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ABSTRACT

This work studies the task of poisoned sample detection for defending against
data poisoning based backdoor attacks. Its core challenge is finding a generaliz-
able and discriminative metric to distinguish between clean and various types of
poisoned samples (e.g., various triggers, various poisoning ratios). Inspired by
a common phenomenon in backdoor attacks that the backdoored model tend to
map significantly different poisoned and clean samples within the target class to
similar activation areas, we introduce a novel perspective of the circular distribu-
tion of the gradients w.r.t. sample activation, dubbed gradient circular distribution
(GCD). And, we find two interesting observations based on GCD. One is that the
GCD of samples in the target class is much more dispersed than that in the clean
class. The other is that in the GCD of target class, poisoned and clean samples
are clearly separated. Inspired by above two observations, we develop an innova-
tive three-stage poisoned sample detection approach, called Activation Gradient
based Poisoned sample Detection (AGPD). First, we calculate GCDs of all classes
from the model trained on the untrustworthy dataset. Then, we identify the target
class(es) based on the difference on GCD dispersion between target and clean
classes. Last, we filter out poisoned samples within the identified target class(es)
based on the clear separation between poisoned and clean samples. Extensive
experiments under various settings of backdoor attacks demonstrate the superior
detection performance of the proposed method to existing poisoned detection ap-
proaches according to sample activation-based metrics. Codes are available at
https://github.com/SCLBD/BackdoorBench (PyTorch)

1 INTRODUCTION

It is well known that deep neural networks (DNNs) are vulnerable to backdoor attacks (Wu et al.,
2023), where the adversary could inject a particular backdoor into the DNN model through manipu-
lating the training dataset or training process. Consequently,the backdoored model will produce a
target label when encountering a particular trigger pattern, leading to unexpected security threats in
practice. Protecting DNNs from backdoor attacks is an urgent and important task.

Here we focus on defending against the data-poisoning based backdoor attacks by filtering out the
potential poisoned samples from a untrustworthy training dataset, i.e., poisoned sample detection
(PSD). One of the main challenges for PSD is the information lack of the potential poisoned samples,
such as the trigger type, the target class(es), the number of poisoned samples, etc. Some seminal
works have been developed by exploring some discriminative metrics based on the intermediate
activation or predictions of poisoned and clean samples in the backdoored model trained on the
untrustworthy dataset, such as activation clustering (AC) (Ma et al., 2023a), STRIP (Gao et al., 2019),
SCAn (Tang et al., 2021). However, the assumption that poisoned and clean samples can be distinctly
separated in activation space has been challenged in some recent backdoor attacks (Qi et al., 2023a).
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In this work, we introduce a novel perspective that distinguishes the behavior of poisoned and clean
samples by tracking their activation gradients (i.e., the gradient w.r.t. activation). It is inspired by the
phenomenon that a backdoored model tends to map both poisoned and clean samples within the target
class to similar areas in its activation space (Huang et al., 2022), such that they can be predicted as
the same label. Considering the significant discrepancy between poisoned and clean samples in their
original input space, their mapping directions should be significantly different, while the mapping
direction could be reflected by the activation gradient direction. Thus, we define a new concept called
gradient circular distribution (GCD) (introduced in Sec. 3), to capture the distribution of activation
gradient directions. Take Fig. 1 as the example, given a trained model, we calculate one GCD of
training samples in each class. There are two interesting observations:

• Observation 1 on GCD dispersion: Given one backdoored model (see middle/right sub-figures),
the target GCD is much more dispersed than GCDs of all clean classes.

• Observation 2 on sample separation in target GCD: In the GCD of target class, poisoned and
clean samples are clearly separated (see the black and blue arcs in middle/right sub-figures), and
they locate at two separated clusters.

Figure 1: Gradient circular distributions (GCDs)
across four classes of CIFAR-10, on the clean model
(left), Blended attacked model (middle), and SSBA
attacked model (right), respectively. The value
along with each arc indicates the CVBT value. The
GCD of the target class (covering both black and
blue arcs). Note that we moved three clean classes’
arcs to different quadrants to avoid visual overlap.

Motivated by above two observations, we de-
velop an innovative poisoned sample detection
approach, called Activation Gradient based
Poisoned sample Detection (AGPD), which
consist of three stages. First, we train a DNN
model based on the untrustworthy dataset, and
calculate GCDs of all classes. Second, we iden-
tify the target class(es) according to a novel
class-level metric that measures the dispersion
of each class’s GCD (corresponding to the first
observation). Last, within the identified target
class(es), we gradually filter out poisoned sam-
ples according to a novel sample-level metric
that measures the closeness to the clean ref-
erence sample (corresponding to the second
observation). Moreover, we conduct extensive
evaluations under various backdoor attacks and various datasets, and show that the activation gradient
is more discriminative than the activation to distinguish between poisoned and clean samples, which
explains the superior.

In summary, the main contributions of this work are three-fold. (1) We introduce a novel perspective
for poisoned sample detection, called gradient circular distribution (GCD), and present two interesting
observations based on GCD. (2) We develop an innovative approach by sequentially identifying the
target class(es) and filtering poisoned samples for the poisoned sample detection task, based on GCD
and two novel metrics about GCD. (3) We conduct extensive evaluations and analysis to verify the
superiority of the proposed approach to existing activation-based detection approaches.

2 RELATED WORK

Backdoor attack. BadNets (Gu et al., 2019) is the pioneering work that introduces the concept of
backdoor attack into Deep Neural Networks (DNNs), in which the adversary manipulates training
samples by adding a small patch with specific patterns and changing their labels to a target label.
Following this, the variety of triggers expanded significantly, including a cartoon image used in
Blended (Chen et al., 2017), a universal adversarial perturbation with only low-frequency components
utilized in Low-Frequency (Zeng et al., 2021), and a sinusoidal signal employed in SIG (Barni
et al., 2019), etc, which use same trigger across different poisoned samples. Sample-specific triggers
have been designed, such as WaNet (Nguyen & Tran, 2021), Input-Aware (Nguyen & Tran, 2020),
SSBA (Li et al., 2021b), CTRL (Li et al., 2023), TaCT (Tang et al., 2021), and Adap-Blend (Qi et al.,
2023a). These attacks use more complex and dynamic triggers, posing significant challenges for
poisoned sample detection. Additionally, some attacks explore various attack settings regarding the
number of triggers and target classes, such as all-to-all attack (e.g., BadNets-A2A (Gu et al., 2019)),
multi-target and multi-trigger attack (e.g., c-BaN (Salem et al., 2022)). These diverse settings further
complicate the detection of poisoned samples.
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Backdoor defense. According to the accessible information, several different branches of backdoor
defense methods have been developed, such as the pre-training backdoor defense (e.g.,(Ma et al.,
2023a; Tran et al., 2018; Al Kader Hammoud et al., 2023)) if given a untrustworthy training dataset,
in-training backdoor defense (e.g.,(Huang et al., 2022; Li et al., 2021a; Chen et al., 2022; Mu et al.,
2023; Gao et al., 2023)) if the training process can be controlled by defender, as well as post-training
backdoor defense (e.g.,(Liu et al., 2018; Zhu et al., 2023b;a; Wei et al., 2023; Wang et al.; Wu
& Wang, 2021; Zeng et al., 2022; Zheng et al., 2022b; Chai & Chen, 2022; Zheng et al., 2022a))
if given a backdoored model. Due to space limitations, we will only review existing methods of
poisoned sample detection (PSD), which belongs to pre-training backdoor defense. Most existing
PSD methods aim to construct discriminative metrics between poisoned and clean samples based
on intermediate activations, �nal predictions, or loss values. For activation-based methods, such as
activation clustering (AC) (Ma et al., 2023a), Beatrix (Ma et al., 2023b), SCAn (Tang et al., 2021), and
Spectral (Tran et al., 2018), they utilize dimensionality reduction and clustering techniques, such as
K-means clustering, Gram matrix analysis, two-component decomposition, and SVD, to distinguish
poisoned and clean samples. For input-based methods, STRIP (Gao et al., 2019) uses the entropy of
predictions on perturbed inputs to identify poisoned samples, while CD (Huang et al., 2023) measures
theL 1 norm of the learned masks on inputs to detect poisoned samples. For loss-based methods, like
ABL (Li et al., 2021a) and ASSET (Pan et al., 2023), they observed that the loss of poisoned samples
decreases quickly during the early training epochs, leveraging this phenomenon to identify poisoned
samples.

3 PRELIMINARY : GRADIENT CIRCULAR DISTRIBUTION

Task setting. Given a DNN-based classi�cation modelf w : X ! Y , with X 2 Rd being the input
sample space andY = f 1; 2; : : : ; K g being the output space withK candidate classes, as well as a
datasetD = f (x i ; yi )gn

i =1 , we investigate their gradients off w .

3.1 DEFINITION OF GRADIENT CIRCULAR DISTRIBUTION

Here we introduce the de�nitions of Activation Gradient and Gradient Circular Distribution (GCD),
as described in De�nition 1 and De�nition 2, respectively.

De�nition 1 (Activation Gradient) Given a modelf w , for a samplex labelled asy, we denote its
activation map at thel-th layer ash ( l )

x 2 RC ( l ) � H ( l ) � W ( l )
, whereC( l ) , H ( l ) , W ( l ) are its depth

(number of channels), height and width, respectively. Then, we de�ne thechannel-wise activation
gradientg( l ) (x ; y) 2 RC ( l )

as

g( l )
w (x ; y) =

1
H ( l ) W ( l )

H ( l )
X

h=1

W ( l )
X

w=1

@[f w (x )]y

@[h ( l )
x ]:;h;w

2 RC ( l )
; (1)

where[f w (x )]y is the logit w.r.t. classy and[h ( l )
x ]:;h;w 2 RC ( l )

is the activation sliced at heighth
and widthw over all channels. For simplicity, if no special speci�cations are required, hereafter we
will refer to it asg( l ) (x ) for each layerl .

De�nition 2 (Gradient Circular Distribution (GCD)) Given a modelf w (�), a set of samplesD =
f (x i ; yi )gn

i =1 , and a basis sample pair(x 0; y0), we �rstly calculate the activation gradient of each
sample for each layerl , i.e.,g( l ) (x i ) i = 0 ; 1; : : : ; n. Then, takeg( l ) (x i ) as the (unnormalized)
basis vector, the angle of each sample inD is calculated as follows:

� ( l )
x 0

(x i ) = arccos
�

g( l ) (x i ) � g( l ) (x 0)
kg( l ) (x i )kkg( l ) (x 0)k

�
2 [0; 2� ); i = 1 ; : : : ; n; (2)

where� denotes dot product, andk � k returns the magnitude. The distribution of the angle set
f � ( l )

x 0 (x i )gn
i =1 is called as the gradient circular distribution (GCD) ofD, denoted asP ( l )

x 0 (D) for
each layerl .

3.2 CHARACTERISTICS OF GRADIENT CIRCULAR DISTRIBUTION

To accurately capture the characteristics ofP ( l )
x 0 (D) observed in Fig. 1 and Sec. 1, we introduce the

following two metrics.
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Dispersion and separation metric ofP ( l )
x 0 (D). To measure the dispersion and separation of

P ( l )
x 0 (D) for each layerl , we design a novel metric calledCosine similarityVariation towards

BasisTransition(CVBT). Speci�cally, givenf � ( l )
x 0 (x i )gn

i =1 , we �rstly pick the activation gradient
g( l ) (x n � ) corresponding to the largest angle,i.e.,n� = arg max i 2f 1;:::;n g � ( l )

x 0 (x i ). In other words,
g( l ) (x n � ) is the farthest activation gradient vector from the original basis vectorg( l ) (x 0). Then,
by settingg( l ) (x n � ) as a new basis vector, we calculatef � ( l )

x n � (x i )gn
i =1 using Eq. (2). Based on

f � ( l )
x 0 (x i )gn

i =1 andf � ( l )
x n � (x i )gn

i =1 , we formulate the CVBT metric ofP ( l )
x 0 (D) as follows:

� ( l )
x 0

(D) =
�

1
n

nX

i =1

�
cos(� ( l )

x 0
(x i )) � cos(� ( l )

x n � (x i ))
� 2

� 1
2

2 [0; 2]; (3)

wherecos(� ) returns the cosine value of an angle� . Note that� ( l )
x 0 (D) is positively proportional to

dispersion and separation,i.e., larger� ( l )
x 0 (D) indicates larger dispersion and larger separation of

P ( l )
x 0 (D). More in-depth analysis will be presented later.

Sample-level closeness metric based onP ( l )
x 0 (D) . Givenf � ( l )

x 0 (x i )gn
i =1 andf � ( l )

x n � (x i )gn
i =1 , we

design a novel metric to measure the closeness of each samplex i to the reference samplex 0, as
follows:

s( l )
x 0

(x i ) =
1 � cos(� ( l )

x n � (x i ))

(1 � cos(� ( l )
x n � (x i )) + (1 � cos(� ( l )

x 0 (x i ))
2 [0; 1): (4)

Note thatlarger s( l )
x 0 (x i ) indicates greater closeness ofx i to x 0. For example, ifg( l ) (x i ) has

the same direction withg( l ) (x n � ) while the opposite direction withg( l ) (x 0), thens( l )
x 0 (x i ) = 0 ,

implying the farthest fromx 0. In contrast, ifg( l ) (x i ) has the opposite direction withg( l ) (x n � ) while
the same direction withg( l ) (x 0), thens( l )

x 0 (x i ) = 1 , implying the closest tox 0.

Remark. Note that the single basis vectorg( l ) (x n � ) in above two metrics could be extended to
be a set of basis vectors,i.e., Gm = f g( l ) (x n �

j
)gj =1 ;:::;m , by picking the activation gradients of

top-m largest angles amongf � ( l )
x 0 (x i )gi =1 ;:::;n . Correspondingly, above two metrics are adjusted by

replacing each basis vector to the original metrics, then calculating the average. This extension's
effect will be analyzed in later evaluations about adaptive attacks.

4 ACTIVATION GRADIENT BASED POISONED DETECTION METHOD

4.1 PROBLEM SETTING

Threat model. We consider the threat model of data poisoning based backdoor attack. The
adversary generates a poisoned datasetDbd, containing a clean subsetDc = f (x i ; yi )g

n c
i =1 and a

poisoned subsetDp = f ( ~x i ; t)gn p
i =1 . x ; ~x 2 X denotes the clean and poisoned sample with trigger,

respectively.y; t 2 Y indicates the ground-truth and target label, respectively. We denoter = n p

n c + n p

as the poisoning ratio. Note that there could be multiple triggers (i.e.,multi-trigger) and multiple
target labels (i.e.,multi-target) in the poisoned subset.

Defender's goal. The defender aims to identify poisoned samples from the untrustworthy dataset
Dbd. We assume that the defender has access toDbd, and a small set of additional clean samplesDac ,
which contains at least one clean sample for each class, as suggested in previous works (Ma et al.,
2023b)(Tang et al., 2021)(Gao et al., 2019). Besides, the defender has the capability to train a DNN
modelf w bd : X ! Y based onDbd.

4.2 POISONED SAMPLE DETECTION METHOD

Inspired by the two observations demonstrated in Sec. 1 and Fig. 1, we develop an innovative
poisoned sample detection method by utilizing GCD and the corresponding metrics (see Sec. 3),
calledActivation Gradient basedPoisonedDetection(AGPD). As illustrated in Fig. 2, AGPD
consists of three stages, as detailed below.
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Figure 2: Illustrations of gradient circular distribution (GCD) and two metrics, and the pipeline
of the proposed APGD method which consists of three stages: 1) calculating activation gradient
distribution, 2) identifying target class(es), and 3) �ltering out poisoned samples within the identi�ed
target class(es).

Stage 1: Calculating activation gradient distribution. We denote the samples of classk in Dbd
asDk

bd = f (x i ; k)gn k
i =1 . Given the modelf w bd trained onDbd (the training details will be provided in

Appendix B.2 ), and picking one clean sample pair(x k
0 ; k) 2 D ac as the reference, we can calculate

the GCD ofDk
bd, according to Eqs. (1) and (2). Consequently, we obtainfP ( l )

x k
0
(Dk

bd)gL;K
l;k =1 ;1. Note

that as de�ned in Eq. (1), the superscript(l ) indicates that we adopt the activation gradients of the
l-th layer inf w bd to calculate GCD. For simplicity, hereafter we denoteP ( l )

x k
0
(Dk

bd) asP ( l )
k .

Stage 2: Identifying target class(es). According to the aforementioned �rst observation, the GCD
of the target class is likely to be more dispersed than that of the clean class. Thus, we �rstly calculate
the dispersion value� ( l )

x k
0
(Dk

bd) (for simplicity, we denote it as� ( l )
k ) of eachP ( l )

k , according to the

CVBT metric (see Eq. (3)). As shown in Fig. 2, since� ( l )
k of target class(es) is likely to be larger ,

while those of clean classes are likely to be small, we can adopt the anomaly detection technique to
identify target class(es), such as the absolute robust Z-score (Iglewicz & Hoaglin, 1993). Speci�cally,
we calculate Z-score of� ( l )

k as follows:

z( l )
k =

� ( l )
k � ~� ( l )


 � MAD( f � ( l )
k gK

k=1 )
; (5)

whereMAD( f � ( l )
k g) = median( fj � ( l )

k � ~� ( l ) jg) indicates the median-absolute-deviation (MAD),

and~� ( l ) denotes the median value off � ( l )
k gK

k=1 . 
 is a statistical constant valued at 1.4826. Larger

z( l )
k indicates larger likelihood of anomaly. We �rstly choose the layer with the largest Z-score,i.e.,

l � = arg max l (maxk z( l )
k ). Then,if z( l � )

k exceeds a threshold� z (speci�ed later), i.e.,z( l � )
k � � z ,

k is identi�ed as a target class, otherwise clean class.

Stage 3: Filtering out poisoned samples within the identi�ed target class(es).Inspired by the
second observation mentioned in Sec. 1 that the poisoned sample is likely to be far from the clean
sample in GCD, here develop a novel algorithm which gradually �lters out poisoned samples with
the identi�ed target class(es). Speci�cally, as illustrated in Fig. 2, when obtained the identi�ed target
classk� , we �rstly pick one clean sample pair of classk� from Dac as the reference(x 0; k� ), then
we conduct the following three steps iteratively, until a stopping criteria is satis�ed:

1. For the setDk �

bd , we calculate its GCD according to De�nition 2,i.e.,P ( l � )
k � ;

2. We calculate sample-level closeness valuesx 0 (x i ) for eachx i 2 D k �

bd ;
3. If the closeness value of one sample is lower than threshold� s (speci�ed in experiments),i.e.,

sx 0 (x i ) < � s, then this sample is identi�ed as poisoned, as it is far from the clean referencex 0.
Then,Dk �

bd is updated by removing these identi�ed poisoned samples.

In terms of the stopping criteria, we propose to �rstly conduct the above iterations untilDk �

bd becomes a
null set. At each iteration, we calculate the distribution off sx 0 (x i )gx i 2D k �

bd
, and the Jensen–Shannon

5



Published as a conference paper at ICLR 2025

Table 1: The detection performance of AGPD and compared detectors on CIFAR-10 and Tiny
ImageNet, respectively, with the model Preact-ResNet18.

Dataset Attack
No defense AC Beatrix SCAn Spectral STRIP ABL CD ASSET AGPD (Ours)
ACC/ASR TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1"

C
IF

A
R

-1
0

BadNets 91.82/93.79 0.00 0.00 0.00 87.24 8.95 65.1596.04 0.00 97.9816.76 1.30 26.0990.16 10.19 63.9789.74 1.14 89.7478.02 43.87 27.243.16 47.66 1.1990.06 0.03 94.65
Blended 93.69/99.75 0.00 0.00 0.00 47.60 5.07 49.2899.62 0.00 99.81 28.04 0.05 43.6461.42 11.31 46.6782.14 1.98 82.1485.06 49.62 26.933.70 12.66 3.4099.98 0.02 99.88

LF 93.01/99.05 0.00 0.00 0.00 0.00 10.72 0.0095.58 0.01 97.71 0.04 3.16 0.06 86.92 10.09 62.5945.48 6.06 45.4888.44 24.33 43.423.80 10.28 3.8799.80 0.07 99.60
SSBA 92.88/97.06 0.00 0.00 0.00 10.26 8.54 10.9797.34 0.01 98.60 27.14 0.15 42.2477.42 11.71 54.7567.38 3.62 67.3891.30 3.76 81.123.56 46.36 1.3799.62 0.04 99.63
SIG 93.40/95.43 0.00 0.00 0.00 0.00 0.00 0.00 99.52 0.00 99.74 0.00 1.58 0.00 99.44 9.68 51.8890.80 5.75 60.5385.88 21.28 45.510.48 32.73 0.13100.0 0.04 99.66

CTRL 95.52/98.8 0.00 9.92 0.00 0.00 6.26 0.00 0.00 5.00 0.00 0.40 15.77 0.2099.80 9.47 52.5790.32 5.77 60.2199.44 0.55 97.31 67.88 51.60 11.8299.76 0.01 99.78
WaNet 89.68/96.94 0.00 2.77 0.00 0.92 9.74 0.94 87.39 0.07 92.96 0.90 2.97 1.38 1.22 9.13 1.28 18.92 9.08 18.3186.88 79.77 19.200.55 1.22 1.01 97.80 0.31 97.40

Input-Aware 90.82/98.17 0.00 3.31 0.00 0.41 10.92 0.3999.15 0.47 97.361.51 2.90 2.34 0.81 9.07 0.86 0.17 11.02 0.1782.85 18.99 46.842.82 60.13 0.9088.25 1.13 88.61
TaCT 93.21/95.95 0.00 0.00 0.00 75.94 19.98 42.69100.0 0.00 99.9929.76 0.03 45.78 67.60 8.59 55.2033.80 7.36 33.8080.52 53.90 24.19 7.74 59.90 2.64100.0 0.07 99.68

Adap-Blend 92.87/66.17 0.00 0.00 0.00 4.62 8.33 5.14 99.16 1.15 94.66 24.34 0.47 37.8514.66 11.82 13.270.08 11.10 0.00 0.00 0.00 0.00 97.22 39.52 37.8889.32 0.33 92.89
BadNets-A2A91.93/74.4028.76 4.51 33.9640.28 9.25 36.040.00 0.00 0.00 0.00 1.67 0.00 1.80 17.08 1.41 2.48 10.84 2.4867.20 45.72 23.23 3.32 3.31 4.99 97.32 0.02 98.57
SSBA-A2A 93.46/87.8450.02 2.66 57.5119.04 5.26 22.880.00 0.00 0.00 0.00 1.67 0.00 12.74 9.87 12.640.08 11.00 0.9675.54 44.43 26.2648.74 49.56 16.3998.06 0.02 98.95

Avg. 6.57 1.93 7.62 23.86 8.58 19.46 72.82 0.56 73.23 10.74 2.64 16.63 51.17 10.67 34.76 43.45 7.06 38.43 76.76 32.18 38.44 20.25 34.58 7.13 96.66 0.17 97.44

Ti
ny

Im
ag

eN
et

BadNets 56.12/99.90 0.00 0.40 0.00 1.11 9.64 1.18 100.0 0.00 100.014.04 0.18 24.28100.0 11.51 65.8995.49 0.50 95.4966.91 51.31 21.2895.11 38.62 35.0599.90 0.16 99.24
Blended 55.53/97.57 0.00 1.26 0.00 0.53 10.06 0.5599.85 0.00 99.9211.45 0.47 19.8096.51 11.89 63.5990.18 1.09 90.1893.29 9.94 66.0078.53 60.74 21.66100.0 0.05 99.78

LF 55.21/98.5115.05 1.26 23.8219.36 9.15 19.2063.86 0.00 77.94 11.35 0.48 19.6285.97 9.72 62.8887.44 1.40 87.4495.22 6.65 74.6554.28 50.69 17.78100.0 0.10 99.56
SSBA 55.97/97.69 0.00 1.05 0.00 0.45 8.70 0.50 59.11 0.00 74.30 13.97 0.19 24.1599.96 11.20 66.4695.24 0.53 95.2488.07 20.94 46.7826.90 57.36 8.3799.89 0.04 99.75
WaNet 58.33/90.3513.73 0.80 22.6075.94 11.88 52.2362.72 0.00 77.09 11.37 0.45 19.656.38 11.11 5.9794.40 1.27 91.3576.73 20.18 42.830.00 15.12 0.0099.77 0.12 99.30

Input-Aware 57.5/99.75 0.00 0.68 0.00 64.97 10.30 49.1399.65 0.00 99.8212.92 0.29 22.3212.02 11.08 10.9772.52 3.53 70.1880.22 28.93 36.413.07 5.97 3.97 99.89 0.04 99.73
TaCT 54.93/91.25 0.00 1.02 0.00 45.51 10.13 38.45100.0 0.00 100.015.48 0.03 26.75 80.03 16.37 48.9032.25 7.53 32.2599.58 99.45 18.1935.77 56.31 12.2099.99 0.43 98.11

Adap-Blend 54.55/96.35 0.00 0.82 0.00 9.56 9.39 9.85 47.24 0.05 63.98 15.14 0.06 26.18 77.73 15.85 48.52 8.97 10.11 8.9773.69 39.65 27.7771.95 49.92 25.1999.96 0.17 99.24
Avg. 3.60 0.91 5.80 27.18 9.91 21.39 79.05 0.01 86.63 13.21 0.27 22.84 69.83 12.34 46.65 72.06 3.24 71.39 84.21 34.63 41.74 45.70 41.84 15.53 99.92 0.14 99.34

(JS) divergence between the current and its previous distribution. Then, we adopt a trace-back strategy
by checking the JS divergence value of all iterations, and the iteration that its JS divergence locates at
the stable and low region could be set as the stopping iteration. Due to the space limit, more details
of the whole algorithm, as well as the stopping criteria, will be presented in Appendix D.1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Attack settings. To evaluate the performance of our detection method, we conduct 10 state-of-the-
art (SOTA) backdoor attacks that cover 4 categories: 1)non-clean label with sample-agnostic trigger,
such as BadNets (Gu et al., 2019), Blended (Chen et al., 2017), LF (Zeng et al., 2021); 2)clean-label
with sample-agnostic trigger, like SIG (Barni et al., 2019); 3)clean-label with sample-speci�c trigger,
such as CTRL (Li et al., 2023), an attack based on self-supervised learning; and 4)non-clean label
with sample-speci�c trigger, including SSBA (Li et al., 2021b), WaNet (Nguyen & Tran, 2021),
Input-Aware (Nguyen & Tran, 2020), TaCT (Tang et al., 2021), and Adap-Blend (Qi et al., 2023a).
These attack settings follow BackdoorBench (Wu et al., 2022) for a fair comparison. The poisoning
ratio in our main evaluation is 10% for non-clean label attacks and 5% for clean label attacks. The
target labelt is set to0 for all-to-one backdoor attack, while target labels are set tot = ( y + 1)
mod K for all-to-all backdoor attack. The detailed experimental setting are provided in Appendix B.3

Detection settings. We compare AGPD with eight detection methods, categorized into three groups:
1) activation-based, including AC (Ma et al., 2023a), Beatrix (Ma et al., 2023b), SCAn (Tang
et al., 2021), and Spectral (Tran et al., 2018); 2)input-based, such as STRIP (Gao et al., 2019) and
CD (Huang et al., 2023); 3)loss-based, represented by ABL (Li et al., 2021a) and ASSET (Pan et al.,
2023). For a fair comparison, we maintain that the number of clean samples per class is 10, extracted
from the test dataset. The threshold used in AGPD� z and� s aree2 and0:05, respectively.

Datasets and models. We use CIFAR-10 (Krizhevsky et al., 2009) and Tiny ImageNet (Le &
Yang, 2015) as primary datasets to evaluate the detection performance. Additionally, we expand our
evaluation to the datasets that are closer to real-world scenarios, such as ImageNet (Deng et al., 2009)
subset (200 classes), DTD (Cimpoi et al., 2014), and GTSRB (Houben et al., 2013), of which results
are provided in Appendix C.3. Our study employs two model architectures: Preact-ResNet18 (He
et al., 2016a) and VGG19-BN (Simonyan & Zisserman, 2014). The results of VGG19-BN are
provided in Appendix C.4.1.

Evaluation metrics. In this work, the metrics evaluating the performance of backdoor attacks are
Accuracy (ACC) and Attack Success Rate (ASR). The metrics used by the defender are True Positive
Rate (TPR), False Positive Rate (FPR), and F1 score. In the tables presenting our results, the top
performer is highlighted inbold, and the runner-up is marked with an underline.
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5.2 DETECTION EFFECTIVENESS EVALUATION

All-to-one & all-to-all attacks. Tab. 1 showcases the detection performance of AGPD with eight
compared methods against 12 backdoor attacks on Preact-ResNet18. For all-to-one attacks and
all-to-all attacks, AGPD can achieve averaged TPR of 96.66% on the CIFAR-10 and 99.92% on the
Tiny ImageNet, exceeding the runner-up by 18.23% and 11.8% respectively. The averaged FPR of
AGPD not only ranks within the top-2 lowest among all detection methods but also approaches a near
0% level. Meanwhile, its average F1 score is 12.71% higher than that of the second-best method.

For theactivation-basedmethods, like Beatrix, SCAn and Spectral, we �nd that they effectively
identi�es the majority of poisoned samples in attacks where poisoned and clean samples are separated
in the activation space. However, its performance deteriorates when this separation is not present,
such as CTRL (see t-SNE results in Appendix F). The failure of AC could be caused by the high
poisoning ratio. Forinput-based method like STRIP, they exhibit low TPRs in attacks such as
WaNet and Input-Aware. This underperformance is likely because the perturbed inputs generated by
a poisoned sample also display high entropy in their predictions, similar to those of a clean sample,
thereby complicating the distinction between them. CD shows relatively good detection effectiveness
across most attacks with an average TPR of 76.76%, although it also suffers from higher FPRs. The
reason could be that the masks derived from cognitive distillation for poisoned and clean samples
are too similar underL 1 norm, leading to misclassi�cation of some clean samples as poisoned. For
loss-basedmethod like ABL, they perform well in attacks with attacks such as BadNets, Blended,
SIG, and CTRL. However, their effectiveness decreases when facing attacks with dynamic triggers,
such as WaNet, Input-Aware, and Adap-Blend. These attacks require more training epochs for models
to learn the connection between trigger and target label, which means that the loss of poisoned
samples does not signi�cantly decrease in the early epochs (Wu et al., 2022). Regarding the ASSET
method, we observed potential impacts on detection performance due to differences in the model used
compared to the original work. Thus, we provide the results of ASSET on ResNet18 in Appendix E.
The evaluation of the model trained on the dataset �ltered by AGPD, as well as the detection results
under different poisoning ratios on PreActResNet-18, are respectively provided in Appendix C.1 and
Appendix C.2.

Table 2: The detection performance of AGPD and the compared methods against multi-target attacks
on CIFAR-10. The model structure is Preact-ResNet18. S-T means single trigger, and M-T means
multi-trigger.

Type Attack
No defense AC Beatrix SCAn Spectral STRIP ABL CD ASSET AGPD
ACC/ASR TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1" TPR" FPR# F1"

S-T

BadNets 91.38/80.3497.46 0.70 95.6419.38 0.96 30.280.00 0.00 0.00 5.42 16.06 4.34 2.78 13.01 2.53 1.22 10.98 1.2247.42 31.62 21.9522.84 20.79 14.7498.50 0.08 98.89
Blended 93.57/91.6079.72 0.25 87.6111.76 4.34 15.590.00 0.00 0.00 14.90 15.01 11.920.18 6.49 0.23 2.08 10.88 2.0874.66 55.91 22.0319.64 8.70 19.8598.48 0.01 99.20

LF 93.54/93.8299.72 0.03 99.71 20.40 2.33 28.860.00 0.00 0.00 33.78 12.91 27.025.32 7.88 6.04 1.82 10.91 1.8262.02 41.63 23.110.24 0.66 0.45 99.20 0.01 99.55
SSBA 93.28/92.3899.44 0.04 99.52 4.50 0.79 8.07 0.00 0.00 0.00 32.36 13.07 25.8948.26 15.65 33.3911.48 9.84 11.4872.56 25.16 36.3713.52 8.02 14.5698.92 0.02 99.36

M-T BadNets+Blended+LF+SSBA+SIG91.62/92.1058.06 0.08 73.15 2.92 2.60 4.62 0.00 0.00 0.00 14.64 15.05 11.7122.72 13.27 18.7750.10 5.54 50.1063.20 18.60 38.2356.86 54.68 17.5292.02 0.18 95.06

Avg. 86.88 0.22 91.13 11.79 2.20 17.48 0.00 0.00 0.00 20.22 14.42 16.18 15.85 11.26 12.19 13.34 9.63 13.34 63.97 34.58 28.34 22.62 18.57 13.42 97.42 0.06 98.41

Multi-target attacks. Tab. 2 summarizes the performance of AGPD and the compared methods
in a multi-target attack scenario. In our experiment setting,f 5; 6; 7; 8; 9g are chosen as the source
class and the target labels are set tot = ( y + C) mod K , whereC equals 5. Single-trigger attack
and multi-trigger attack are two categories of multi-target attack. In single-trigger attacks, the same
trigger injected into samples from different source classes is classi�ed into their corresponding target
classes. In the multi-trigger attack, we use �ve triggers from different backdoor attacks (i.e.,BadNets,
Blended, LF, SSBA, and SIG), and each trigger added to the samples in the corresponding class
will be classi�ed into its designated target class. We observed that for activation-based methods,
the multi-trigger attack poses a greater challenge than single-trigger attacks, whereas loss-based
methods seem more robust against multi-trigger attacks. Additionally, the failure of SCAn might
be caused by their anomaly detection for target class(es) is not effective in the multi-target attacks.
However, compared with baseline methods, AGPD achieves good performance in both single-trigger
and multi-trigger attacks, with averages of TPR, FPR, and F1 score at 97.42%, 0.06%, and 98.41%,
respectively.

5.3 ANALYSIS

Analysis of CVBT. To substantiate the capability of the CVBT metric (i.e., � x 0 (D) in capturing
the characteristics of the circular distribution (i.e., Px 0 (D)), here we simulate different circular
distributions with varying degrees of dispersion and separation.(1) As shown in the left four sub-plots

7



Published as a conference paper at ICLR 2025

in Fig. 3, while keeping similar low separation (i.e., one single cluster), the dispersion increases
from left to right,i.e., the distribution range increases. Correspondingly, the CVBT score increases.
(2) As shown in the right four sub-plots in Fig. 3, while keeping similar dispersion (i.e., similar
the distribution range), the separation increases from left to right, as two clusters get more distant
gradually. Correspondingly, the CVBT score increases. Thus, the claim thatthe CVBT score (i.e.,
� x 0 (D)) is positively proportional to the dispersion and separation ofPx 0 (D) (see Sec. 3.2) is
veri�ed. A comparison of the capabilities of CVBT and variance in measuring the characteristics of
the circular distribution is also provided in Appendix D.2.

Figure 3: CVBT scores of different GCDs with varying dispersion and separation.

Statistic of metrics. In Fig. 4, we present the statistical results of CVBT metric (� ) and its Z-score
(z) for both all-to-one and all-to-all attacks. In the left of Fig. 4,� of the target class are signi�cantly
higher than those for clean classes for both attacks. Since clean classes are absent in all-to-all attacks,
usingz to detect the outliers for identifying the target class could be ineffective. Ifz doesn't pinpoint
the target class, we use a 0.3 threshold as a boundary to identify it, shown as a dashed line in Fig.
4 and validated by the left two images in Fig. 4, where� values for target classes surpass this limit
in all-to-all attacks. The mid-right image of Fig. 4 displays the distribution ofz for the target and
clean classes in the all-to-one attacks, clearly separated by the dashed line, which represents the
threshold when identifying the target class. Moreover, the right image of Fig. 4 illustrates the mean
and standard deviation curves ofz of target classes across different convolutional layers of the model.
We observe thatz tend to be higher in the later intermediate convolutional layers, indicating a stronger
separation between poisoned and clean samples at these layers.

Figure 4: Statistical analysis of� andz across classes and convolutional layers using the CIFAR-10
and Preact-ResNet18.Left: � values for all classes in both all-to-one and all-to-all attacks.Mid-right:
z for all-to-one attacks.Right: Mean and standard deviation of the maximumz across all layers in
multiple backdoored models.

Accuracy of target class identi�cation. We compare the accuracy of target class identi�cation of
AGPD with other three detection methods which are Beatrix (Ma et al., 2023b), SCAn (Tang et al.,
2021), and NC (Wang et al.). To evaluate their performance, we trained 120 backdoor models on
CIFAR-10. The attack methods contain 8 non-clean label backdoor attacks, where the poisoning ratio
ranges from1% to 10%, and the target label is from 0 to 4. The results of detection accuracy are
shown in Fig. 5a. Note that the accuracy of target class identi�cation of AGPD is higher than the
compared method under different poisoning ratios.

Analysis of activation gradient To illustrate the advantages of activation gradient in sample
detection, we also analyze the discriminative characteristics of the activation gradient for the poisoned
sample and clean sample in Appendix D.4.

5.4 SENSITIVITY TEST

In�uence of the number of clean samples. In this part, we explore the in�uence of the size of the
additional clean dataset on the detection performance of AGPD. We also consider the scenario that
the additional dataset collected by the defender is out of distribution (OOD). We collect the OOD
dataset of CIFAR-10 from the same 10 classes of CIFAR-5m (Nakkiran et al., 2020), and we extract
10 samples from each class. The additional clean dataset which is in distribution (ID) is collected
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from the test dataset. Fig. 5b shows the results of our method with different sizes of the additional
clean dataset. We found that a large number of clean samples can help AGPD decrease FPR close
to zero. However, AGPD can still achieve high TPR even in extreme cases, such as one sample per
class or even OOD samples. When the number of clean samples in each class is one, the TPR values
of AGPD on many attacks are above 90%. In summary, our method necessitates a smaller additional
clean dataset.

Figure 5: Left: Accuracy of AGPD and three compared methods on identifying target class(es).
Middle: Detection performance of AGPD with varying numbers of clean samples.Right: Means
and standard deviations of TPR and FPR at different threshold� s.

In�uence of threshold � s. In the poisoned sample �ltering stage, we aim to eliminate samples
scoring below� s at each iteration until no samples remain in the target class. To better understand
the impact of� s, we design an experiment with varying� s from 0.01 to 0.1. According to Fig. 5c,
the TPR of AGPD is relatively low with signi�cant variability at smaller� s values, yet it stabilizes
at100%with increasing� s, while the FPR remains consistently low throughout the variation of� s.
Moreover, it can ensure stable detection performance of AGPD across a broad range of values.

5.5 DETECTION EFFECTIVENESS AGAINST ADAPTIVE ATTACKS

Setup of adaptive attacks. Here we evaluate AGPD's effectiveness against adaptive attacks,i.e.,
when the adversary knows its detection strategy. Speci�cally, the core point in AGPD is the observed
characteristic of the gradient circular distributionPx 0 (D), i.e., dispersion and separation of the
target GCD (see Sec. 1). Thus, the adaptive adversary aims to break this characteristic. To that end,
we design two adaptive attacks.(1) Adaptive attack 1: Weak clean-label attack for reducing
dispersion and separation.The poisoned samples are constructed based on blending trigger image
with target clean images, such that poisoned images are closer to clean images, leading to closer in
GCD. This adaptive attack is denoted asBlended�

� , being� being the alpha blending coef�cient
of the trigger image.(2) Adaptive attack 2: Attacking with inserting noisy samples into the
target class for disturbing the target GCD.We insert some noisy samples into the target class,i.e.,
randomly picking some clean samples from other classes and changing their labels to target label. As
both noisy and poisoned samples are signi�cantly different with target clean samples, the target GCD
may vary due to noisy samples. All evaluations are conducted on CIFAR-10 with Preact-ResNet18.

Figure 6: Gradient circular distributions of the target class under Blended and the adaptive Blended�
�

attack.

Table 3: AGPD detection results against
Blended�� (adaptive attack 1), with differ-
ent numbers of basis vectors inGm , i.e.,
m = 1=m = 200.

Attack ASR% Z-score TPR% FPR%

Blended 99.75 21.34/112.89 99.98/99.98 0.02/0.02
Blended�� =0 :1 12.05 0.89/2.01 0.0/0.0 0.0/1.22
Blended�� =0 :2 51.16 2.65/7.06 0.0/99.52 0.0/10.97
Blended�� =0 :3 88.33 3.42/8.50 0.0/99.96 0.0/0.86

Results & Analysis of adaptive attack 1. We �rstly
present the GCDs and attack performance (without de-
fense) of Blended�� =0 :1, Blended�� =0 :2, Blended�� =0 :3,
respectively, in Fig. 6. It shows that the attack perfor-
mance is positively proportional to the dispersion and
separation of GCD. The detection results of are shown
in Tab. 3. Whenm = 1 (i.e., using one single basis
vector inGm ), the Z-score is too small to identify the
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target class, leading to low TPR and low FPR. However, as demonstrated in Sec. 3.2, the basis vector
g(x n � ) could be extended to a basis setGm = f g(x n �

j
)gj =1 ;:::;m . Whenm = 200, the Z-scores are

much larger. Consequently, even when the attack is weak (i.e.,ASR51%of Blended�� =0 :2), AGPD
still shows high TPR and low FPR. It demonstrates that increasing the number of basis vectors inGm
could enhance AGPD's robustness to adaptive weak backdoor attacks.

Table 4: AGPD detection results against
Blended attack with noisy samples (i.e.,
adaptive attack 2).

Noisy samples ASR(%) Z-score TPR FPR

0 99.75 21.34 99.98 0.02
10 99.8 48.73 99.9 0.04
100 99.71 23.31 99.8 0.2
1000 99.68 35.75 100 1.8

Results & Analysis of adaptive attack 2. As shown
in Tab. 4, AGPD still performs very well against the
Blended attack with varying noisy samples, and has
very high Z-scores. The GCDs of the corresponding
poisoned datasets are shown in Fig. 7-Left. It shows that
noisy samples may have large angles in GCD, thus the
dispersion and separation are still large, leading to high
Z-scores. However, when1; 000 noisy samples exist,
the separation degrades, which may affect the sample
�ltering of Stage 3 in AGPD (see Sec. 4.2). Thus, we analyze the trend of the identi�ed far-ending
samplex n � in all iterations. As shown in Fig. 7-Right, we record the proportions of noisy and
poisoned samples in all accumulatedx n � s. When there are many noisy samples (e.g.,100 or 1,000
noisy samples), noisy samples are identi�ed asx n � in early iterations, while poisoned samples are
gradually identi�ed asx n � in later iterations. Consequently, both noisy and poisoned samples could
be identi�ed as the far-ending basis vector, leading to �ltering out of both noisy and poisoned samples.
This explains the good performance of AGPD against the adaptive attack with noisy samples.

In summary, AGPD shows good performance against above two adaptive attacks,i.e.,weak clean-
label attack, and attack with noisy samples.

Figure 7:Left: The gradient circular distribution of the poisoned dataset with noisy samples of the
Blended attack.Right: The proportions of noisy or poisoned samples in the accumulated set of
far-ending samplesx n � along with the sample �ltering iterations.

6 CONCLUSION

In this paper, we introduce a novel perspective of gradient circular distribution (GCD). Based on GCD,
we observe that the dispersion of GCD of target class is larger, and poisoned samples are separated
from clean ones. Inspired by the observation, we propose two practical metrics and design a novel
detection method, AGPD. Our experiments demonstrate that this method successfully identi�es target
class(es) under various backdoor attack scenarios, including all-to-one, all-to-all, and multi-target
attacks. Extensive experimental results show that our method achieves good performance on the task
of poisoned sample detection. Finally, we believe that the novel perspective of GCD deserves more
future explorations, such as its usage in other tasks (e.g.,the training-based backdoor defense) and
other characteristics.

Ethics & Reproducibility statements. This work reveals a common observation of existing back-
door attacks, and provides an advanced backdoor defense method. It will not bring in negative impact
to the community. All evaluations are conducted on widely used datasets for image classi�cation, no
involvement of ethic issues. Besides, we have provided all important implementation details in Ap-
pendix to ensure the reproducibility of all reported results. Our code is based on Backdoorbench(Wu
et al., 2022), and we provide a demo of AGPD in the supplementary materials, along with the method
of operation, and we promise to release all codes once acceptance.
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A OVERVIEW OF APPENDIX

There are additional materials presented in the Appendix

• Appendix B: Experiment setting details.

– Appendix B.1: Details of datasets.
– Appendix B.2: Hyperparameter settings of model training.
– Appendix B.3: Hyperparameter settings of Backdoor attacks.

• Appendix C:Additional experimental results

– Appendix C.1:Performance on the model trained by �ltered data.
– Appendix C.2: Different poisoning ratios under PreactResNet-18 on CIFAR-10.
– Appendix C.3: Evaluations on more datasets.
– Appendix C.4: Evaluations on more models.
– Appendix C.5: Comparison to other detection methods.

• Appendix D: Additional analysis of AGPD.

– Appendix D.1: Details of algorithm and stopping criteria.
– Appendix D.2: Comparison between CVBT and variance.
– Appendix D.3: Comparison between cosine distance and radian.
– Appendix D.4: Analysis of the discriminative degree of activation gradient.
– Appendix D.5: Computation overhead.
– Appendix D.6: Stability of AGPD.

• Appendix E: The results of the compared ASSET on ResNet18.

• Appendix F: t-SNE results

• Appendix G: Results for adaptive attacks

• Appendix H: Results for clean-label attacks

• Appendix I: Results for noisy and poisoned samples

B EXPERIMENT SETTING DETAILS

B.1 DATASETS

We evaluate the performance of AGPD on �ve popular datasets and two model structures. In main
paper, we have provide the results of two datasets, including CIFAR-10 (Krizhevsky et al., 2009) and
Tiny ImageNet (Le & Yang, 2015). Besides, we extend our evaluations to the datasets which are
closer to real-world scenarios, such as ImageNet(subset)-200 (Deng et al., 2009), the Textures dataset
DTD (Cimpoi et al., 2014), and the traf�c signs dataset GTSRB (Houben et al., 2013). The results of
these datasets are provided in Appendix C.3. The details of all datasets are illustrated in Tab. 5 .

Table 5: The information about �ve datasets.

Dataset CategoriesImage sizeTraining samplesTesting samples

CIFAR-10 10 32� 32 50,000 10,000
Tiny ImageNet 200 64� 64 90,000 10,000

ImageNet(subset200) 200 224� 224 90,000 10,000
GTSRB 43 32� 32 39,209 12,630

DTD 47 224� 224 3,760 1,880

B.2 HYPERPARAMETER SETTINGS OFMODEL TRAINING

There are some common training hyperparameters across these attack methods, such as training
epoch, learning rate, and optimizer. We display the setting of these common hyperparameters for
each datasets in Tab. 6.
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Table 6: The common hyperparameters for training across �ve datasets.

Dataset Epoch Learning rateBatch size Optimizer

CIFAR-10 100 0.01 128 SGD
Tiny ImageNet 200 0.01 128 SGD

ImageNet(subset200) 200 0.1 64 Adam
GTSRB 50 0.01 128 SGD

DTD 100 0.01 64 SGD

B.3 HYPERPARAMETER SETTINGS OFBACKDOOR ATTACKS.

The hyperparameters used in various backdoor attacks are listed in Tab. 7. For illustration purposes,
we use CIFAR-10 as an example. If the attack does not have any speci�c hyper-parameters, we will
denote this with `/'. We show the poisoned samples of various backdoor attacks in Fig. 8.

Table 7: The hyper-parameters of implemented backdoor attacks for CIFAR-10.

Category Attack Parameters Usage Value

All-to-one

non-clean label with
sample-agnostic

trigger

BadNets / / /
Blended � the transparency of

the trigger.
0.2

LF � fooling rate 0.2
clean label with

sample-agnostic trigger
SIG

� to generate
sinusoidal signal.

40
f 6

clean label with
sample-speci�c trigger

CTRL c trigger channel [2,1]
l trigger location (12,27)

non-clean label with
sample-speci�c

trigger

SSBA / / /

TaCT
s � class the trigger will be

added to samples in
s � class and change
their labels to the tar-
get label.

a list

c � class samples inc � class
will only be added the
trigger.

a list

c control the number of
samples inc � class

0.1

Adap-Blend m the probability of the
area being masked.

0.5

non-clean label with
training control

WaNet

s warping strength 0.5
k grid scale 4
� a backdoor probability =poisoning ratio
� n the noise probability 0.1

Input-Aware
� div the diversity enforce-

ment regularisation.
1

� b the backdoor proba-
bility.

=poisoning ratio

� c the cross-trigger prob-
ability.

0.1

All-to-all
non-clean label with

sample-agnostic
trigger

BadNets-A2A
K to compute target

labels. 10

non-clean label with
sample-speci�c

trigger

SSBA-A2A

Single-trigger Attack

non-clean label with
sample-agnostic

trigger

BadNets

C to compute target
labels 5

Blended
LF

non-clean label with
sample-speci�c

trigger

SSBA

Multi-trigger Attack
non-clean label with

sample-agnostic
trigger

BadNets+Blended+SSBA+ LF+ SIG
r

the ratio of poisoned
samples from each type
of trigger

0.02
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