xi))diag(σ′(a1b>1 xi))b2x>i

= (σL−2)′(σ(b>1 xi))(σL−2)′(b>2 ap1)σ′(b>1 xi)diag(σ′(a1))b2x>i
= (σL−1)′(b>1 xi)(σL−2)′(b>2 ap1)diag(σ′(a1))b2x>i ,

where the last equality follows by using chain rule on (σL−1)′(·). Let β1 = w>aL−1
(
ΠL−3
l=1 σ

l(b>L−la
p
L−l−1)

)
and β2 = (σL−2)′(b>2 ap1), then

∇W1

(
y>H(X; W1, · · · ,WL)

)
= β1β2

n∑
i=1

yi(σL−1)′(b>1 xi)diag(σ′(a1))b2x>i . (117)

Multiplying eq. (116) by a>1 from the left and using the above equation, we get

0 = λ‖a1‖2
2b>1 + β1β2

n∑
i=1

yi(σL−1)′(b>1 xi)a>1 diag(σ′(a1))b2x>i

= λ‖a1‖2
2b>1 + pβ1β2b>2 ap1

n∑
i=1

yi(σL−1)′(b>1 xi)x>i . (118)

Now, u∗ is a non-zero KKT point of

max
u

n∑
i=1

yiσ
L−1(x>i u), such that ‖u‖2

2 =
√
pL−1/p̂, (119)

if ‖u∗‖2
2 =

√
pL−1/p̂, and there exists λ∗ such that

0 =
n∑
i=1

yi(σL−1)′(x>i u∗)xi + λ∗u∗. (120)

From eq. (118) and since ‖b1‖2
2 =

√
pL−1/p̂, we observe that b1 is a non-zero KKT point of eq. (119).
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We now turn towards proving the “if” condition.

Note that (W1, · · · ,WL−1,WL) = (a1b>1 , · · · ,aL−1b>L−1,w>). Since b1 is a non-zero KKT point of

max
u

n∑
i=1

yiσ
L−1(x>i u), such that ‖u‖2

2 =
√
pL−1/p̂, (121)

then there exists λ∗ 6= 0 such that

0 =
n∑
i=1

yi(σL−1)′(x>i b1)xi + λ∗b1. (122)

Our aim is to show that for some non-zero λ,

λWl +∇Wl

(
n∑
i=1

y>i H(xi; W1, · · · ,WL)
)

= 0,∀l ∈ [L]. (123)

Let λ̂ = y>H(X; W1, · · · ,WL), then since
∑n
i=1 yiσ

L−1(x>i b1) 6= 0, we get

y>H(X; W1,W2, · · · ,WL) =
n∑
i=1

yiw>σ(aL−1b>L−1 · · ·σ(a1b>1 xi) · · · )

= w>apL−1
(
ΠL−2
l=1 σ

l(b>L−la
p
L−l−1)

) n∑
i=1

yiσ
L−1(b>1 xi) 6= 0.

Define Zl = ∇Wl

(
y>H(X; W1, · · · ,WL)

)
. Since H(x; W1, · · · ,WL) is pL−l-homogeneous with respect to

Wl, therefore, from Lemma 7,

trace(W>
l Zl) = pL−ly>H(X; W1, · · · ,WL) = pL−lλ̂. (124)

Now, λ̂ 6= 0 implies ‖Zl‖F 6= 0, ∀l ∈ [L]. Suppose we are able to show

Zl/‖Zl‖F = Wl/‖Wl‖F ,∀l ∈ [L].

Then we can write Zl = αlWl, for some αl. Since ‖Wl‖2
F = pL−l/p̂, from eq. (124), we get

pL−lλ̂ = trace(W>
l Zl) = αl‖Wl‖2

F = αlp
L−l/p̂, (125)

which implies αl = p̂λ̂. Thus, eq. (123) holds for λ = −p̂λ̂. We next complete the proof by showing
Zl/‖Zl‖F = Wl/‖Wl‖F , for all l ∈ [L].

For any two matrices (or vectors) A,B, we say A ∝ B if A = sB, for some non-zero scalar s. We aim to
show Zl ∝Wl, which will imply Zl/‖Zl‖F = Wl/‖Wl‖F , for all l ∈ [L].

From eq. (117), eq. (122), and using eq. (111), we know

Z1 ∝
n∑
i=1

yi(σL−1)′(b>1 xi)diag(σ′(a1))b2x>i ∝ diag(σ′(a1))b2b>1 ∝ diag(ap−1
1 )b2b>1 . (126)

Since b2 = a1/p
1/4 and the entries of a1 are identical and non-negative, diag(ap−1

1 )b2 ∝ b2 ∝ a1. Hence,
Z1 ∝ a1b>1 ∝W1.

Next, as shown in eq. (115), we have ZL ∝ (apL−1)>. Since w = qaL−1/(pp̂)1/4 and the entries of aL−1 are
identical and non-negative, apL−1 ∝ aL−1 ∝ w. Hence, ZL ∝WL.
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We next consider Zl, for 2 ≤ l ≤ L− 1, which requires some additional results. For any Wl, using eq. (111),

H(xi; W1, · · · ,Wl, · · ·WL) = WLσ(WL−1 · · ·σ(Wlσ(Wl−1 · · ·σ(W1xi) · · · )
= w>σ(aL−1b>L−1 · · ·σ(Wlφ

l−1
i ))

= w>apL−1σ(b>L−1apL−2) · · ·σL−l−2(b>l+2apl+1)σL−l−1(b>l+1σ(Wlφ
l−1
i )),

where

φl−1
i = σ(Wl−1 · · ·σ(W1xi) · · · ) = σ(al−1b>l−1σ(al−2b>l−2 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · )

= apl−1σ(b>l−1σ(al−2b>l−2 · · ·σ(a2b>2 σ(a1b>1 xi)) · · · )
= apl−1σ

l−1(b>1 xi)σl−2(b>2 ap1) · · ·σ(b>l−1apl−2).

Hence,

Zl ∝ diag(σ′(Wlapl−1))bl+1(apl−1)> ∝ diag(ap−1
l )bl+1(apl−1)>.

Since bl = al−1/p
1/4 and the entries of al−1 are identical and non-negative, apl−1 ∝ al−1 ∝ bl. Also,

since bl+1 = al/p1/4 and the entries of al are identical and non-negative, diag(ap−1
l )bl+1 ∝ al. Hence,

Zl ∝ alb>l ∝Wl.

C.4 Experimental details

This section provides more details about the experiments in this paper. They were conducted using PyTorch
Paszke et al. (2019), and the code is submitted along with the paper.

Training data. For our experiments, the training data consists of 100 points with inputs in R10, drawn
uniformly from the unit-norm sphere, and outputs in R, sampled i.i.d. from N (0, 1).

Algorithm. To obtain a KKT point of the constrained NCF, the NCF is maximized using projected gradient
ascent with sufficiently small step-size, i.e., after each gradient step, the weights are projected back to the
unit sphere. This is primarily done because gradient ascent can diverge to infinity. However, from Lemma 19,
it is known that, for homogeneous objectives, projected gradient ascent with fixed learning is equivalent to
gradient ascent with adaptive step-size up to a scaling factor. Hence, projected gradient ascent is also a valid
method to discretize gradient flow in this case.

Initialization. The initial weights are drawn uniformly at random from the unit norm sphere. Since gradient
flow can converge to the origin, we only choose those initial weights for which the NCF is positive, which
ensures gradient flow diverges to infinity (see proof of Lemma 2 and (Kumar & Haupt, 2024, Lemma 5.3)).

Stopping criterion. From Lemma 11, we know that at a first-order KKT point of the NCF, gradient of
the NCF will be aligned with the weights. We use this fact as the stopping criterion for our algorithm, that
is, we run the projected gradient ascent algorithm until the weights are sufficiently aligned with the gradient
of the NCF.
Remark 2. We make some changes to the algorithm when the activation function is not continuously
differentiable, such as ReLU or Leaky ReLU. Such activation functions require computation of the Clarke
subdifferential. However, the gradient computed using automatic differentiation provided in PyTorch uses
the chain rule of function differentiation,which may not give the true Clarke subdifferential for non-smooth
functions. As noted in Lemma 15, the true Clarke subdifferential belongs to a set which is obtained using
the chain rule. Therefore, when using such gradients, projected gradient ascent may not converge towards
a true KKT point which satisfies Lemma 11. To overcome this issue, a line of work has focused on the
behavior of stochastic gradient descent Bianchi et al. (2022); Bolte & Pauwels (2021). The authors of Bianchi
et al. (2022) show that the constant step-size stochastic gradient descent, where the gradient is computed
using automatic differentiation, asymptotically converges to the true KKT point, for almost all initializations.
They also derive similar result for stochastic projected gradient descent. Motivated by these results, we run
mini-batch stochastic projected gradient ascent for sufficiently long time, when the activation function is not
continuously differentiable such as ReLU or Leaky ReLU.
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(a) (b)

Figure 4: Early training dynamics of a three layer ReLU neural network. Panel (a): the evolution of training
loss (normalized with respect to loss at initialization) and the `2-norm of all the weights with iterations. Panel
(b): the evolution of ∇N (w̃(t))>w̃(t)/‖∇N (w̃(t))‖2 (a measure of directional convergence of w(t)). The loss
has barely changed, and the norm of weights remains small. Also, the weights approximately converge in
direction to a KKT point of the constrained NCF.

D Challenges for non-differentiable neural networks

Recall that Theorem 1 holds for neural networks with locally Lipschitz gradient, and thus excludes ReLU
neural networks. We first provide an empirical evidence that early directional convergence also occurs in
ReLU networks, and then briefly describe the challenges in extending Theorem 1 to ReLU networks.

Let σ(x) = max(x, 0). We train the following 3−homogeneous ReLU network H(x; W1,W2,v) =
v>σ(W2σ(W1x))), where W1 ∈ R20×20, W2 ∈ R30×20 and v ∈ R30. For training, we minimize the square
loss with respect to the output of a smaller neural network H∗(x; W∗

1,W∗
2,v∗) = 10 · v>∗ σ(|W∗

2|σ(W∗
1x)),

where the entries of W∗
1 ∈ R2×20, W∗

2 ∈ R2×2,v∗ ∈ R2×1 are drawn from standard normal distribution. The
training data has 100 points sampled uniformly from unit sphere in R20. We define w to be the vector that
contains all the entries of W1,W2 and v, w̃ = w/‖w‖2, and N (w) denotes the NCF for this case. The
network is trained for 64900 iterations using gradient descent with step-size 5 · 10−3, and the initialization
w(0) = δw0, where δ = 0.01 and w0 is a random unit norm vector. From Figure 4a, we observe that the
training loss does not change much, and the norm of the weights increases by a multiplicative factor but
remains small. Also, from Figure 4b, it is clear that the weights approximately converge in direction to a KKT
point of the constrained NCF. In Figure 5, we plot the normalized absolute value of the weights at initialization
and at iteration 64900. Similar to the experiment in Section 4.1.2, low-rank structure emerges among the
hidden weights of neural networks. In fact, the two largest singular values of W1/‖w‖2 and W2/‖w‖2 are
(0.5741, 0.0346) and (0.5772, 0.0067) respectively, indicating that they have approximately rank one.

We next describe the difficulty in extending Theorem 1 to ReLU networks. Consider a neural network that
satisfies Assumption 1, except that the gradient is not assumed to be locally Lipschitz (this will include
ReLU networks). Then, assuming square loss, we can define the gradient flow dynamics using the Clarke
subdifferential as follows

ẇ ∈
n∑
i=1

(yi −H(xi; w)) ∂H(xi; w),w(0) = δw0. (127)

It is also well-known that the Clarke differential of an L-homogeneous function is (L− 1)-homogeneous (Lyu
& Li, 2020, Theorem B.2). Thus, if we define s(t) = 1

δw
(

t
δL−2

)
, then similar to eq. (7), we can show that s(t)

will evolve according to

ṡ ∈
n∑
i=1

(yi − δLH (xi; s))∂H (xi; s) , s(0) = w0. (128)
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(a) At initialization

(b) At iteration 64900

Figure 5: Normalized absolute value of the weights at different stages of training

Further, the gradient flow for the NCF can be defined by the differential inclusion

u̇ ∈
n∑
i=1

yi∂H(xi; u),u(0) = w0. (129)

Following the proof sketch of Theorem 1 described in Section 4.1.1, to show approximate directional
converegence of w(t), we would need to first show that for small enough δ, the solutions of eq. (129) and
eq. (128) will be sufficiently small for a sufficiently long time. From comparing eq. (129) and eq. (128), it
is clear that for small δ, the two solutions will be close in the beginning. However, we can not claim that
the solutions will remain close for sufficiently long time by choosing small enough δ. In fact, the proof of
the analogous result in the context of Theorem 1 crucially relied on gradients being locally Lipschitz, which
is not the case here. We believe that proving this would be a crucial step towards establishing directional
convergence for ReLU networks, and defer it for future investigations.

E Additional lemmata

In the following lemma we show that for two-homogeneous neural networks, the gradient flow dynamics of
the NCF remains finite for any finite time.
Lemma 18. Let H(x; w) be a two-homogeneous neural network that satisfies first and third property of
Assumption 1. Suppose u(t) is a solution of

du
dt

= ∇Nz,H(u) = J (X; u)> z,u(0) = u0. (130)

Then, for any finite time T ≥ 0, ‖u(T )‖2 is finite.

Proof. Let β = sup{‖H(X; w)‖2 : w ∈ Sk−1}. Then

1
2
d‖u‖2

2
dt

= u>u̇ = u>J (X; u)> z = 2H (X; u)> z ≤ 2β‖u‖2
2‖z‖2,

where in the last equality we used Lemma 9, and the inequality follows from Cauchy-Schwartz. The above
equation implies ‖u(T )‖2

2 ≤ ‖u0‖2
2 + e4Tβ‖z‖2 , for T ≥ 0, which proves our claim.
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Lemma 19. Let F (w) be a q-homogeneous function, for some q ≥ 2. Consider the following two sequences:

v(t+ 1) = ct(v(t) + η∇F (v(t))),v(0) = w0, ct > 0,∀t ≥ 0, (131)

and

u(t+ 1) = u(t) + ηt∇F (u(t)),u(0) = w0, η0 = η, ηt = η
(
Πt−1
m=0cm

)L−2
,∀t ≥ 0. (132)

Then, for all T ≥ 1, v(T ) =
(
ΠT−1
t=0 ct

)
u(T ).

Proof. We prove this via induction. The claim is true for T = 1, since

v(0) = w0 = u(0), and v(1) = c0(v(0) + η∇F(v(0))) = c0u(1).

Suppose the claim holds for some t0 > 1. Then, we have

v(t0) =
(
Πt0−1
t=0 ct

)
u(t0). (133)

Now,

u(t0 + 1) = u(t0) + ηt0∇F (u(t0)).

and

v(t0 + 1) = ct0(v(t0) + η∇F (v(t0)))

= ct0(
(
Πt0−1
t=0 ct

)
u(t0) + η

(
Πt0−1
t=0 ct

)L−1∇F (u(t0)))

= ct0
(
Πt0−1
t=0 ct

)
(u(t0) + η

(
Πt0−1
t=0 ct

)L−2∇F (u(t0)))
=
(
Πt0
t=0ct

)
(u(t0) + ηt0∇F (u(t0))) =

(
Πt0
t=0ct

)
u(t0 + 1),

which completes the proof.

If we choose ct = 1/‖v(t)+η∇F (v(t))‖2 in eq. (132), then eq. (132) becomes the iterates of projected gradient
ascent with constant step-size. Therefore, the above lemma shows that, for homogeneous objectives, projected
gradient ascent with fixed step-size is equivalent to gradient ascent with adaptive step-size, up to a scaling
factor. Consequently, for any finite T , the direction of v(T ) and u(T ) will be the same.
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