SKYRL-SQL: Multi-turn SQL Data Agents via RL

Shu Liu* Alan Zhu*
UC Berkeley UC Berkeley
lshu@berkeley.edu aczhul@berkeley.edu
Sumanth Hegde Shiyi Cao Shuo Yuan Samion Suwito Tyler Griggs
Anyscale UC Berkeley UC Berkeley UC Berkeley UC Berkeley
Matei Zaharia Joseph E. Gonzalez Ion Stoica
UC Berkeley UC Berkeley UC Berkeley
Abstract

Recent advances in reinforcement learning (RL) have enabled large language mod-
els (LLMs) to act as interactive agents across domains like coding and web search.
However, database interactions, particularly in the Text-to-SQL domain, remain
underexplored. Existing work largely treats Text-to-SQL as a one-shot generation
task, which struggles in real-world scenarios where natural language queries are
often ambiguous and databases are messy. We introduce a simple and data-efficient
multi-turn RL approach that enables LLMs to probe databases, refine queries, and
verify results across successive interactions, mirroring human exploratory analy-
sis. Using only about 600 training examples, our 7B-parameter model improves
execution accuracy by up to 9.2% on Spider benchmarks, outperforming stronger
baselines including o4-mini, GPT-40, and open-source SFT models trained on
orders of magnitude more data. Our results highlight the promise of multi-turn RL
as a scalable, practical approach for building robust Text-to-SQL agents.

1 Introduction

Recent advances in RL have turned LLMs into interactive agents capable of reasoning, exploring,
and executing actions over multiple interaction turns. This has led to impressive progress in domains
like coding [Qwen Teaml [2025]], web search [Zheng et al.| [2025]], and kernel code generation [Baronio
et al.,[2025]]. However, an important and impactful application that has been under-explored by LLM
agents research is that of database interactions.

Databases are ubiquitous in industry and research for storing and managing data. To examine and
analyze the data, users’ natural language questions need to be converted into precise SQL queries,
naturally leading to exciting opportunities for involving LLMs in both turning user questions into
SQL and creating natural language responses from the query results [Biswal et al., |2024]). In this
work, we focus on the former task, referred to as Text2SQL.

In real-world applications, natural language questions are often vague or incomplete [Papenmeier
et al., 2020]]. For example, users might say “latest review” without referencing an exact column
or expect joins across tables without stating them explicitly. Real-world databases also tend to be
“messy” [Chu et al.,|2016], with missing values, typos in data entry, inconsistent formatting within
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columns, and under-specified descriptions. Human analysts typically resolve such ambiguity by
exploring the database step by step — a practice known as exploratory data analysis (EDA).

In contrast, existing Text2SQL work focuses on one-shot SQL generation: the model is given the
natural language question and database schema and asked to generate SQL in a single step [Zhong
et al.l 2017, Xu et al.l 2017, |Guo et al., 2019} [Liu et al., 2023} |Gao et al., 2023, [L1 et al., 2024al
Pourreza et al.,2025| [Li et al.| [2025]. As the model cannot engage in exploratory data analysis, such
generations can often be error-prone in real-world settings. On the other hand, multi-turn Text2SQL
interactions overcome the limitations of the one-shot settings, allowing the model to probe the
database, refine, and verify the SQL query through database interactions just as human experts
would (Figure [T). Query generation then becomes a multi-turn decision process, where models
incrementally explore and self-correct through trial and error.

However, we find that current models are not optimized for the multi-turn Text2SQL task, and that
targeted fine-tuning can lead to impressive improvements over the untrained baseline: our model
gains 7.2% improvement compared to the untrained model. Further, we study different fine-tuning
methods, finding that RL training with a simple reward function leads to faster and more data-efficient
learning than SFT: achieving our improvements with only 0.03% of the training data used for SFT.
Finally, we analyze the inference-time traces of our fine-tuned model for learned behaviors and
common failure modes, providing insights for further research into multi-turn Text2SQL agents.
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Figure 1: Workflow on Text2SQL tasks with database interactions

2 Related Works

Text2SQL Complex LLM-based pipelines are common for the Text2SQL task (e.g., demo/schema
retrieval [Gao et al., [2023]], task decomposition [Pourreza and Rafieil [2023]], multi-agent self-
correction [Askari et al.,[2024], etc.). More recently, the improved baseline performance of large
foundation models has enabled the direct generation of SQL queries from natural language [Liu
et al.l |2023]]. Further fine-tuning LLMs specifically for the Text2SQL task leads to even greater
improvements [L1 et al.,|2024b, Zhai et al., 20235} [Cohere Team, 2025|]. However, many methods
rely on supervised fine-tuning (SFT) for such fine-tuning. For example, OmniSQL [Li et al., [2025]
performs SFT with a large million-scale synthetic dataset. In contrast, our work focuses on using
reinforcement learning for training, efficiently (in terms of compute and data) producing a strong
Text2SQL model.

Reinforcement Learning The current paradigm in RL for LLMs is RL with verifiable rewards
(RLVR) [Lambert et al.l[2024], where rewards are assigned via functions scoring correctness with
clear-cut logic like string matching. Such reward signals are perfectly accurate compared to learned
reward models, and have been shown to be effective in a variety of domains such as math, coding, web
search, etc. [DeepSeek-Al|2025]]. The standard RLVR training algorithm used is GRPO [Shao et al.|
2024, popular for its compute efficiency compared to the original PPO algorithm [Schulman et al.|
2017]]. Where PPO trains a critic model to estimate the difficulty of a prompt to calculate advantage,
GRPO instead uses the average reward of multiple rollouts to estimate the difficulty, removing the
cost of training a critic model. In this work, we make use of GRPO for these cost savings.



Recent work has extended RLVR to multi-turn settings, leveraging and enhancing the long-horizon
reasoning capabilities of LLMs to discover, collect, and utilize large amounts of information [Zheng
et al.} 2025, Baronio et al.,[2025]]. RLVR has also been applied to the Text2SQL task [Ali et al.,
2025/ [Yao et al, [2025] [Pourreza et al., 2025| [Papicchio et al.l [2025]], but these works focused on
the one-shot generation task. In contrast, our work considers RL for Text2SQL in the multi-turn
generation setting.

3  Multi-Turn SQL Interactions

When Text2SQL systems operate in the single-turn setting, they need to understand the schema,
disambiguate the request, plan joins/aggregations, and write a flawless query in one shot. Such
systems are brittle on real databases as they are unable to adapt to unexpected errors, either in the
database itself or in its own generations.

In the real world, a human data engineer will interact with a database over multiple turns, planning
their actions, probing the database to verify their assumptions, and revising their queries accordingly.
This flexibility allows human data engineers to overcome errors in their preconceptions about the
database. As the data engineer spends more time interacting with the database, their query becomes
more refined and accurate.

Intuitively, a Text2SQL agent would similarly benefit from the ability to interact with the database
over multiple turns. It can explore the schema (e.g., list tables/columns, preview rows), run partial
queries to test hypotheses, use execution feedback and errors to repair queries, and ask/resolve
ambiguities before committing to a final answer. Such an iterative loop mirrors how humans work
with unfamiliar databases and provides richer, verifiable signals (syntax checks, execution success,
result comparisons), which improves robustness and typically yields higher accuracy on complex,
compositional questions.

To verify our hypothesis, we conducted a simple experiment by applying out-of-the-box LLMs to the
difficult BIRD [Li et al., |2023[] Text2SQL benchmarks, but varying the number of interaction turns
allowed to the agents. To simulate the behaviors of human analysts exploring unfamiliar databases,
the model is allowed to:

* Issue free-form exploratory SQL (<sgl>...</sgl>)

* Observe partial result (<observation>...</observation>)

e Reflect (<think>...</think>) based on the history to improve its query

e Commit to a final answer (<solution>...</solution>)
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Figure 2: Performance improves as the number of turns scales.

In Figure 2] we observed a general trend of improving performance with the number of turns,
indicating that Text2SQL pipelines can indeed benefit from more interactions with the database by
correcting errors. In Figure 3] we present an example of such a correction. Here, the task is to find
the number of undergraduate students at a specific university. Initially, the model used the wrong
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Turn 2

Turn 3

<think>
To answer the question, "How many

we need to follow these steps: identify the

filter the results, sum the undergraduate
enrollments. Let's start by writing the SQL

undergraduates are there at San Jose State?",

relevant tables, determine the join condition,

<think>

It seems that the campus name
"California State University-San Jose"
does not exist in the Campuses
table. Let's check the actual campus
names in the table:

<think>

Based on this observation, the correct campus
name is "San Jose State University". Let's update
the query again:

<Ithink>

FROM discipline_enrollments tl
JOIN campuses t2 ON tl.campus = t2.id
WHERE t2.campus = 'California State
University-San Jose';
<Isql>

SELECT DISTINCT campus
FROM campuses;
<Isql>

query: <Ithink>
</think>
<sql> <sql>
SELECT SUM(tl.Undergraduate) AS SELECT SUM(tl.Undergraduate) AS
Undergraduate_Enrollments <sql> Undergraduate_Enrollments

FROM discipline_enrollments tl
JOIN campuses t2 ON tl.campus = t2.id
WHERE t2.campus = 'San Jose State
University';
<Isql>

<observation>
Empty DataFrame Columns: [] Index: []

<observation>
California State University-Monterey
Bay California State University

</observation> San Jose State University

</observation>

Figure 3: Multi-turn interactions fixing a wrong campus name by checking valid values.

format for the campus name (Turn 1), then queried for valid campus names (Turn 2), and corrected
the invalid campus name in its initial attempt (Turn 3).

A natural follow-up question is whether Text2SQL agents can be trained to take advantage of
the multi-turn interactions. We thus explore the training of LLMs to effectively explore and probe
databases to build accurate SQL queries.

4 Training Pipeline

We construct an RL training pipeline to teach models to interact with a database. Our code extends
the SkyRL framework [Griggs et al, [2025]] with the Search-R1 [Jin et al} [2025]] agent loop. Figure 4]
shows the architecture of our system at a high level. We implemented a parallel SQL execution and
evaluation framework with SQLite, allowing multiple rollouts to be executed at once.

Within each rollout, the agent is told the total number of turns it has before it needs to commit to
a final solution. Our prompt also contains instructions with the database schema, question, and
guidance for interactive SQL generation (i.e., informing the agent of the number of turns available,
how to indicate intermediate SQL vs. final answer).

After the agent conducts reasoning ([Think]) and generates an intermediate SQL query ([SQLY]), the
query is run on the database, and the query results injected back into the trace as an observation (DB
Feedback), completing a turn. This continues until the turn limit is reached or the model commits to
a final solution ([Solution]), which can then be compared against a ground truth solution via, in our
case, execution accuracy. We found that empirically, most correct completions happen within the first
3-4 turns. After 5 turns, models often enter repetitive behaviors. Thus, to save costs we chose to limit
the number of interaction turns to 4 in our training runs.

4.1 Reward Design

The reward is simple and can be decomposed into (i) a format reward, requiring <think> blocks
indicating reasoning and <sql> blocks indicating an intermediate SQL query in each turn and a
<solution> block indicating commitment to a final query in each rollout, and (ii) an execution
reward, comparing the executed SQL results of the final committed query with the ground-truth
results.

—1, if format is invalid,
Reward = < 0,
1, if format is valid and execution is correct.

if format is valid but execution is incorrect,
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Figure 4: The trajectory from a batch of questions processed by the interaction pipeline, each with
multiple independent rollouts. The bottom illustrates the iterative “think”, execute SQL, receive
feedback, and generate solution loop. Figure adapted from |Zheng et al.|[2025]].

5 Experiments

To test our hypothesis that Text2SQL agents can be trained to effectively leverage multi-turn interac-
tions and validate the efficacy of our training pipeline, we trained Qwen2.5-Coder-7B-Instruct using
the GRPO [Shao et al.,|2024] reinforcement learning algorithm.

Training Data We use a total of 653 training samples, with 540 moderately-to-highly complex
samples from SynSQL-2.5M [Li et al.| 2025]] and 113 samples from the Spider train set [Yu et al.,
2018]). These selections provide for a mix of difficult synthetic examples from SynSQL-2.5M and
high-quality real-world examples from Spider.

Evaluation Setup We perform our evaluations on widely-used Text-to-SQL benchmarks, namely
Spider [[Yu et al.;|2018]| and its variants Spider-DK [Gan et al., 2021b] (requires domain knowledge),
Spider-Syn [|Gan et al.| 2021al] (synthetic augmentation), and Spider-Realistic [Deng et al., 2021]]
(mimics real-world ambiguity in column names). We report execution accuracy (EX) based on exact
row match. All models are evaluated in multi-turn mode with up to 5 interaction turns, with greedy
decoding (temp = 0), except for o4-mini whose API does not allow temperature specification. Instead,
for o4-mini we average the performance across 5 evaluation runs.

Experiment Setup We train Qwen2.5-Coder-7B-Instruct for multi-turn Text2SQL, allowing each
rollout to go for up to 5 turns. We compare the performance of the resulting trained model against
existing baseline models in the multi-turn setting.

To investigate the training efficiency of the multi-turn setting, we also trained Qwen2.5-Coder-7B-
Instruct as a single-turn Text2SQL agent. We compare the training curves of the single-turn training
run against the multi-turn training run. To allow for fair comparisons between the models, which
were trained with different number of turns, we evaluate both models in both the single-turn and
multi-turn setting.

For all our experiments, we trained at a learning rate of le-6 using a batch size of 256 for 35 steps
(approximately 14 epochs). 5 rollouts per prompt were sampled at a temperature of 0.6 and top-p of
0.95. The exact prompt we used is in Appendix
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Figure 5: Performance comparison of SKYRL-SQL-7B vs. base and commercial models.

6 Results and Discussion

Figure 5] shows the performance of our trained model, which we call SKYRL-SQL-7B, against the
performance of the initial base model (Qwen2.5-Coder-7B-Instruct) and the powerful closed-source
models GPT-40 and o4-mini with high thinking. SKYRL-SQL-7B achieves the highest overall
average (79.2%) across 5 different benchmarks, outperforming GPT-40 by 1.6% and o4-mini by
1.8%. Compared to its base model, Qwen2.5-Coder-7B-Instruct, SKYRL-SQL-7B shows consistent
improvements of 5.6% to 9.2%, with an average gain of +7.2% across benchmarks. Exact values are
in Table[3]in Appendix

These results indicate that training a model to take advantage of multi-turn interactions can lead to
dramatic improvements in that setting. In our case, it allowed Qwen2.5-Coder-7B-Instruct, which is
worse at multi-turn Text2SQL than state-of-the-art closed-source models, to exceed the performance
of those closed-source models. In addition, we also found several key observations during the training
process, which we present below.

6.1 Key Observations

Observation 1: Multi-Turn RL Learns Faster and Generalizes Better
Multi-turn reinforcement learning (RL) not only learns faster in training steps but also generalizes
better, even when explicit feedback is not available at test time.

Figure 6] shows the training curves of our model trained in the multi-turn setting and of our model
trained in the single-turn setting. Both use identical rewards (format and execution outcomes) and
training settings. Relative to a single-turn baseline, multi-turn RL converges 2.8 faster (fewer
training steps to a fixed reward threshold) and achieves 16% higher reward after 35 training steps.

These gains arise from the exploratory nature of multi-turn RL: the model receives denser feedback
by observing how intermediate queries succeed or fail, learns to adjust its reasoning mid-process,
and internalizes correct patterns that generalize beyond the training data. By engaging in a closed-
loop interaction with the database, the model learns to navigate a richer action space, adjusting its
reasoning dynamically — something the single-turn training process cannot do.

Additionally, Table [T] presents results of evaluating the two models on both the single-turn and
multi-turn settings. Even without writing interactive queries at test time, the model trained solely in
the multi-turn setting outperforms the single-turn counterparts by up to +3.5%, suggesting stronger
internalized reasoning. The performance gap widens when evaluating in the multi-turn setting. Here,
the multi-turn trained model adapts and refines answers effectively, gaining up to +6.4%, while the
single-turn trained model fails to leverage feedback and often produces degraded results.
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Figure 6: Training curves of multi-turn RL v.s. single-turn RL on the same training data. Multi-turn
RL reaches 60% reward 2.8 x faster in training steps and achieves +16% higher reward after 35
training steps.

Table 1: Comparison of single-turn vs. multi-turn RL. The model trained in the multi-turn setting
outperforms the model trained in the single-turn setting, when evaluated on both single-turn and
multi-turn Text2SQL.

EVAL TRAIN SPIDER  SPIDER SPIDER SPIDER  SPIDER AVG
SETTING SETTING DEV TEST REALISTIC DK SYN

SINGLE-TURN 81.2 83.8 76.8 67.9 70.1 76.0

SINGLE-TURN  \rii 1 Turn | 82.4 83.7 80.3 70.5 712 77.6

MULTI-TURN SINGLE-TURN 79.5 82.2 77.6 65.6 68.4 74.7

MULTI-TURN 83.9 85.2 81.1 72.0 73.7 79.2

These results suggest that multi-turn training not only allows a model to leverage environmental
feedback, but also improves learning and reasoning in general.

Observation 2: Small Data, Simple Reward is Enough for Multi-Turn
With just 653 samples and simple reward, SKYRL-SQL-7B beats large-scale SFT and single-turn
RL with complex reward functions.

Table [2| shows the performance of SKYRL-SQL-7B against two SFT-trained models, Reasoning-
SQL-7B [Pourreza et al.,|2025]], and OmniSQL-7B [Li et al.,[2025]]. Reasoning-SQL uses complex
partial rewards (e.g., execution accuracy, syntax, schema linking) and 8k examples to train a model in
the single-turn setting. Evaluation results for this model are taken from Pourreza et al.| [[2025]; the
model is not currently publicly available. OmniSQL-7B is an SFT model trained on the full 2.5M
SynSQL dataset. We evaluated this model in single-turn as it does not follow instructions to use
multi-turn tool calls.

Despite having 12x less data, SKYRL-SQL-7B outperforms Reasoning-SQL-7B by 5.7%, using
multi-turn training with only a basic reward structure (i.e., correct format + execution accuracy)
without partial scoring. Compared with OmniSQL-7B, our model performs better (with an average
gain of +1%) despite using only 0.03% of the training data.

Observation 3: Multi-Turn Interactions Enable Effective Error Corrections.
The model learns to reflect, verify, and revise SQL through interaction with the database —
mirroring human-like problem solving.

We found several success patterns throughout the evaluation indicative of what the model learned
through database interactions. Here we briefly discuss some of the common patterns analogous to
strategies used by human data engineers. First, the model employs step-by-step verification by
decomposing questions into sub-steps and verifying intermediate results before committing to the



Table 2: Comparison against SFT-trained Text2SQL models. SKYRL-SQL-7B achieves the best
average performance while also requiring the smallest train set size by an order of magnitude. Spider-
Test and Spider-Realistic results are not available for Reasoning-SQL-7B as the model is not publicly
available.

TRAIN SPIDER  SPIDER SPIDER SPIDER  SPIDER

SETSIZE  DEV TEST  REALISTIC DK syn AVG
REASONING-SQL-7B 8K 78.7 / / 73.3 69.3  73.8
OMNISQL-7B 2.5M 81.2 87.9 76.2 76.1 69.7 782
SKYRL-SQL-7B 653 83.9 85.2 81.1 72.0 737 79.2

final solution. An example trace is presented in Appendix[C.1} Second, the model uses feedback
from the database to correct syntax errors in its queries via reflection or introspection queries (e.g.,
PRAGMA calls); example in Appendix Third, the model can correct logical mistakes when
given unexpected results from the database; example in Appendix

Observation 4: Multi-Turn Interactions Do Not Fix All Errors.
The multi-turn RL trained model can fail due to overconfidence, insufficient exploration, or
repetitive loops.

Though multi-turn RL training can lead to improved performance, there are still some common
reasons for failure. First, when the model is overconfident in its assumptions, it will not use
intermediate turns and immediately commit to an unverified final answer. An example is in Appendix
Second, we find that the model sometimes gets stuck in a loop, attempting the same or very
similar intermediate queries in response to unexpected feedback from the database. An example is in

Appendix [C.3]

6.2 Ablations: Models and Prompt Designs

In addition to quantitative and qualitative analysis of SKYRL-SQL-7B, we ran ablations to gain
insights into future directions. First, we examined the impact of prompt design with respect to
the information included. Specifically, we tested the efficacy of models after removing schema
information from the prompt. In this setting, models would be required to explore and probe the
database to produce answers. Though it would be relatively easy for human data engineers to obtain
this information through just a few PRAGMA calls, LLM agents struggled, performing up to 42.7%
worse compared to providing full information in the prompt. Nevertheless, our model mitigates this
effect, exhibiting a smaller degradation and retaining stronger performance under the no-schema
setting by actively exploring the database. Details are in Appendix [D.T]

Additionally, we tested our training pipeline with the newer Qwen3-8B model. Unlike Qwen2.5,
Qwen3 is trained to use <think> blocks out of the box (whereas we had to prompt this behavior
into Qwen2.5-7B-Instruct). It was unclear whether this improved reasoning capability would mean
multi-turn RL would not be necessary or unable to further improve performance. However, the
resulting trained model, which we call SKYRL-SQL-8B, achieved a 3% higher average performance
across our evaluation benchmarks, indicating multi-turn RL continues to be effective for thinking
models. Further details are in Appendix [D.2]

7 Conclusion

In this work, we demonstrated the efficacy of multi-turn training for the Text2SQL task. Models
trained in such a manner outperform baselines under both single-turn and multi-turn evaluation.
Moreover, the success patterns exhibited are analogous to strategies employed by human data
engineers. This represents a major step towards the development of autonomous data engineer agents.

However, there are still many exciting opportunities for future work in developing such agents.
Though our results demonstrate impressive improvements over baselines, there are still common
failure modes that could be addressed. Moreover, our agents are not fully autonomous as they are



provided with the database schema and column descriptions as part of the prompt. In the real world,
descriptions may be ambiguous, or the schema may be too large to place in the context.

Finally, there are major systems considerations for multi-turn agents. For example, exploratory
queries can be costly. During training, the model often issues exploratory queries like PRAGMA or
SELECT = toinspect tables or preview data. Such queries can sometimes fetch hundreds of rows,
leading to bloated observations and wasted context. While we truncate large outputs during training,
better solutions may guide models via reward shaping or prompt tuning, encouraging the model to
use LIMIT clauses for more efficient exploration.
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A Prompt

Prompt for Multi-Turn Text2SQL Task

Task Overview:

You are a data science expert. Below, you are provided with
a database schema and a natural language question. Your task
is to understand the schema and generate a valid SQL query

to answer the question within limited turns. You should
breakdown the problem, draft your reasoning process, and
generate the solution.

Database Engine:
SQLite

Database Schema:

{db_details}

This schema describes the database’s structure, including
tables, columns, primary keys, foreign keys, and any relevant
relationships or constraints.

External Knowledge:
{external_knowledge}

Question:
{question}

Instructions:
— Make sure you only output the information that is asked in
the question. If the question asks for a specific column,

make sure to only include that column in the SELECT clause,
nothing more.

— The generated query should return all of the information
asked in the question without any missing or extra
information.

— Before generating the final SQL query, please think through
the steps of how to write the query. It should include
detailed considerations such as analisying questions,
summarizing relevant findings, brainstorming new ideas,
verifying the accuracy of the current steps, refining any
errors, thinking of how to call SQL tools, and revisiting
previous steps.

Format:

— Conduct thinking inside <think>...</think> blocks every
time you get new observation or information.

— You can use SQL tool written within a single <sgl>your
sgl</sgl> block to explore or verify. SQL tool output will
be shown as dataframe inside <observation>...</observation>.
Based on this observation, you can think again and refine.

— The returned dataframe will be truncated in 50 rows if
observation is too long.

— If you find no further exploration is needed or reaches max
turns, you MUST directly provide the final SQL query solution
inside <solution>...</solution>.

———————————————— START OF EXAMPLE ————————————————
Question: how many pigs are in the farm?
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Database Schema:

Table: animals

- id (INTEGER, PRIMARY KEY)
— species (TEXT)

- age (INTEGER)

— name (TEXT)

<think>I am querying how many pigs are in the farm. I will
begin by checking if the ’"animals’ table exists and contains
entries with species = 'pig’.</think>

<sgql>SELECT COUNT () FROM animals WHERE species =
"pig’;</sql>

<observation>

| COUNT (%) |

</observation>

<think>The result indicates that there are 12 pigs in the
farm. Since the question asks for how many pigs, I can now
output the final SQL as the solution.</think>
<solution>SELECT COUNT (*) FROM animals WHERE species =
"pig’;</solution>

**************** END OF EXAMPLE -—-——————————————

B Detailed Results

Here we present the exact benchmark scores for Figure 3]

Table 3: Exact values for Figure[5]

SPIDER-DEV ~ SPIDER-TEST  SPIDER-REALISTIC SPIDER-DK  SPIDER-SYNTHETIC AVERAGE

QWEN-2.5-CODER-7B-INSTRUCT 77.1 79.6 74.2 62.8 66.2 71.98
04-MINI (HIGH THINKING) 80.6 81.8 81.2 70.8 72.1 77.3
GPT-40 81.3 82.4 80.1 72.1 71.9 77.56
SKYRL-SQL-7B 83.9 85.2 81.1 72.0 73.7 79.18

C Examples of Success Patterns and Failure Modes

C.1 Success Patterns 1: Step-by-step verification

The following trace from a task asking for students who don’t have cat as their pets serves as an
example demonstrating how multi-turn RL enables the model to think step by step: querying students
who have pets, listing students who have cats, and eliminating the second list from the first.

<think>I need to find the student IDs of students who do not have a cat
pet. This involves checking the Has_Pet table for students who have
pets and then excluding those who have cats. I will start by
identifying students who have pets and then filter out those who have
cats.</think>
<sgl>SELECT StuID FROM Has_Pet;</sqgl>
<observation>...</observation>
<think>I have the list of students who have pets. Next, I need to find
which of these students have cats. I will join the Has_Pet table with
the Pets table to get the pet type for each student.</think>
<sgql>SELECT hp.StuID FROM Has_Pet hp
JOIN Pets p ON hp.PetID = p.PetID
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WHERE p.PetType = ’cat’;</sqgl>
<observation>...</observation>
<think>I now have the list of students who have cats. To find students
who do not have cats, I will use the EXCEPT clause to exclude these
students from the list of students who have pets.</think>
<sgl>SELECT StulD
FROM Has_Pet EXCEPT
SELECT hp.StulID
FROM Has_Pet hp JOIN Pets p ON hp.PetID = p.PetID
WHERE p.PetType = ’‘cat’;</sgl>
<observation>...</observation>
<think>The query has been refined and should now provide the correct
result. I will now provide the final SQL query solution.</think>
<solution>...</solution>

C.2 Success Pattern 2: Correction of syntax errors

The example below illustrates how our trained model looks for the correct column name with a
PRAGMA call when encountering an "no such column" error.

<sgl>SELECT Collection_Subset_Details
FROM Collection_Subsets
WHERE Collection_Subset_Name = 'Top collection’;</sqgl>
<observation>OperationalError: no such column: Collection_Subset_Details
...</observation>
<think>It appears that the column name ‘Collection_Subset_Details' does
not exist in the ‘Collection_Subsets' table. I will double-check the
schema and ensure I am querying the correct table and column.</think>
<sgl>PRAGMA table_info(Collection_Subsets);</sqgl>

C.3 Success Pattern 3: Correction of logical mistakes

In the following example, the task explicitly asks for the semester(s) with the maximum enrollment.
The initial SQL used a tautological HAVING clause (count compared to itself), so it never enforced
maximality. The model detected this mismatch from execution feedback and repaired the logic by
comparing each group’s count to the global maximum, thus implementing the intended argmax and
correctly returning the top semester(s), tie-aware.

<sgl>SELECT s.semester_name, s.semester_id
FROM Semesters s
JOIN Student_Enrolment se ON s.semester_id = se.semester_id
GROUP BY s.semester_id
HAVING COUNT (se.student_id) = (
SELECT COUNT (se2.student_id)
FROM Student_Enrolment se2 WHERE se2.semester_id = s.semester_id
)
ORDER BY s.semester_id;</sql>
<observation>...</observation>
<think>The query now returns the semester with the most students
registered for each semester. However, I notice that the results are
not as expected. I need to ensure that for each semester, only the
semester with the most students registered is returned. I will modify
the query to use a subquery to filter the results correctly.</think>
<sgl>SELECT s.semester_name, s.semester_id
FROM Semesters s JOIN Student_Enrolment se ON s.semester_id = se.
semester_id
GROUP BY s.semester_id
HAVING COUNT (se.student_id) = (SELECT MAX (student_count)
FROM (SELECT COUNT (se2.student_id) AS student_count
FROM Student_Enrolment se2 GROUP BY se2.semester_id))
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ORDER BY s.semester_id;</sql>

C.4 Failure Mode 1: Model overconfidence

The following example trace is from the task "list the names of all distinct paintings ordered by
length." The model incorrectly assumes that the length of the paintings should be height times width,
whereas it is really just the height of the painting.

<think>I need to list the names of all distinct paintings and order them
by their length. The length of a painting can be calculated using the
height and width in millimeters. I will use the ‘DISTINCT' keyword
to ensure that each painting title is listed only once, and I will
order the results by the calculated length.</think>

<sgl>SELECT DISTINCT title
FROM Paintings
ORDER BY height_mm * width_mm;</sql>

C.5 Failure Mode 2: Stuck in a loop

The trace below shows how the model gets stuck in a loop, keeping running into the same “no such
column” error although it is informed with the observation from the database.

<think>...</think>
<sgl>SELECT AVG(T1l.room_count)
FROM Rooms AS Tl JOIN Properties AS T2 ON Tl.property_id = T2.
property_id
JOIN Property_Features AS T3 ON T2.property_id = T3.property_id
WHERE T3.feature_name = ’'garden’;</sql>
<observation>OperationalError: no such column: Tl.room_count...</
observation>
<think>...</think>
<sql>SELECT AVG(T1l.room_count)
FROM Rooms AS Tl JOIN Property_Features AS T2 ON Tl.property_id = T2.
property_id
WHERE T2.feature_name = ’'garden’;</sqgl>
<observation>OperationalError: no such column: Tl.room_count...</
observation>
<think>...</think>
<sgl>...</sqgl>
<observation>OperationalError: no such column: Tl.room_count...</
observation>

D Ablation Details

D.1 Removing Schema

In practice, access to the full database schema isn’t always available—human data engineers may
only see table names or partial metadata. Therefore, we want to test the models’ robustness and the
ability to explore the databases under such incomplete information. Our experiments always included
the full database schema in the prompt, in line with standard practice for the Spider datasets. This
schema included detailed metadata such as table and column descriptions and example entries. We
now evaluate a table-names-only setting (no column definitions/relations/examples) and conduct the
evaluations across the Spider benchmarks. The relevant modified portions of the prompt are presented
below; all other parts of the prompt remain the same.
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Changes to the Prompt for Multi-Turn Text2SQL Task without Schema

Task Overview:

You are a data science expert. Below, you are provided with
a natural language question. Your task is to understand the
schema and generate a valid SQL query to answer the question
within limited turns. You should breakdown the problem,
draft your reasoning process, and generate the solution.

Database Schema: You are not provided with the database
schema and the table names. You need to figure out the
database structure by yourself with the table names.
{table_names}

———————————————— START OF EXAMPLE ————————————————
Question: how many pigs are in the farm?

<think>I am querying how many pigs are in the farm. I will
begin by checking if the ’animals’ table exists and contains
entries with species = ’"pig’.</think>

As Table ] shows, removing the database schema from the prompt causes a large degradation across
every Spider split. The baseline Qwen2.5-Coder-7B-Instruct falls from an average of 72.0% to 33.8%
(-38.2%). By contrast, SKYRL-SQL-7B drops from 79.2% to 46.8% (-32.4%), consistently retaining
more accuracy under schema-free evaluation. This smaller decline indicates our model can better
infer and navigate the schema on its own, rather than relying solely on the explicit schema context.

Table 4: Removing the schema from the prompt leads to significant performance drops across all
Spider benchmarks.

SPIDER  SPIDER SPIDER SPIDER  SPIDER AVG
DEvV TEST REALISTIC DK SYN

Evaluation with Schema
QWEN2.5-CODER-7B-INSTRUCT 77.1 79.6 74.2 62.8 66.2 72.0
SKYRL-SQL-7B 83.9 85.2 81.1 72.0 73.7 79.2
Evaluation w/o Schema
QWEN2.5-CODER-7B-INSTRUCT 39.8 36.9 33.3 27.7 31.2 33.8
SKYRL-SQL-7B 55.8 50.0 43.7 42.1 42.3 46.8

D.2 Thinking Models

Qwen?2.5-7B-Instruct is not a native thinking model; it was not trained to emit <think> blocks
without specific prompting. More recent models have adopted the thinking paradigm, where models
are trained to, by default, emit <think> blocks.

To test whether our multi-turn training recipe still works for newer thinking models, we ran the same
RL recipe with Qwen3-8B as the base model. We make a minor prompt change for the thinking
model training and evaluation, dropping the thinking-specific instructions since these models already
possess that capability.
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Changes to the Prompt for Multi-Turn Text2SQL Task for Thinking Models

Format:

— You can use SQL tool written within a single <sgl>your
sgl</sqgl> block to explore or verify. SQL tool output will
be shown as dataframe inside <observation>...</observation>.
Based on this observation, you can think again and refine.

— The returned dataframe will be truncated in 50 rows if
observation is too long.

— If you find no further exploration is needed or reaches max

turns, you MUST directly provide the final SQL query solution
inside <solution>...</solution>.

———————————————— START OF EXAMPLE —-————————————————
Question: how many pigs are in the farm?
Database Schema:

Table: animals

— id (INTEGER, PRIMARY KEY)

— species (TEXT)

- age (INTEGER)

— name (TEXT)

<sgl>SELECT COUNT () FROM animals WHERE species =
'pig’;i</sql>
<observation>

| COUNT (*) |

</observation>
<solution>SELECT COUNT (*) FROM animals WHERE species =
;o

pig’;</solution>
———————————————— END OF EXAMPLE ————————————————

As shown in Table [5] the method led to consistent improvements across all Spider benchmarks,
indicating that the benefits extend to thinking models. We expect that increasing the training data will
yield more substantial performance gains.

Table 5: Comparison between Qwen3-8B and the trained Qwen3-8B (which we refer to as SKYRL-
SQL-8B) with the same set of 653 training data. Both models are evaluated for 5 turns with thinking
mode on and a temperature of 0.6, aligning the best practice for Qwen3-8B.

SPIDER  SPIDER SPIDER SPIDER  SPIDER

DEV TEST REALISTIC DK SYN AVG
QWEN3-8B 79.3 81.5 76.0 69.5 69.7 75.2
SKYRL-SQL-8B 81.4 84.5 79.9 71.6 73.4 78.2
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