
Asynchronous Decentralized Online Learning

Jiyan Jiang∗
Tsinghua University
scjjy95@outlook.com

Wenpeng Zhang∗

Ant Group
zhangwenpeng0@gmail.com

Jinjie Gu
Ant Group

jinjie.gujj@antgroup.com

Wenwu Zhu†

Tsinghua University
wwzhu@tsinghua.edu.cn

Abstract

Most existing algorithms in decentralized online learning are conducted in the
synchronous setting. However, synchronization makes these algorithms suffer
from the straggler problem, i.e., fast learners have to wait for slow learners, which
significantly reduces such algorithms’ overall efficiency. To overcome this problem,
we study decentralized online learning in the asynchronous setting, which allows
different learners to work at their own pace. We first formulate the framework
of Asynchronous Decentralized Online Convex Optimization, which specifies the
whole process of asynchronous decentralized online learning using a sophisticated
event indexing system. Then we propose the Asynchronous Decentralized Online
Gradient-Push (AD-OGP) algorithm, which performs asymmetric gossiping com-
munication and instantaneous model averaging. We further derive a regret bound
of AD-OGP, which is a function of the network topology, the levels of processing
delays, and the levels of communication delays. Extensive experiments show that
AD-OGP runs significantly faster than its synchronous counterpart and also verify
the theoretical results.

1 Introduction

Decentralized online learning has recently received increasing research attention due to its capability
of processing large-scale streaming data in decentralized computational architectures (e.g., mobile
networks and CPU/GPU clusters). Many different algorithms have been proposed [31, 32, 22, 15, 28,
16, 24] and successfully applied in various application scenarios, such as recommendation systems
[29], energy management [5] and cooperative navigation [21].

Most of the existing decentralized online algorithms are investigated under the synchronous setting,
where all the learners are restricted to communicating their updated information (e.g., model param-
eters, gradients, dual variables) with each other at the same pace. However, this synchronization
mechanism incurs the straggler problem, which can markedly deteriorate the efficiency of the algo-
rithms [30, 17, 3]. In more detail, at each iteration, the fast learners have to wait for the slow learners,
i.e., the stragglers, to finish their update and communication. Consequently, their speeds will be
dragged down by those of the stragglers, which may dramatically reduce the algorithms’ overall
efficiency as the speeds of different learners in a decentralized system usually vary widely owing to
varying computing powers, storage capacities, network bandwidths, etc.

As is well acknowledged, designing the asynchronous counterpart of a synchronous algorithm is
the most common way to resolve the straggler problem. However, compared to the well-studied

∗Equal contributions. †Corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

centralized online [9, 18] and decentralized stochastic [17, 12, 3, 23] settings, how to do asynchronous
learning in the decentralized online setting remains largely unexplored. The major obstacle is its
intrinsic hardness. In asynchronous decentralized online learning, each learner has five basic types of
actions, namely prediction, weight update, message sending, message receiving, and model averaging.
Due to asynchronization, each learner executes its own actions independently. Hence the orders of
the actions of different learners are intermixed together, which results in very complex interaction
dynamics. By far, even no formal framework exists that can accurately describe the whole process of
asynchronous decentralized online learning, not to mention algorithm design or theoretical analysis.

In this paper, we conduct a systematic study of asynchronous decentralized online learning. To begin
with, we formulate the framework of Asynchronous Decentralized Online Convex Optimization
(AD-OCO). We first specify the action sequence of each learner using its own indices, then propose
a novel event indexing system, which delicately characterizes the complete orders of actions of all
learners by mapping them into a single time axis. To the best of our knowledge, this is the first formal
framework that gives a complete characterization of the whole interaction dynamics of asynchronous
decentralized online learning.

Based on the proposed AD-OCO framework, we develop the Asynchronous Decentralized Online
Gradient-Push (AD-OGP) algorithm. AD-OGP consists of two key modules. The first module is a
gossip-based communication scheme, in which each learner is only allowed to communicate with its
immediate neighbors. In general, there are two major types of gossiping strategies in decentralized
algorithms, namely symmetric gossiping [13, 17] and asymmetric gossiping [19, 3]. In asymmetric
gossiping, the gossiping sender does not need to wait for the response message from the gossiping
receiver after it sends out its message. Hence asymmetric gossiping does not require any local
synchronization among learners, which is needed in symmetric gossiping. This makes asymmetric
gossiping more suitable for asynchronous online learning. In particular, we adopt the push-sum
strategy [14, 19], which is the most common way to realize asymmetric gossiping. The second
module is a local update scheme, which builds upon online gradient descent (OGD) [33]. When
combining push-sum with OGD, if we directly apply the standard projection operation, the resulting
algorithm crashes as it may generate predictions outside of the feasible region. To resolve this
problem, we devise a novel weighted projection operation, which makes its local update compatible
with push-sum. Moreover, in AD-OGP, we allow each learner to perform model averaging as long as
it is unoccupied and its receiving buffer is not empty, which effectively reduces the communication
delays. We emphasize that the above innovations, namely weighted projection and instantaneous
model averaging, are two special designs when tailoring asynchronization to the online setting.

We further conduct the first regret analysis of asynchronous decentralized online learning. In particular,
we extend the graph augmentation technique [10] to the online setting to handle message delays, then
disentangle the complex effects of predictions, weight update, and model averaging via our proposed
event indexing system. We derive a non-trivial regret bound of AD-OGP, which captures the effects
of the network structures, the levels of processing delays, and the levels of communication delays.
Our bound is in the same order O(

√
T) as that of its synchronous counterpart [27]. In addition, we

make an extra contribution to the convergence analysis of push-sum. Specifically, we reduce a factor
of
√
n (n is the dimension of model parameters) in the convergence rate of push-sum compared to

that in [2], and our final bound is now independent of n.

Experimental results on two large-scale real-world datasets show that AD-OGP runs substantially
faster than its synchronous counterpart, with nearly negligible loss in performance. We further design
elaborate experiments to verify the effectiveness of the two innovations of asymmetric gossiping
and instantaneous model averaging in AD-OGP. Specifically, with either innovation removed or
weakened, the reduced algorithm will be ineffective in some specific settings. The theoretical results
of AD-OGP’s regret bound on different graphs and delay levels are also well confirmed.

2 Asynchronous Decentralized Online Convex Optimization

In this section, we formally describe the AD-OCO framework. Our framework is defined over an
undirected graph G = (V,E) with vertex set V = {1, . . . ,m} and edge set E ⊂ V × V . Each
node i ∈ V represents an individual learner which maintains a local model wi ∈ K, where K is a
convex compact decision set. Each learner i can only communicate with its immediate neighbors
N (i) = {j ∈ V | (i, j) ∈ E}.

2

We first illustrate the whole process of AD-OCO. As the process is very complex, we divide its
description into two parts: (i) Individual view, which specifies the action sequence of each individual
learner; (ii) System view, which characterizes the interaction dynamics among different learners.

Individual View Each learner i ∈ V is selected adversarially by the environment to make predic-
tions at certain time points. We index the prediction rounds of learner i as τ = 1, . . . , Ni. At each
round τ , learner i predicts with its most recent model wτ

i . Then the environment reveals a convex loss
function fτ

i : K → R, and learner i suffers the loss fτ
i (w

τ
i). When receiving the feedback, learner

i begins to calculate the gradient ∇fτ
i (w

τ
i). After finishing the calculation, it uses the gradient to

update its model wi ← U(wi;∇fτ
i (w

τ
i)), where U is the local update scheme. Then it selects a

subset of neighbors, and sends a copy of its updated model to each of them. Besides sending out its
own model copies, learner i will also receive its neighbors’ model copies at certain time points. These
copies will be stored in its receiving buffer Bi. Whenever learner i is not occupied with gradient
calculation or local update, and its buffer is not empty, it can average its model with the model copies
stored in the buffer, i.e., wi ← A(wi;Bi), where A is the model averaging scheme.

System View Due to asynchronization, each learner executes its actions independently. Hence the
orders of actions of all learners are intermixed. To precisely characterize the interaction dynamics
among learners, we need to specify the complete orders of the actions of all learners by mapping
them into a single time axis. To this end, we propose a novel event indexing system. We view either
a prediction or a local update of any learner as an event, and use a virtual counter t to index these
events, which will increase by one each time some learner makes a prediction or completes a local
update. Let T =

∑
i∈V Ni be the total number of predictions of all learners, then the total number of

local updates is also T . For each event t ∈ {1, . . . , 2T}, we use δt ∈ {0, 1} to distinguish the event
type: (i) δt = 0 if it is a prediction event, and (ii) δt = 1 if it is a local update event. We further use it
to denote the learner that executes the event t, and ft to denote the associated feedback; then there
exists some τ ∈ {1, . . . , Nit} such that ft = fτ

it
.

In particular, if event t is a local update event (i.e., δt = 1), we denote lt as the index of the associated
prediction event1, and dg(t) = t− lt as the gap between these two indices. Since any prediction must
occur before its corresponding local update, here we have t ≥ 2, lt < t and dg(t) > 0. Let card(A)
denote the cardinality of set A. Now we can introduce a quantity of ft called the processing delay
dp(t) = card{lt < s < t | δs = 1}, which measures the number of local updates that occur between
the prediction and the local update associated with ft. Note that our definition of processing delay is
in line with those in other asynchronous frameworks for stochastic optimization [17, 3].

Recall that, after any local update event t, the learner it that executes this event will send out its
model copy to a subset St of its neighbors N (it). We focus on the copy sent to any neighbor j ∈ St.
We assume such copy is used to average learner j’s model between events rtj and (rtj + 1) for some
rtj ≥ t. For the message sent from learner it to learner j after event t, we introduce a quantity
termed the message delay dmitj(t) = rtj − t, which measures the number of events that occur while
this copy is in transmission or learner j’s receiving buffer. Note that in the asynchronous stochastic
setting [3, 23], the message delay is measured by solely counting the number of local updates. In
the online setting, we also count the predictions because whether model averaging occurs before or
after a prediction will affect the gradient calculation, which further affects the corresponding weight
update.

With the above event indexing system, we can now characterize the evolution of model wi. For each
learner i, we denote wi(t) as its most recent model before event t, and ui(t) as its model immediately
after event t. We first give the detailed characterization of local updates. Specifically, for each local
update event t, it is executed by learner it. The associated gradient was computed w.r.t. learner it’s
model wit(lt) at prediction event lt. So the local update on it can be characterized as

uit(t) = U(wit(t);∇flt(wit(lt)).

The models of other learners do not change at it’s local update event, so uj(t) = wj(t) for j ̸= it.

We then give a full description of model averaging. Recall that, in our indexing system, model
averaging operation is not regarded as an event. Hence we need to specify it using the indices of its
nearby events. Concretely, for each learner i, we consider its model averaging during the interval

1Note that in our indexing system, when δt = 1, the feedback and its associated learner can be represented
by the index of either the prediction event lt or the local update event t, i.e., flt = ft and ilt = it.

3

Protocol 1 Asynchronous Decentralized Online Convex Optimization (AD-OCO)
1: Input: Time horizon T , convex set K, local update scheme U , and model averaging scheme A.
2: Initialize: Local models wj(1) ∈ K,∀j ∈ V .
3: for t = 1, . . . , 2T do
4: if δt = 0 then // for a prediction event
5: A learner it ∈ V is selected by the environment adversarially to predict with wit(t).
6: Learner it receives a convex function ft from environment, and suffers the loss ft(wit(t)).
7: Learner it starts to compute the gradient∇ft(wit(t)).
8: else // for a local update event
9: Learner it performs a local update:

uit(t) = U(wit(t);∇flt(wit(lt)).

10: Learner it selects a subset St of its neighbors N (it) and sends uit(t) to each j ∈ St.
11: end if
12: for i ∈ V do
13: Learner i performs model averaging using model copies B1i (t), . . . ,Bsi (t) if it is unoccupied:

wi(t+ 1) =

{
ui(t), s = 0;

A(· · · (A(A(ui(t),B1i (t)),B2i (t)) · · ·),Bsi (t)), s ≥ 1.

14: end for
15: end for

between event t and t + 1. If it is not occupied in this interval, we assume it performs s model
averaging operations for some s ≥ 0, each time using copies in B1i (t), . . . ,Bsi (t). Recall that learner
i’s models at the beginning and the end of such interval are ui(t) and wi(t+ 1) respectively. Hence
the overall effect of model averaging on learner i between event t and t+ 1 can be expressed as

wi(t+ 1) =

{
ui(t), s = 0;

A(· · · (A(A(ui(t),B1i (t)),B2i (t)) · · ·),Bsi (t)), s ≥ 1.

Regret Definition In AD-OCO, the regret w.r.t. an arbitrary reference learner j ∈ V is defined as

Regretj =
∑
t∈PT

ft(wj(t))−
∑
t∈PT

ft(w
∗),

where PT = {t ∈ {1, . . . , 2T} | δt = 0} denotes the set of all prediction events, and w∗ ∈
argminw∈K

∑
t∈PT

ft(w) denotes the best fixed model in hindsight. The goal of the learners is
to make a sequence of predictions {wi(t)}i∈V,t∈PT

, so that the regret w.r.t. any reference learner
j is sublinear in T , i.e., limT→∞ Regretj/T = 0. Note that our regret is in line with the regret
defined in the synchronous setting [27, 31], where all the losses {ft | t ∈ PT } are evaluated by a
fixed reference learner j.

3 Asynchronous Decentralized Online Gradient-Push

In this section, we first present the AD-OGP algorithm, then provide theoretical analysis for it.

3.1 The Algorithm

AD-OGP consists of two core modules: a local update scheme and a communication scheme. The
local update scheme builds upon OGD [33]. The communication scheme is based on push-sum [19].
We introduce two novel algorithmic designs when combining push-sum with OGD, namely weighted
projection and instantaneous model averaging. The complete pseudo-code of AD-OGP is given in
Algorithm 1.

Push-Sum Communication Before presenting the details of push-sum [14], we first give some
background knowledge to help understand the rationale of it. In most decentralized algorithms,

4

Algorithm 1 Asynchronous Decentralized Online Gradient-Push (AD-OGP)
1: Input: Time horizon T , convex set K, and learning rate η.
2: Initialize: Push-sum model xj(1)← w0 ∈ K and push-sum weight yj(1)← 1,∀j ∈ V .
3: for t = 1, . . . , 2T do
4: if δt = 0 then // for a prediction event
5: Learner it predicts with wit(t) = xit(t)/yit(t).
6: Learner it starts to calculate the gradient∇ft(wit(t)).
7: else // for a local update event
8: Learner it performs weighted projected online gradient descent:

(x′
it(t), y′it(t)) =

(
γityit(t)ΠK(

xit(t)− η∇flt(wit(lt))

yit(t)
), γityit(t)

)
.

9: Learner it sends x′
it
(t) and y′it(t) to each of its neighbors j ∈ N (it).

10: end if
11: for i ∈ V do
12: Learner i performs model averaging using model copies B1i (t), . . . ,Bsi (t) if it is unoccupied:

(xi(t+ 1), yi(t+ 1)) =
(
x′
i(t) +

s∑
r=1

∑
(x′,y′)∈Br

i (t)

x′, y′i(t) +

s∑
r=1

∑
(x′,y′)∈Br

i (t)

y′
)
.

13: end for
14: end for

communication is based on distributed averaging [26, 8], i.e., computing the average model x̄ =
1
m

∑
i∈V xi of all learners V = {1, . . . ,m} over a network G. In general gossip-based approaches,

at step l ∈ {1, . . . , L}, each learner i ∈ V accesses the models of its neighbors and averages
these models with its own model to obtain xi(l + 1) =

∑
j∈V pij(l)xj(l), where pij(l) ≥ 0 is the

averaging weight. In particular, pij(l) > 0 only if learner i accesses learner j’s model. The model
averaging of all learners has a compact matrix form X(l + 1) = P (l)X(l), where the i-th row of
X(l) denotes learner i’s model xi(l), and the entry at the i-th row and j-th column of P (l) is pij(l).

In symmetric gossiping [8, 17], it is a common practice to design communication schemes such
that the corresponding P (l) is doubly stochastic, i.e., P (l)1 = P (l)⊤1 = 1, where 1 is the m× 1

all-one vector. Then by the property of Markov chain, limL→∞
∏L

l=1 P (l) = 1
m11⊤, which implies

that the local model of each learner i will approach xi(∞) = x̄. The doubly stochastic property
is often achieved by letting pij(t) = pji(t), which requires local synchronization between the
gossiping pair (i, j). In asymmetric gossiping, however, we typically have pij(l) ̸= pji(l). So in
general, it is very hard or even impossible to design a scheme in which P (l) is doubly stochastic
[2]. The usual way [20, 2] to bypass such harsh requirements is to design a communication scheme
whose P (l) only satisfies the column stochasticity, i.e., P (l)⊤1 = 1. Then it can be proved that
limL→∞

∏L
l=1 P (l) = π1⊤ for some π ∈ Rm

+ , which implies that each learner i will converge to
πix̄. Push-sum strategy [19] removes the bias πi via very light extra communication. Specifically,
each learner i maintains a positive scalar yi termed the push-sum weight, initialized as yi(1) = 1.
Then it applies the same averaging operation of xi to yi at each step l, i.e., y(l + 1) = P (l)y(l).
By the property of Markov chain, liml→∞ yi(l) = πi for each learner i. Thus the ratio xi(l)/yi(l)
approximately approaches x̄.

Given the above background knowledge, we now provide the details to implement push-sum in the
asynchronous online setting. The core is to assign the averaging weights pij(t) at each step t to make
P (t) column stochastic. For simplicity, we first assume there is no message delay. After each local
update event t, learner it can only send its model copy to its neighbors N (it). Hence pkit(t) > 0
only if k ∈ N (it)∪ {it}. To ensure

∑
k∈V pkit(t) = 1, a natural choice is to assign the same weight

pkit(t) = γit for all k ∈ N (it) ∪ {it}, where γit = 1/(|N (it)|+ 1). Our implementation satisfies
this condition: After each local update t, learner it first multiplies its model xit and push-sum weight
yit by γit , i.e., x′

it
= γitxit and y′it = γityit . Then it sends a copy of x′

it
and y′it to each neighbor

j ∈ N (it). In the corresponding model averaging, learner j adds x′
it

and y′it to its own parameters,

5

i.e., xj ← xj +x′
it
= xj + γitxit and yj ← yj + y′it = yj + γityit . The model averaging operation

of learner i using buffer Bsi can be summarized as

A((xi, yi);Bsi) =
(
xi +

∑
(γjxj ,γjyj)∈Bs

i

γjxj , yi +
∑

(γjxj ,γjyj)∈Bs
i

γjyj

)
.

Note that when there are message delays, our scheme can still induce column stochastic P (t) on the
augmented graph [10] at each step t ∈ {1, . . . , 2T} (see detailed proofs in supplementary materials).

Weighted Projected Online Gradient Descent Recall that, in push-sum, each learner i ∈ V
has two types of parameters, namely the push-sum model xi and the push-sum weight yi; and it
always predicts with wi = xi/yi. Learner i is initialized by xi ← w0 ∈ K and yi ← 1. In OGD’s
update with gradient g, learner i first performs a gradient step on its model xi, i.e., xi ← xi − ηg,
where η is the learning rate. However, its next prediction xi/yi may lie outside of the decision
set K, which violates the feasibility. To ensure feasibility, OGD executes a projection operation
ΠK on the model xi after the gradient step, i.e., ΠK(xi) = argminx∈K ∥x − xi∥, where ∥ · ∥
denotes the L2 norm. However, if we directly apply the standard projection operation, we may
still have wi = ΠK(xi)/yi /∈ K after projection, because yi can be less than 1. Hence we need a
special design of the projection operation. Notice that when yi > 0, xi/yi ∈ K is equivalent to
xi ∈ yiK = {yiw | w ∈ K}. Since yiK is also convex, we can project xi onto yiK instead of K.
Then we have ΠyiK(xi) = argminx∈yiK ∥x−xi∥ = yi argminw∈K ∥w−xi/yi∥ = yiΠK(xi/yi),
which can be viewed as the standard projection ΠK(xi) distorted by weight yi. The above local
update procedure can be summarized as xi ← yiΠK((xi − ηg)/yi) and yi ← yi. The feasibility of
the iterations of AD-OGP is strictly proved in supplementary materials.

Recall that, in our implementation of push-sum, we multiply learner i’s parameters xi and yi by a
factor of γi immediately after its local update. This multiplication operation can be combined with
the above local update form, which gives a compact expression

U((xi, yi); g) = (γiyiΠK((xi − ηg)/yi), γiyi).

Instantaneous Model Averaging In the asynchronous online setting, another design issue, namely
when to perform model averaging for each learner, should be considered carefully. The learner is
unoccupied only when it completes a local update and waits to be selected by the environment to
make the next prediction. Hence the learner can only perform model averaging during this period.
However, the learner may receive messages at any time. Each message will be stored in the receiving
buffer until the learner performs the next model averaging. The waiting time of this message also
contributes to message delays. To effectively avoid increasing message delays, we allow each learner
to perform model averaging as soon as possible. (i) If the learner receives any message during gradient
calculation or local update, it will use this message for model averaging as soon as it completes the
local update. (ii) If the learner receives any message during its unoccupied period, it will perform
model averaging immediately.

We remark that instantaneous model averaging is a novel design specific to the online setting since
when to perform model averaging does not even constitute a problem in stochastic optimization. In
fact, in asynchronous decentralized stochastic optimization [3, 23], when to calculate the gradient
and perform the local update is actively decided the learner itself, as the data instances do not come
in a streaming manner. Particularly, the learner can begin to process the next instance immediately
after it completes any local update. Hence the learner is always occupied, and the time available
for model averaging is only when it finishes a local update. In the online setting, however, the time
points of making predictions are adversarially decided by the environment, and thus there may be
some time lag between any local update and its subsequent prediction, during which the learner stays
unoccupied. Therefore, when to perform model averaging during such unoccupied period needs to
be decided. In AD-OGP, we design instantaneous model averaging, which allows each learner to
perform model averaging immediately when it enters the unoccupied period.

3.2 Theoretical Analysis

In theoretical analysis, we only need to consider the case of m ≥ 2. In fact, when m = 1, there
is only one single learner in the network and hence there is no communication. In this case, the
push-sum weight of the only learner is always y1(t) = 1 and its local model simply evolves as

6

x1(t+ 1) = ΠK(x1(t)− η∇ft(x1(t))), which reduces to the standard OGD [33]. Therefore, in the
following analysis, we assume m ≥ 2. Now we introduce two mild assumptions that are commonly
used in the analysis of asynchronous distributed algorithms [3, 23].

Assumption 1. (a) The message delays are bounded by some integer Dmsg ≥ 0.
(b) Each learner performs local updates at least once every Γd steps for some integer Γd > 0.

Before presenting the regret bound, we first give some necessary notations. We use QT = {t ≤ 2T |
δt = 1} to denote the indices of all local update events, then equivalently QT = {1, . . . , 2T} − PT .
We further use Qs,t = QT ∩ (s, t) to denote the local updates that occurs between events s and t.
Now for any local update event t ∈ QT , the processing delay dp(t) is exactly |Qlt,t|. Moreover,
denote the gradients associated with each local update event t as gt = ∇flt(xit(lt)/yit(lt)), ĝt =
∇flt(xj(lt)/yj(lt)), their L2-norms as gt = ∥gt∥, ĝt = ∥ĝt∥, the total processing delay of all
feedbacks as Dproc =

∑
t∈QT

dp(t), and the diameter of the underlying network G as D.

Theorem 1. For any reference learner j ∈ V , AD-OGP attains the following regret bound

Regretj ≤
m

2η
∥w0 −w∗∥2 + 2η

m

∑
t∈QT

∑
s∈Qlt,t+1

gtgs + η
∑
t∈QT

g2t
yit(t)

+ 2η
∑
t∈QT

∑
s∈Q1,lt

λ⌊ lt−s
2B ⌋(gt + 2ĝt)

gs
yis(t)

+ 2η
∑
t∈QT

∑
s∈Q1,t+1

λ⌊ t−s
2B ⌋gt

gs
yis(t)

,

where λ = 1−mα4, α = (1/m)B , B = (D + 1)(Dmsg + Γd).

Proof sketch Our proof consists of three major steps. First, we extend the graph augmentation
technique [10] to the online setting to handle message delays. Specifically, we add Dmsg virtual
nodes for each node i ∈ V , and derive a column stochastic P (t) on the augmented graph at each
event t ∈ {1, . . . , 2T}. Second, we sort out the complex effects of predictions, local updates, and
communication of all learners via our proposed event indexing system. Then we derive a general
regret bound in terms of the transition matrix P (t) at each event and the gradients gt, ĝt at each local
update event. Third, we analyze the asymptotic properties of P (t) induced by our push-sum strategy.
Although this part is enlightened by prior research [20, 23], we make an extra contribution to the
convergence analysis of push-sum. Specifically, when analyzing the diffusion of any model copy over
the network, we tackle all of its n dimensions simultaneously by utilizing the fact that the rank of the
updating matrix ∆(t) = gte

⊤
it

is at most one. In this way, we save a factor of
√
n in the convergence

rate compared to the previous analysis [2]. As a consequence, our bound is now independent of n.

The above bound can be further simplified under the bounded gradient norm assumption [27].

Corollary 1. Suppose gt ≤ G, ĝt ≤ G,∀t ∈ QT for some G <∞. Then AD-OGP attains the regret

Regretj ≤
m

2η
∥w0 −w∗∥2 + 2η

m
G2(T +Dproc) +

2η

m
(
8 + α4

α5
)BG2T,

for any reference learner j ∈ V , where α = (1/m)B , B = (D + 1)(Dmsg + Γd).

Remark (a) Suppose the diameter of the decision setK is bounded by F . Set η = (mF/2G)(Dproc+
T + CBT)−1/2, where C = (8 + α4)/α5, then the bound will attain O((CBT + T +Dproc)1/2).
It will be larger with more learners (larger m), heavier processing delays (larger Dproc), heavier
message delays (larger Dmsg), and "less connected" graphs (larger diameter D).
(b) When the processing delays dp(t) are upper bounded, then Dproc = O(T). Now the above
derived bound reduces to O((CBT)1/2), which is sublinear O(

√
T) w.r.t. T .

(c) The second term in the bound captures the effect of processing delays
∑

t∈QT
dp(t). This term is

in line with the delay effect term in the asynchronous centralized online setting [18].
(d) The third term in the bound captures the effect of decentralization. Note that the factor α represents
a lower bound of the positive entries in any B-hop transition matrix P (t+B−1) · · ·P (t+1)P (t), t ∈
{1, . . . , 2T −B}, which is commonly seen in the analysis of push-sum [1, 20, 2, 3].
(e) When there is no delays, namely Dproc = Dmsg = 0, the bound reduces to that of its synchronous
counterpart [1] (for a fair comparison, we remove the assumption of strong convexity in [1]).

7

(a) Dp = 1, Dm = 1 (b) Dp = 10, Dm = 1 (c) Dp = 1, Dm = 10 (d) Dp = 10, Dm = 10

0 100 200
Time (s)

1.00

1.05

1.10

Av
er

ag
e

 L
os

s D-OGP
AD-OGP

0 500 1000
Time (s)

1.00

1.05

1.10

Av
er

ag
e

 L
os

s D-OGP
AD-OGP

0 500 1000 1500
Time (s)

1.00

1.05

1.10

Av
er

ag
e

 L
os

s D-OGP
AD-OGP

0 1000 2000
Time (s)

1.00

1.05

1.10

Av
er

ag
e

 L
os

s D-OGP
AD-OGP

Figure 1: Illustration of the benefit of asynchronization. The four plots compare AD-OGP and
D-OGP on 64-node Watts-Strogatz graphs on pokerhand under varying delay levels.

4 Experiments

In this section, we evaluate AD-OGP on two large-scale real-world online classification tasks. We first
compare AD-OGP with its synchronous counterpart to show the advantage of asynchronization, then
design elaborate experiments to verify the effectiveness of asymmetric gossiping and instantaneous
model averaging in our algorithm design, and finally verify our theoretical regret bound.

4.1 Experimental Setup

We select two large-scale real-world datasets. (i) The higgs dataset is a benchmark dataset in high-
energy physics [4] for binary classification, which consists of 11 million instances with 28 features.
(ii) The poker-hand dataset is a commonly used dataset in automatic rule generation [6, 7] for 10-class
classification, which has 1 million instances with 25 features. For binary classification, we use the
logistic loss; for multi-class classification, we use the multivariate logistic loss [11] (see detailed
definitions in supplementary materials).

In our experiments, the process of asynchronous decentralized online learning is simulated as follows.
Given a dataset, the data instances are fed to the learners one after another at each prediction event in a
streaming manner. We simulate three types of time intervals: (i) the computation time for each learner
to calculate the gradients of data instances and perform local updates, (ii) the transmission time for
each message to reach its gossiping receiver, and (iii) the waiting time for each learner to wait for the
next prediction after it finishes a local update. Note that the waiting time is unique to the simulation
of our online learning setting, which is not needed in that of stochastic optimization. Similar to the
simulation method in [25], the computation time of learner i follows the exponential distribution
Exp(µi) with mean value µi = |µ̄|+ 2, where µ̄ is sampled from the standard normal distribution
Normal(0, 1). The transmission time of each message is independently sampled from Exp(0.6). The
waiting time is independently sampled from Exp(δ) (the mean value δ will be specified later). The
units of all time are milliseconds. Note that we also examine other time distributions, such as uniform
distributions, and observe similar results, which are omitted due to the page limit.

We use the average loss as the performance metric, which is a common practice in most online
learning experiments [18, 31, 24]. Specifically, we randomly select a reference learner j ∈ V
and measure

∑
t∈PT

ft(wj(t))/T , where the model at each prediction event t ∈ PT is given as
wj(t) = xj(t)/yj(t). Moreover, we adopt the commonly used L2-norm balls as decision sets and
set their diameters as 100. The learning rate η is set as what the corresponding theory suggests (see
more details in supplementary materials).

4.2 The Benefit of Asynchronization

We compare AD-OGP with synchronous decentralized online gradient-push (D-OGP) [1], which
synchronizes the local updates and communication of all learners at each round. We conduct
the comparison on three representative types of graphs with varying connectivities [8, 31], i.e.,
the complete graph with high connectivity, the Watts-Strogatz graph as a kind of random graph
with medium connectivity, and the ring graph with low connectivity (see detailed descriptions in
supplementary materials).

We also investigate the effects of processing delays and message delays on the comparison of
algorithms. We simulate different levels of delays via a technique commonly used in experiments of
asynchronous decentralized stochastic optimization [17, 23]. Specifically, for the reference learner j,

8

(a) Dm = 1 (b) Dm = 100

0 500 1000
Instance (K)

1.00

1.02

1.04

Av
er

ag
e

 L
os

s symmetric
push-sum

0 500 1000
Instance (K)

1.00

1.02

1.04

Av
er

ag
e

 L
os

s symmetric
push-sum

Figure 2: Illustration of the effectiveness of
asymmetric gossiping. The two plots compare
push-sum and symmetric gossiping [17] on a 64-
node Watts-Strogatz graph on pokerhand. We en-
large the transmission time of any message sent
from/to the reference learner j by Dm times.

(a) D l = 1 (b) D l = 100

0 500 1000
Instance (K)

1.00

1.02

1.04

Av
er

ag
e

 L
os

s blocked
instant

0 500 1000
Instance (K)

1.00

1.02

1.04

Av
er

ag
e

 L
os

s blocked
instant

Figure 3: Illustration of the effectiveness of in-
stantaneous model averaging. The two plots com-
pare AD-OGP and its counterpart with blocked
averaging [3] on a 64-node Watts-Strogatz graph
on pokerhand. We enlarge the waiting time of
the reference learner j by Dl times.

we first enlarge its computation time by Dp times throughout the learning process, where Dp is a
parameter that controls the level of processing delays. Then we randomly select a neighbor k ∈ N (j)
of learner j and enlarge the transmission time of any message from j to k or k to j by Dm times,
where Dm is a parameter that controls the level of message delays. Similar to [17], we set Dp = 1
and Dm = 1 to represent a weak delay level, and set Dp = 10 and Dm = 10 to represent a strong
delay level. As for the waiting time, we set the mean value δ = 0.01 to make it relatively small
compared to the processing time and the transmission time. In this way, the effect of waiting time
on the total running time of both algorithms is almost negligible, and the running time difference is
merely due to synchronization or asynchronization.

Figure 1 plots the performance of both algorithms on a 64-node Watts-Strogatz graph on pokerhand
under varying levels of processing delays and message delays. The results on higgs as well as other
types of graphs are qualitatively similar and deferred to supplementary materials due to the page limit.
From the results, we draw two main observations. (i) AD-OGP runs substantially faster than D-OGP,
which is in accord with our intuition that asynchronization eschews the straggler problem and hence
saves considerable time. Moreover, the gap in the total running time dramatically increases as the
delays become stronger. (ii) In all the examined settings, AD-OGP yields comparable performance to
D-OGP, implying that asynchronization significantly improves the efficiency while hardly sacrificing
the performance.

4.3 The Effectiveness of Asymmetric Gossiping and Instantaneous Model Averaging

We verify the effectiveness of the two innovations in AD-OGP by showing that, with either removed
or weakened, the reduced algorithm will become less effective in some specific settings.

4.3.1 The Effectiveness of Asymmetric Gossiping

We consider a scenario where the communication of a certain learner i ∈ V is slow. In symmetric
gossiping [17], each time learner i sends a model copy to any of its neighbor k ∈ N (i), it must
wait until receiving the response message sent back from k before it can proceed to the next action.
Thus its processing speed is slowed down. In contrast, in our asymmetric gossiping, the processing
speed of such learner is not much affected since it is fully asynchronous. To verify this point
empirically, we enlarge the transmission time of any message sent from/to the reference learner j by
Dm times. We compare AD-OGP and the counterpart algorithm using symmetric gossiping (with
[17]’s implementation) on a 64-node Watts-Strogatz graph under varying Dm. Results in Figure
2 show that symmetric gossiping will make the algorithm much less effective as message delays
increase, which verifies the effectiveness of asymmetric gossiping.

4.3.2 The Effectiveness of Instantaneous Model Averaging

We consider a scenario where a certain learner i ∈ V is seldom selected by the environment to make
predictions. In this scenario, each time learner i completes a local update, it may wait for a long time
until it is selected to make the next prediction. During this period, learner i stays unoccupied and
may consecutively receive model copies from its neighbors. In AD-OGP, these copies are used for
model averaging immediately after they arrive. In contrast, if we directly apply other asynchronous

9

(a) network sizes (b) network topology (c) processing delays (d) message delays

0 500 1000
Instance (K)

0.99

1.00

1.01

1.02

Av
er

ag
e

 L
os

s m=1
m=4
m=16
m=64

0 500 1000
Instance (K)

0.99

1.00

1.01

1.02

Av
er

ag
e

 L
os

s complete
Watts-Strogatz
ring

0 500 1000
Instance (K)

0.99

1.00

1.01

1.02

Av
er

ag
e

 L
os

s Dp=1
Dp=10
Dp=100

0 500 1000
Instance (K)

0.99

1.00

1.01

1.02

Av
er

ag
e

 L
os

s Dm=1
Dm=10
Dm=100

Figure 4: Verification of our regret bound. The four plots show AD-OGP’s performance on poker-
hand with varying characteristics. (a) Varying network sizes. (b) Varying network topology. (c)
Varying levels of processing delays. (d) Varying levels of message delays.

stochastic algorithms [3, 23] to our online setting, these copies will be stored in learner i’s receiving
buffer until it makes the next local update, which essentially magnifies the message delays and will
harm the performance of the algorithms. To verify this point empirically, we set δ = 0.6 in the
waiting time simulation and enlarge the waiting time on the reference learner j by Dl times. We
compare AD-OGP and the counterpart algorithm without using instantaneous model averaging (with
[3]’s implementation which we term as blocked averaging) on a 64-node Watts-Strogatz graph under
varying Dl. The results in Figure 3 show that the counterpart algorithm will become much less
effective when some learners need to wait for model averaging, which verifies the effectiveness of
instantaneous model averaging.

4.4 Verification of the Theoretical Bound

We finally verify our derived regret bound by examining the effects of various factors on the perfor-
mance of AD-OGP. Specifically, we run AD-OGP under varying network sizes, varying network
topology, and varying levels of processing delays and message delays. Figure 4 presents the results
on poker-hand. The results show that AD-OGP will incur higher losses with more learners, less
connected networks, heavier processing delays, and heavier message delays, indicating an excellent
agreement between empirical behaviors and theoretical results.

5 Conclusions

In this paper, we present the first systematic study of asynchronous decentralized online learning. We
begin by formulating the framework of Asynchronous Decentralized Online Convex Optimization.
Then we devise the Asynchronous Decentralized Online Gradient-Push algorithm, which is fully
asynchronous and includes two novel innovations, i.e., weighted projection and instantaneous model
averaging. Theoretically, we provide the first regret analysis paradigm for asynchronous decentralized
online learning. Finally, we conduct extensive experiments to demonstrate the benefit of asynchro-
nization, verify the effectiveness of the two innovations, and corroborate the theoretical bound. Our
work paves the way for future research investigating asynchronous decentralized online learning.

Limitations

As the first step of studying asynchronous learning in the decentralized online setting, our framework
formulation and theoretical analysis are conducted in the convex setting. Although such limitation
does not affect its usage in the non-convex setting, we would like to establish a formal non-convex
analysis in the future.

Acknowledgements

This work was supported by the National Key Research and Development Program of China No.
2020AAA0106300 and the National Natural Science Foundation of China (No. 62050110, No.
61936011, No. 62102222). This work was supported by Ant Group through Ant Research Intern
Program. We thank Steven C. H. Hoi, Peilin Zhao, and Tong Zhang for introducing us to the
fascinating research areas of online learning and distributed optimization. We also thank anonymous
reviewers for their insightful and valuable comments to help improve the quality of this work.

10

References
[1] Mohammad Akbari, Bahman Gharesifard, and Tamás Linder. Distributed online convex optimization on

time-varying directed graphs. IEEE Transactions on Control of Network Systems, 4(3):417–428, 2015.

[2] Mahmoud S. Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient push for
distributed deep learning. In International Conference on Machine Learning, pages 344–353, 2019.

[3] Mahmoud S. Assran and Michael G. Rabbat. Asynchronous gradient push. IEEE Transactions on
Automatic Control, 66(1):168–183, 2020.

[4] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature communications, 5(1):4308, 2014.

[5] Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li. Online job scheduling in distributed machine
learning clusters. In IEEE Conference on Computer Communications, pages 495–503, 2018.

[6] Robert Cattral, Franz Oppacher, and Dwight Deugo. Evolutionary data mining with automatic rule
generalization. Recent Advances in Computers, Computing and Communications, 1(1):296–300, 2002.

[7] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[8] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE Transactions on Automatic Control, 57(3):592–606,
2011.

[9] John C. Duchi, Michael I. Jordan, and Brendan McMahan. Estimation, optimization, and parallelism when
data is sparse. In Advances in Neural Information Processing Systems, pages 2832–2840, 2013.

[10] Christoforos N. Hadjicostis and Themistoklis Charalambous. Average consensus in the presence of delays
in directed graph topologies. IEEE Transactions on Automatic Control, 59(3):763–768, 2013.

[11] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In Interna-
tional Conference on Machine Learning, pages 1263–1271, 2016.

[12] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. Accelerated decentralized optimization with local
updates for smooth and strongly convex objectives. In International Conference on Artificial Intelligence
and Statistics, pages 897–906, 2019.

[13] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. Collaborative deep learning in fixed
topology networks. In Advances in Neural Information Processing Systems, pages 5906–5916, 2017.

[14] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate information. In
IEEE Symposium on Foundations of Computer Science, pages 482–491, 2003.

[15] Alec Koppel, Santiago Paternain, Cédric Richard, and Alejandro Ribeiro. Decentralized online learning
with kernels. IEEE Transactions on Signal Processing, 66(12):3240–3255, 2018.

[16] Jinlong Lei, Peng Yi, Yiguang Hong, Jie Chen, and Guodong Shi. Online convex optimization over Erdős-
Rényi random networks. In Advances in Neural Information Processing Systems, pages 15591–15601,
2020.

[17] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic gradient
descent. In International Conference on Machine Learning, pages 3049–3058, 2018.

[18] Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous distributed online
learning. In Advances in Neural Information Processing Systems, pages 2915–2923, 2014.

[19] Angelia Nedić and Alex Olshevsky. Distributed optimization over time-varying directed graphs. IEEE
Transactions on Automatic Control, 60(3):601–615, 2014.

[20] Angelia Nedić and Alex Olshevsky. Stochastic gradient-push for strongly convex functions on time-varying
directed graphs. IEEE Transactions on Automatic Control, 61(12):3936–3947, 2016.

[21] Santiago Paternain, Soomin Lee, Michael M. Zavlanos, and Alejandro Ribeiro. Distributed constrained
online learning. IEEE Transactions on Signal Processing, 68:3486–3499, 2020.

[22] Shahin Shahrampour and Ali Jadbabaie. Distributed online optimization in dynamic environments using
mirror descent. IEEE Transactions on Automatic Control, 63(3):714–725, 2018.

11

[23] Artin Spiridonoff, Alex Olshevsky, and Ioannis Ch. Paschalidis. Robust asynchronous stochastic gradient-
push: Asymptotically optimal and network-independent performance for strongly convex functions. Journal
of Machine Learning Research, 21(58):1–47, 2020.

[24] Yuanyu Wan, Wei-Wei Tu, and Lijun Zhang. Projection-free distributed online convex optimization with
O(

√
T) communication complexity. In International Conference on Machine Learning, pages 9818–9828,

2020.

[25] Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H. Sayed. Decentralized consensus optimization
with asynchrony and delays. IEEE Transactions on Signal and Information Processing over Networks,
4(2):293–307, 2017.

[26] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters,
53(1):65–78, 2004.

[27] Feng Yan, Shreyas Sundaram, S.V.N. Vishwanathan, and Yuan Qi. Distributed autonomous online
learning: Regrets and intrinsic privacy-preserving properties. IEEE Transactions on Knowledge and Data
Engineering, 25(11):2483–2493, 2013.

[28] Xinlei Yi, Xiuxian Li, Lihua Xie, and Karl H. Johansson. Distributed online convex optimization with
time-varying coupled inequality constraints. IEEE Transactions on Signal Processing, 68:731–746, 2020.

[29] Chi Zhang, Peilin Zhao, Shuji Hao, Yeng Chai Soh, Bu Sung Lee, Chunyan Miao, and Steven C. H.
Hoi. Distributed multi-task classification: A decentralized online learning approach. Machine Learning,
107(4):727–747, 2018.

[30] Ruiliang Zhang and James Kwok. Asynchronous distributed ADMM for consensus optimization. In
International Conference on Machine Learning, pages 1701–1709, 2014.

[31] Wenpeng Zhang, Peilin Zhao, Wenwu Zhu, Steven C. H. Hoi, and Tong Zhang. Projection-free distributed
online learning in networks. In International Conference on Machine Learning, pages 4054–4062, 2017.

[32] Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Peter W. Glynn, and Claire Tomlin.
Countering feedback delays in multi-agent learning. In Advances in Neural Information Processing
Systems, pages 6171–6181, 2017.

[33] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Interna-
tional Conference on Machine Learning, pages 928–936, 2003.

12

	Introduction
	Asynchronous Decentralized Online Convex Optimization
	Asynchronous Decentralized Online Gradient-Push
	The Algorithm
	Theoretical Analysis

	Experiments
	Experimental Setup
	The Benefit of Asynchronization
	The Effectiveness of Asymmetric Gossiping and Instantaneous Model Averaging
	The Effectiveness of Asymmetric Gossiping
	The Effectiveness of Instantaneous Model Averaging

	Verification of the Theoretical Bound

	Conclusions

