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ABSTRACT

Generalizable Person Re-Identification (DG ReID) aims to learn ready-to-use cross-
domain representations for direct cross-data evaluation. It typically fully exploit
demographics information, e.g., the domain information and camera IDs to learn
features that are domain-invariant. However, the protected demographic features
are not often accessible due to privacy and regulation issues. Under this more
realistic setting, distributionally robust optimization (DRO) provides a promising
way for learning robust models that are able to perform well on a collection of
possible data distributions (the “uncertainty set”) without demographics. However,
the convex condition of KL DRO may not hold for overparameterized neural
networks and applying KL DRO fails to generalize under distribution shifts in
real scenarios. Instead, by applying the change-of-measure technique and the
analytical solution of KL DRO, we propose a simple yet efficient approach, Unit
DRO. Unit DRO minimizes the loss over a reweighted dataset where important
samples (i.e., samples on which models perform poorly) will be upweighted and
others will be downweighted. Empirical results show that Unit DRO achieves
superior performance on large-scale DG ReID and cross-domain ReID benchmarks
compared to standard baselines.

1 INTRODUCTION

Person Re-IDentification (ReID) aims at matching person images of the same identity across multiple
camera views. In previous work, ReID models mainly follow three settings: (i) As shown in Figure 1a,
most ReID models are trained and tested on i.i.d datasets, termed fully-supervised methods (Zhang
et al., 2020). Although recent fully-supervised methods have achieved remarkable performance,
they are non-robust when tested in out-of-distribution (OOD) settings. (ii) Figure 1b illustrates
the settings of unsupervised domain adaptation (UDA) methods and cross-domain (CD) person
ReID methods (Luo et al., 2020). However, UDA ReID relies on large amounts of unlabeled data
for retraining and CD ReID cannot exploit the benefits brought by multi source domains. These
problems severely hinder real-world applications of current person ReID techniques. Recently, (iii)
generalizable person ReID methods (DG) (Dai et al., 2021a) are proposed (Figure 1c) in a more
realistic setting, where the model is trained on multiple large-scale datasets. The trained model is
tested on unseen domains directly without any data collection, annotation, and model updating.

However, generalizable person ReID methods come at a serious disadvantage: they require demo-
graphics (e.g., domain labels (Choi et al., 2021; Zhao et al., 2021), camera ID (Zhang et al., 2021a;
Dai et al., 2021a) and video timestamps (Yuan et al., 2020)) as extra supervision. Such demographics
implicitly define variations in training data that the learned models should be invariant or robust
to1. However, such demographics usually are not available to use for the following reasons: (i) The
collection of demographics inevitably creates privacy risks (Veale & Binns, 2017), e.g., exposing the
geographical location and environment information. ReID is often used for high-privacy tasks such as
security, on which the privacy disclosure is unacceptable. (ii) domain labels collection are expensive
and ethically fraught endeavours (Michel et al., 2021), and (iii) manually collected domain labels
may be noisy or suboptimal (Creager et al., 2021) and such coarsed grained labels may exacerbate
hidden stratification, which hinders safe-critical applications (Oakden-Rayner et al., 2020). We aim
to overcome the difficulty of manual demographics collection by developing a new setting without

1The commonly used paradigm is to enforce representations to be invariant to domain labels.
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Figure 1: Universal person ReID settings. (a) Supervised person ReID. (b) CD ReID and UDA ReID.
(c)DG ReID. (d) Illustration of our setting for generalizable person ReID without demographics.

the need for demographics. Figure 1d depicts the Domain Generalizable Person Re-identification
Without Demographics (DGWD) setting, where models are also trained on multiple large-scale
datasets while the demographics are unavailable.

DRO is a promising paradigm to tackle the problem above by explicitly obtaining prediction functions
robust to distribution shifts (Hu et al., 2018). Specifically, DRO considers a minimax game: the
inner optimization objective is to shift the training distribution within a pre-specified uncertainty
set so as to maximize the expected loss on the test distribution. The outer optimization minimizes
the adversarial expected loss (see Section 3.1 for details). DRO with f -divergences has been well
studied, which defines the uncertainty set by an f -divergence ball from the training distribution Hu &
Hong (2013). However, the convex assumption usually does not hold in real scenarios, which leads
to inferior performance in the context of overparameterized neural networks.

In this paper, we first solve the inner step optimization problem and obtain a closed-form expression
of the optimal objective. Different from previous work that converts the minimax DRO problem into
a single minimization problem by the closed-form expression (Hu & Hong, 2013), we implement a
change-of-measure technique and reformulate the minimax optimization as an importance sampling
problem, termed Unit DRO2. Unit DRO avoids the troublesome bi-level optimization in traditional
DRO problems and scales well to over-parameterized regimes. Specifically, Unit DRO upweights
samples which are prone to be misclassified and downweigts others. It assigns a normalized weight
e`/τ

∗
/E[e`/τ

∗
] to each data and label pair (x, y), where ` is the error incurred by (x, y) and τ∗

is a hyperparameter. There are two main challenges here, (i) The optimization parameter τ∗ is
hard to determine and we observe that a constant τ∗ always achieves inferior performance; (ii) The
normalization factor E[e`/τ

∗
] requires taking an expectation over the training distribution. To tackle

the first problem, we propose step τ∗ to determine the value of τ∗ by the training step. We then
maintain a weights queue which stores historical sample weights to better estimate E[e`/τ

∗
] over the

training distribution. Compared to DG ReID methods, the implementation of Unit DRO is simple yet
effective, avoiding the need for meta-learning pipelines or complicated model structure engineering.

We empirically evaluate and analyze the proposed implementation. First, we compare Unit DRO
with both CD and DG methods. Unit DRO achieves improved performance by a large margin on DG
and CD benchmarks even compared to these methods that rely on demographics. Second, we take
comprehensive ablation studies of the step τ∗ and the weights queue, providing justification for these
two blocks. Finally, we visualize the learned weight distributions, t-SNE embeddings, and measure
the domain divergence and error set to show the invariant learning capability of Unit DRO. Empirical
results show that Unit DRO can retrieve valuable samples or subgroups without demographics.

2 RELATED WORK

Domain generalization. Domain/Out-of-distribution generalization (Muandet et al., 2013) aims to
learn a model that can extrapolate well in unseen environments. Representative methods like Invariant

2The name “Unit” is a contrast to “Group”. Group DRO (Sagawa et al., 2019) assigns weights for every
domain and our proposed Unit DRO assigns weights for every sample.
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Risk Minimization (IRM) (Arjovsky et al., 2020) and its variant (Ahuja et al., 2020) are recently
proposed to tackle this challenge. IRM center on the objective of extracting data representations
that lead to invariant prediction across environments under a multi-environment setting. The main
difference here is that we propose to learn invariant representations without demographics.

Generalizable Person ReID. Generalizable person ReID methods (Song et al., 2019; Choi et al.,
2021) are recently proposed to learn invariant representations that can generalize to unseen domains.
Existing methods mainly utilize domain divergence minimization strategies or a meta-learning
pipeline. DualNorm(Jia et al., 2019) integrate the Instance Normalization (IN) into the network to
filter out style factors, boosting generalization capability. Other works aim to learn domain-invariant
features, e.g., (Chen et al., 2021) and (Zhang et al., 2021a). However, neither meta learning-based
methods nor domain divergence minimization strategies work properly without demographics.

Fairness without demographics. Methods in Fairness (Dwork et al., 2012) aim to develop a
model that performs well for worst-case group assignments according to some fairness criteria for
addressing the underperformance in minority subgroups. Although there are some works consider
fariness without demographics (Liu et al., 2021; Creager et al., 2021), they mostly evaluate their
algorithms in datasets with predefined distribution shifts. Note that DGWD-ReID problem is more
challenging than the category-level recognition problem considered in the existing fariness w or w/o
demographics study. In DGWD-ReID, the target identities are different from source ones and we
need to tackle both domain gap and disjoint label space problems at the same time.

3 METHODOLOGIES

Notations and Problem Formulation. Consider current DG setting, where we have access to one
labeled dataset which consists of several distinct training3 distributions (domains): P = {Pk}|P|k=1 =

{{xi, yi}}|Pk|i=1 }
|P|
k=1, where |P| is the number of domains, |Pk| is the number of images in domain Pk,

xi ∈ X , yi ∈ Y is the image and the corresponding label. In the training phase, we train a DG model
using all the aggregated image-label pairs. In the testing phase, we perform a retrieval task on the
unseen target domain G without additional model updates. Our goal is to learn a model fθ : X → Y ,
parameterized by θ ∈ Θ, that minimizes the error in G:

min
θ∈Θ

E(x,y)∈G [`(x, y; θ)] . (1)

This objective encodes the goal of learning a model that does not depend on spurious correlations (e.g.,
domain-specific information). If a model makes decisions according to domain-specific information,
it is natural to be brittle in an entirely distinct domain. Previous studies mostly leverage demographics
(e.g., domain IDs, camera IDs, video timestamps) to clip the spurious correlations. In this paper, we
consider a novel setting where all of these demographics are not known during training, which makes
empirical sense that annotating demographics is expensive and likely to expose private information.

Baseline Algorithms. Here we describe the learning objectives used in the baseline model. The first
is the cross-entropy loss Lce, which seeks to minimize the average ID-classification loss over all the
training samples. Given n training points {(x1, y1), ..., (xn, yn)}, Lce is defined as follows:

Lce =
1

n

n∑
i=1

`(xi, yi; θ) (2)

The label-smoothing method is applied to prevent our model from overfitting to the training IDs.

Besides, following most of ReID methods, we introduce triplet loss to enhance the intra-class
compactness and inter-class separability in the Euclidean space. Following (Hermans et al., 2017),
given Euclidean distance d(·, ·) and an anchor sample xai , we select the hardest positive sample xpi
and the hardest negative sample xni within a mini-batch. The triplet loss then can be defined as:

Ltr(xai ) = max {d(fθ(x
a
i ), fθ(x

p
i )− d(fθ(x

a
i ), fθ(x

n
i )) +m, 0} , (3)

where m is the margin parameter. The BNNeck structure (Luo et al., 2019) is used to maximize the
synergy between Lce and Ltr. Meanwhile, we integrate the mixture of Batch Normalization and
Instance Normalization with learnable parameters (Choi et al., 2021) in the baseline, which has
proved very useful for the DG problem.

3We use training distributions, empirical distributions interchangeably.
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3.1 UNIT DRO

We now propose Unit DRO, a novel generalization framework that does not require priors about de-
mographics. We begin from an effective algorithmic framework: distributionally robust optimization
(DRO) (Ben-Tal et al., 2009; Rahimian & Mehrotra, 2019). In DRO, we use the worst-case expected
risk over a predefined family of distributions Q (termed uncertainty set) to replace the expected risk
under an unseen target distribution G in equation 1. Hence, the target is as follows,

min
θ∈Θ

max
q∈Q

E(x,y)∈q[`(x, y; θ)]. (4)

The uncertainty set Q encodes the possible test distributions that we want our model to perform well
on. If Q contains G, the DRO object can upper bound the expected risk under G. An important
question about DRO modeling is how to choose the uncertainty set (see Appendix.A for details).
Note that in many practical situations, we can obtain only the empirical (training) data distribution.
Then, a reasonable approach is to construct the uncertainty set by requiring the distribution within a
certain distance from the training distribution. Previous work chooses a KL-divergence ball (Hu &
Hong, 2013)/MMD ball (Sinha et al., 2017) around the training distribution, which confers robustness
to a wide set of distributional shifts. However, it can also lead to overly pessimistic models which
optimize for implausible worst-case distributions (Duchi et al., 2019). In other words, Q should be
sufficiently large to contain G, but if it is too large it may contain noisy distributions where no model
can perform well (Michel et al., 2021). Group DRO (Sagawa et al., 2019) leverages demographics
to define the uncertainty set Q and attains superior OOD performance. Here we consider a natural
extension to improve OOD generalization in the DRO framework without demographics.

Construction of the uncertainty set based on the KL-divergence ball. In this paper, we construct
Q as a KL-divergence ball around the empirical distribution P . Given a KL upper bound (radius)
η, we can formulate the uncertainty set as Q = {Q : KL(Q||P) ≤ η}4. Then the min-max problem
in equation 4 can be reformulated as

min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈Q [`(x, y; θ)] . (5)

Lemma 1 (Modified from (Hu & Hong, 2013), Section 2) Assume the model family θ ∈ Θ and Q to
be convex and compact. The loss ` is continuous and convex for all x ∈ X , y ∈ Y . Suppose empirical
distribution P has density p(x, y). Then the inner maximum of equation 5 has a closed-form solution

q∗(x, y) =
p(x, y)e`(x,y;θ)/τ∗

EP
[
e`(x,y;θ)/τ∗

] , (6)

where τ∗ satisfies EP
[

e`(x,y;θ)/τ
∗

EP [e`(x,y;θ)/τ∗ ]

(
`(x,y;θ)
τ∗ − logEP [e`(x,y;θ)/τ∗ ]

)]
= η and q∗(x, y) is the

optimal density of Q. Then the min-max problem in equation 5 is equivalent to

min
θ∈Θ,τ>0

τ logEP
[
e`(x,y;θ)/τ

]
+ ητ. (7)

Reformulate KL DRO to Unit DRO. We name equation 7 KL DRO. Unfortunately, the convex
condition of KL DRO is not held for over-parameterized neural networks, such that applying KL
DRO often fails to generalize under distribution shifts in real scenarios. Therefore, we do not follow
KL DRO that uses the inner maximum directly. Instead, we reformulate equation 5 as follows.

min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈Q[`(x, y; θ)] = min
θ∈Θ

max
Q:KL(Q||P)≤η

∫
`(x, y; θ)q(x, y)dxdy

= min
θ∈Θ

max
Q:KL(Q||P)≤η

∫
`(x, y; θ)

q(x, y)

p(x, y)
p(x, y)dxdy

= min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈P

[
q(x, y)

p(x, y)
`(x, y; θ)

]
= min

θ∈Θ
E(x,y)∈P

[
e`(x,y;θ)/τ∗

EP [e`(x,y;θ)/τ∗ ]
`(x, y; θ)

]
(8)

4The Q mentioned below is the Q with KL constraint by default.
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To get the third lines, we apply the change-of-measure technique. The fourth line replaces the inner
maximum by its closed-form solution q∗(x, y) in equation 6. Note that both the value of τ∗ and the
normalizer EP [e`(x,y;θ)/τ∗ ] depend on the expectation of losses over the entire training data, which is
untrackable at each optimization step. For simplicity, we can serve τ∗ as a hyper-parameter and take
the average over each mini-batch as a preliminary estimator of the normalizer. We term the resulting
formulation Unit DRO v1.

LUnit DRO v1(θ, τ∗) = min
θ∈Θ

1

N

N∑
i=1

(
e`(x,y;θ)/τ∗

1
N

∑N
i=1

(
e`(x,y;θ)/τ∗

)`(x, y; θ)

)
, (9)

where N is the batch size. In practice, Unit DRO v1 does not perform very well. The following
problems and solutions are depicted point by point.

Step τ∗. The first problem is that a constant hyper-parameter τ∗ is sub-optimal for the learning
process. We visualize the densities of the weights e`(x,y;θ)/τ∗/EP [e`(x,y;θ)/τ∗ ] over different learning
steps with constant τ∗ values in Figure 2 (The detailed experimental setting is in Section 4.3). A
small τ∗ leads to weights distribution with high variance and is sensitive to outliers. So, models
cannot converge to a well optimal point. A large τ∗ is so conservative that the weights for all samples
are almost similar. So, the performance is similar to the baselines. To tackle this problem, we propose
step τ∗, which declines the value of τ∗ during training. The intuition behind step τ∗ is that: at the
beginning of the training, the model assigns almost similar losses to all samples and cannot identify
which sample is more important or not. For this reason, we can allocate a large τ∗ which hardly
affects the training process. After some steps, we decrease the value of τ∗ and improve the weights
for more important (hard-to-distinguish) samples.
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Figure 2: Distribution visualization of sample weights at steps [1000, 5000, 10000, 20000] (from left
to right). The horizontal axis represents the weight, and the vertical axis represents the density.

Weights queueM. The second problem is that the expectation over each mini-batch is not a good
estimator of the normalizer EP [e`(x,y;θ)/τ∗ ]. We preserve a queueM = {wi := e`(xi,yi;θ)/τ

∗}|M|i=1
that stores historical weights and serve |M| a hyper-parameter. |M| is an integer multiple of batch
size N and determines how well M can estimate EP [e`(x,y;θ)/τ∗ ]. The detailed analysis is in
Section 4.3.

The resulting target combining step τ∗ and weights queueM is termed Unit DRO v2.

LUnit DRO v2(θ, τ∗(t)) = min
θ∈Θ

1

N

N∑
i=1

(
e`(x,y;θ)/τ∗(t)

1
|M|

∑
wi∈M (wi)

`(x, y; θ)

)
, (10)

where t is the training step and τ∗(t) means τ∗ is a function of t. Algorithm 1 depicts the online
optimization algorithm. Note that in group DRO (Algorithm 1 in (Sagawa et al., 2019)), samples in
one domain share the same weight, which is actually a special case of Unit DRO (Algorithm 1 here).
One key improvement from previous group DRO to (Sagawa et al., 2019) is the implementation trick
that the group weights is updated using exponentiated gradient ascent instead of picking the group
with worst average loss at each step. (Sagawa et al., 2019) shows such an improvement is important
for stability and obtaining convergence guarantees but cannot explain why it works. In contrast,
the weights in this work are interpretable: the optimal distribution of DRO with KL constraint is
proportional to the empirical distribution composite with the exponential term e`(x,y;θ)/τ∗ .
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Algorithm 1: Online optimization algorithm for Unit DRO v2

Input: P = {Pg}|P|g=1, batch size N , learning rate η, SGD hyper-parameters β, training iterations
T .

Initial: Parameters θ0 andM0 = {1}|M|i=1 .
for t = 1, ..., T do

(xi, yi)
N
i=1 ∼ P //Data sampling

L = 1
N

∑N
i=1

(
e`(x,y;θ

t−1)/τ∗(t)
1
|M|

∑
wi∈M

(wi)
`(x, y; θt−1)

)
//Calculate the reweighted loss

Mt =
[
Mt−1[N :], {e`(xi,yi;θt−1)/τ∗(t)}Ni=1

]
//Update weights queue by current weights

θt ← SGD
(
L, θt−1, η, β

)
//Update model parameters

end

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS.

Here we aim to answer the following questions:

• Without demographics, how does Unit DRO perform compared to advanced CD and DG methods?

• How do hyperparameters in Unit DRO influence the performance?

• Why Unit DRO can achieve performance improvements and when Unit DRO will fail?

To answer the first question, we compare Unit DRO with baselines of both DG ReID and CD ReID
on several benchmarks. We perform detailed ablation studies to answer the second question. Compre-
hensive analysis are conducted for the third question, e.g., error set analysis, feature visualization and
domain divergence measure, etc. The main setups of the experiments are as follows.

Dataset and Setting. Following (Song et al., 2019; Jia et al., 2019; Zhang et al., 2021a), we evaluate
the DIR-ReID with multiple data sources (MS), where source domains cover five large-scale ReID
datasets, including CUHK02 (Li & Wang, 2013), CUHK03 (Li et al., 2014), Market1501 (Zheng
et al., 2015), DukeMTMC-ReID (Zheng et al., 2017), and CUHK-SYSU PersonSearch (Xiao et al.,
2016). The unseen test domains are VIPeR (Gray et al., 2007), PRID (Hirzer et al., 2011), QMUL
GRID (Liu et al., 2012), and i-LIDS (Wei-Shi et al., 2009). We include the detailed illustration of
datasets and evaluation protocols in Appendix B.1. In the CD domain setting, we employ Market1501
and DukeMTMC-ReID. We alternately construct the two datasets into source and target domains.

Baselines. We compare our model with (i) DG ReID methods, e.g., AugMining (Tamura & Mu-
rakami, 2019), DIMN (Song et al., 2019), DualNorm (Jia et al., 2019), SNR (Jin et al., 2020),
DDAN (Chen et al., 2021), DIR-ReID (Zhang et al., 2021a), and MetaBIN (Choi et al., 2021). (ii) CD
ReID methods, e.g., CrossGrad (Shankar et al., 2018), QAConv (Liao & Shao, 2019), L2A-OT (Zhou
et al., 2020), OSNet-AIN (Zhou et al., 2021), SNR (Jin et al., 2020), DIR-ReID (Zhang et al., 2021a),
and MetaBIN (Choi et al., 2021).

Implementation. Following previous generalizable person ReID methods, we use Mo-
bileNetV2 (Sandler et al., 2018) with a multiplier of 1.4 as the backbone network, which is pretrained
on ImageNet (Deng et al., 2009). Images are resized to 256 × 128 and the training batch size N
is set to 80. The SGD optimizer is used to train all the components with a learning rate of 0.01,
a momentum of 0.9 and a weight decay of 5 × 10−4. The learning rate is warmed up in the first
10 epochs and decayed to its 0.1× and 0.01× at 40 and 70 epochs. The step τ∗ is initialized with
τ∗ = 100 and decayed to 20, 5 at 40 and 70 epochs. The default size forM is 800. The training
process includes 100 epochs and we use the automatic mixed-precision training to increase memory
efficiency in the entire process. For the hyperparameters of losses: the label-smoothing parameter is
0.1 and the margin in the triplet loss is 0.3. We serve Lce as the `(x, y; θ) in Unit DRO. We compare
different normalization methods in Table. 13 of the Appendix and integrate the mixture of BN and IN
with learnable balancing parameters (Choi et al., 2021) to the proposed Unit DRO. We conduct all
the experiments on a machine with i7-8700K, 32G RAM and four GTX2080ti.
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Methods Average VIPeR PRID GRID i-LIDS
R-1 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

AugMining 51.8 - 49.8 70.8 77.0 - 34.3 56.2 65.7 - 46.6 67.5 76.1 - 76.3 93.0 95.3 -
DIMN 47.5 57.9 51.2 70.2 76.0 60.1 39.2 67.0 76.7 52.0 29.3 53.3 65.8 41.1 70.2 89.7 94.5 78.4

DualNorm 57.6 61.8 53.9 62.5 75.3 58.0 60.4 73.6 84.8 64.9 41.4 47.4 64.7 45.7 74.8 82.0 91.5 78.5
DDAN 59.0 63.1 52.3 60.6 71.8 56.4 54.5 62.7 74.9 58.9 50.6 62.1 73.8 55.7 78.5 85.3 92.5 81.5

DDAN w/DualNorm 60.9 65.1 56.5 65.6 76.3 60.8 62.9 74.2 85.3 67.5 46.2 55.4 68.0 50.9 78.0 85.7 93.2 81.2
DIR-ReID 63.8 71.2 58.5 76.9 83.3 67.0 69.7 85.8 91.0 77.1 48.2 67.1 76.3 57.6 79.0 94.8 97.2 83.4

DIR-ReID† 62.3 70.8 57.2 74.1 80.2 64.9 67.6 87.1 91.6 76.6 47.2 66.1 75.4 57.0 77.3 93.3 97.2 84.5
MetaBIN 64.7 72.3 56.9 76.7 82.0 66.9 72.5 88.2 91.3 79.8 49.7 67.5 76.8 58.1 79.7 93.3 97.0 85.5

MetaBIN† 64.2 71.9 59.3 76.8 81.9 67.6 70.6 86.5 91.5 78.2 47.3 66.0 74.0 56.4 79.5 93.0 97.5 85.5
Group DRO 57.1 65.9 48.5 68.4 77.2 57.8 66.1 86.5 90.6 74.8 38.7 58.8 66.6 48.6 74.8 90.8 96.8 81.9

Group DRO† 56.7 65.6 48.5 68.9 76.6 58.1 65.4 85.4 89.8 74.1 38.4 58.6 66.1 48.4 74.5 91.0 96.0 81.7
Unit DRO† 65.4 72.8 60.0 78.2 82.8 68.4 73.5 85.3 91.7 79.4 47.5 69.3 77.4 57.2 80.7 94.0 97.0 86.2

Table 1: Comparisons against state-of-the-art DG methods for person ReID, where ‘†’ indicates the
reported result is simply from the last checkpoint. The 1st highest accuracy is indicated by red bold.

Method Market-Duke Duke-Market
R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

CrossGrad 48.5 63.5 69.5 27.1 56.7 73.5 79.5 26.3
QAConv 48.8 - - 28.7 58.6 - - 27.6
L2A-OT 50.1 64.5 70.1 29.2 63.8 80.2 84.6 30.2

OSNet-AIN 52.4 66.1 71.2 30.5 61.0 77.0 82.5 30.6
SNR 55.1 - - 33.6 66.7 - - 33.9

DIR-ReID 54.5 66.8 72.5 33.0 68.2 80.7 86.0 35.2
MetaBIN 55.2 69.0 74.4 33.1 69.2 83.1 87.8 35.9
Unit DRO 55.5 70.3 74.9 33.8 69.2 83.7 88.0 36.4

Table 2: Performance (%) comparison with the state-of-
the-arts on the CD ReID problem. All of these methods
adopt ResNet50 as the backbone.

τ∗ |M| R-1 mAP
[50, 5, 3] 800 64.2 72.1
[100, 5, 3] 0 63.4 71.6
[100, 5, 3] 800 65.4 72.8
[100, 5, 3] 4000 63.9 71.9
[100, 10, 3] 800 64.2 71.8
[100, 10, 3] 1600 64.2 72.0
[100, 20, 3] 800 64.8 72.3
[100, 20, 5] 800 65.4 72.8

Table 3: Ablation studies of step τ∗.
τ∗ = [τ1, τ2, τ3] means τ∗ = τ1 ini-
tially and decayed to τ2 and τ3 at 40 and
70 epochs.

4.2 NUMERICAL RESULTS

To the best of our knowledge, there is no work focusing on DGWD-ReID setting. We first evaluate
one representative method under the fairness/OOD setting termed Group DRO (Sagawa et al., 2019)
on the DG ReID benchmark. We find η for Group DRO within [10−3, 10−1] and the optimal value is
0.01. Table. 1 shows that it doesn’t work well. Then we then compare the proposed Unit DRO with
the existing methods about DG ReID and CD ReID.

Comparison with DG ReID. We observe that current DG ReID methods (Choi et al., 2021; Zhang
et al., 2021a; Chen et al., 2021) all apply an utopian model selection method, they all choose the
checkpoint with the best performance on the test datasets and report their results. We argue that
such a model selection method is inadvisable. Under the DG setting, we should restrict access to
the test domain data (Gulrajani & Lopez-Paz, 2020). Instead, we simply use the last checkpoint and
report its results as the final performance over all test datasets. Among the competitors, although
some methods have achieved advantages sporadically on one or two datasets, the proposed Unit
DRO attains the best performance in the average R-1 accuracy and average mAP over most of the
test sets. Note that such comparison is unfair because DG methods can utilize demographics. We
also report the last checkpoints’ results of other methods. Table 1 shows that, without the utopian
model selection method, there is a certain degree of performance decline of these methods, which
indicates the effectiveness of Unit DRO again.

Comparison with CD ReID. Table 2 shows the comparison under the CD setting, where ‘Market-
Duke’ indicates that Market1501 is the labeled source domain and DukeMTMC-ReID is an unseen
target domain. Because the style variation within a single dataset is relatively small, previous DG
ReID methods must utilize fine-grained demographics,e.g., camera IDs (Zhang et al., 2021a), or tune
the hyper-parameters carefully (Choi et al., 2021). Instead, Unit DRO does not require additional
data augmentation or any changes to model structures and hyper-parameters. For a fair comparison,
we employ the Resnet50 backbone with color jittering and Table 2 shows that Unit DRO outperforms
current CD methods. So far, we have verified that the proposed Unit DRO has the potential to improve
the generalization ability on both multi-source datasets and single-source dataset settings.

Ablation Studies: impact of τ∗ and |M| in Unit DRO. We conduct ablation studies on various
components. Table 4 shows that the results with a constant τ∗ are not better than the baseline (the
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results on the first row). Cooperated with a weights queue with a size of |M| = 800 boosts the
performance slightly. However, maintaining a largeM with a size of 5000 is harmful to Unit DRO.
Step τ∗ with noM or a largeM all behave not well. We perform a careful search for the most
suitable |M| and step τ∗ in Table 3, which brings great performance gain. These empirical results
show that both the weights queueM and the step τ∗ play an important role in Unit DRO.

4.3 ANALYSIS
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Figure 3: Distribution visualization of sample weights of steps [1000, 5000, 10000, 20000] (from left
to right). The horizontal axis represents the weight, and the vertical axis represents the density.

Distributions of sample weights on different parameters. We train models in DG benchmarks
100 epochs and each epoch consists of 1850 steps. Per 1000 steps, all the sample weights5 will be
saved and the mean and variance of these weights will be calculated. We assume these weights
obey Gaussian distribution N (µ, δ) and plot diagrams based on the mean µ and variance δ. The
x-coordinate of these diagrams is just the value between [µ− 3 ∗ δ, µ+ 3 ∗ δ], not the real values
of weights. Based on the loss values of each sample, we calculate the weights with the following
three methods. (i) Sample weights for Unit DRO. In this case, these weights are normalized in their
batches, so the mean of all distributions here is 1. Figure 2 shows the results and we had discussed
them in Section 3.1. (ii) Sample weights for Unit DRO with different |M|. We plot the sample
distribution of steps [1000, 5000, 10000, 20000] in this case. With an additional queue, Figure 3
indicates that weight distributions have different means during training. Theoretically we need a large
|M| to estimate EP [e`(x,y;θ)/τ∗ ]. However, as |M| becomes larger, the estimation will be inaccurate.
Consider an extreme case: |M| = T − 1 and then the queue absolutely contains all the training data.
It is catastrophic to estimate EP [e`(x,y;θ)/τ∗ ] in step T by such a queue. The large queue contains
very old sample weights which is unsuitable for the current model. Figure 3 depicts the phenomenon,
where the distribution with a larger |M| always has smaller µ. We plot and discuss the distribution
diagrams of step τ∗ in Appendix C.2.

Feature visualization using t-SNE. We compare the proposed Unit DRO to MetaBIN and DualNorm
through t-SNE visualization. We observe a distinct division of different domains in Figure 4a, which
denotes that a domain-specific feature space is learned by the DualNorm. MetaBIN and the proposed
Unit DRO tackle this problem well and the overlaps in Figure 4b and Figure 4c between different
domains are more prominent. The t-SNE visualization shows that Unit DRO can learn domain-
invariant representations while keeping discriminative capability for ReID tasks. However, MetaBIN
follows a meta-learning pipeline and needs expensive demographics. In contrast, no demographics
is required by Unit DRO and the framework is simpler. We supply more visualization results and
further analysis about the discriminative capability in Section C.3 of Appendix.

Domain divergence measure using A-distance and MMD-distance. We study the MMD dis-
tance (Tolstikhin et al., 2016) and A-distance (Long et al., 2015) as measures of domain discrep-
ancy (Ben-David et al., 2010). Detailed implementation is depicted in Section C.4 of Appendix.
Table 5 shows that Unit DRO can learn comparable or even more invariant representations compared
to MetaBIN, which outperforms DualNorm by a large margin. We also study the correlation between
the weights for each dataset and the MMD distance. For each dataset, we calculate the sum of MMD
distance between it to all other datasets. Besides, we calculate the average weights of the final model

5The distribution of step 5000”, which is equal to the distribution of sample weights in steps [4000, ..., 4999]
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τ∗ = 1 τ∗ = 10 τ∗ = 20 |M| = 800 |M| = 5000 Step τ∗ R-1 mAP
63.7 72.0

X 42.0 52.4
X 63.5 71.8

X 63.6 71.5
X X 64.1 72.0

X X 63.5 71.2
X 63.8 72.2

X X 63.9 71.8
X X 65.4 72.8

Table 4: Ablation study of Unit DRO.

(a) DualNorm (Jia et al., 2019) (b) MetaBIN (Choi et al., 2021) (c) Unit DRO

Figure 4: The t-SNE visualization of the embedding vectors of training and test datasets. Query and
gallery samples of these unseen datasets are expressed in different shapes. Best viewed in color.

for each dataset. Table 6 shows that for a tough dataset (e.g., , CUHK02) that has a large divergence
to other datasets, Unit DRO assigns a relatively higher average weight. This phenomenon depicts that
even without demographics, Unit DRO can also find meaningful subgroups and upweight them. We
can also see that Unit DRO upweights samples in CUHK-SYSU which has a relatively small MMD
distance with other datasets. It is because the generalization ability is not only dependent on domain
divergence, but also some other factors. We discuss these influence factors and perform error set
analysis in Section C.6 of Appendix. We also plot the MMD-distance of every dataset pair and give
further analysis in Section C.5 of Appendix.

5 CONCLUSION

It is common that traditional DG ReID methods fail to work in cases where domain information,
camera ID, or other demographics are difficult to obtain due to privacy issues. To this end, We
introduce DGWD-ReID, a new setting that needs to learn domain-invariant representation without
demographics. Under DGWD-ReID, we further propose Unit DRO, a new method reformulated from
KL constraint DRO. Unit DRO learns domain-invariant features and outperforms previous DG ReID
methods that even require demographics. Empirical results and detailed analysis have verified that
Unit DRO can find semantically meaningful samples and subgroups without demographics.

Method MMD↓ (U) MMD↓ (T) MMD↓ (A) A ↓ (U) A ↓ (T) A ↓ (A)
DualNorm 0.52 0.21 0.41 1.96 1.91 1.88
MetaBIN 0.41 0.19 0.36 1.96 1.89 1.86
Unit DRO 0.41 0.19 0.35 1.95 1.89 1.85

Table 5: Divergence measurement on four unseen datasets
(U), five training datasets (T) and all of these datasets (A).

Cuhk02 Cuhk03 Market Duke SYSU
Weight 1.02 0.99 0.99 1.00 1.01
MMD 1.66 1.17 1.15 1.16 1.04

Table 6: Average weight and one-to-all
MMD distance for training datasets.
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