
Proceedings Track
Under Review - Proceedings Track 1–20, 2024 Symmetry and Geometry in Neural Representations

Theoretical Insights into Line Graph Transformation on
Graph Learning

Editors: List of editors’ names

Abstract

Line graph transformation has been widely studied in graph theory, where each node in a
line graph corresponds to an edge in the original graph. This has inspired a series of graph
neural networks (GNNs) applied on transformed line graphs, which has proven effective
in various graph representation learning tasks. However, there is limited theoretical study
on how line graph transformation affects expressivity of GNN models. In this study, we
focus on two types of graphs known to be challenging to the Weisfeiler-Leman (WL) tests:
Cai-Fürer-Immerman (CFI) graphs and strongly regular graphs, and show that applying
line graph transformation helps exclude these challenging graph properties, thus poten-
tially assist WL tests in distinguishing these graphs. We empirically validate our findings
by conducting a series of experiments that compare the accuracy and efficiency of graph
isomorphism tests and GNNs on both line-transformed and original graphs across these
graph structure types.

Keywords: Graph isomorphism testing, Strongly regular graphs, CFI graphs, Expressiv-
ity, Graph neural networks.

1. Introduction

Graph Neural Networks (GNNs) are prominent models widely studied in the domain of
graph representation learning, with various applications from social network analysis (Fan
et al., 2019) and recommendation systems (Baskin et al., 2016) to drug discovery (Muzio
et al., 2020). In particular, advancements in graph theory have played a significant role in
the evolution of GNNs. The integration of graph measures, such as graph spectrum (Baldesi
et al., 2018), centrality (Maurya et al., 2021), and modularity (Tsitsulin et al., 2023), has
played a crucial role in shaping the design, analysis, and theoretical foundations of GNN
research.

Line graph transformation is of particular interest due to its successful applications on
GNNs, proving effective in several tasks such as link predictions (Cai et al., 2022; Liu et al.,
2021), community detection (Chen et al., 2019a), and material discovery (Choudhary and
DeCost, 2021; Ruff et al., 2024). As illustrated in Figure 1, the line graph transformation is
a graph rewriting algorithm that converts a graph’s edges into nodes. Transformed nodes
are then connected if their corresponding edges in the original graph share a common node.
This transformation effectively captures the relationships between edges in a graph, and is
particularly useful for tasks where edge-centric information is critical.

While the alignment of the Weisfeiler-Leman (WL) test to Message Passing Neural
Networks (MPNNs) (Morris et al., 2019; Xu et al., 2019) and higher-order GNNs (Maron
et al., 2019a) on input graph has provided valuable insights into measuring the expressive
power of these architectures, there has been limited exploration on the expressive power
of these models applying on line graphs. Specifically, we are interested in answering the
following questions:

© 2024 .

Proceedings Track

a b

c d

G

a b

c d

ab

ac bc
bd ac

ab

bc bd

L(G)

Figure 1: An example of converting a graph G to its line graph L(G).

1. What are the connections between learning permutation-invariant functions on the line
graph and the original graph?

2. What classes of graphs can line graph transformation help distinguish?

In this study, we aim to understand the effects of line graph transformations on the data
from a graph theory perspective. We first observe that conducting a graph isomorphism test
between a pair of connected graphs is equivalent to conducting it between their respective
line graphs with the exception of the pair of graphs isomorphic to K1,3 and C3. Note that
this holds for repeated applications of line graph transformation. These observations inspire
us to demonstrate the equivalence of the graph isomorphism test and uniform function
approximation on graphs after an arbitrary number of transformations L(n)(G) and the
original graph G.

Furthermore, we shift our focus to Cai-Fürer-Immerman (CFI) graphs and strongly
regular graphs, which are notably difficult for the WL test. We demonstrate that with
several applications of line graph transformation, the resulting line graph will no longer
exhibit the same property, potentially simplifying the process of differentiation through
standard isomorphism tests or GNNs. We then perform a series of experiments to evaluate
how line graph transformations affect the performance of standard isomorphism tests and
GNNs in distinguishing difficult graph classes, focusing on the effectiveness of applying
lower-order WL tests on the transformed line graphs for isomorphism checks.

Our contribution can be summarized as below:

1. We show that the universal approximation of permutation-invariant functions on con-
nected graphs after arbitrary numbers of line graph transformation is equivalent to
their original graph, assuming the root graph not isomorphic to K1,3.

2. We study two challenging graph types for isomorphism tests: CFI graphs and strongly
regular graphs, and show that they are excluded in line graphs with few exceptions.

3. We empirically validate our theory by conducting a series of graph isomorphism tests
and GNNs and present line graph transformation’s effect on distinguishing challenging
graph pairs.

All proof details are presented in Appendix E.

2

Proceedings Track
Theoretical Insights into Line Graph Transformation on Graph Learning

1-WL = 2-WL

3-WL

4-WL

-WL

Simple regular

graphs
Strongly regular

graphs
4-CFI graphs

Figure 2: Relationships between WL tests and challenging graph types.

2. Related works

GNNs and WL test The comparison of the expressive power of GNNs with those of the
WL tests is a well-studied topic in the literature. Xu et al. (2019) and Morris et al. (2019)
demonstrated that Message-Passing Neural Networks (MPNNs) are capable of matching the
expressiveness of the 1-WL test. Furthermore, Morris et al. (2019) extended this analysis
by developing k-dimensional GNNs (k-GNNs) to align with the expressiveness of the k-WL
tests, while inheriting their limitations on computational complexity. This led to theoretical
analysis of several other existing classes of higher-order GNNs to study their expressive
power. For instance, Frasca et al. (2022) has drawn connections from subgraph GNNs
to Invariant Graph Networks (IGNs) (Maron et al., 2019b), showing that the expressive
power of subgraph GNNs is inherently limited by 3-WL. Maron et al. (2019a) also derived
architectures that closely match the expressive power of 3-WL.

Challenging graphs Another line of works (Babai and Kucera, 1979; Bouritsas et al.,
2023; Cai et al., 1992) focuses on understanding what classes of graphs are inherently
challenging to the hierarchy of WL tests, shown in Figure 2. One of the well-known classes
is the Cai-Fürer-Immerman (CFI) graphs (Cai et al., 1992), designed specifically to be
indistinguishable from the standard WL algorithm. CFI graphs are built by modifying the
edges of a base graph with additional parity information encoded into gadgets, such that
there exists a CFI graph that k-WL indistinguishable from any fixed k.

Another class of counter-examples to the WL test comes from the class of regular graphs,
often characterized by their highly symmetrical structure and uniform node degrees, thus
resulting in the same color refinement by 1-WL algorithms. In particular, strongly regular
graphs include properties such as consistent numbers of common neighbors for adjacent and
non-adjacent node pairs and are known to be 3-WL indistinguishable (Arvind et al., 2020),
thus presenting challenges even with higher-order GNNs.

Line Graph Neural Networks While there does not yet exist a comprehensive the-
oretical justification for the use of line graphs with GNNs, there have been some studies
showing promising experimental results with line graph neural networks. Cai et al. (2022)

3

Proceedings Track
show that line graphs effectively convert link prediction problems into node classification
problems, which avoids the information loss caused by necessary graph pooling and leads to
competitive performance in various link prediction benchmarks. In materials science, line
graphs have been used for explicit modeling of chemical bond angles, which has proven use-
ful in atomic property predictions (Choudhary and DeCost, 2021). Moreover, Chen et al.
(2019a) demonstrated that line graph neural networks can construct the non-backtracking
operator, enhancing the community detection capability in sparse graphs.

3. Line graphs and their properties

Notations We write G = (V,E) to represent a finite, undirected, simple graph where V
is the set of nodes and E is the set of edges. We denote V (G) and E(G) to specify the
graph to which the set of nodes and the set of edges belong. Given a node u ∈ V (G), dG(u)
denotes the degree of u on graph G. We write G ∼= H if a graph G is isomorphic to H and
G ≇ H otherwise. We also adopt the common notations for special graphs, e.g., Pn, Cn,
and Kn represent a path, a cycle, and a complete graph with n nodes, respectively. We also
write K1,n to represent star graphs with one center node and n leaves.

P4 C4 K4 K1,3

Figure 3: Examples of graph structures.

Line graph A line graph L(G) is derived from another graph G termed the root graph.
Formally, given a root graphG = (V,E), where V is the set of nodes and E is the set of edges,
the line graph, denoted as L(G), is constructed such that each node in L(G) corresponds
to an edge in E, and two nodes in L(G) are adjacent if their corresponding edges in G are
adjacent with the same node in V . For notation convenience, we use L(n)(G) to represent
the resulting graph after n times line graph transformation (e.g. L(2)(G) := L(L(G))). The
definition of line graphs induces some corollary properties. For instance, let G be a simple
undirected graph, it follows naturally that |E(L(G))| = |V (G)|. In addition, Lemma 1
introduces a useful formula when analyzing the degree of new graphs.

Lemma 1 Let u, v ∈ V (G) such that they are adjacent by an edge e ∈ E(G). The edge e’s
corresponding node representation we ∈ V (L(G)) follows dL(G)(we) = dG(u) + dG(v)− 2.

Some noticeable line graph transformations include L(Pn) = Pn−1 (paths to shorter
paths), L(Cn) = Cn (cycles to cycles), L(K1,n) = Kn (stars to complete graphs). In
particular, a claw graph, also known as the complete bipartite graph K1,3, has a line graph
of C3. van Rooij and Wilf (1965) showed that for a connected graph G, the repeated line
graph transformations L(n)(G) has unbounded size as n → ∞ if and only if G is not a path,

4

Proceedings Track
Theoretical Insights into Line Graph Transformation on Graph Learning

cycle or K1,3. Additionally, we say a graph G is triangle-containing if G has a subgraph
C3, and is triangle-free if it does not.

Whitney’s Isomorphism Theorem Formulated by Whitney (1932), a clear relation be-
tween original graphs and their line graphs is established. Whitney’s theorem demonstrates
a one-to-one mapping between the line graph and its root graph except for exceptions of
C3 and K1,3, providing the theoretical foundation for learning with line graphs.

Theorem 2 (Whitney’s Isomorphism Theorem (Whitney, 1932)) Let G and H be
finite, connected graphs. Then G is isomorphic to H if and only if their line graphs are
isomorphic, with the exception of the case where G and H is a pair of C3 and K1,3, in which
case their line graphs are both isomorphic to C3.

Beineke’s Forbidden Induced Subgraphs In addition to the “almost injective” rela-
tionship between the root graph and its line graph transformation, there is an additional
constraint on the constructed line graph. Beineke (1970) introduced the characteristic of
line graphs that a graph G is a line graph of another graph if and only if G does not con-
tain any of Beineke’s forbidden subgraphs as an induced subgraph (See Appendix C for
more details). As a direct consequence, we have the following key corollary, which will be
instrumental in the next section.

Corollary 3 Let G be a simple and undirected graph, then L(G) does not contain K1,3 as
an induced subgraph.

4. Theoretical Framework

We start by presenting the theoretical framework overview of this study, summarized as
follow:

1. We demonstrate the equivalence between isomorphism testing on line graphs after any
number of transformations and the approximation of permutation-invariant functions
on the connected root graph with the exception of the K1,3 graph. (Theorem 4,
Corollary 5)

2. We show that higher orders of CFI construction, as proposed by Cai et al. (1992), are
excluded from the set of line graphs. (Theorem 6)

3. We prove that with the exception of Cn when 3 ≤ n ≤ 5, connected strongly regular
graphs are transformed into non-strongly regular graphs by at most two line graph
transformations. (Lemma 14, Theorem 7, Theorem 8)

4. We extend the theorem on equivalence and strongly regular graphs to disconnected
graphs. (Corollary 9, Corollary 10)

4.1. Equivalence

In this section, we first focus on connected graphs that are not isomorphic to the claw graph
K1,3. Theorem 4 shows that approximating permutation-invariant functions on root graph
G is equivalent to that on line graph L(G) after a single transformation.

5

Proceedings Track

(a) CFI (b) Strongly Regular

Figure 4: Example of a pair of CFI graphs and a pair of strongly regular graphs.

Theorem 4 Let G be a set of connected non-claw graphs and C be a collection of functions,
such that ∀G1, G2 ∈ G such that G1 ≇ G2, ∃h ∈ C, h(L(G1)) ̸= h(L(G2)). Then, C can
universally approximate any permutation-invariant function f : G → R.

The proof idea is to leverage Whitney’s isomorphism theorem (Theorem 2) and establish
a correspondence between a root graph G and the line graph L(G) (given that G ≇ K1,3),
and apply Theorem 11 (Appendix B) to link the isomorphism testing to universal function
approximation. Excluding claw graphs, any pair of non-isomorphic root graphs would have
non-isomorphic line graphs.

Furthermore, we can extend Theorem 4 to Corollary 5 by the claw-free property of line
graphs (Corollary 3). As L(G) could not be K1,3, it satisfies the assumption for Theorem 4
to extend the equivalence of universal function approximation between L(2)(G) and L(G).
Thus, by induction, the theorem can be extended to n-step line graph transformations for
an arbitrary number of n.

Corollary 5 Let G be a set of connected non-claw graphs and C be a collection of functions.
If ∀G1, G2 ∈ G, G1 ≇ G2, and ∀n ∈ N, ∃h ∈ C such that h(L(n)(G1)) ̸= h(L(n)(G2)) Then,
C can universally approximate any permutation-invariant function f : G → R.

4.2. Implication on challenging graphs

The constraints on line graphs as described by Beineke (1970) offer a silver lining: despite
the potential increase in graph size, the transformed graph may be structurally simpler.
In this section, we introduce two challenging graphs in WL tests, namely CFI graphs and
strongly regular graphs shown in Figure 4. We demonstrate how line graph transformation
excludes the existence of such counter-examples for the isomorphism testing.

4.2.1. Cai-Fürer-Immerman Graphs

The Cai-Fürer-Immerman (CFI) graphs (Cai et al., 1992) are famously constructed to
demonstrate the difficulty of the graph isomorphism problem, especially regarding WL
tests, shown in Figure 4, (a). In fact, Cai et al. (1992) has shown that there exists a CFI
construction that is indistinguishable under the k-WL test for any fixed k. The CFI graph

6

Proceedings Track
Theoretical Insights into Line Graph Transformation on Graph Learning

involves the construction of Xk = (Vk, Ek) with Vk = Ak ∪Bk ∪Mk where

Ak = {ai | 1 ≤ i ≤ k}, Bk = {bi | 1 ≤ i ≤ k}
Mk = {mS | S ⊆ {1, . . . , k}, |S| is even}
Ek = {(mS , ai) | i ∈ S} ∪ {(mS , bi) | i /∈ S}.

m1 m2 m3 m4

a1

a2 a3

b1

b2 b3

Figure 5: An CFI graph substructure
X3 and its induced subgraph
K1,3 in red.

However, we observe that applying line graph
transformation on CFI graphs can provably re-
move this construction, since the CFI graphs Xk

with k ≥ 3 has to include the claw graph K1,3 as
an induced subgraph, thus ruling them out from
being a line graph due to Corollary 3. Figure 5
presents an example of K1,3 as a subgraph of X3.

Theorem 6 Line graphs do not include CFI
graphs constructed with Xk for k ≥ 3.

Theorem 6 demonstrates that after line graph
transformation, complex CFI graphs would be
non-existent. This prevents graph isomorphism
tests and GNNs from dealing with these difficult instances, potentially assisting these mod-
els to distinguish challenging graph pairs and thus allowing GNNs to better learn on these
graphs with the help of Theorem 4.

4.2.2. Strongly Regular Graphs

Another well-known example of the limitation of the WL test is its challenge to differen-
tiate between strongly regular graphs (See Appendix D for details). To distinguish non-
isomorphic strongly regular graphs, graph isomorphism tests or GNNs that are 4-WL ex-
pressive are required (Bouritsas et al., 2023). We present an example strongly regular graph
pair that is indistinguishable by 3-WL in Figure 7, (b).

In this section, we demonstrate that the application of line graphs disrupts the strong
regularity of these graphs, with the exception of three specific cases. We start with the fol-
lowing lemma to showcase the simple cases where the root graph contains C3 as a subgraph
(i.e. triangle-containing) and is not complete.

Theorem 7 Let G be a connected, strongly regular graph which is not the complete graph
Kn for n ≥ 2, and G contains C3 as a subgraph. Then L(G) is not strongly regular.

Furthermore, we show that with a finite number of exceptions, the application of most
second-order line graph transformations effectively disrupts the strong regularity of graphs.
The resulting graphs therefore may no longer require 4-WL test or equivalent GNN archi-
tectures for graph isomorphism testing.

Theorem 8 Let G be a connected graph that is not the cycle graphs C3, C4, or C5. Then,
applying at most two line graph transformations to G yields a graph that is not strongly
regular.

7

Proceedings Track
4.2.3. Regular graphs

It is worth mentioning that the line graph of a regular graph remains regular (Ramane
et al., 2005). Thus, there exists a pair of graphs, G1 and G2, such that are at least 2-WL
indistinguishable between L(n)(G1) and L(n)(G2) for any n ≥ 0.

4.3. Extension on disconnected graphs

Notice that all of the aforementioned theorem assume that the root graph are connected. In
fact, we can show that given a disconnected graph where each of its connected components
not isomorphic to K1,3 or short paths, Corollary 5 still holds.

Corollary 9 Let G be a set of graphs such that ∀G ∈ G, for a fixed n, G does not have
a component isomorphic to K1,3 or Pk, k ≤ n and Let C be a collection of functions. If
∀G1, G2 ∈ G such that G1 ≇ G2, ∃h ∈ C such that h(L(n)(G1)) ̸= h(L(n)(G2)). Then, C can
universally approximate any permutation-invariant function f : G → R.

Similarly, assuming a disconnected graph where each of its connected components is not
isomorphic to C3, Corollary 8 holds for strongly regular graphs.

Corollary 10 Let G be a graph that is not the cycle graphs C3, C4, C5, or a disjoint group
of C3. Then, applying at most two line graph transformations to G yields a graph that is
not strongly regular.

5. Empirical Evidence

We validate our theoretical findings through graph classification experiments, designed to
answer the following question: What are the effects of line graph transformation on regular
graphs and CFI graphs?

5.1. Experimental Setup

Dataset We utilize the BREC dataset (Wang and Zhang, 2024) to examine the effects
of line graph transformation on both CFI graphs and regular graphs. The dataset consists
of 100 pairs of CFI graphs and 120 pairs of regular graphs. Among the regular graphs, 50
pairs are simple regular graphs, and 70 pairs are strongly regular graphs. These graph pairs
are pre-processed into two distinct groups: with and without line graph transformation.

Experimental design In our experimental setup, we conduct graph isomorphism tests
on 100 pairs of CFI graphs and 140 pairs of regular graphs, both before and after applying
the line graph transformation, using the 3-WL test. Additionally, we apply the 4-WL on
the root graph pairs and compare its expressive power on root graphs with that of 3-WL on
their corresponding line graphs. To further demostreate, we also evaluate a GNN model,
Provably Powerful Graph Networks (PPGN) (Maron et al., 2019a), whose expressive power
is bounded by 3-WL (See Appendix F for more details).

8

Proceedings Track
Theoretical Insights into Line Graph Transformation on Graph Learning

Table 1: The accuracies of distinguishing graph pairs in the BREC regular and CFI graphs.

Simple Regular (50) Strongly Regular (70) CFI (100)

Graph Model Number Accuracy Number Accuracy Number Accuracy

G
3-WL 50 100% 0 0% 60 60%
4-WL 50 100% 70 100% 80 80%
PPGN 50 100% 0 0% 22 22%

L(G)
3-WL 50 100% 70 100% 60 60%
PPGN 50 100% 70 100% 15 15%

5.2. Results

Simple and strongly regular graphs We present the experiment results in Table 1.
First, we note that the 3-WL or more expressive algorithms successfully distinguish all
pairs of simple regular graphs in the dataset. Regarding strongly regular graphs which are
distinguishable by 4-WL but not 3-WL, we observe that 3-WL can successfully differentiate
all pairs of strongly regular graphs after applying the line graph transformation, which was
previously indistinguishable. This is consistent with our theoretical analysis, suggesting
that the strong regularity of graphs may be disrupted after line graph transformation.

CFI graphs It is noteworthy that the number of pairs of CFI graphs successfully distin-
guished by the 3-WL algorithm does not increase after a single line graph transformation.
Although our theoretical analysis indicates transformed graph does not belong to CFI graph,
the resulting line graph still poses significant challenges for the WL algorithm.

WL and PPGN We provide additional experimental insights into the comparison be-
tween WL algorithms and a graph neural network instance PPGN. In the regular graph
experiments, PPGN aligns its performance with 3-WL before and after the line graph trans-
formation. However, when applied to CFI graphs, PPGN performs slightly worse on the
line graphs compared to the root graphs. As noted in Wang and Zhang (2024), PPGN
struggles to match the performance of 3-WL on CFI graphs due to their large radii. The
line graph transformation further increases the size of the CFI graphs, magnifying this issue
and leading to decreased performance in PPGN experiments on the line graphs.

6. Conclusions

In this study, we provide a theoretical analysis of applying GNNs on line graphs. With mild
assumptions, we show that line graphs are equivalent to the original graphs for isomorphism
testing and permutation-invariant function approximation. In particular, we focus on two
challenging graph classes for the isomorphism test, namely CFI graphs and strongly regular
graphs, and show that both classes can be excluded or reduced by the application of line
graph transformation. Empirically, strongly regular graphs after line graphs are 3-WL
distingushable, whereas the line graphs of CFI graphs remains challenging to the WL tests.

9

Proceedings Track
References

V. Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: Subgraph counts and related graph properties. Journal of Computer and
System Sciences, 2020.

Laszlo Babai and Ludik Kucera. Canonical labelling of graphs in linear average time. In
20th Annual Symposium on Foundations of Computer Science, 1979.

Luca Baldesi, Carter T. Butts, and Athina Markopoulou. Spectral graph forge: Graph
generation targeting modularity. In IEEE Conference on Computer Communications,
2018.

I. Baskin, D. Winkler, and I. Tetko. A renaissance of neural networks in drug discovery.
Expert Opinion on Drug Discovery, 2016.

Lowell W Beineke. Characterizations of derived graphs. Journal of Combinatorial theory,
1970.

Norman Biggs. Algebraic graph theory. Cambridge university press, 1993.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Im-
proving graph neural network expressivity via subgraph isomorphism counting. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 1992.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link
prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Peter J Cameron. 6-transitive graphs. Journal of Combinatorial Theory, 1980.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph
neural networks. In 7th International Conference on Learning Representations, 2019a.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between
graph isomorphism testing and function approximation with gnns. In Advances in Neural
Information Processing Systems, 2019b.

Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved
materials property predictions. npj Computational Materials, 2021.

B. L. Douglas. The weisfeiler-lehman method and graph isomorphism testing, 2011.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation. In The world wide web conference, 2019.

Jiarui Feng, Lecheng Kong, Hao Liu, Dacheng Tao, Fuhai Li, Muhan Zhang, and Yixin
Chen. Extending the design space of graph neural networks by rethinking folklore
weisfeiler-lehman. In Advances in Neural Information Processing Systems, 2023.

10

Proceedings Track
Theoretical Insights into Line Graph Transformation on Graph Learning

Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Under-
standing and extending subgraph GNNs by rethinking their symmetries. In Advances in
Neural Information Processing Systems, 2022.

F. Harary. Graph Theory. Addison-Wesley Publishing Company, 1969.

Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor Kostylev. Indigo: Gnn-based inductive
knowledge graph completion using pair-wise encoding. In Advances in Neural Information
Processing Systems, 2021.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In Advances in Neural Information Processing Systems, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equiv-
ariant graph networks. In International Conference of Learning Representations, 2019b.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Graph neural networks for fast node
ranking approximation. ACM Transactions on Knowledge Discovery from Data, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, 2019.

Giulia Muzio, Leslie O’Bray, and K. Borgwardt. Biological network analysis with deep
learning. Briefings in Bioinformatics, 2020.

H.S. Ramane, H.B. Walikar, S.B. Rao, B.D. Acharya, P.R. Hampiholi, S.R. Jog, and I. Gut-
man. Spectra and energies of iterated line graphs of regular graphs. Applied Mathematics
Letters, 2005.

Robin Ruff, Patrick Reiser, Jan Stühmer, and Pascal Friederich. Connectivity optimized
nested line graph networks for crystal structures. Digital Discovery, 2024.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering
with graph neural networks. Journal of Machine Learning Research, 2023.

Arnoud Caspar Maria van Rooij and Herbert S Wilf. The interchange graph of a finite
graph. Acta Mathematica Academiae Scientiarum Hungarica, 1965.

Yanbo Wang and Muhan Zhang. An empirical study of realized GNN expressiveness. In
Forty-first International Conference on Machine Learning, 2024.

Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 1932.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? In International Conference on Learning Representations, 2019.

11

Proceedings Track
Appendix A. Weisfeiler-Leman test

The Weisfeiler-Leman (WL) test is a graph isomorphism test widely applied in the field of
graph theory and graph-based learning. In particular, the k-dimensional Weisfeiler-Leman
algorithm (k-WL) operates by iteratively assigning colors to k-tuples of nodes in a graph.
Formally, let G = (V,E) be a graph, where V is the set of nodes and E the set of edges.

For a fixed dimension k, the k-WL algorithm starts by assigning an initial colouring χ
(0)
k to

every k-tuple u = (u1, . . . , uk) of nodes. The coloring is defined based on the isomorphism
type of the subgraph induced by the nodes in the tuple u. At each iteration r, the algorithm
refines the coloring as follows:

χ
(r+1)
k (u) =

(
χ
(r)
k (u),

{
χ
(r)
k (u[w/i]) | w ∈ V, i ∈ [k]

})
,

where u[w/i] denotes the tuple obtained by replacing the i-th node in u with node w.
The refinement process terminates when further iterations no longer produce a different
coloring.

Appendix B. Universal approximation over permutation-invariant
functions

The link between the universal approximation capabilities of GNNs with respect to graphs
and the testing of graph isomorphism was demonstrated by Chen et al. (2019b). In their
work, it was shown that universal approximation of permutation-invariant functions on
graphs are equivalent to graph isomorphism testing. This equivalence between universal
approximation and graph isomorphism testing stated as Theorem 11 serves as the foundation
for evaluating the expressiveness of different GNN architectures based on the expressivity
of k-WL tests.

Theorem 11 (Chen et al. (2019b)) A function class is capable of universally approxi-
mating permutation-invariant functions on graphs with finite node attributes if and only if
it can discriminate non-isomorphic graphs.

Appendix C. Beineke’s forbidden induced subgraphs

Beineke (1970) introduced the following 9 graphs, shown in Figure 6 to be the forbidden
induced subgraphs that characterize line graphs. The theorem states that a graph H is a
line graph of a root graph G root if and only if H does not contain any of the nine Beineke’s
forbidden graphs as an induced subgraph.

Figure 6: Nine Beineke’s forbidden induced subgraphs.

12

Proceedings Track
Theoretical Insights into Line Graph Transformation on Graph Learning

Appendix D. Details on regular graphs

D.1. Regular graphs

A regular graph is a graph where each node has the same number of adjacent nodes, called
the degree of the graph. In other words, a graph is k-regular if every node has exactly k
neighbors. Examples of regular graphs include cycles and complete graphs.

D.2. Strongly regular graphs

A regular graph of v nodes is defined as strongly regular if there are positive integers k, λ,
and µ satisfying

1. every node is connected to k other nodes,

2. each pair of connected nodes shares λ mutual neighbours, and

3. every pair of nodes that are not directly connected shares µ mutual neighbours.

Figure 7: Examples of strongly regular graphs, displayed from left to right: the cycle graph
C5 (srg(5, 2, 0, 1)), the complete graph K5 (srg(5, 4, 3, 0)), the Petersen graph
(srg(10, 3, 0, 1))

Such a graph can also be denoted as srg(v, k, λ, µ) and the four parameters must obey the
following relation (Biggs, 1993):

(v − k − 1)µ = k(k − λ− 1). (1)

D.3. Regular graphs and WL test

The WL distinguishability on regular graphs has been studied. This sections presents the
relationship between the regular/strongly regular graphs and WL tests.

Theorem 12 Regular graphs with the same of number nodes and same degree are not 1-WL
distinguishable.

Proof Initially, in the 1-WL algorithm, all nodes are assigned the same color. In each
iteration, nodes update their color based on the same multiset of neighboring colors, as all
nodes receive identical information. Consequently, the coloring remains uniform across all
nodes in every iteration, preventing the algorithm from distinguishing between them.

Theorem 13 (Bouritsas et al. (2023)) Strongly regular graphs with the same four param-
eters are not 3-WL distinguishable.

13

Proceedings Track
D.4. Generalization of Regular Graphs

Cameron (1980) introduces the extension of regular graphs, namely k-transitive graphs or
k-isoregular graphs, as graphs where the number of common neighbors for any k-tuple
of a given isomorphism type remains constant. In this context, we write simple regular
graphs as 1-isoregular graphs, and strongly regular graphs are 2-isoregular. It is known
that k-isoregular graphs are indistinguishable by the (k+1)-dimensional Weisfeiler–Leman
test (Douglas, 2011).

Appendix E. Proofs

Lemma 1 Let u, v ∈ V (G) such that they are adjacent by an edge e ∈ E(G). The edge e’s
corresponding node representation we ∈ V (L(G)) follows dL(G)(we) = dG(u) + dG(v)− 2.

Proof In the root graph G, u is adjacent to dG(u) edges, and v is adjacent to dG(v) edges.
Among all the edges that u, v are adjacent to, e is connected to all other edges by u or v
except for e itself. Thus, in the line graph L(G), we is adjacent to dG(v)− 1 + dG(u)− 1 =
dG(v) + dG(u)− 2 other nodes.

Corollary 3 Let G be a simple and undirected graph, L(G) does not contain K1,3 as an
induced subgraph.

Proof This corollary is a direct result of Beineke’s forbidden subgraphs. K1,3 is one of the
Beineke’s forbidden subgraph, so line graphs does not contain K1,3 as an induced subgraph.

Theorem 4 Let G be a set of connected non-claw graphs and C be a collection of functions,
such that ∀G1, G2 ∈ G such that G1 ≇ G2, ∃h ∈ C, h(L(G1)) ̸= h(L(G2)). Then, C can
universally approximate any permutation-invariant function f : G → R.

Proof Let f ′ : L(G) → R be any permutation-invariant functions on L(G). By Theorem 11,
since ∃h ∈ C can distinguish non-isomorphic graphs in L(G), C can universally approximate
any permutation-invariant functions f ′ : L(G) → R. Since G1, G2 are connected and not a
claw graph, by Theorem 2, there exists a function g such that g ◦ f ′ = f where g injectively
maps f ′ to f .

Corollary 5 Let G be a set of connected non-claw graphs and C be a collection of functions.
If ∀G1, G2 ∈ G, G1 ≇ G2, and ∀n ∈ N, ∃h ∈ C such that h(L(n)(G1)) ̸= h(L(n)(G2)) Then,
C can universally approximate any permutation-invariant function f : G → R.

Proof If n = 1, the proof is the same as Theorem 4.
For n ≥ 2, we can safely assume L(n−1)(G) is not isomorphic to K1,3 by Corollary 3. By

Theorem 11, since ∃h ∈ C can distinguish non-isomorphic graphs in L(G), C can universally
approximate any permutation-invariant functions fn : L(n)(G) → R. Since L(n−1)(G) is not

14

Proceedings Track
Theoretical Insights into Line Graph Transformation on Graph Learning

a claw graph, by Theorem 2, there exists a function gn such that gn ◦ fn = fn−1 where
gn injectively maps fn to fn−1. By inductively applying Theorem 2 we can reach the base
case.

Theorem 6 Line graphs do not include CFI graphs constructed with Xk for k ≥ 3.

Proof It can be seen that for k > 2, by construction there exists no direct edge connecting
ai and bi, where a single mS connects to k nodes from Ak ∪ Bk. Thus, there exists an
induced subgraph that is isomorphic to K1,3. By Corollary 3, CFI graphs with Xk, k ≥ 3
are excluded by line graph transformation.

Lemma 14 If a graph G = srg(v, k, λ, µ) is connected and strongly regular, it holds that
k ≤ 2 if and only if G is one of K2, C3, C4, C5 and the graph with one node.

Proof We show the proof by enumerating all the cases when k ≤ 2. When k = 0, we have
only the graph with only one node. When k = 1, for the graph to be connected it can only
be the case when two nodes are connected by a single edge. When k = 2, regular graphs
are cycles. Cycles with lengths 6 or more are not strongly regular because nodes that are
a distance of 2 from each other share exactly one common neighbour, whereas nodes that
are 3 or more distance apart do not share any common neighbours. This inconsistency in
the number of common neighbours violates the definition of a strongly regular graph, where
the number of common neighbours between nodes must be constant for both adjacent and
non-adjacent pairs.

Theorem 7 Let G be a connected, strongly regular graph which is not the complete graph
Kn for n ≥ 2, and G contains C3 as a subgraph. Then L(G) is not strongly regular.

Proof Suppose G is a strongly regular graph denoted as srg(v, k, λ, µ) (defined in Appendix
D.2). Given that G is not a complete graph, it follows that µ ̸= 0, where µ denotes the
number of mutual neighbours between every pair of non-adjacent nodes. Also, since G is
triangle-containing and not K3, by Lemma 14, we have k ≥ 3. Suppose, for a contradiction,
that L(G) is strongly regular, which can be denoted as srg(v∗, k∗, λ∗, µ∗).

By the properties of line graphs, the nodes of L(G) correspond to the edges of G, hence
v∗ = |E(G)|. Based on the property of regular graphs, we have |E(G)| = vk

2 = v∗. In L(G),
each edge is adjacent to every other edge that shares a node in G, thus (also by Equation
1) we have k∗ = 2(k − 1).

Given that G contains triangles, let two edges e0 and e1 in E(G) be part of a triangle
shown in Figure 8. By the definition of line graphs, there exists a node u ∈ V (G) that
is adjacent to e0 and e1. Thus, the third side e2 of the triangle as well as all other k − 2
edges connected with u are common neighbours in L(G). Therefore, for L(G) to be strongly
regular, λ∗ must be k − 1. Given the k ≥ 3, there exists an edge e3 that does not share a
node with e2 on G, which corresponds to non-neighbouring nodes in L(G). This yields µ∗

values ranging from 2 to 4 based on all possible configurations shown in Figure 8.

15

Proceedings Track

u

e1

e0

e3 e2 u

e1

e0

e3 e2 u

e1

e0

e3 e2

Figure 8: Three different cases in the triangle region in G where the dashed line represents
no edge exists. In the first case, there is no edge connecting the other end node of
e3 to either end node of e2. Only e0 and e1 are the common neighbours in L(G)
for the pair e2 and e3.. The second and third cases represent if one or both edges
exist, where the edges would also be neighbouring nodes in L(G).

We use the following property in Equation 1 where v∗ = vk
2 , k∗ = 2(k − 1), λ∗ = k − 1,

and µ∗ = 2, 3, 4. Evaluating this equation under µ∗ = 2 or µ∗ = 3 leads to the only positive
integer solutions v = 2, k = 1 and v = 3, k = 2. Both solutions are invalid as we have k ≥ 3.
For µ∗ = 4, the solutions are v = k + 1, which contradicts the assumption that G is not
complete. This shows that L(G) cannot be strongly regular.

Theorem 8 Let G be a connected graph that is not the cycle graphs C3, C4, or C5. Then,
applying at most two line graph transformations to G yields a graph that is not strongly
regular.

Proof The proof is structured based on the characteristics of the graph G and proceeds
in five cases:

Case 1: If G is not strongly regular, then by definition, no line graph transformation
is required.

Case 2: If G is the graph with one node or K2, we can easily see that L(G) and L(L(G))
respectively are not strongly regular.

Case 3: If G is a strongly regular graph that contains triangles and is not complete,
we can apply Theorem 7 to show that L(G) is not strongly regular.

Case 4: If a strongly regular graph G is triangle-free with k ≥ 3, each neighbourhood
of nodes in G is star-like. Thus, for any two edges e and e′ in G that are connected through
a node u, they share exactly k − 2 common neighbours (the other edges connected to u).
Assuming L(G) is strongly regular, with parameters v∗, k∗, λ∗, µ∗, it follows that λ∗ = k−2,
which is nonzero. This implies L(G) is triangle-containing. Given that only star graphs
have line graphs that are complete, L(G) cannot be a complete graph. By Theorem 7, we
need only one more line graph transformation to have L(L(G)) not strongly regular.

Case 5: By Lemma 14, we only have complete graphs with v ≥ 4 left. If G is a complete
graph with v ≥ 4, it follows that the line graph of G, L(G), can be represented as a strongly
regular graph with parameters srg

((
v
2

)
, 2(v − 2), v − 2, 4

)
(Harary, 1969). In this scenario,

16

Proceedings Track
Theoretical Insights into Line Graph Transformation on Graph Learning

L(G) contains a triangle implied by the nonzero parameter v− 2. Applying Theorem 7, we
can show that the line graph of L(G), L(L(G)), is not strongly regular.

Corollary 9 Let G be a set of graphs such that ∀G ∈ G, for a fixed n, G does not have
a component isomorphic to K1,3 or Pk, k ≤ n and Let C be a collection of functions. If
∀G1, G2 ∈ G such that G1 ≇ G2, ∃h ∈ C such that h(L(n)(G1)) ̸= h(L(n)(G2)). Then, C can
universally approximate any permutation-invariant function f : G → R.

Proof We need to demonstrate that Corollary 5 applies to disconnected graphs as well.
It suffices to show that Theorem 2 holds for G. For disconnected graphs, the line graph
transformation is applied component-wise. Since G contains no component isomorphic to
K1,3, each component of G is uniquely mapped to a line graph component corresponding
to the root component by Theorem 2. Also, under the assumption of no path with a length
shorter than n is included in G as a connected component, every component would not
vanish after repeated line graphs transformation (conversely, we see paths of length k or
shorter would be turned to a graph with no nodes after k line graph transformations).
Consequently, the line graph of the entire graph G is also unique to its root graph. The
rest of the proof proceeds as in Corollary 5.

Corollary 10 Let G be a strongly regular graph that is not the cycle graphs C3, C4, C5, or
a disjoint group of C3. Then, applying at most two line graph transformations to G yields
a graph that is not strongly regular.

Proof For a graph G to be disconnected and strongly regular, it could only be the case
where the graph is a set of disjoint Kn (Biggs, 1993). When n ≤ 2, we can see that at
most two line graphs would reduce G to an empty graph. When n ≥ 3, each component
would be reduced to srg

((
v
2

)
, 2(v − 2), v − 2, 4

)
. The overall graphs would not be strongly

regular because one node in a component does not share any common neighbors with nodes
in other components. When G is a set of C3 (i.e. K3), we have L(n)(G) ∼= G.

Appendix F. Experimental details

F.1. Code availability

We open-sources our code to replicate the experiments on GitHub. The details about the
experimental setup and training parameters can be found in the GitHub repository.

F.2. Dataset

Our experiments were conducted on the BREC dataset (Wang and Zhang, 2024) with the
sections Regular Graphs, and CFI Graphs. A summary of each category is provided
below.

We selected 120 pairs of regular graphs, which can be further divided into simple regular
graphs, strongly regular graphs, 4-vertex condition graphs:

17

https://anonymous.4open.science/r/graphs-and-lines-8FA8

Proceedings Track
• Simple regular graphs: We selected 50 pairs of simple regular graphs, each with 6
to 10 nodes, by randomly choosing pairs with identical parameters.

• Strongly regular graphs: This subset includes 50 pairs of strongly regular graphs
with node counts ranging from 16 to 35. The graphs were sourced from databases
such as SR Graphs and BDM Graphs.

• 4-vertex condition graphs: A set of 20 pairs of 4-vertex condition graphs was se-
lected from the 4-vertex Condition Graph Database with parameters srg(63, 30, 13, 15).

Note that 4-vertex condition graphs are a specific subtype of strongly regular graphs, and
as such, we classify them within the same category as other strongly regular graphs in our
results.

We selected the 100 pairs of graphs in the BREC dataset. The backbone graphs ranged
from 3 to 7 nodes. The dataset contains:

• 60 pairs of 1-WL-indistinguishable CFI graphs,

• 20 pairs of 3-WL-indistinguishable CFI graphs, and

• 20 pairs of 4-WL-indistinguishable CFI graphs.

F.3. Provably Powerful Neural Networks

To address the limitations of 1-WL expressiveness, recent research has focused on construct-
ing GNNs that match or surpass the expressive power of higher-order WL tests. In this
section, we discuss the provably powerful neural network (PPGN) proposed by Maron et al.
(2019a) with 3-WL expressiveness can distinguish between non-isomorphic graphs that are
indistinguishable by 1-WL.

The construction of a 3-WL expressive GNN involves three main components:

1. Input representation: The graph G = (V,E, d), where V is the set of nodes, E is
the set of edges, and d represents node features (or colors), is represented as a tensor
B ∈ Rn2×(e+1), where n is the number of nodes, e is the number of features, and the
last channel of B encodes the graph adjacency matrix.

2. Network layers: The key operations of the GNN are organized into blocks, each
consisting of:

• A Multilayer Perceptron (MLP) applied independently to each feature of the
input tensor. This is denoted as mi where i ∈ {1, 2, 3}. Each MLP transforms
the input features.

• A matrix multiplication between the transformed feature tensors. Let X ∈
Rn×n×a be the input tensor to the block, where a is the feature dimension.
The matrix multiplication is performed between the transformed tensors:

W:,:,j = m1(X):,:,j ·m2(X):,:,j ∀j ∈ {1, . . . , b}.

The output tensor of the block consists of the concatenated MLP transformation
m3(X) and the result of matrix multiplication W .

18

http://www.maths.gla.ac.uk/
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://math.ihringer.org/srgs.php

Proceedings Track
Theoretical Insights into Line Graph Transformation on Graph Learning

3. Invariant and equivariant layers: The model employs invariant and equivariant
layers to ensure that its operations respect the permutation symmetry of the graph.
The matrix multiplication operation is equivariant to permutations, ensuring that the
model’s output is invariant to node reordering. This structure ensures that the GNN
can distinguish between non-isomorphic graphs that 1-WL cannot.

The GNN described above is provably as expressive as the 3-WL test. Formally, the
following result holds:

• For any two graphs G and G′ that can be distinguished by the 3-WL graph isomor-
phism test, there exists a 3-WL expressive PPGN F such that F (G) ̸= F (G′).

• Conversely, if G and G′ are isomorphic, then F (G) = F (G′) for any 3-WL expressive
PPGN F .

F.4. Complexity analysis

In this section, we present the space and time complexity analysis associated with applying
the line graph transformation in the context of k-WL tests. The k-WL test has a space
complexity of O(nk) and a time complexity of O(nk+1) (Feng et al., 2023), where n is
the number of nodes in a graph G, i.e., n = |V (G)|. After performing the line graph
transformation, the number of nodes in the transformed graph corresponds to the number
of edges in the original graph. Consequently, for structures like paths and cycles, the space
complexity remains O(nk) and the time complexity O(nk+1).

For a d-regular graph, the number of nodes in the line graph is dn
2 . Therefore, the space

complexity becomes O(dknk), and the time complexity is O(dk+1nk+1). In the worst-case

scenario, when the graph is dense—such as in a complete graph with n(n−1)
2 edges—the

space complexity increases to O(n2k) and the time complexity to O(n2k+2).
The empirical comparison of time consumption on regular graphs is presented in Figure

9. A consistent increase in time consumption by orders of magnitude is observed. We present
the subset of 4-vertex condition strongly regular graphs separately, as their significantly
larger size distinguishes them from other strongly regular graphs in the BREC dataset.
In the PPGN comparison, the line graph generally requires more time compared to the
root graph. However, the results vary depending on the specific hyperparameter and epoch
settings of the PGNN.

F.5. Experimental setup and parameters

For training the PPGN, we employed the Adam optimizer with a learning rate of 0.0001
and a weight decay of 0.0001. The loss function used was CosineEmbeddingLoss. The
model architecture consisted of 5 layers with an inner embedding dimension of 32. For the
root graph, a batch size of 32 was used, whereas for the line graph, a smaller batch size of
4 was applied due to memory limitations.

F.6. Compute resources

For 3-WL and 4-WL tests, we used 4-core CPU clusters to run the analysis. For the PPGN
experiment, we used an additional 40 GB A100 GPU to accelerate the training.

19

Proceedings Track

10⁰

10¹

10²

10³

10⁴

10⁵

10⁶
Ti

m
e

(s
)

Simple Regular Strongly Regular 4-vertex Condition

3-W
L (

G)

3-W
L (

L(G
))

PPGN (G
)

PPGN (L
(G

))

3-W
L (

G)

3-W
L (

L(G
))

PPGN (G
)

PPGN (L
(G

))

3-W
L (

G)

3-W
L (

L(G
))

PPGN (G
)

PPGN (L
(G

))

Figure 9: Time consumption on simple regular, strongly regular, and 4-vertex condition
strongly regular subsets.

20

	Introduction
	Related works
	Line graphs and their properties
	Theoretical Framework
	Equivalence
	Implication on challenging graphs
	Cai-Fürer-Immerman Graphs
	Strongly Regular Graphs
	Regular graphs

	Extension on disconnected graphs

	Empirical Evidence
	Experimental Setup
	Results

	Conclusions
	Weisfeiler-Leman test
	Universal approximation over permutation-invariant functions
	Beineke's forbidden induced subgraphs
	Details on regular graphs
	 Regular graphs
	Strongly regular graphs
	Regular graphs and WL test
	Generalization of Regular Graphs

	Proofs
	Experimental details
	Code availability
	Dataset
	Provably Powerful Neural Networks
	Complexity analysis
	Experimental setup and parameters
	Compute resources

