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Abstract

Deep neural networks remain highly susceptible to adversarial attacks, where small,
subtle perturbations to input images may induce misclassification. We propose
a novel optimization-based purification framework that directly removes these
perturbations by maximizing a Bayesian-inspired objective combining a pretrained
diffusion prior with a likelihood term tailored to the adversarial perturbation space.
Our method iteratively refines a given input through gradient-based updates of
a combined score-based loss to guide the purification process. Unlike existing
optimization-based defenses that treat adversarial noise as generic corruption, our
approach explicitly integrates the adversarial landscape into the objective. Experi-
ments performed on CIFAR-10 and CIFAR-100 demonstrate strong robust accuracy
against a range of common adversarial attacks. Our work offers a principled test-
time defense grounded in probabilistic inference using score-based generative mod-
els. Our code can be found at https://github.com/rooshenasgroup/aaopt.

1 Introduction

Neural networks have surpassed human accuracy on many vision benchmarks, yet they remain alarm-
ingly vulnerable to adversarial examples – worst-case perturbations that change model predictions
with high confidence [Szegedy et al., 2014, Goodfellow et al., 2015, Carlini and Wagner, 2017b].
Research increasingly suggests that this fragility arises from multiple interacting geometric factors as
deep models partition the input space into a mosaic of piecewise linear (or gently nonlinear) regions
with large local Lipschitz constants, which means that even tiny steps can radically reorder the logits
[Hein and Andriushchenko, 2017, Fawzi et al., 2018, Yang et al., 2020].

The generation of an adversarial example can be expressed as a problem of finding a minimally
perturbed version of an input that changes the classification output. Given a clean image x with true
label y, and a model f , an adversary seeks a perturbation γ bounded by a norm constraint ∥γ∥p ≤ ϵ
that maximizes the classification loss:

max
∥γ∥p≤ϵ

L
(
f(x+ γ), y

)
. (1)

Powerful gradient-based attack methods are commonly used to find such perturbations. For in-
stance, projected gradient descent (PGD) [Madry et al., 2018a] iteratively crafts an adversarial
example by taking steps in the direction of the sign of the gradient: x(t+1) = Π∥γ∥p≤ϵ

(
x(t) +

α sign(∇x(t)L(f(x(t)), y))
)
. Another notable approach, the Carlini–Wagner (CW) attack [Carlini

and Wagner, 2017a], solves a margin-based optimization problem to find the minimum perturbation
γ required to induce misclassification, i.e., f(x+ γ) ̸= y. These methods underscore how model
gradients can be exploited to identify subtle yet effective input alterations.

By ascending the input gradient of the loss—which often has a significant component orthogonal to
the data manifold—gradient based attacks pierce through the fragile margins between classes. While

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/rooshenasgroup/aaopt


gradients are not strictly orthogonal, even small ℓ∞ perturbations can cross decision boundaries in
high-dimensional pixel spaces by targeting the most sensitive non-robust features. The structure
of ReLU networks further exacerbates this vulnerability: within each activation pattern the model
behaves affinely, allowing first-order optimization to be highly effective, while rapid switching
between activation regions ensures that vulnerable directions are densely interleaved with benign
ones [Qin et al., 2019].

Adversarial training (AT) defends a classifier by augmenting each mini-batch with worst-case
perturbations and solving a min–max objective [Madry et al., 2018b]. Empirically, this paradigm
remains the de facto gold standard for ℓ∞ and ℓ2 threat models: models trained with AT are the
hardest to break on standard robustness benchmarks. Subsequent variants such as TRADES [Zhang
et al., 2019], MART [Wang et al., 2020], and AWP [Wu et al., 2020] explicitly balance clean accuracy
and robust loss or perturb the weights to enlarge margins, partially alleviating the well-known
accuracy–robustness trade-off.

Despite these gains, AT still faces significant practical hurdles. Generating multi-step adversar-
ial examples for every mini-batch inflates training cost by 2–30×, even with accelerations like
Free [Shafahi et al., 2019] and Fast AT [Wong et al., 2020]. When access is limited to a fixed
pretrained network – common in industrial pipelines or third-party deployments – full adversarial
retraining may be infeasible. While parameter-efficient robust adapters and adversarial fine-tuning
offer partial solutions, they still incur non-trivial compute. Furthermore, robustness learned under
one norm and radius does not necessarily transfer to other threat models or distribution shifts, though
recent work on multi-norm training and data augmentation has made progress in this direction [Gowal
et al., 2021].

A complementary line of work completely avoids retraining by purifying the input at test time. In
this paradigm, the adversarial input x̂ = x+ γ is treated as a corrupted observation, and the goal is
to recover a reconstruction x̃ that both lies near x̂ and has high likelihood under a learned data prior.
Early approaches such as PixelDefend [Song et al., 2018] and Defense-GAN [Samangouei et al.,
2018] frame this as an optimization problem or projection onto the manifold of a generative model
trained on clean data. A more general perspective is offered by the framework of Regularization by
Denoising (RED) [Romano et al., 2017], which shows that any powerful denoiser implicitly defines a
regularizer corresponding to an implicit data prior. Under this view, purification reduces to solving
the following optimization problem:

min
x
− log p(x̂ | x) + λxT

[
x−D(x)

]
, (2)

where D(x) is the denoising function.

Modern work replaces heuristic denoisers with score-based generative models. A diffusion model
is trained to predict the score ∇x log pt(x) under Gaussian noise at multiple scales; at test time, a
stochastic sampler is run that iteratively nudges x̂ toward high-density regions [Zhang et al., 2023,
Nie et al., 2022b]. Because the score network is trained solely on Gaussian-corrupted data and
never sees adversarial perturbations, it implicitly treats the perturbation as generic Gaussian noise –
an assumption that can fail when adversarial attacks exploit directions lying in low-probability yet
classifier-sensitive subspaces.

Adversarial perturbations, in general, differ from random corruptions in that they are intentional,
geometry-aware, and often exploit highly structured, non-robust directions in the input space. Cru-
cially, these perturbations are not merely local, and they exhibit global regularities. Moosavi-Dezfooli
et al. [2017] shows that a single, fixed perturbation vector can fool most inputs, implying that decision
boundaries are consistently oriented across different regions of the input space. Taken together, these
local (gradient-based) and global (shared-structure) properties suggest that adversarial perturbations
are not arbitrary noise, but follow statistically learnable patterns.

This insight motivates the development of learned perturbation models, which aim to approximate
the distribution of adversarial directions, improving purification strategies that go beyond the generic
denoising distribution of adversarial directions. Our method draws inspiration from test-time opti-
mization strategies [Zhang et al., 2023, Mardani et al., 2024, Cohen et al., 2021] that recover inputs by
minimizing a tailored loss function. Rather than assuming a simple Gaussian model to approximate
p(x̂ | x), we explicitly capture the true adversarial perturbation distribution by training a score-based
diffusion model. This model learns the gradient of the log-likelihood under realistic attack patterns,
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which we then combine with the pretrained diffusion prior’s score to direct the optimization. Because
training a conditional score model for the likelihood term, similar to the prior, is going to be expen-
sive, we propose a lightweight score network to learn only the attack perturbations. This principled
approach retains the strong generative power of the prior diffusion model and explicitly accounts for
the adversarial structure using the perturbation model. Because it is based on optimization, it avoids
the full reverse sampling process, offering a more efficient and robust defense mechanism.

Our contributions can be summarized as follows:

• We introduce a novel adversarial defense framework that employs score-based adversarial
optimization with diffusion models, designed to maximize the posterior probability p(x | x̂)
of clean images given inputs that may be clean or adversarially perturbed.

• Our proposed score-based diffusion optimization formulation integrates knowledge of the
adversarial landscape into the purification process, making the defense more robust to
attacks. The likelihood term p(x̂ | x) is learned using an efficient, trainable perturbation
model implemented as a score-based diffusion network without retraining the classifier.

• We validate our approach on CIFAR-10, CIFAR-100, and other datasets against strong
adversarial attacks, achieving superior robust accuracy compared to state-of-the-art diffusion-
based defenses. Our approach removes adversarial distortions while faithfully retaining the
underlying image content, demonstrating its potential for practical robust systems.

2 Method

In this section, we describe our score-based optimization framework for adversarial purification. We
begin with preliminary sections on diffusion models for adversarial purification. We then continue to
present our approach, starting with the motivation and then formulating purification as a maximum
a posteriori (MAP) estimation problem, deriving a tractable objective using pretrained diffusion
and perturbation score networks, and then presenting an efficient iterative algorithm for test-time
refinement.

2.1 Diffusion Models for Purification

Diffusion models [Sohl-Dickstein et al., 2015, Ho et al., 2020] (also known as score-based generative
models Song and Ermon [2019], Song et al. [2021]) are a class of deep generative models that learn to
synthesize data by reversing a gradual noising process. During the forward diffusion process, a data
sample x0 ∼ qdata(x) is progressively corrupted by adding Gaussian noise according to a schedule
{βt}Tt=1. After T steps, xT is nearly an isotropic Gaussian regardless of x0. A diffusion model
learns the reverse denoising dynamics: starting from pure noise xT ∼ N (0, I) to produce samples
that follow the data distribution. Training of diffusion models is typically done by denoising score
matching Song and Ermon [2019] or an equivalent variational bound Ho et al. [2020]. In practice, a
neural network sθ(xt, t) is trained to predict either the added noise ϵt or the score (gradient of the
log density) at each timestep using squared error loss. Sampling then proceeds by reversing this
process, either via discrete timesteps [Ho et al., 2020] or continuous SDE/ODE formulations [Song
et al., 2021].

Building on this generative capability, diffusion models have become a cornerstone of adversarial
purification. In this setting, a potentially perturbed input x̂ = x + γ is first injected with a small
amount of Gaussian noise by forward diffusing it to get xt and then denoised through t reverse
diffusion steps to produce a purified output x̃ = Φ(x̂). The classifier f is applied to x̃ in hopes
of recovering the original prediction, f(x̃) = f(x). While diffusion purification methods are
effective at mitigating adversarial perturbations, they are not without drawbacks. The stochastic and
non-differentiable nature of the reverse process can obscure gradients, yet remains vulnerable to
proper adaptive attacks such as PGD-EOT [Lee and Kim, 2023].

2.2 Motivation

Diffusion purification methods mainly rely on an unspervised approach where a pretrained diffusion
prior can be applied to a broad range of classifiers without retraining. While this classifier-agnostic

3



(a) Clean (b) Adversarial (c) Perturbation

Figure 1: Samples from the clean, adversarial, and the difference perturbation between them. Image
is normalized and only showing values above a threshold value of 0.03

approach broadens applicability, it leaves unexploited the rich structure of adversarial attacks them-
selves. In this work, we ask: can we augment diffusion purification with an attack-aware component
that directly models the adversarial landscape, improving robustness, yet remains applicable across
different classifiers? Our proposed Adversary Aware Optimization (AAOpt) answers this question by
integrating a perturbation model into the diffusion framework, delivering substantial gains in defense
performance without sacrificing the plug-and-play convenience of unsupervised purification.

2.3 Proposed Approach

Our goal is to recover the clean data given an adversarial perturbation, which is equivalent to finding
the maximum a posteriori (MAP) estimation for the following problem:

argmax
x

log p(x|x̂) ∝ log p(x̂|x) + log p(x). (3)

The prior p(x) is supplied by a fixed, pretrained diffusion model whose score function directs samples
toward the natural-image manifold. Rather than ignoring the likelihood term p(x̂|x) or assuming a
Gaussian distribution, we explicitly train it using a perturbation model that estimates the residual
x − x̂ between clean and adversarial inputs. We model both the clean data prior p(x) and the
perturbation likelihood p(x̂ | x) with score–based diffusion models. Although we never evaluate
these densities in closed form, we can query their score fields

sθ(xt, t) ≈ ∇xt
log pt(xt),

obtained at diffusion time t. For a single noise level σt and corrupt x as xt = x+ σt ϵ, ϵ ∼ N (0, I),
we can show that (see Appendix 6.1 for the derivation):

log p(x) ∝ −x⊤
[
ϵθ(xt, t)− ϵ

]
. (4)

Therefore, maximizing the right–hand side increases the likelihood of the data, even though p(x)
itself is never evaluated.

The surrogate in eq. 4 is reminiscent of log p(x) ∝ xT
[
D(x)−x

]
, which has been used in RED [Ro-

mano et al., 2017], Mardani et al. [2024] and Zhang et al. [2023]. Mardani et al. [2024] derive similar
equation for their prior from the diffusion loss λt||ϵθ(xt, t)− ϵ)||2 by using a linear loss based on
the gradient under some conditions.

We use a similar approach to obtain the surrogate for log p(x̂ | x). Let γ = x− x̂ be the adversarial
perturbation. We simply define p(x̂ | x) := p(γ).

We train the diffusion model dϕ for the adversarial perturbations following Song et al. [2021]. Similar
to eq. 4, for ϵ′ ∼ N (0, I) we have:

log p(γ) ∝ −(x− x̂)T
[
dϕ(γt, t)− ϵ′

]
(5)

Finally, we can approximate the MAP solution in eq. 3 as:

argmax
x

log p(x | x̂) ≈ argmax
x
−xT

[
(ϵθ(xt, t)− ϵ) + λ(dϕ(γt, t)− ϵ′)

]
, (6)

where λ balances the log data prior vs log probability of the perturbation.

Algorithm 1 shows how we perform test-time adversarial purification by iteratively refining the given
image x̂ toward its MAP estimate x∗. To avoid propagating the gradients through the parameters of
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Algorithm 1 Adversarial Purification Optimization Algorithm

Require: x̂; pretrained diffusion net ϵθ; perturbation diffusion net dϕ; total steps M ; time range
[tmin, tmax]; schedule {αt}Tt=1; weight λ

1: for i = 1 to M do
2: Sample t ∼ Uniform[tmin, tmax], ϵ, ϵ′ ∼ N (0, I) ▷ sample time and noise
3: xt ←

√
αtx

(i−1) +
√
1− αt ϵ

4: ℓprior ←
[
sg(ϵθ(xt, t))− ϵ

]T
x(i−1) ▷ prior loss

5: γ ← x(i−1) − x̂ ▷ compute perturbation
6: γt ←

√
αtγ +

√
1− αt ϵ

′

7: ℓpert ←
[
sg(dϕ(γt, t))− ϵ′

]T
x(i−1) ▷ perturbation loss

8: ℓ← ℓprior + λ ℓpert ▷ total loss
9: x(i) ← OptimizerStep(x(i−1), ℓ) ▷ MAP update

10: end for
return x(M)

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 2: Different random samples generated from the perturbation model. Image is normalized and
only showing values above a threshold value of 0.03

the score-based diffusion models during the optimization, we use stop-gradient (sg) operations when
evaluating the score-based diffusion models, which will make the optimization efficient.

To train the perturbation model dϕ, at each iteration, we sample a minibatch of clean images xi
clean

and pair each with a randomly chosen sample xk from the combined dataset of clean and adversarial
examples. We combine clean samples in the combined set because x̂ can be either adversarial or
clean in real test settings. Adversarial examples are generated only once using a combination of
attacks on the classifier (l∞, l2). We form the residual ∆i = xi

clean − xk and then diffuse it to
timestep ti by adding noise ϵi according to the diffusion schedule αt and train the network as a
normal diffusion model. The details of the training can be found in the Appendix section 6.4. Figure
1 shows clean and adversarial samples from the CIFAR-10 dataset with the adversarial perturbation
plotted next to them. Figure 2 shows samples from the perturbation model that capture the patterns
of the perturbation of the attack landscape. For the prior score network, any diffusion model trained
to generate clean data can be used.

We refer to our full test-time defense as Adversary Aware Optimization (AAOpt). In AAOpt, the
perturbation score diffusion network dϕ explicitly captures the adversarial likelihood p(x̂ | x) by
learning to predict the residual at multiple noise levels, while the pretrained score diffusion ϵθ
provides a strong prior p(x) over natural images. At inference, AAOpt iteratively refines the input
via a small number of gradient-based updates: each update minimizes a combined loss that blends the
diffusion prior and perturbation terms. This compact, MAP-driven loop delivers strong robustness
against fully adaptive PGD-EOT and BPDA-EOT attacks, without modifying the underlying classifier
or resorting to expensive reverse diffusion sampling.

3 Related Work

A variety of defense strategies have been proposed to tackle adversarial attacks. Early purification
approaches used simple image transformations, such as bit depth reduction or compression, to remove
high-frequency noise, but these filter-based methods offered limited robustness and were easily
bypassed by adaptive attacks [Xu et al., 2018]. Generative-model defenses then leveraged GANs or
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VAEs to project inputs onto a learned manifold of clean images; DefenseGAN [Samangouei et al.,
2018] optimizes a latent code to reconstruct a purified image, yet it introduces significant inference
latency and can suffer from mode collapse.

Energy-based models (EBMs) were also applied to adversarial purification by Hill et al. [2021],
using long-run Langevin dynamics to project adversarial inputs onto the natural data manifold and
averaging over multiple stochastic samples via Expectation-Over-Transformation (EOT). However,
contrastive divergence training and MCMC sampling make EBMs slow and unstable. Yoon et al.
[2021] replaced EBMs with score-based networks trained by denoising score matching [Song and
Ermon, 2019], and proposed a deterministic sampling technique with only a few Langevin iterations.
They also improved robustness by injecting noise into inputs before purification.

The advent of diffusion priors ushered in more powerful purification techniques. DiffPure [Nie et al.,
2022a] demonstrated that adding a small amount of noise to an adversarial example followed by a fixed
number of reverse diffusion steps can effectively remove perturbations, achieving robust accuracy.
However, the reverse chain often comprising of more than 50 timesteps entails high computational
cost and may also drift the sample’s semantics away from the original content depending on the
selected timestep t. ScoreOpt [Zhang et al., 2023] improved efficiency by performing test-time
optimization using the diffusion model’s score function at random noise levels to guide a small
number of gradient updates rather than executing the entire sampling chain. Chen et al. [2023]
integrates classification directly into the diffusion process to jointly denoise and classify. They first
optimize the input to remove adversarial perturbations and then use a diffusion classifier to perform
the classification. Lin et al. [2024] proposed a guidance method on top of diffusion purification
based on a distance metric between the features of adversarial examples and forward diffused xt to
improve robustness.

Concurrently, works on diffusion-based inverse problems have introduced various formulations for
solving both linear and non-linear measurement tasks. Song et al. [2021] showed that diffusion
models can be applied to inverse problems via a controllable generation process, sampling from
p(xt | y) using Bayes’ rule and factoring the score as∇xt

log pt(xt) +∇xt
log pt(y | xt). Kawar

et al. [2022] proposed Denoising Diffusion Restoration Models (DDRM), which provides an efficient
unsupervised method for solving inverse tasks by utilizing pretrained denoising diffusion models
and guidance from the observed input y. The guidance is performed by considering the SVD of the
degradation matrix and noise levels, which are then incorporated into the sampling process. Mardani
et al. [2024] introduced RED-Diff, another method of optimization to solve inverse problems on
images using diffusion prior models. They propose a variational lower bound that consists of a
measurement matching loss and a score-based regularization term with pretrained diffusion models.

4 Experiments

We evaluate our score-based adversarial optimization method mainly on CIFAR-10 and CIFAR-100
datasets [Krizhevsky et al., 2009], benchmarking against a suite of strong and adaptive white-box
attacks and established defense baselines. All experimental results are reported on the test splits, and
we report both the clean (standard) accuracy and the robust accuracy when the model is under attack.
We compare our approach to different Adversarial training (AT) methods [Pang et al., 2022, Gowal
et al., 2021] and different diffusion purification methods [Nie et al., 2022a, Zhang et al., 2023, Chen
et al., 2023]. We reuse some results from already implemented works [Lee and Kim, 2023, Zhang
et al., 2023], while we reimplement Score-Opt-O and Score-Opt-N methods with the same pretrained
diffusion model and classifier checkpoints as our proposed method.

We employ a pretrained diffusion model using the EDM preconditioning scheme of Karras et al.
[2022], trained to minimize Ex∼pdata

En∼N (0,σ2I)

∥∥D(x + n, σ) − x
∥∥2, where D(·, σ) predicts

a denoised estimate at each noise level. We extract the predicted noise from the model, where
ϵθ = (xt − D(xt))/σt. For all methods, we use a WideResNet-28-10 or a WideResNet-70-16
classifier [Zagoruyko and Komodakis, 2016] trained on clean data, except where baselines specify
adversarial training. To train our perturbation score model, we first generate adversarial examples
for the classifiers using a gradient attack with the cross-entropy loss from the training set once.
Unless otherwise mentioned, we use l∞ and l2 norms with a combination of ϵ = (2, 4, 8) for l∞ and
ϵ = (0.5, 1) for l2 norm attacks. Those will be combined with the clean data to train the perturbation
model using the DDPM diffusion setup with 1000 discrete steps [Ho et al., 2020].
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We evaluate robustness under multiple adaptive attacks. We first show our results on the PGD-EOT
(Projected Gradient Descent with Expectation Over Transformation) with l∞ budget ϵ = 8/255
and l2 budget ϵ = 0.5 with 20 steps and 20 EOT samples per step [Athalye et al., 2018]. We then
use the BPDA-EOT (Backward Pass Differentiable Approximation) attack setup with 50 BPDA
iteration steps and 15 EOT samples per step. These attacks are crafted against the full purification
(optimization) with the classification pipeline to measure end-to-end robustness of the models. We
follow a similar experimental setup with Lee and Kim [2023], Zhang et al. [2023]. Remaining
hyperparameter details and additional experiments can be found in the Appendix.

Table 1: Standard and robust accuracy against PGD+EOT on CIFAR-10. Left: l∞(ϵ = 8/255); Right:
l2(ϵ = 0.5). Compared with adversarial training (AT) and adversarial purification (AP) methods.

Type Method Standard Robust

WideResNet-28-10

Default 94.78 0.0

AT
Pang et al. [2022] 88.62 64.95
Gowal et al. [2020] 88.54 65.10
Gowal et al. [2021] 87.51 66.01

AP

Yoon et al. [2021] 85.66 37.27
Nie et al. [2022a] 90.07 51.25
Score-Opt-O[2023] 91.21 64.96
Score-Opt-N[2023] 94.43 65.62
Lin et al. [2024] 90.42 64.06

AAOpt (ours) 91.91±0.8 86.75±0.7

WideResNet-70-16

Default 95.19 0.0

AT Gowal et al. [2021] 88.75 69.03
Wang et al. [2023] 92.97 72.46

AP

Yoon et al. [2021] 86.76 41.02
Nie et al. [2022a] 90.43 57.03
Chen et al. [2023] 87.89 71.68
Score-Opt-O[2023] 92.61 68.86
Score-Opt-N[2023] 95.11 70.2

AAOpt (ours) 91.59±0.7 86.24±0.8

Type Method Standard Robust

WideResNet-28-10

Default 94.78 0.0

AT
Sehwag et al. [2021] 90.93 83.75
Rebuffi et al. [2021] 91.79 85.05
Augustin et al. [2020] 93.96 86.14

AP

Yoon et al. [2021] 85.66 74.26
Nie et al. [2022a] 91.41 82.11
Score-Opt-O[2023] 91.21 79.09
Score-Opt-N[2023] 94.43 84.86
Lin et al. [2024] 90.42 85.55

AAOpt (ours) 91.91±0.8 87.61±0.6

WideResNet-70-16

Default 95.19 0.0

AT Rebuffi et al. [2021] 92.41 86.24
Wang et al. [2023] 96.09 86.72

AP

Yoon et al. [2021] 86.76 75.90
Nie et al. [2022a] 92.15 84.80
Chen et al. [2023] 87.89 75.00
Score-Opt-O[2023] 92.61 79.55
Score-Opt-N[2023] 95.11 85.21

AAOpt (ours) 91.59±0.7 87.49±0.7

Table 1 reports the results of clean and robust accuracy on the CIFAR10 dataset when performing
the PGD-EOT attack. The PGD-EOT attack is performed under the budgets of l∞ budget ϵ = 8/255
and l2 budget ϵ = 0.5. We use 20 steps of the optimization algorithm shown in Algorithm 1. When
generating adversarial attacks, we approximate the gradients of our model by performing a single step
of the exact optimization method, which will ensure the attack has full knowledge and access to all
components of our defense. We compare against leading adversarial training (AT) and diffusion-based
purification (AP) baselines using two backbone classifiers (WRN-28-10 and WRN-70-16). Across
both architectures and attack norms, our adversary-aware optimization consistently delivers the
highest robust accuracy, often outperforming prior defenses by many points, while maintaining clean
accuracy on par with the best competing methods. These results demonstrate that our proposed
optimization method offers state-of-the-art resilience to adaptive adversaries without sacrificing clean
performance.

Table 2 highlights the effectiveness of different gradient-approximation strategies in the optimization
loop, all evaluated on CIFAR-10 (ℓ∞, ϵ = 8/255) with a WRN-28-10 classifier. Using a single step
of our exact forward-optimization update yields the highest robust accuracy of 86.75%, showing the
strength of our adversary-aware refinement. Even when omitting the stop-gradient (i.e., allowing
gradients to backpropagate through the score networks) when generating adversarial examples, we
still achieve 84.08% robust accuracy which substantially outperforms the other baselines shown in
Table 1. In addition to this, we compare our approach with ADBM [Li et al., 2025], which finetunes
a diffusion model with adversarial data, under different settings as detailed in Section 6.3 of the
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Appendix. Finally, we use a single step of denoising through the prior diffusion to approximate the
gradients similar to Zhang et al. [2023], which also attains a robust accuracy of 75.11% that exceeds
the best diffusion-purification and adversarial-training methods. These results underscore that our
core optimization framework is both powerful and resilient, delivering leading adversarial robustness
results.

Table 2: Robust accuracy on CIFAR-10 (ℓ∞, ϵ = 8/255) for different gradient approximation
methods using the WRN-28-10 classifier.

Gradient Approximation Method Robust Accuracy (CIFAR-10, ϵ = 8/255)

One step of exact forward optimization 86.75±0.7

One step of forward optimization with no stop-grad 84.08±0.3

One step of denoising 75.11±1.2

Table 3a compares clean and robust accuracy under a strong BPDA-EOT attack on ℓ∞ with
ϵ = 8/255 across adversarial training (AT), diffusion-based purification (AP), and our proposed
adversary-aware score optimization method. Adversarial Training methods plateau around 64%
robust accuracy ( Gowal et al. [2020] achieves 64.1%) while diffusion purifiers substantially improve
robustness with Score-Opt-N pushing the result to 90.1%. Our approach further advances the result
by achieving a robust accuracy of 91.4%, while maintaining a clean accuracy of 92.1%. These
results demonstrate that our proposed method withstands different kinds of adaptive attacks but
also outperforms prior works on adversarial training and purification defenses. Table 3b shows
the respective results for CIFAR-100 dataset. Our method is also robust on this data, achieving a
robust accuracy of 66.56%, while maintaining a standard accuracy of 69.98%, which outperforms
other diffusion purification methods under the same attack conditions on robustness with comparable
standard accuracy.

Table 3: BPDA+EOT attack on CIFAR-10 and CIFAR-100 (ℓ∞, ϵ = 8/255) threat models (all
architectures WRN-28-10).

(a) CIFAR-10 (WRN-28-10)

Type Method Std. Rob.

Default 94.78 0.0

AT Carmon et al. [2019] 89.67 63.10
Gowal et al. [2020] 89.48 64.08

AP

Wang et al. [2022] 93.50 79.83
Yoon et al. [2021] 86.14 70.01
Nie et al. [2022a] 89.02 81.40
Score-Opt-O[2023] 90.23 81.36
Score-Opt-N[2023] 93.94 90.07

AAOpt (ours) 92.10±0.7 91.36±0.8

(b) CIFAR-100 (WRN-28-10)

Type Method Std. Rob.

Default 81.55 0.0

AP

Yoon et al. [2021] 60.66 39.72
Hill et al. [2021] 51.66 26.10
Score-Opt-O[2023] 70.53 66.11
Score-Opt-N[2023] 74.18 60.21

AAOpt (ours) 69.98 66.56

Table 4 compares a baseline purification pipeline, omitting our perturbation-score correction and
only using the prior pretrained diffusion score-regularization method against our full AAOpt method
on CIFAR-10 under both PGD-EOT and BPDA-EOT attacks with a WRN-70-16 and WRN-28-10
classifiers, respectively. Incorporating our adversary-aware perturbation score model boosts clean
accuracy by at least 1% and yields substantial gains in robust accuracy under both PGD-EOT and
BPDA-EOT attacks. Figure 3 shows how the standard and robust accuracies change as λ is increased
from 0 to 1 on WRN-28-10 BPDA-EOT attack. The accuracies start to increase initially and plateau
around λ = 0.6 and then decrease.

Generalization Table 5 evaluates the transferability of our perturbation model across different
classifier architectures. We compare performance on WRN-70-16 when using a perturbation model
trained on its own adversarial examples versus one trained on WRN-28-10. The minimal drop in
accuracy demonstrates that our learned attack distribution generalizes effectively to a classifier it
was not originally trained on. Table 6 also shows the robustness of our model against different
unseen corruptions [Hendrycks and Dietterich, 2019]. We evaluate it against CIFAR10-C data on a
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Table 4: Baseline (without perturbation-score model correc-
tion) similar to score-regularization of Mardani et al. [2024]
vs. Full Method (AAOpt) comparison on CIFAR-10 (ℓ∞,
ϵ = 8/255) under PGD-EOT using WRN-70-16 and BPDA-
EOT using WRN-28-10.

Method PGD-EOT BPDA-EOT

Standard Robust Standard Robust

Baseline 89.99±0.7 82.88±0.9 91.05±0.6 81.95±0.6

AAOpt (ours) 91.59±0.7 86.24±0.8 92.10±0.7 91.36±0.8
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Figure 3: Accuracy as λ is in-
creased from 0 to 1 for AAOpt
on BPDA-EOT on CIFAR-10 (ℓ∞,
ϵ = 8/255)

Table 5: Transferability of perturbation models: accuracy on WRN-70-16 using perturbation models
trained on WRN-70-16 and WRN-28-10 adversarial data under PGD-EOT attacks (ℓ∞, ϵ = 8/255
and ℓ2, ϵ = 0.5).

Perturbation Model PGD-EOT (ℓ∞, ϵ = 8/255) PGD-EOT (l2, ϵ = 0.5)
Standard Robust Standard Robust

Perturbation Model of WRN-70-16 91.59±0.7 86.24±0.8 91.59±0.7 87.49±0.7

Perturbation Model of WRN-28-10 91.51±1.1 85.90±0.9 91.51±1.1 87.20±0.8

Table 6: Robustness against common corruptions on CIFAR10-C on WRN-70-16

Method gaussian elastic
transform

jpeg
compression snow brightness

Default 45.6 82.9 75.8 83.5 93.8
Score-Opt-O 79.8 78.5 86.1 82.67 89.6

AAOpt 85.3±0.2 84.81±0.3 89.5±0.1 85.3±0.4 90.5±0.1

combination of five different severity levels of transformations. These results confirm that AAOpt’s
perturbation-aware optimization yields strong, classifier-agnostic defenses across both adversarial
and natural distribution shifts.

Beyond the transfer experiments in Table 5, which apply a WRN-28-10 trained perturbation model to
a WRN-70-16 classifier, we further assess AAOpt with WRN-28-10 trained perturbation model on a
CLIP zero-shot model applied to CIFAR-10. We compare against the adversarially trained Robust-
CLIP FARE2 and FARE4 models [Schlarmann et al., 2024], which were trained with ℓ∞ budgets
of ϵ = 2/255 and ϵ = 4/255 respectively as shown in Table 7. Despite never seeing CLIP during
the perturbation model training, AAOpt, using only the WRN-28-10 perturbation model, achieves
superior robust accuracy on this entirely different architecture, underscoring the wide applicability
and classifier-agnostic nature of our adversary-aware optimization. In addition, it exhibits consistent
performance across different attack budgets, unlike adversarial training models, which drastically
lower their performance when attacked with a budget different from the one on which the model was
trained.

Finally, we present experiments on norm-transferability. We train a perturbation model using a single
norm and evaluate it on a different norm to assess generalization across attack types. As shown in
Table 8, the performance remains consistent, indicating that the proposed approach exhibits strong
transferability between ℓ∞ and ℓ2 perturbation spaces. Specifically, when trained on ℓ2(ϵ = 0.5)
and evaluated with an ℓ∞(ϵ = 8/255) PGD-EOT attack, the model achieves a robust accuracy of
86.22% which is close to the results reported on Table 1 where the perturbation model is trained
on the combination of the two norm attacks. Similar performance is also reported when trained on
ℓ∞(ϵ = 8/255) and evaluated under ℓ2(ϵ = 0.5) perturbations. These results demonstrate that the
perturbation model generalizes well across different norm constraints, confirming the robustness and
adaptability of our method.
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Table 7: Transfer-PGD attack on CIFAR-10 (ℓ∞, ϵ = 4/255 and ϵ = 8/255) on the CLIP classifier
using perturbation model of WRN-28-10 classifier.

Type Method Standard Robust (ϵ = 4/255) Robust (ϵ = 8/255)

CLIP 95.2 0.0 0.0

AT FARE2 89.5 25.9 2.22
FARE4 77.7 34.6 9.01

AP Score-Opt-O[2023] 89.21 88.74 88.70
Score-Opt-N[2023] 90.42 89.87 90.70
AAOpt (ours) 91.52±0.9 91.63±1.3 90.30±1.1

Table 8: Norm transferability: accuracy of WRN-28-10 using perturbation models trained on a
different norm under PGD-EOT attacks (ℓ∞, ϵ = 8/255 and ℓ2, ϵ = 0.5).

Perturbation Model Trained On Evaluated On Rob. Acc.

ℓ∞, ϵ = 8/255 ℓ2, ϵ = 0.5) 87.07
ℓ2, ϵ = 0.5) ℓ∞, ϵ = 8/255 86.22

We report additional results and implementation details in Appendix, including theoretical deriva-
tions, extended robustness evaluations (AutoAttack and ADBM comparisons), perturbation analyses,
classifier transfer-attack results, and experiments on TinyImageNet. The appendix also provides full
training and dataset specifications, including hyperparameters and compute resources, and concludes
with a discussion of the limitations of this work.

5 Conclusion and Discussion

We have introduced Adversary Aware Optimization (AAOpt), a novel framework for test-time
defense that explicitly incorporates both a diffusion prior and a learned perturbation model. By
training a perturbation model to capture the adversarial landscape and combining it with a pretrained
diffusion score model, AAOpt performs a small number of gradient-based refinement steps to
recover purified inputs. Extensive experiments on CIFAR-10 and CIFAR-100 under strong, adaptive
PGD-EOT and BPDA-EOT attacks demonstrate that AAOpt consistently outperforms state-of-the-
art adversarial training and purification baselines, achieving robust accuracy improvements while
maintaining high clean accuracy. The limitations of our work are that AAOpt requires generating
adversarial examples once for training the perturbation model and incurs additional test-time cost
due to a few gradient-based refinement iterations. However, these overheads are modest compared to
reverse-diffusion sampling or repeated classifier retraining, and the benefit of robust accuracy across
multiple norms and attacks, coupled with minimal impact on clean performance, far outweighs the
costs. Our framework is also highly modular: the perturbation model and diffusion prior can be
improved independently. Consequently, AAOpt represents a practical path toward robust, test-time
defenses in real-world settings.
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, we have attached our code along with how to reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental details in the Experiments section and in detail in the
Appendix section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run our main experiments over 5 trials and report the mean and standard
deviation of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We add this detail in the Appendix section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We respect and follow the Neurips Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not believe our work has any societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work has no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited properly when used data and models from other works.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets in this work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not use any crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not use any crowdsourcing or human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core research doesn’t involve any LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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6 Appendix

This appendix provides supplementary material to the main text. We first derive the surrogate
equation in section 6.1. In Section 6.2.1 we report AutoAttack results; Section 6.2.2 compares our
results with ADBM [Li et al., 2025]; Section 6.2.3 analyzes the perturbation patterns of adversarial
examples; Section 6.2.4 presents transfer-attack experiments; and Section 6.2.5 shows results on
TinyImageNet. Next, we will discuss the datasets used in Section 6.3. We then detail our experimental
setup, including hyperparameters, optimization, training, and compute resources in Section 6.4, and
conclude with an extended discussion of limitations in Section 6.5.

6.1 Derivation of Surrogate Loss

Assuming xt = x+ σtϵ and ϵ ∼ N (0, I), and the true marginal distribution at time t is pt(xt), the
reverse conditional distribution is modeled as

pθ(x | xt) = N
(
x;µθ(xt, t), σ

2
t I

)
,

with
µθ(xt, t) = xt − σtϵθ(xt, t).

1. From Baye’s identity for posterior log-density:

log p(x) = log pt(xt) + log pθ(x | xt)− log q(xt | x),

where
q(xt | x) = N (xt;x, σ

2
t I).

Note that
− log q(xt | x) =

1

2σ2
t

∥xt − x∥2 + const =
1

2
∥ϵ∥2 + const.

Therefore,

log p(x) = log pt(xt) + log pθ(x | xt) +
1

2
∥ϵ∥2 + const. (7)

2. From Taylor’s expansion of log pt(x) around xt:

log pt(x) ≈ log pt(xt) + (x− xt)
T∇xt

log pt(xt).

Rearranged as:
log pt(xt) ≈ log pt(x)− (x− xt)

T∇xt
log pt(xt).

Substitute log pt(xt) in eq. 7:

log p(x) ≈ log pt(x)− (x− xt)
T∇xt

log pt(xt) + log pθ(x | xt) +
1

2
∥ϵ∥2 + const.

which can be written as:

log p(x) ∝ σtϵ
T∇xt

log pt(xt) + log pθ(x | xt) +
1

2
∥ϵ∥2. (8)

3. Expressing log pθ(x | xt) using diffusion model ϵθ:

log pθ(x | xt) ∝ −
1

2σ2
t

∥x− µθ(xt, t)∥2 + const,

where
µθ(xt, t) = xt − σtϵθ(xt, t).

Note that

x− µθ = x− (xt − σtϵθ) = (x− xt) + σtϵθ = −σtϵ+ σtϵθ = σt(ϵθ − ϵ).
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Therefore,

log pθ(x | xt) ∝ −
1

2
∥ϵθ − ϵ∥2 + const. (9)

4. Substituting log pθ(x | xt) back in eq. 8:

log p(x) ∝ σtϵ
T∇xt log pt(xt)−

1

2
∥ϵθ − ϵ∥2 + 1

2
∥ϵ∥2 + const.

Expanding the quadratic term,

−1

2
∥ϵθ − ϵ∥2 + 1

2
∥ϵ∥2 = −1

2
∥ϵθ∥2 + ϵT ϵθ.

Thus,

log p(x) ∝ σtϵ
T∇xt

log pt(xt) + ϵT ϵθ −
1

2
∥ϵθ∥2 + const.

log p(x) ∝ ϵT (σt∇xt log pt(xt) + ϵθ)−
1

2
∥ϵθ∥2

log p(x) ∝ (xt − x)T

σt
(σt∇xt

log pt(xt) + ϵθ)−
1

2
∥ϵθ∥2

log p(x) ∝ xT
t

σt
(σt∇xt

log pt(xt) + ϵθ)−
xT

σt
(σt∇xt

log pt(xt) + ϵθ)−
1

2
∥ϵθ∥2

Dropping the non x terms:

log p(x) ∝ − (x)T

σt
(σt∇xt

log pt(xt) + ϵθ)

log p(x) ∝ −xT (σt∇xt
log pt(xt) + ϵθ)

Finally, replacing the true score by the conditional Gaussian score:

∇xt log pt(xt) ≈ ∇xt log q(xt | x) = −
1

σt
ϵ.

log p(x) ∝ −xT (ϵθ(xt, t)− ϵ)

Which is the same as eq 4. Similarly, the loss will be:

− log p(x) ∝ xT (ϵθ(xt, t)− ϵ)

which is the same loss used by Mardani et al. [2024] for their prior, but they formulated it from a
variational perspective.

6.2 Additional Results

6.2.1 AutoAttack

In addition to PGD-EOT and BPDA-EOT attacks presented in the main experiment, we assess the
robustness of our model using AutoAttack [Croce and Hein, 2020], an ensemble of complementary,
parameter-free attacks that provides a strong, automated benchmark for robustness. We conduct these
evaluations on a WRN-28-10 classifier, generating adversarial examples via an exact one-step gradient
through our optimization loop. Table 9 presents AutoAttack robustness alongside PGD-EOT robust
accuracy for direct comparison; baseline results are taken from Zhang et al. [2023], Lee and Kim
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[2023], Lin et al. [2024]. Although running the full multi-step optimization for AutoAttack yields
very similar performance, repeating those experiments across multiple seeds and attack configurations
is prohibitively time-consuming, so we report the one-step exact-gradient results here. This evaluation
confirms that AAOpt maintains high robust accuracy even under this rigorous, adaptive attack suite,
demonstrating its superior performance against diverse baselines and attacks.

Table 9: AutoAttack and PGD-EOT on CIFAR-10 (ℓ∞, ϵ = 8/255) using the WRN-28-10 classifier.
Type Method Standard PGD AutoAttack

WideResNet-28-10

Default 94.78 0.0 0.0

AT
Pang et al. [2022] 88.62 64.95 61.04
Gowal et al. [2020] 88.54 65.10 62.76
Gowal et al. [2021] 87.51 66.01 63.38

AP

Yoon et al. [2021] 85.66 37.27 59.53
Nie et al. [2022a] 90.07 51.25 63.6
Lee and Kim [2023] 90.16 55.82 70.47
Lin et al. [2024] 90.42 64.06 78.12

Ours (AAOpt) 91.91±0.8 86.75±0.7 88.28±0.5

6.2.2 Comparison with ADBM

In general, our optimization has a stop gradient on the diffusion models during optimization to remove
adversarial perturbations. PGD-based gradient-based attacks are also generated this way (remember
we need a second-order derivative for generating attacks), where gradients don’t pass through the
diffusion model, similar to our optimization mechanism. While this is ok, a stronger attack can be
generated by backpropagating through the score-based diffusion models. In the main text, we added
Table 2, which shows the different performance of our model under different gradient approximations,
even with no stop-gradient. In this section, we want to compare our work with ADBM [Li et al.,
2025], which modifies the diffusion objective itself to guide adversarial examples toward the clean
distribution. They also propose a full gradient attack where they show the performance of different
diffusion purification methods perform very poorly. Unlike diffusion purification works discussed in
[Li et al., 2025], AAOpt performs very well in this scenario also. The results are summarized in Table
10 and reveal that AAOpt significantly outperforms ADBM in robust accuracy. The experiments
were conducted under a similar setup to ADBM for a fair comparison with PGD-EOT, with 20 attack
iterations, setup similar to the one found in their appendix, and BPDA-EOT with 200 attack iterations.

The PGD results for AAOpt are with gradients passing through both diffusion models to generate
adversarial data, approximated with one optimization step. Even with full gradient passing through
all the steps, similar to the ADBM full grad setup for the PGD, we get a robust accuracy of ≈ 82%,
further confirming its effectiveness even under stronger attack variants. But due to the computation
time and the resources it takes to get the full gradients with no stop-grad through all the optimization
steps, we approximate it with one step, which provides close results but is more efficient to conduct.

Table 10: Comparison with ADBM on CIFAR-10 (ℓ∞, ϵ = 8/255) using the WRN-28-10 classifier.
Method BPDA-EOT PGD-EOT

Standard Robust Standard Robust

ADBM 91.93 70.51 92.50 42.20
Ours (AAOpt) 92.10±0.7 90.89±1.2 91.91±0.8 84.08±0.3

6.2.3 Attack Patterns

In this section, we analyze the structure of adversarial perturbations and their relationship to the
original images. Figure 4 displays a clean image, its adversarially perturbed counterpart, and the
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difference between them. Although these difference patterns may appear noisy at first glance,
they exhibit systematic correlations with the underlying content of the clean image. Capturing
these consistent perturbation patterns is the key motivation for our perturbation-score network. As
illustrated by the samples in Figure 2, our model learns to represent and predict these adversarial
residuals.

(a) Clean (b) Adversarial (c) Perturbation

(d) Clean (e) Adversarial (f) Perturbation

Figure 4: Clean, Adversarial, and Perturbation of a sample image from CIFAR-10, perturbation is
normalized and only showing values above a threshold value of 0.03

6.2.4 Transfer PGD Attack

We evaluate transfer-based robustness by generating ℓ∞-bounded PGD adversarial examples on the
classifier alone and then applying various purification methods—including our AAOpt framework—to
these fixed attacks. Table 11 reports clean and robust accuracy for each purifier. Our AAOpt method
delivers robustness on par with the strongest diffusion purifiers, closely following Score-Opt-N,
which achieves the highest robust accuracy in this setting. These results confirm that AAOpt’s
adversary-aware modeling substantially improves resilience to transfer attacks without sacrificing
clean accuracy.

Table 11: Transfer-PGD attack on CIFAR-10 (ℓ∞, ϵ = 8/255) using the WRN-28-10 classifier.
Method Standard Robust

Default 94.78 0.0

Yoon et al. [2021] 93.09 85.45
Score-Opt-O[2023] 89.79 87.45
Score-Opt-N[2023] 92.65 92.76
Ours (AAOpt) 92.14±0.6 91.01±0.5

6.2.5 TinyImageNet Results

To demonstrate that AAOpt scales to more complex, higher-dimensional data, we evaluate on
TinyImageNet – a 200-class subset of ImageNet with images resized to 64×64 [Deng et al., 2009]. We
fine-tune a ResNet-50 classifier [He et al., 2016] on this dataset and attack it using BPDA-EOT with 50
iterations and 15 EOT samples. Table 12 compares our method against Score-Opt-O baseline. Even in
this challenging setting, AAOpt achieves the highest robust accuracy, confirming its effectiveness on
larger, more diverse benchmarks. The result can be improved further with more powerful classifiers
and better prior models but we leave that for future work.

6.3 Datasets

Our evaluations leverage several widely used benchmark datasets. We use CIFAR-10 and CIFAR-
100 [Krizhevsky et al., 2009], each comprising 50 000 training and 10 000 test images at 32×32
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Table 12: BPDA-EOT attack on TinyImageNet (ℓ∞, ϵ = 8/255 using ResNet50 classifier.
Method Standard Robust

ResNet50 76.90 0.0

Score-Opt-O[2023] 40.89 21.2

Ours (AAOpt) 56.10±1.9 53.75±1.5

resolution; CIFAR-10 spans 10 classes, while CIFAR-100 covers 100 classes. These datasets are
publicly available from https://www.cs.toronto.edu/~kriz/cifar.html, though no explicit
license is specified by the authors.

To assess robustness under common corruptions, we employ CIFAR-10-C [Hendrycks and Dietterich,
2019], which augments the original CIFAR-10 test set with different types of corruptions at five
severity levels. CIFAR-10-C is released under a CC BY 4.0 International license (DOI: https:
//doi.org/10.5281/zenodo.2535967).

Finally, we include TinyImageNet200, a 200-class subset of ImageNet containing 100 000 training
and 10 000 validation images resized to 64×64. While the Stanford CS231N release (available
at http://cs231n.stanford.edu/tiny-imagenet-200.zip) does not list its own license, it
inherits the ImageNet terms of use, which permit non-commercial research and educational use only
[Deng et al., 2009].

6.4 Experiment details

In this subsection, we cover the experimental details of training and inference for our proposed model.
We first list the hyperparameters in the model, then we go over optimization, training, and compute
details. We have also attached the code used to generate the outputs, which can be found in the
attached supplementary material for more details. We run the main experiments in the paper 5 times
and report the mean and standard deviation. We use 512 samples for each trial because of the heavy
computation requirements to generate adversarial examples.

6.4.1 Hyperparameters

This section details the hyperparameters for our AAOpt framework. For each attack setting, we
specify the Adam learning rate, the number of optimization iterations, the weight λ balancing the
diffusion prior and perturbation model losses, and the number of forward diffusion timesteps. Table 13
summarizes all selected values.

Table 13: Details of hyperparameters used for our proposed model AAOpt

Attack Type Perturbation Budget LR Iterations λ Timesteps

CIFAR-10

PGD+EOT l∞(ϵ = 8/255) 0.1 20 0.25 Uniform (0.15,0.35)
PGD+EOT l2(ϵ = 0.5) 0.1 20 0.25 Uniform (0.15,0.35)
AutoAttack l∞(ϵ = 8/255) 0.1 20 0.25 Uniform (0.15,0.35)
BPDA+EOT l∞(ϵ = 8/255) 0.1 5 0.5 [0.5, ..., 0]

Transfer-PGD l∞(ϵ = 8/255) 0.02 20 0.6 [0.2, ..., 0]
Transfer-PGD-CLIP l∞(ϵ = 8/255) 0.01 20 0.2 [0.1, ..., 0]

CIFAR-10-Corrputions

Corruptions – 0.1 5 0.1 [0.25, ..., 0]

CIFAR-100

BPDA+EOT l∞(ϵ = 8/255) 0.1 3 0.4 [0.15, ..., 0]
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6.4.2 Optimization

The core purification loop is detailed in Algorithm 1, where at each iteration we update the current
estimate x by taking an Adam step on the combined loss. To make the entire procedure end-to-end
differentiable, so that an adaptive attacker can compute gradients through our optimization update,
we implement a custom differentiable Adam optimizer in PyTorch rather than relying on the built-in
version, which uses in-place operations and is not differentiable. In addition, when generating
adversarial examples via a single exact optimization step, we set the create_graph flag to True, which
yields the correct gradients of the adversary’s loss with respect to x through the optimization. Without
this, attacks like PGD-EOT would treat the optimization updates as constants, potentially generating
a weaker form of attack.

6.4.3 Training

We used a pretrained EDM diffusion for the prior model [Karras et al., 2022] for both the CIFAR-10
and CIFAR-100 datasets. For training the perturbation model, we use a UNET architecture with
three input and output channels. We train the model according to Ho et al. [2020] with unweighted
diffusion loss. The residual difference between the clean and adversarial images is diffused to
timestep ti by adding noise ϵi according to the diffusion schedule {αt}. The network dϕ takes
the noisy perturbation of the residual ∆i

t and predicts the injected noise ϵ̂i. We then minimize the
denoising objective ∥ϵ̂i − ϵi∥2 and train the network as a normal diffusion DDPM model over the
perturbation to capture the score-based diffusion of the residual distribution at varying noise levels.
Note that the residual ∆i can also be defined in the reverse direction as ∆i = xi

adv − xi
clean with the

same setup as the negative sign in the difference will cancel out with the perturbation loss term. The
details of the training are shown in Algorithm 2.

To train our perturbation score model, we generate adversarial examples once for the classifiers. We
use a gradient attack with the cross-entropy loss from the training set. We use l∞ and l2 attack norms
with a combination of ϵ = (2, 4, 8) for l∞ and ϵ = (0.5, 1) for l2 attack budgets. We combine these
with the clean data, and one adversarial example is randomly sampled uniformly to form the pair for
training the perturbation model.

For the classifiers, we used a WideResNet architecture classifiers with WRN-28-10 and WRN-70-16
types [Zagoruyko and Komodakis, 2016]. For the CIFAR-10 dataset, the WRN-28-10 architecture
yields an accuracy of 94.78, while the WRN-70-16 architecture yields an accuracy of 95.19. The
robust accuracy of these default classifiers is approximately 0% for both l∞ and l2 attack budgets of
ϵ = 8/255 and 0.5 respectively.

Algorithm 2 Perturbation Model Training

Require: Clean dataset {xclean}, combined dataset of adversarial and clean dataset {xk}Kk=1 (where
each xk is either clean or adversarial), score network dϕ, diffusion timesteps T , schedule {αt}Tt=1

1: for each training iteration do
2: Sample {xi

clean}Bi=1 from clean data and xi
adv from {xj

adv}Kj=1

3: Find perturbation ∆i = xi
clean − xi

adv

4: Sample timestep ti ∼ Uniform{1, . . . , T}
5: Sample noise ϵi ∼ N (0, I)

6: Compute noisy diff: ∆i
t =
√
ᾱt ∆

i +
√
1− ᾱt ϵ

i

7: Predict: ϵ̂i = dϕ(∆
i
t, t

i)

8: Compute loss: ℓi = ∥ϵ̂i − ϵi∥2
9: Update Parameters: dϕ

10: end for

6.4.4 Compute

We use NVIDIA A100 GPU to train the models and perform the inference. Training the perturbation
UNET model takes approximately 6GB of GPU memory for a batch size of 256. We trained the
perturbation model for 3000 epochs, and one epoch approximately takes 18 seconds. We use the
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Adam optimizer with a constant learning rate of 2e-5. More details and the exact training code can be
found in the attached supplementary material.

Table 14 shows how much time the optimization algorithm takes compared to Score-Opt-* baselines
tested on our environment on an A100 GPU. The iteration steps for the optimizations on this table
are 5 steps on the CIFAR-10-C dataset, which is similar in characteristics to the CIFAR-10 dataset.
As seen in the table, our model is slightly faster compared to the baselines. Note that the time shown
is for the optimization to purify x, and not for generating adversarial examples.

Table 14: Optimization speed of our model compared with baselines on CIFAR-10-C
Model Batch Size Time Consumed

Score-Opt-O 128 1.16 seconds
Score-Opt-N 128 1.26 seconds
Ours (AAOpt) 128 1.05 seconds

6.5 Limitation and Discussion

While AAOpt achieves state-of-the-art robustness, it relies on several assumptions and incurs non-
trivial computational costs that may limit its performance. First, our perturbation model requires
generation of adversarial examples once. Although we have shown this to be enough based on our
experiments as tested in different scenarios, the effectiveness of our perturbation model may degrade
if the attacker uses a substantially different threat model or if the perturbation distribution shifts too
much in practice. Second, test-time optimization requires multiple gradient-based refinement steps
(3–20 iterations), which increases inference latency compared to a standard forward pass models.
Third, AAOpt depends on a well-trained diffusion prior; if the diffusion model is poorly matched
to the target domain or exhibits artifacts under certain noise schedules, the denoising updates may
drift the image away from the true manifold. Finally, while our experiments span CIFAR-10, CIFAR-
100, TinyImageNet with different classifiers of WideResNet and a CLIP zero-shot classifier, further
evaluation on diverse modalities, and real-time scenarios is needed to fully characterize AAOpt’s
generality and scalability. Future work will focus on improving the model and extending this work to
multimodal generative [Wesego and Rooshenas, 2024] models.
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