
The Bayesian sampling in a canonical recurrent circuit
with a diversity of inhibitory interneurons

Eryn Sale1,2
eryn.sale@utsouthwestern.edu

Wen-Hao Zhang1,2∗

wenhao.zhang@utsouthwestern.edu

1Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center
2O’Donnell Brain Institute, UT Southwestern Medical Center

Abstract

Accumulating evidence suggests stochastic cortical circuits can perform sampling-
based Bayesian inference to compute the latent stimulus posterior. Canonical
cortical circuits consist of excitatory (E) neurons and types of inhibitory (I) in-
terneurons. Nevertheless, nearly no sampling neural circuit models consider the
diversity of interneurons, and thus how interneurons contribute to sampling re-
mains poorly understood. To provide theoretical insight, we build a nonlinear
canonical circuit model consisting of recurrently connected E neurons and two
types of I neurons including Parvalbumin (PV) and Somatostatin (SOM) neurons.
The E neurons are modeled as a canonical ring (attractor) model, receiving global
inhibition from PV neurons, and locally tuning-dependent inhibition from SOM
neurons. We theoretically analyze the nonlinear circuit dynamics and analytically
identify the Bayesian sampling algorithm performed by the circuit dynamics. We
found a reduced circuit with only E and PV neurons performs Langevin sampling,
and the inclusion of SOM neurons with tuning-dependent inhibition speeds up
the sampling via upgrading the Langevin into Hamiltonian sampling. Moreover,
the Hamiltonian framework requires SOM neurons to receive no direct feedfor-
ward connections, consistent with neuroanatomy. Our work provides overarching
connections between nonlinear circuits with various types of interneurons and
sampling algorithms, deepening our understanding of circuit implementation of
Bayesian inference.

1 Introduction

The brain lives in a world of uncertainty and ambiguity and thus has to infer unobserved world states.
The Bayesian inference is a normative framework to implement inference, and extensive studies
have suggested that the brain’s perception is consistent with the Bayesian inference, forming the
concept of Bayesian brain [1], including, e.g., visual processing [2], multisensory integration [3],
decision-making [4], sensorimotor learning [5], etc. Studying how neural circuits in the brain realize
Bayesian inference has been an active topic in neuroscience [6–8]. Many neural circuit models of
Bayesian inference have been developed with distinct representational and algorithmic mechanisms,
e.g., parametric-based representation [4, 8–11] and sampling-based representation [12–19].

Despite a large body of neural circuit models of Bayesian inference, there are still gaps between
our current Bayesian circuit models and canonical recurrent circuits in the cortex. One obvious
distinction is previous Bayesian circuit models haven’t considered the rich diversity of neuronal
types in the cortex, especially inhibitory interneurons. The canonical cortical microcircuit contains
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three major types of inhibitory (I) interneurons [20–24], including Parvalbumin (PV), Somatostatin
(SOM), and Vasoactive Intestinal Peptide (VIP) neurons (Fig. 1A). These interneurons have different
electrical properties, stimulus-tuning profiles, distinct connectivity, and synaptic modulations with
other neurons. For example, PV neurons are weakly tuned to stimulus [20], and multiplicatively
modulate E neurons in a way called divisive normalization by sending axons to E neurons’ cell body
[21, 22, 25, 26]. In contrast, SOM neurons are tuned to the stimulus, and module E neurons in an
additive way via sending axons to the distal dendrites of E neurons [22, 25, 26]. Another gap comes
from the nonlinearity of cortical circuit dynamics, which impedes the analytical understanding of
circuits’ Bayesian inference algorithms. Most earlier studies relied on numerical methods to analyze
the algorithm in nonlinear circuits (e.g., [15–17, 19]), or considered linear neural dynamics to obtain
analytical solutions (e.g., [12, 18, 27, 28]). We still lack a comprehensive understanding about how
the nonlinear recurrent circuit dynamics with diversity of interneurons implement Bayesian inference.

To gain insight into Bayesian computation in a nonlinear recurrent circuit with types of interneurons,
we build a canonical recurrent circuit model consisting of excitatory (E) and two types of interneurons,
including PV and SOM neurons (Fig. 1B), and investigate how the model implements sampling-based
Bayesian inference. The E neurons are modeled as a rate-based ring (attractor) model that emerges the
tunings over a 1D stimulus such as orientation. The E neurons receive internal Poisson-like variability
mimicking stochastic spike generation, which provides a variability source to drive sampling [18].
For simplicity, the PV neurons in the model are not tuned to the stimulus as a limiting case of their
weak tuning found in experiments [20], and provides global inhibition to E neurons via divisive
normalization to ensure stability [21, 25]. In contrast, the SOM neurons have stimulus tunings and
provide locally tuned inhibitory feedback to E neurons in an additive way [20, 29]. The circuit model
with the above connectivity successfully reproduces multiplicative and additive modulations on E
neurons’ tunings from PV and SOM neurons respectively (Fig. 1G-H) [26].

We perform theoretical analysis on the nonlinear recurrent circuit dynamics, and analytically identify
the sampling algorithm adopted in the circuit. We find the reduced circuit with only E and PV neurons
can implement Langevin sampling in the stimulus feature manifold. The tuning-dependent inhibitory
feedback from SOM speeds up the sampling by upgrading the Langevin sampling into Hamiltonian
sampling. And the two types of interneurons have different effects on sampling speed. Moreover,
we find that Hamiltonian sampling requires SOM neurons not to receive feedforward sensory inputs,
consistent with neuroanatomy with few feedforward synapses targeting SOM neurons [22, 24]. The
nonlinear circuit model with fixed weights can flexibly sample posteriors with different uncertainties,
if located in the linear input-output regime. At last, the circuits can be extended to sample multivariate
stimulus posteriors and bimodal posteriors.

2 The recurrent neural circuit with various types of interneurons

The cerebral cortex is a repetition of the canonical neural circuit composed of multiple types of neurons
(Fig. 1A), including excitatory (E) neurons and three major types of inhibitory (I) interneurons (PV,
SOM, and VIP; classified via biomarkers [30]). To study how sampling-based Bayesian inference
is implemented by the canonical neural circuit composed of various types of neurons, we build a
recurrent neural circuit model consisting of E neurons and two types of I interneurons of PV and
SOM neurons (Fig. 1B). The model doesn’t include VIP neurons, which will form our future research
(see Discussion). The basic wiring diagram of the proposed circuit model is consistent with the
structure of the canonical cortical circuit (Fig. 1A). In the model, the E neurons are selective for
a 1D periodic stimulus feature z ∈ (−π, π], e.g., the orientation moving direction. Denote θj as
the preferred stimulus feature of the j-th E neuron, and the preferred stimulus features of all NE E
neurons, {θj}NE

j=1 uniformly cover the whole range of feature space z (Fig. 1C and F). This setting is
the same as the canonical ring network model that has been widely used in modeling cortical circuits
(e.g.,[17, 31–36]). Mathematically, in the continuum limit (θj → θ) corresponding to an infinite
number of neurons, the dynamics of the E neurons is [34, 37],

τ
∂uE(θ, t)

∂t
= −uE(θ, t) + ρ

∑
X=E,F,S

(WEX ∗ rX)(θ, t) +
√

τFE [uE(θ, t)]+ξ(θ, t), (1)

where uE(θ, t) and rE(θ, t) are the synaptic input and firing rate respectively of the E neuron
preferring z = θ. X denotes neuronal types with E, F and S representing E neurons, sensory
feedforward inputs, and the SOM neurons respectively. τ is the time constant of synaptic input,
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Figure 1: The recurrent circuit model. (A) The canonical cortical circuit consists of E neurons
and three types of inhibitory interneurons. (B-C) The recurrent circuit model with two types of
interneurons (B) and detailed recurrent circuit structure (C). (D) The Gaussian recurrent connection
kernels in the circuit model. (E) An example of population responses of E (top) and SOM (bottom)
neurons over time. (F) The tuning curves of E neurons in the model. (G-H) The tuning curve of an
example E neuron in control state compared with enhancing PV neurons (G) and SOM neurons (H).
The model result is qualitatively similar to the experimental data from [26].

and ρ = NE/2π is the neuronal density covering the space of stimulus feature z. E neurons
receive an internal Poisson variability mimicking stochastic spike generation (Eq. 1, last term),
and FE the Fano factor of the injected variability whose value will be adjusted to make the Fano
factor of E neurons’ activities at the order of 1. ξ(θ, t) is standard Gaussian white noise, i.e.,
⟨ξ(θ, t)ξ(θ′, t′)⟩ = δ(θ − θ′)δ(t − t′) with δ(t − t′) being the Dirac delta function. The internal
Poisson variability provides the variability for the circuit to draw random samples from the posterior
[18], which may arise from the E and I balance in the cortex as a complex network effect [38–40].

Recurrent connection kernels. WY X(θ) denotes the recurrent connection kernel from neurons
with type X to those with type Y , which are modeled as Gaussian functions in the model (Fig. 1D),

WY X(θ) = wY X

(√
2πaXY

)−1
exp(−θ2/2a2XY ), (2)

where wY X controls the peak strength of the recurrent weight, and a the connection width across the
stimulus feature space. The kernels WY X(θ) connecting different neuronal types can have different
peak weights wY X (wY X > 0 or < 0 regards to E or I synapses respectively). Moreover, different
WY X(θ) may have different connection widths aXY , although most of them have the same width
aXY = a unless noted otherwise (see Supplementary Information (SI.) Sec. 6.1). In Eq. (1), the
symbol ∗ denotes the spatial convolution, i.e., (W ∗ r)(θ) =

∫
W(θ − θ′)r(θ′)dθ′, which implies

the translation-invariance of the connection weight between neurons in the stimulus feature space.

Sensory feedforward inputs. The recurrent circuit model receives sensory feedforward input rF (θ, t)
(Eq. 1) randomly evoked from a stimulus feature z in the world. Given a stimulus feature z, we
assume the feedforward inputs rF are conditionally independent Poisson spikes with Gaussian tuning
(Fig. 2A-B), which has been widely used before (e.g., probabilistic population code [4, 8, 9]).

rF (θ|z) ∼ Poisson[λF (θ|z)], λF (θ|z) = RF exp[−(θ − z)2/2a2], (3)

where λF (θ|z) is the mean firing rate. In simulating our rate-based model, the rF is approximated as
a continuous Gaussian random variable with multiplicative noise to mimic the Poisson statistics.

2.1 Inhibitory interneurons in the circuit model

PV neurons. The stimulus orientation weakly modulates the PV neurons [20, 26, 41], hence,
for simplicity, we consider PV neurons in the model are not tuned for stimulus features and only
provide global unstructured inhibition to E neurons to keep stability. Moreover, it was suggested
PV neurons provide divisive normalization (DN) to modulate E neurons’ responses via shunting
inhibition [21, 25, 42]. Hence the proposed circuit model absorbs PV neurons’ effects in the divisive
normalization of E neurons which has been widely used in circuit models [21, 25, 43, 44],

rE(θ, t) =
[uE(θ, t)]

2
+

1 + ρwEP

∫
[uE(θ′, t)]2+dθ

′ , (4)
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where the DN acts as an activation function transferring the instantaneous synaptic input uE(θ, t)
of E neurons into their firing rate rE(θ, t). [x]+ = max(x, 0) denotes negative rectification. The
integral

∫
[uE(θ, t)]

2
+dθ

′ ≡ rPV , reflects PV neurons globally summing all E neurons’ activities.
wEP is the global inhibition strength characterizing the inhibitory weight from PV to E neurons.

SOM neurons. It is suggested that SOM neurons linearly modulate E neurons’ responses, in contrast
to multiplicative modulation from PV to E neurons [26]. Therefore the model considers the E neurons
receive additive synaptic inputs from SOM neurons ((WES ∗ rS)(θ, t), Eq. 1). Furthermore, SOM
neurons are tuned to a stimulus feature with a strength comparable to E neurons [20], unlike the weak
tunings of PV neurons. Thus, the dynamics of SOM neurons are governed by,

τ
∂uS(x, t)

∂t
= −uS(x, t) + ρ

∑
X=E,F

(WSX ∗ rX)(θ, t); rS(θ, t) = gS · [uS(x, t)]+, (5)

where the gS (scalar) controls the “gain” of SOM neurons and is set as a fixed value across the
study. Two features about SOM neurons’ connectivity are worth noting (Eq. 5). First, the model
doesn’t include recurrent inhibitory connections between SOM neurons, due to few mutual inhibitions
between SOM neurons [22, 24]. This simplification will only change the effective gain gs of SOM
neurons without affecting our conclusions of the circuit algorithm. Second, the proposed circuit
model allows the existence of the feedforward connections to SOM neurons (WSF in Eq. 5), even
if they are rare in reality [22, 24]. The reason for allowing this rare connection is we want to test
whether the Bayesian sampling theory has the power to constrain it.

Overall, the proposed circuit model is consistent with most canonical recurrent circuit models in the
field (e.g.,[31–36]). The simplifications considered above reserve the main characteristics of neuronal
connectivity and response properties observed in experiments, especially interactions between E
neurons and interneurons. For example, it was found enhancing PV neurons will multiplicatively
modulate E neurons’ tuning curves (Fig. 1G, right), whereas SOM neurons modulate E neurons’
tuning additively (Fig. 1H, right) [26]. Both effects are successfully reproduced in the proposed
circuit model (Fig. 1G-H, left; see details in SI. Sec. 6.5).

3 From recurrent circuit dynamics to Bayesian inference

The proposed recurrent circuit dynamics (Eqs. 1 and 5) is supposed to implement Bayesian inference
by computing the stimulus posterior based on a received feedforward input,

p(z|rF ) ∝ p(rF |z)p(z). (6)
It regards the stage from external stimulus z to the feedforward input rF as the probabilistic generative
process (Fig. 2A). Implementing Bayesian inference requires the recurrent circuit to store the genera-
tive model. Rather than defining a generative model and deriving its neural circuit implementation as
in many previous studies, here we ask the question the other way around: if the proposed recurrent
circuit model based on neurophysiology could do Bayesian inference (Eq. 1A), what generative
model is stored in the circuit and what stimulus posteriors are computed by the circuit? Furthermore,
what is the Bayesian inference algorithm adopted by the circuit dynamics?

Stimulus likelihood. The stochastic feedforward input from the stimulus feature z (Eq. 3) naturally
specifies the stimulus likelihood that can be calculated as a Gaussian likelihood (see SI. Sec. 2.1),

p(rF |z) =
∏

θ Poisson[λF (θ|z)] ∝ N
(
z|µz,Λ

−1
)
, (7)

where the Gaussian stimulus likelihood function comes from the the Gaussian profile of feedforward
input tuning λF (θ|z) (Eq. 3) [9]. The mean µz and the precision Λ of the stimulus likelihood can be
read out from rF via a linear decoder called population vector [45, 46],

µz =
∑

j rF (θj)θj/
∑

j rF (θj), Λ = a−2
∑

j rF (θj). (8)
Geometrically, µz is regarded as the location of rF in the stimulus feature space, and Λ is proportional
to the input spike count (Fig. 2B-C). In this way, a single snapshot of rF parametrically conveys the
whole stimulus likelihood function p(rF |z) [9].

Subjective prior. We suppose the recurrent circuit utilizes its stored subjective prior to compute the
subjective stimulus posteriors, with a mild assumption that the subjective prior in the circuit matches
the objective prior in the outside world. Nevertheless, the subjective circuit prior remains unknown at
this point. Next, we theoretically analyze the circuit dynamics to identify the stored subjective prior
in the circuit and find out the circuit algorithm of Bayesian sampling.

4



S
a

m
p

le
 p

re
c
is

io
n

0

0.5

0 14
Ffwd. input intensity R

F

C
ro

s
s
 c

o
rr

.

(n
o

rm
a

liz
e

d
)

1

0

0 10

Exc

r
F

SOM

PV

W
EE

W
EF

zStimulus 

feature

Feedfwd.

input

S
a

m
p

lin
g

G
e

n
e

ra
ti

v
e

 m
o

d
e

l

W
ES

W
SF

E neuron response
A B

C

D

E

F

G

S
ti
m

u
lu

s
 s

a
m

p
le

 z
E

6

0

50

F
ir
in

g
 r

a
te

 (
a

.u
.)

-6

-180

180

0

5 100

0

Linear readout

(population vector)

Time t(/¿)

Time t(/¿)N
e

u
ro

n
 i
n

d
e

x
 µ

F
e

e
d

fw
d

. 
in

p
u

t 
r
F

0

3

6

-180 180
Neuron index µ 

0

Stimulus s

L
ik

e
lih

o
o

d
 p

(r
F
js

)

-10 100

S
p

k
. c

o
u

n
t 
n

Position ¹
z

Mean ¹
z

Var /  n -1

Likelihood

Net samples

Sampling 

distribution

Net (no SOM)
Theory

Figure 2: (A) A reduced circuit after blocking SOM neurons. (B-C) A schematic of the feedforward
(spiking) input (B) and a linear read out of the stimulus likelihood conveyed by the feedforward
input (C). Geometrically, the position and spike count of feedforward input determine the mean and
variance of likelihood respectively. (D-E) E neurons’ population responses (D) and the location of
instantaneous E population response on the y-axis is regarded as stimulus sample zE generated by the
network (E) and can be read out via a linear decoder called population factor. (F) The cross-correlation
function of stimulus samples generated by the circuit. (G) The circuit with fixed parameters flexibly
samples posteriors with various uncertainties (controlled by feedforward input intensity).

4 The Bayesian sampling in the stochastic circuit dynamics

4.1 Theoretical analysis of the neural dynamics

We theoretically analyze the nonlinear circuit dynamics to investigate how it can implement Bayesian
sampling. We perform perturbative analysis of the nonlinear circuit dynamics, identify the low-
dimensional stimulus feature manifold (subspace) in the high-dimensional population response space,
and eventually study the circuit dynamics on the stimulus feature manifold. Given a feedforward
input rF (Eq. 3), it can be checked that the synaptic input uX(θ) and the firing rate rX(θ) of neurons
X in the equilibrium attractor states are both Gaussian profiles (Fig. 1E-F; see SI. Sec. 3.1) ,

⟨uX(θ)⟩ = UX exp[−(θ − z̄X)2/4a2], ⟨rX(θ)⟩ = RX exp[−(θ − z̄X)2/2a2], (X = E,S) (9)

where ⟨·⟩ denotes the average over different realizations. UX and RX denote the height of the
population synaptic input and firing rate respectively, and can be analytically computed (Eq. S37).
The position of population activity on the stimulus feature space is z̄X = µz is the same as the
location µz of the feedforward inputs (SI. Sec. 3.1). Intuitively, this is because the recurrent circuit
is homogeneous along the stimulus feature space, i.e., all neurons are uniformly distributed on the
stimulus feature space and the recurrent connections are translational invariance.

With the corruption of sensory noises and the internal Poisson variability, the instantaneous neural re-
sponses will deviate from the equilibrium attractor state (Eq. 9). We treat each instantaneous response
as a perturbation from its equilibrium state, i.e., uX(θ, t) = ⟨uX(θ)⟩ + δuX(θ, t), (X = E,S),
and the relaxation dynamics of the perturbation δuX(θ, t) can be derived [47]. Then performing
eigen-analysis of the perturbation dynamics we analytically find out the stimulus feature manifold
(subspace), which is specified by its (unnormalized) eigenvector [35, 47, 48],

ϕ(θ|zX) ∝ (θ − zX) exp[−(θ − zX)2/4a2], (X = E,S). (10)

Previous studies have shown the stimulus feature eigenvector has the largest eigenvalue in the
perturbation dynamics [47]. Therefore, we project the dynamics of E and SOM neurons (Eqs. 1 and
5) onto their respective stimulus feature eigenvectors, where the projection is computing the inner
product between the neuronal responses and the eigenvector, i.e., ⟨ϕ(θ), f(θ)⟩ =

∫
ϕ(θ)f(θ)dθ, with

f(θ) representing the left or right handed side of Eqs. (1 and 5). The projection yields the dynamics
of the E and SOM neurons on the stimulus feature manifold (see details in SI. Sec. 3.3)

τE żE ≈ gES(zS − zE) + gEF (µz − zE) + σE
√
τEξt, (11)

τS żS ≈ gSE(zE − zS) + gSF (µz − zS) (12)

The approximation comes from ignorance of some negligible nonlinear terms. zE and zS denote the
instantaneous positions of neural activities at the stimulus feature manifold at time t (Fig. 2E). µz is
the observed stimulus feature conveyed by the feedforward input (Eq. 8). τX = τUX (X = E,S)
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is the time constant of the circuit dynamics on the stimulus feature manifold, where UX is the peak
value of population synaptic input (Eq. 9). The coefficients gXY in the above equation denote the
coupling strength between neural response positions, where gXY ∝ wXY RY with RY the peak firing
rate of the pre-synaptic neural population (Eq. S48). The σ2

E = 8aFE/(3
√
3π) is the variance of the

internal variability on the stimulus feature manifold coming from the internal Poisson variability (Eq.
1, last term). σE is a constant value irrelevant with feedforward inputs and network responses.

4.2 Langevin sampling in the reduced circuit (E and PV neurons)

Since the circuit contains multiple types of neurons, we first analyze a reduced circuit dynamics on
the stimulus feature manifold without SOM neuron (Fig. 2A, setting gES to zero in Eq. 11) and then
study how the SOM neurons affect the sampling dynamics. Without SOM neurons (only E and PV
neurons), the E neurons’ dynamics on the stimulus feature manifold is,

żE = τ−1
E gEF (µz − zE) + σEτ

−1/2
E ξt, (13)

which is a first-order Langevin dynamics. This motivates the possibility that the E and PV neurons
can implement Langevin sampling in the stimulus feature manifold. If true, the instantaneous position
of E activity, zE (Fig. 2D), can be regarded as a stimulus feature sample generated by the circuit.
In theory, the Langevin sampling of a posterior p(z|rF ) ∝ p(rF |z)p(z) corresponds to performing
stochastic ascent on the log posterior surface [49, 50],

ż = τ−1
z ∇[ln p(rF |z) + ln p(z)] + (τz/2)

−1/2ξt, (∇ ≡ d/dz)

= τ−1
z [Λ(µz − z) +∇ ln p(z)] + (τz/2)

−1/2ξt,
(14)

where τz is the sampling time constant controlling the sampling speed. The 2nd row is obtained by
substituting the Gaussian likelihood (Eq. 7).

Uniform subjective prior. Comparing Eqs. (14) and (13), we can identify a stored uniform stimulus
prior p(z) in the reduced circuit model stores . This is because the gradient of a uniform prior is
∇ ln p(z) = 0, and then the Langevin sampling dynamics (Eq. 14) reduces to a form similar to
the circuit dynamics on the stimulus manifold (Eq. 13). The uniform stimulus prior comes from
homogeneous neurons in the circuit, i.e., neurons are uniformly distributed along the stimulus feature
space, and the translation-invariant connection profile (Eq. 2). It implies that the circuit needs to
break the symmetry of homogeneous neurons to store a non-uniform prior (see Discussion).

Condition for realizing Langevin sampling. Utilizing Langevin dynamics to sample the posterior
requires the drift and diffusion coefficients to share the same time constant τz (Eq. 14). To satisfy this
requirement, the E dynamics on the stimulus feature manifold (Eq. 13) should have gEF /σ

2
E = Λ/2.

With the expressions of gEF and σ2
E (Eq. S48), the feedforward connection weight wEF should be,

wEF =

√
π

a
σ2
E =

(
2√
3

)3

FE . (15)

Intuitively, larger internal variability FE increases the sampling variance, and it requires a larger
feedforward weigh wEF to compensate for sampling variance increase to match with the posterior
variance. To verify our theoretical derivation (Eq. 15), we search whether there is an optimal value
of the feedforward weight wEF allowing the circuit without SOM neurons to sample the posterior
(likelihood). Indeed, we find once the recurrent circuit model is set with that optimal wEF , the
reduced circuit model (consist of E and PV neurons) with all parameters fixed can flexibly sample the
likelihood with various uncertainties (Fig. 2G). A characteristic of Langevin sampling is the cross-
correlation function of samples (Eq. 14) exponentially decays with time which can be calculated as
ρ(∆t) = exp(−gEF∆t/τE) (SI. Eqs. S7). To verify whether the reduced circuit performs sampling
with the Langevin dynamics as suggested by Eq. (13), we estimate the cross-correlation function of
stimulus sample zE generated by the network, which indeed exhibits an exponential form, and our
theoretical calculation ρ(∆t) predicts the actual cross-correlation function well (Fig. 2F).

4.3 SOM neurons accelerate Bayesian sampling in E neurons

The SOM neurons augment the dimensionality of the circuit dynamics on the stimulus feature
manifold from the first order to the second order (Eqs. 11 and 12). In principle, the second-order

6



A

Stimulus sample z
E 

(E neurons)

-180

180

0

K
L

 D
iv

.

(n
o

rm
a

liz
e

d
)

Time t(/¿)

C
ro

s
s
 c

o
rr

.

(n
o

rm
a

liz
e

d
)

1

-0.2
0 10

0 10

1

0

Net (no SOM)

Net (with SOM)

Net (no SOM)
Net (with SOM)

Likelihood

C

F

E

D

z
S
 (
S

O
M

 n
e

u
ro

n
s
)

B

Feedfwd. w
EF  
(/w

C
)

J
S

 D
iv

.

0

0.5

1 2.5

2

0

In
h

. w
E
S
(/
w

C
)

0

0

6-6
-4

4

N
e

u
ro

n
 i
n

d
e

x
 µ

N
e

u
ro

n
 i
n

d
e

x
 µ

S
a

m
p

le
 p

re
c
is

io
n

0

0.5

0 14
Ffwd. input intensity R

F

Sampling 

distribution

Exc

-180

180

0

100
Time t(/¿)

Time t(/¿)
100

SOM

Linear readout
Network 

sampling distribution

2¿0

Elapsed time
Net (no SOM)
Net (with SOM)

Figure 3: The Bayesian sampling in the full circuit model with PV and SOM neurons. (A) The
population responses of E and SOM neurons. (B) The network’s sampling distribution read out
from E and SOM neurons in a way similar with Fig. 2D-E. The E neuron’s position is regarded as
stimulus feature sample zE , while the sample of SOM neurons zS contribute to the auxiliary variable
in Hamiltonian sampling. The distribution of zE (right marginal) will be used to approximate the
posterior. (C-D) The cross-correlation function of stimulus sample zE (C) and the decaying of KL
divergence from posterior and the sampling distribution over time (D). (D) A linear manifold as the
combination of feedforward weight wEF and the inhibitory weight from SOM to E neurons wES

allowing the full circuit to sample the posterior correctly. (E) The circuit with fixed weights (Fig. 3D,
orange dot) can flexibly sample posteriors with various uncertainties.

Hamiltonian sampling dynamics motivates us to explore whether and how the circuit can implement
Hamiltonian-like sampling [50, 51]. The computational benefit from the increased complexity of
Hamiltonian sampling compared with Langevin sampling is accelerating the sampling speed by
generating less correlated samples over time [50]. To investigate such a possibility, we write one
commonly used Hamiltonian sampling dynamics [50, 52, 53],

τz ż = y; τy ẏ = −βy +∇ ln p(z|rF ) + (2βτz)
1/2ηt. (16)

y is the auxiliary variable representing momentum in the Hamiltonian sampling. It can speed up
sampling by increasing sampling step size when close to the posterior center, helping the sampling
trajectories move toward the other side of the posterior (Fig. 3B; details in SI. Sec. 2.1). β is the
friction strength determining how fast the momentum will decay to zero. We next bridge the circuit
dynamics (Eqs. 11 and 12) with the Hamiltonian sampling dynamics (Eq. 16).

Intuitively, the sample from SOM neurons zS (Eq. 12) resemble the auxiliary variable y in the
Hamiltonian dynamics (Eq. 16). Nevertheless, there are several gaps between the two: First, in the
Hamiltonian sampling, the stimulus sample z is purely driven by the auxiliary variable y (Eq. 16),
whereas in the circuit model zE receives both zS and µz (Eq. 11). Second, Hamiltonian sampling
injects variability into the auxiliary dynamics y (Eq. 16), while the variability (from stochastic spike
generation) is injected into the dynamics of zE . To bridge the gap between the circuit model and
sampling dynamics, we assume that the circuit is conducting a mixture of Langevin (Eq. 14) and
Hamiltonian sampling (Eq. 16), and thus we split the E neurons’ sampling dynamics into two parts,

τE żE = [gES(zS − zE) + (1− αL)gEF (µz − zE)] + [αLgEF (µz − zE) + σE
√
τEξt],

= yS + [αLgEF (µz − zE) + σE
√
τEξt],

(17)

where αL ∈ [0, 1] denotes the proportion of feedforward input contributed by Langevin sampling.
We see the yS resembles the auxiliary variable y in Hamiltonian sampling (Eq. 16), which implies
the auxiliary variable in the circuit is a mixture of samples from E neurons zE and SOM neurons zS .
Given the definition of yS , the stochastic dynamics of yS can be derived as a form similar to the one
in the Hamiltonian sampling (Eq. 16; details in SI. Sec. 4.1).

ẏS = −βyyS + βE(µz − zE) + βS(µz − zS) + σyηt. (18)

βy, βE , βS and σy are functions of the coefficients in Eq. (17) (detailed expressions at Eq. S53).
It can be checked that equilibrium distribution of the mixed dynamics is the posterior (details of
Fokker-Planck approach in SI. Sec. 2.5).

Conditions for realizing mixed sampling. To utilize the full circuit model with SOM neurons
(Eqs. 17-18) to implement Bayesian sampling, the coefficients in the circuit model should satisfy the
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relations of coefficients required in the Langevin sampling (Eq. 14) and the Hamiltonian sampling
(Eq. 16). First, setting up the Langevin sampling part in the circuit model (Eq. 17, blue) requires
αLgEF /σ

2
E = Λ/2, which finally leads to,

wEF =
√
πσ2

E/(aαL), (19)

whose value is 1/αL times the feedforward weight in the Bayesian sampling circuit without SOM
neurons (Eq. 15). Second, realizing the Hamiltonian sampling part in the circuit model (Eq. 17,
orange; and Eq. 18) yields three conditions shown below,

(a). τz = τE ; (b). βS = 0; (c).
τy
1

=
β

βy
=

Λ

βE
=

(2βτz)
1/2

σy
. (20)

The conditions in Eqs. (19) and (20) combined enable the full circuit model with SOM neurons to
implement Bayesian sampling. An important insight from Eq. (20b) is that the SOM neurons should
not receive feedforward inputs directly (wSF = 0 in Eq. 5; Fig. 1A, dashed line removed). This
theoretical result is consistent with the anatomy that SOM neurons receive much fewer feedforward
synapses than other types of neurons [23, 24]. In addition, substituting the detailed expression
of coefficients into Eq. (20), we find there is a low-dimensional manifold in the circuit model’s
connection weight space for the circuit to sample the posterior p(z|rF ) (SI. Sec. 4.2),(

U−1
E RS

)
· wES −

[
(1− αL)U

−1
E RF

]
· wEF =

[
G(αL)U

−1
S RE

]
· wSE . (21)

G(αL) is a nonlinear function of αL which specifies the proportion of Langevin sampling in the
circuit dynamics, which remains invariant with feedforward input and network activities (SI. Eq. S65).
UX and RX are the height of the population synaptic input and firing rate of neuronal populations X
(Eq. 9). Eq. (21) implies that the sampling in the full circuit model is robust, without the need to
fine-tune recurrent weights. To verify the theoretical result (Eq. 21), we fix the weight from E to SOM
neurons, wSE , and search whether there is a line manifold in the two-dimensional parameter space of
wES and wEF for the circuit correctly sample the stimulus posterior. Indeed, Fig. 3E numerically
confirms the line manifold of weights under which the sampling distribution matches the posterior.
Moreover, the introduction of SOM interneruons makes the cross-correlation of sample zE decay
faster (Fig. 3C), suggesting speeding up sampling (Fig. 3D).

Flexible sampling posteriors in the linear regime. Moreover, the circuit model with fixed weights
should be able to sample the posteriors with different uncertainties. In the circuit model, the posterior
uncertainty is determined by the feedforward input rate RF (Eq. 3), where a larger input rate leading
to smaller posterior uncertainty (Eq. 8). We find that when the nonlinear circuit model is located at
the linear regime, it can flexibly sample posteriors with different uncertainties. To see this effect, we
can change the feedforward input rate by multiplying a gain factor g, i.e., RF 7→ gRF that change
the likelihood precision Λ 7→ gΛ (Eq. 8 and S5). If the circuit is at the linear regime, the peak value
of synaptic input, UX 7→ gUX , and the population firing rate, RX 7→ gRX , are both multiplied with
the gain factor g being applied to the feedforward input. And then it can be checked Eq. (21) is still
satisfied. This theoretical result is confirmed by numerical simulation (Fig. 3F) which shows the
precision of circuit’s stimulus samples increases with feedforward rate RF and aligns well with the
likelihood. Here we adjust the recurrent E-to-E weight wEE to set the circuit has an approximately
linear response at the range of the feedforward input rate. Fig. S1 shows if the network deviates from
the linear regime, the circuit’s sampling distribution will deviate from the likelihood.

4.4 The Bayesian sampling performance from interneurons

We further investigate how quantitative measures of sampling, e.g., sampling speed and temporal
correlation of samples, will be affected by interneurons such as the inhibitory feedback weight. In
principle, both sampling speed and temporal correlation can be revealed by the eigenvalues of the
circuit sampling dynamics (Eqs. 11-12). When organizing the circuit sampling dynamics into a
matrix form (Eqs. 11-12), ż = −Mz+µ, with z = (zE , zS)

⊤ and µ lumping terms exclusive zE or
zS in Eqs. (11 - 12), the eigenvalues of the circuit sampling dynamics are (SI. Eq. S69),

λ± = tr(M)±
√
tr(M)2 − 4 det(M) ≜ tr(M)±

√
∆,

where tr(M) = τ−1
E (gES + gEF ) + τ−1

S gSE , det(M) = τ−1
E τ−1

S gEF gSE .
(22)
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Figure 4: Interneurons’ effects on sampling. (A) The cross-correlation of samples for perturbing PV
and SOM. (B-C) The smallest eigenvalue of sampling dynamics when changing PV (A) and SOM
(B) inhibitions. (A): obtained from the circuit without SOM (Fig. 2A). (D) The local field potential
(LFP), defined by the sum of synaptic inputs of E and SOM neurons (color: same as A).

The sampling speed is limited by the smallest real part of eigenvalues, i.e., Re(λ−) (Eq. 22), in that
the KL divergence from the distribution of samples up to time t to the stationary distribution (Fig.
3D) decays exponentially as exp[−Re(λ−)t] [54].

PV neurons. PV’s inhibition weight wEP modulates the eigenvalues by decreasing the common
factor τE = τUE(wEP ) (Eq. 22), where UE(wEP ), the peak value of E population synaptic input
(Eq. 9), decreases with wEP . Hence, stronger PV inhibition increases the slowest eigenvalue λ− (Fig.
4A) and leads to faster sampling, exhibited by the faster decay of the temporal correlation between
samples (Fig. 4A, blue and red). Moreover, the multiplicative modulation from PV neurons will not
induce the imaginary part of eigenvalues (Fig. 4B, bottom), i.e., no oscillation between samples.

SOM neurons. The SOM inhibitory weight wES will have non-monotonic effects on sampling
speed measured by the real part of the slowest eigenvalue. There is a value of wES to maximize
the sampling speed (Re(λ−) (Fig. 4C, top). Moreover, SOM’s inhibition will induce temporal
oscillations between samples, i.e., emerging imaginary part of eigenvalue λ− (Fig. 4C, bottom). This
oscillation is confirmed by the cross-correlation of samples (Fig. 4A, purple). Moreover, to mimic
neural experimental data analysis, the oscillation induced by SOM neurons can be revealed by the
power spectrum analysis of the local field potential (LFP) (SI. Eq. S90).

5 Sampling complex posteriors in canonical recurrent circuits

High-dimensional stimulus posteriors. As a proof of concept example, we consider sampling
bivariate stimulus posteriors by coupled circuits (Fig. 5A) with each circuit the same as Fig. 1B.
And only E neurons across circuits are coupled. Each circuit m (m = 1, 2) receives a feedforward
input generated by a latent stimulus feature zm, and will sample zm. Hence, the number of coupled
circuits equals to the stimulus feature dimension. We found the coupled circuits store an associative
(subjective) prior, i.e., p(z1, z2) ∝ exp[−Λs(z1 − z2)

2/2] (Fig. 5C), with the prior precision Λs

increasing with inter-circuit coupling weights (Fig. 5D; Eq. S85). Math analysis is presented in SI.
Sec. 5. Concatenating the samples generated by E neurons in two circuits (with the same readout as
Fig. 3A-B), we can obtain the 2D posterior sampled from the coupled circuit (Fig. 5B). Similarly, the
SOM interneurons speed up sampling, reflected by the sampling trajectories with SOM transverse
over a wider posterior region than the one without SOM in the same period (Fig. 5B).

Bimodal stimulus distributions. We also use the circuit (Fig. 1C) to sample uni-variate bimodal
posteriors (Fig. S2), in response to superpositions of two feedforward inputs with each generated
by a latent stimulus. The circuit can sample a bimodal distribution, where samples jump between
two modes alternatively, due to the bi-stability in the circuit dynamics (Fig. S2C and E). In contrast,
without SOM neurons (Fig. 2A), the circuit can only sample a uni-modal distribution, as a uni-modal
approximation of the bimodal one (Fig. S2F). Due to the space limit, we haven’t comprehensively
linked the circuit’ bimodal sampling distribution with posteriors, which will form our future work.

6 Conclusion and Discussion
The present study investigates how canonical recurrent circuits with diverse inhibitory interneurons
implement Bayesian sampling. The nonlinear circuit model consists of E neurons, and two types of
interneurons neurons (PV and SOM neurons). PV and SOM neurons have distinct tuning properties
and modulations on E neurons: PV neurons have weak stimulus tuning and multiplicatively modulate
E neurons, while SOM neurons have stimulus tuning and send additive inputs to E neurons. Through
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theoretical analysis and numerical simulations, we find the reduced circuit with only E and PV neurons
implements Langevin sampling in the stimulus manifold (subspace) to compute the stimulus posterior.
The SOM neurons accelerate the circuit sampling speed by upgrading the Langevin sampling into
Hamiltonian sampling. We further find Hamiltonian sampling requires the SOM neurons to receive no
feedforward connections, consistent with neuroanatomy. We also investigate how inhibitory strength
from two types of interneurons affects the sampling speed. Our work is one of the earliest studies
investigating the Bayesian sampling algorithm in canonical nonlinear recurrent circuits with diverse
interneurons, and provides new insight into interneurons in Bayesian computation.

Comparison with other work. The computational mechanism of accelerated sampling by SOM
neurons is similar to previous studies considering structured inhibitory feedback to E neurons (e.g.,
[14, 17, 53, 55]), while some notable differences exist. Earlier studies considered the sampling in
neural response space where the posterior dimension is the same as the number of neurons [14, 17],
whereas the current circuit samples in the stimulus feature manifold (subspace) in the neural response
space. On the other hand, although other previous studies considered sampling in the stimulus
feature manifold similar to the current model [53, 55], their structured inhibitory feedback comes
from the biophysical mechanism within single neurons, e.g., spike frequency adaptation [53], and
potassium channels [55]. From a neurobiology perspective, SOM neurons can be modulated by VIP
neurons (Fig. 1A), whereas intracellular mechanisms are hardly modulated [53, 55], suggesting
accelerated sampling from SOM neurons might be more flexible than single neuron mechanism in
reality. Moreover, the proposed circuit model is similar to a recent one [18] in terms of utilizing
internal Possion variability to draw samples. However, the current circuit model is nonlinear while the
other study considered a linear circuit model [18]. Lastly, the coupled circuit sampling of bivariate
posteriors was also considered in [34], but which didn’t figure out the circuit’s sampling algorithms.

Limitations and extensions of the model. The proposed circuit model doesn’t include VIP neurons
that exclusively target SOM neurons (Fig. 1A). Our future work will incorporate them and study their
effects on circuit sampling. Based on our current conclusion, it is likely that VIP neurons act as a
“knob” to modulate the sampling speed, depending on task needs, by changing the activation level
(“gain”) of SOM neurons. Moreover, we find the proposed canonical circuit stores a uniform stimulus
prior, due to the homogeneity of neurons distributing on the stimulus manifold. The homogeneous
neuron simplification has been widely used in neural coding and continuous attractor networks
(e.g., [31, 34, 35, 56]), which simplifies the math analysis without altering results substantially.
Nevertheless, the circuit has to break the neuronal homogeneity to store a non-uniform prior [57],
and certainly, cortical neurons are heterogeneous. The neuronal heterogeneity can be realized
by manipulating the translation-invariant recurrent connection matrix (Eq. 2), e.g., introducing
randomness (zero mean with certain variance) on recurrent weight which has also been widely used
in (chaotic) Excitation and Inhibition (E/I) balanced networks ([38–40, 58]). A potential function of
heterogeneity from random recurrent weights is that this puts the spiking networks into the chaotic
regime where the network internally generates Poisson variability, which is statistically equivalent
to the injected multiplicative variability in our rate-based network (Eq. 1, last term). Moreover, the
proposed circuit model only infers a static stimulus, and we will extend to infer a dynamic stimulus
described by a hidden Markov model in the future. All of these form our future research.
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We clearly write the underlying assumption in constructing the circuit model
(Section 2) and its Bayesian inference (Section 3), and present detailed math calculations in
the Supplementary Information.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The main text clearly state the assumptions in constructing the neural circuit
model, and the Supplementary Information contains all circuit parameters and details of our
numerical simulation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Codes are uploaded and shared for reproduction and further experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The present paper doesn’t study the learning problem.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We define the error bars in Fig. 1G-H, and the define statistics of simulating
the proposed circuit model in text corresponding to Fig. 2-4, including the mean, correlation,
empirical distribution, and the KL divergence. The Supplementary Information has details
of how we obtain these statistics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: It can be found at the SI. Sec. ??.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm our research is abide by the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This is a theoretical study of basic neuroscience research and will not have
direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We propose a theoretical model of the neural circuit in the brain and it will not
impose any risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We adapt two figures from a published experimental paper (Fig. 1G-H) and
we clearly state where the figures are from.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This is a theoretical neuroscience study where the math formulation of the
neural circuit model and its theoretical analysis presented in the paper are our main results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This is a theoretical neuroscience study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This is a theoretical neuroscience study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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