
Under review as a conference paper at ICLR 2021

ON THE RELATIONSHIP BETWEEN TOPOLOGY AND
GRADIENT PROPAGATION IN DEEP NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we address two fundamental research questions in neural architecture
design: (i) How does the architecture topology impact the gradient flow during
training? (ii) Can certain topological characteristics of deep networks indicate a
priori (i.e., without training) which models, with a different number of param-
eters/FLOPS/layers, achieve a similar accuracy? To this end, we formulate the
problem of deep learning architecture design from a network science perspective
and introduce a new metric called NN-Mass to quantify how effectively informa-
tion flows through a given architecture. We establish a theoretical link between
NN-Mass, a topological property of neural architectures, and gradient flow char-
acteristics (e.g., Layerwise Dynamical Isometry). As such, NN-Mass can identify
models with similar accuracy, despite having significantly different size/compute re-
quirements. Detailed experiments on both synthetic and real datasets (e.g., MNIST,
CIFAR-10, CIFAR-100, ImageNet) provide extensive evidence for our insights.
Finally, we show that the closed-form equation of our theoretically grounded
NN-Mass metric enables us to design efficient architectures directly without time-
consuming training and searching.

1 INTRODUCTION

Recent research in neural architecture design has driven several breakthroughs in deep learning.
Specifically, major contributions have been made in the following two directions: (i) Initialization of
model weights [LeCun et al. (2012); Glorot & Bengio (2010); He et al. (2015)], and (ii) Network
topology showing how different compute units (e.g., neurons, channels, layers) should be connected
to each other [He et al. (2016); Huang et al. (2017); Howard et al. (2017); Sandler & et al. (2018);
Liu et al. (2018); Zoph et al. (2018)]. While many attempts have been made to study the impact
of initialization on model accuracy [Poole et al. (2016); Tarnowski et al. (2018); Pennington et al.
(2017)], good Deep Neural Network (DNN) topologies have been mainly developed either manually
(e.g., Resnets, Densenets, etc. [He et al. (2016); Huang et al. (2017); Howard et al. (2017); Sandler &
et al. (2018)]) or automatically using Neural Architecture Search (NAS) techniques [Liu et al. (2018);
Zoph et al. (2018); Tan et al. (2019); Cai et al. (2018)]. However, the impact of topological properties
of DNNs on model performance has not been explored systematically. Hence, there is a significant
gap in our understanding of how exactly various topological properties impact the gradient flow and
accuracy of DNNs.

In general, the topology (or structure) of networks strongly influences the phenomena taking place
over them [Newman et al. (2011)]. For instance, how closely the users of a social network are
connected to each other directly affects how fast the information propagates through the network.
Similarly, a DNN architecture can be seen as a network of different neurons connected together.
Therefore, the topology of deep networks can influence how effectively the gradients propagate and,
hence, how much information can be learned. Indeed, this means that even models with significantly
different size/compute requirements, but similar topological properties can achieve similar accuracy.

Motivated by the need for understanding (i) the relationship between gradient flow and topology, and
(ii) properties of efficient models, we address the following fundamental questions:

1. How does the DNN topology influence the gradient flow through the network?

2. Can topological properties of DNNs indicate a priori (i.e., without training) which models
achieve a similar accuracy, despite having vastly different #parameters/FLOPS/layers?

To answer these questions, we first model DNNs as complex networks (in order to exploit the network
science – the study of networks) and quantify their topological properties. To this end, we propose

1

Under review as a conference paper at ICLR 2021

a new metric called NN-Mass that explains the relationship between the topological structure of
DNNs and the Layerwise Dynamical Isometry (LDI) [Lee et al. (2020)], a property that indicates
the faithful gradient propagation through the network [Saxe et al. (2013)]. Specifically, models with
similar NN-Mass should have similar LDI, and thus a similar gradient flow that results in comparable
accuracy. To support these theoretical insights, we conduct a thorough exploration on different types
of networks (MLPs/CNNs/Depthwise Convolutions, etc.) and several datasets (MNIST, CIFAR-10,
CIFAR-100, Imagenet). We show that models with the same width and NN-Mass indeed achieve
a similar accuracy irrespective of their depth, number of parameters, and FLOPS. Finally, after
extensive experiments linking topology and gradient flow, we show how the closed-form expression
for NN-Mass can be used to directly design efficient deep networks without any training and searching.
Overall, we propose a new theoretically grounded perspective that reveals how topology influences
the gradient propagation in deep networks. Of note, our work does not belong to the family of NAS
approaches since our goal is not to beat any existing NAS solutions (and we do not actually do NAS).
Instead, our objective is to bring new theoretical insights into why different architectures result in
similar accuracy.

The rest of the paper is organized as follows: Section 2 discusses the related work and some
preliminaries. Then, Section 3 describes our proposed metrics and their theoretical analysis. Section 4
presents detailed experimental results. Finally, Section 5 summarizes our work and contributions.

2 BACKGROUND AND RELATED WORK

NAS techniques [Liu et al. (2018); Zoph et al. (2018); Tan et al. (2019); Cai et al. (2018)] have
resulted in state-of-the-art neural architectures. More recently, [Xie et al. (2019); Wortsman et al.
(2019)] utilized standard network science ideas such as Barabasi-Albert (BA) [Barabási & Albert
(1999)] or Watts-Strogatz (WS) [Watts & Strogatz (1998)] models for NAS. However, like the rest of
the NAS research, [Xie et al. (2019); Wortsman et al. (2019)] do not address what characteristics
of the topology make various models (with different #parameters/FLOPS/layers) achieve similar
accuracy. In other words, unlike our work, existing NAS approaches do not connect the topology
with the gradient flow.

On the other hand, the impact of initialization on model convergence and gradients has been stud-
ied [LeCun et al. (2012); Glorot & Bengio (2010); Saxe et al. (2013); Poole et al. (2016); Tarnowski
et al. (2018); Pennington et al. (2017)]. Moreover, recent model compression literature attempts
to connect pruning at initialization to gradient properties [Lee et al. (2020)]. Again, none of these
studies address the impact of the architecture topology on gradient propagation. Hence, our work
is orthogonal to prior art that explores the impact of initialization on gradients. Related work on
important network science and gradient propagation concepts is discussed below.

Preliminaries. In our work, we use the following two well-established concepts:
Definition 1 (Average Degree Newman et al. (2011)). Average degree (k̂) of a network determines
the average number of connections for all nodes, k̂ = #edges/#nodes.

Average degree and degree distribution (i.e., distribution of nodes’ degrees) are important topological
characteristics which directly affect how information flows through a network. How fast a signal can
propagate through a network heavily depends on the network topology.

Definition 2 (Layerwise Dynamical Isometry (LDI) Lee et al. (2020)). A deep network satisfies LDI
if the singular values of Jacobians at initialization are close to 1 for all layers. Specifically, for
a multilayer feed-forward network, let si (Wi) be the output (weights) of layer i such that si =
φ(hi),hi = Wisi−1 + bi; then, the Jacobian matrix at layer i is defined as: Ji,i−1 = ∂si

∂si−1
=

DiWi. Here, Ji,i−1 ∈ Rwi,wi−1 , wi is the number of neurons in layer i. Djk
i = φ′(hi)δjk. φ′

denotes the derivative of non-linearity φ and δjk is Kronecker delta. Then, if the singular values σj
for all Ji,i−1 are close to 1, then the network satisfies the LDI.

LDI discourages the signal propagating through the DNN from getting attenuated or amplified too
much; this ensures faithful propagation of gradients [Saxe et al. (2013)].

3 TOPOLOGICAL PROPERTIES OF NEURAL ARCHITECTURES

We first model DNNs via network science to derive our proposed topological metrics. We then
demonstrate the theoretical relationship between the topological metrics and gradient propagation.

2

Under review as a conference paper at ICLR 2021

R

G

B …

αR

αG αB

Convolution layer i

m Output
Channels

n Input
Channels

m [k×k×n]
Filters

α’s are contributions
of input channels to
output channels

c. Single Convolutional Layerb. Mean singular value increases
with matrix size

layer 𝑖
output = 𝒔𝒊

…

…

…

…

…

…

…

…

layer 𝑖-2layer 0 …

layer 𝑖 Weights
(with shortcuts) = 𝑾𝒊

a. Our setup: DNN as network of neurons

Depth 𝑑𝑐

W
id

th
 𝑤

𝑐

Short-range links / Long-range links

Randomly selected
neurons

Figure 1: (a) DNN setup: The DNN (depth dc, width wc) has layer-by-layer short-range connections
(gray) with additional long-range links (purple/red). (b) Simulation of Gaussian matrices: Mean
singular values vs. size of a matrix (wc +m/2, wc). Mean singular values increase as m increases
(more simulations are given in Appendix D). (c) Convolutional layers form a similar topological
structure as MLP layers: All input channels contribute to all output channels.

3.1 MODELING DNNS VIA NETWORK SCIENCE

We start with a generic MLP setup with dc layers containing wc neurons each and assume shortcut
connections (or long-range links) superimposed on top of a typical MLP structure (see Fig. 1(a)).
Specifically, all neurons at layer i receive long-range links from a maximum of tc neurons from
previous layers. That is, we randomly select min{wc(i−1), tc} neurons from layers 0, 1, . . . , (i−2),
and concatenate them at layer i − 1 (see Fig. 1(a))1; the concatenated neurons then pass through
a fully-connected layer to generate the output of layer i (si). As a result, the weight matrix Wi

(which is used to generate si) gets additional weights to account for the incoming long-range links.
Similar to recent NAS research [Li & Talwalkar (2019)], we select random links because random
architectures are often as competitive as the carefully designed models. Moreover, the random
long-range links on top of fixed short-range links make our architectures a small-world network
(Fig. 6, Appendix A) [Watts & Strogatz (1998)], and allows us to use network science to study their
topology. Like standard CNNs (Resnets/Densenets), we can generalize this setup to contain multiple
(Nc) cells of width wc, depth dc. Long-range links are present only within a cell and not across cells.

What about Resnets? The objective of our paper is to demonstrate that topology plays a fundamen-
tal role in gradient propagation; understanding these properties results in predictable behavior of deep
networks. Therefore, we purposely chose to model topological properties on Densenet-like networks
since they impose explicit topological (structural) constraints on gradient flow (due to concat); this
allows us to exploit network science to study their gradient propagation properties. Clearly, Resnets
have a different topological structure than Densenets (they are much more regular) and, therefore,
will have different topological properties. In fact, [Veit et al. (2016)] showed that Resnets also exhibit
small-world properties like short gradient paths due to the regular skip connections. However, [Veit
et al. (2016)] is purely empirical and does not produce any theoretical insights. Hence, while we
presently focus on Densenet-type networks, our future work will focus on the Resnet topology.

3.2 PROPOSED METRICS

Our key objectives are twofold: (i) Quantify what topological characteristics of DNN architectures
affect their accuracy and gradient flow, and (ii) Exploit such properties to directly design efficient
CNNs. To this end, we propose new metrics called NN-Density and NN-Mass, as defined below.
Definition 3 (Cell-Density). Density of a cell quantifies how densely its neurons are connected via
long-range links. Formally, for a cell c, cell-density ρc is given by:

ρc =
Actual #long-range links within cell c

Total possible #long-range links within cell c
=

2
∑dc−1

i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

(1)

For complete derivation, please refer to Appendix B. With the above definition for cell-density,
NN-Density (ρavg) is simply defined as the average density across all cells in a DNN.

1Here, wc(i − 1) is the total number of candidate neurons from layers 0, 1, . . . , (i − 2) that can supply
long-range links; if the maximum number of neurons tc that can supply long-range links to the current layer
exceeds total number of possible candidates, then all neurons from layers 0, 1, . . . , (i− 2) are selected. Neurons
are concatenated similar to how channels are concatenated in Densenets [Huang et al. (2017)].

3

Under review as a conference paper at ICLR 2021

Definition 4 (Mass of DNNs). NN-Mass quantifies how effectively information can flow through a
given DNN topology. For a given width (wc), models with similar NN-Mass, but different depths (dc)
and #parameters, should exhibit a similar gradient flow and, thus, achieve a similar accuracy.

Mathematically, density is basically mass/volume. Let volume be the total number of neurons in a cell.
Then, we can derive the NN-Mass (m) by multiplying the cell-density with total neurons in each cell:

m =

Nc∑
c=1

wcdcρc =

Nc∑
c=1

2dc
∑dc−1

i=2 min{wc(i− 1), tc}
(dc − 1)(dc − 2)

(2)

Note that, NN-Mass is a function of network width, depth, and long-range links (i.e., the topology of
a network). For a fixed number of cells, an architecture can be completely specified by {depth, width,
maximum long-range link candidates} per cell = {dc, wc, tc}. Hence, to create different architectures,
we vary {dc, wc, tc} to create architectures with random #parameters/FLOPS/layers, and NN-Mass.
We then train these architectures and characterize their accuracy, topology, and gradient propagation
to understand the relationships among them. But first, we provide our theoretical analysis.

3.3 RELATIONSHIPS AMONG TOPOLOGY, NN-MASS AND GRADIENT PROPAGATION

Without loss of generality, we assume that the DNN has only one cell of width wc and depth dc.
Proposition 1 (NN-Mass and average degree). The average degree of a deep network with NN-
Mass m is given by k̂ = wc +m/2.

The proof of the above result is given in Appendix C.

Intuition. Proposition 1 states that the average degree of a deep network is wc +m/2, which, given
the NN-Mass m, is independent of depth dc. The average degree indicates how well-connected the
network is. Hence, it controls how effectively the information can flow through a given topology.
Therefore, for a given width and NN-Mass, the average amount of information that can flow through
various architectures (with different #parameters/layers) should be similar (due to the same average
degree). Thus, we hypothesize that these topological characteristics might constrain the amount of
information being learned by DNNs. Next, we show the impact of topology on gradient propagation.
Proposition 2 (NN-Mass and LDI). Given a small deep network fS (depth dS) and a large deep
network fL (depth dL, dL >> dS), both with same NN-Mass m and width wc, the LDI for both
models is equivalent. Specifically, if Σi

S (Σi
L) denotes the singular values of the initial layerwise

Jacobians Ji,i−1 for the small (large) model, then, the mean singular values in both models are
similar; that is, E[Σi

S] ≈ E[Σi
L].

Proof. To prove this, it suffices to show that the initial Jacobians Ji,i−1 have similar properties for
both models (and thus their singular values will be similar). For our setup, the output of layer i,
si = φ(Wixi−1 + bi), where xi−1 = si−1 ∪ y0:i−2 concatenates output of layer i − 1 (si−1)
with the neurons y0:i−2 supplying the long-range links (random min{wc(i−1), tc} neurons selected
uniformly from layers 0 to i− 2). Hence, Ji,i−1 = ∂si/∂xi−1 = DiWi. Compared to a typical
MLP (see Definition 2), the sizes of Di and Wi increase to account for incoming long-range links.

For two models fS and fL, the layerwise Jacobian (Ji,i−1) can have two kinds of properties: (i) The
values inside Jacobian matrix for fS and fL can be different, and/or (ii) The sizes of layerwise
Jacobian matrices for fS and fL can be different. Hence, our objective is to show that when the width
and NN-Mass are similar, irrespective of the depth of the model (and thus irrespective of number of
parameters/FLOPS), both the values and the size of initial layerwise Jacobians are similar.

Let us start by considering a linear network: in this case, Ji,i−1 = Wi. Since the LDI looks at the
properties of layerwise Jacobians at initialization, and because all models are initialized the same
way (e.g., Gaussians with variance scaling2), the values inside Ji,i−1 for both fS and fL have same
distribution (point (i) above is satisfied). We next show that even the sizes of layerwise Jacobians for
both models are similar if the width and NN-Mass are similar.

How is topology related to the layerwise Jacobians? Since the average degree is same for both models
(see Proposition 1), on average, the number of incoming shortcuts at a typical layer is wc ×m/2.

2Variance scaling methods also take into account the number of input/output units. Hence, if the width is the
same between models of different depths, the distribution at initialization is still similar.

4

Under review as a conference paper at ICLR 2021

In other words, since the degree distribution for the random long-range links is Poisson [Barabasi
(2016)] with average degree k̄R|G ≈ m/2 (see Eq. 7, Appendix C), an average m/2 neurons supply
long-range links to each layer3. Therefore, the Jacobians will theoretically have the same dimensions
(wc +m/2, wc) irrespective of the depth of the neural network (i.e., point (ii) is also satisfied).

So far, the discussion has considered only a linear network. For a non-linear network, the Jacobian
is given as Ji,i−1 = DiWi. As explained in [Lee et al. (2020)], Di depends on pre-activations
hi = Wixi−1 + bi. As established in several deep network mean field theory studies [Poole et al.
(2016); Tarnowski et al. (2018)], the distribution of pre-activations at layer i (hi) is a Gaussian
N (0, qi) due to the central limit theorem. Similar to [Lee et al. (2020); Pennington et al. (2017)], if
the input h0 is chosen to satisfy a fixed point qi = q∗, the distribution of Di becomes independent of
the depth (N (0, q∗)). Therefore, the distribution of both Di and Wi is similar for different models
irrespective of the depth, even for non-linear networks. Moreover, the sizes of the matrices will again
be similar due to similar average degree in fS and fL.

Hence, the size and distribution of values in the Jacobian matrix are similar for both the large and
the small model (provided the width and NN-Mass are similar); that is, the distribution and mean
singular values will also be similar: E[Σi

S] ≈ E[Σi
L]. In other words, LDI is equivalent between

models of different depths if their width and NN-Mass are similar.

We note that the mean singular values increase with NN-Mass. To illustrate this effect, we numerically
simulate several Gaussian-distributed matrices of sizes (wc + m/2, wc) and compute their mean
singular values. Specifically, we vary m for widths wc and see the impact of this size variation on
mean singular values. Fig. 1(b) shows that as NN-Mass varies, the mean singular values linearly
increase with NN-Mass. In our experiments, we show that this linear trend between mean singular
values and NN-Mass holds true for actual non-linear deep networks. A formal proof of this observation
and more simulations are given in Appendix D. Note that, our results should not be interpreted as
bigger models yield larger mean singular values. We show in the next section that the relationship
between the #parameters and mean singular values is significantly worse than that for NN-Mass.
Hence, it is the topological properties that enable LDI in different deep networks and not #parameters.
Remark 1 (NN-Mass formulation is same for CNNs). Fig. 1(c) shows a typical convolutional
layer. Since all channel-wise convolutions are added together, each output channel is some function
of all input channels. This makes the topology of CNNs similar to that of our MLP setup. The key
difference is that the nodes in the network (see Fig. 1(a)) are now channels and not individual neurons.
Of note, for our CNN setup, we use three cells (similar to Densenets). More details on CNN setup
(including a concrete example for NN-Mass calculations) are given in Appendices E and F.

We next provide extensive empirical evidence for our theoretical insights on topology, gradient
propagation, LDI, and model accuracy (Proposition 2).

4 EXPERIMENTAL SETUP AND RESULTS

4.1 EXPERIMENTAL SETUP

For experiments on MLPs and CNNs, we generate random architectures with different NN-Mass and
number of parameters (#Params) by varying {dc, wc, tc}. For random MLPs with different {dc, tc}
and wc = 8 (#cells = 1), we conduct the following experiments on the MNIST dataset: (i) We explore
the impact of varying #Params and NN-Mass on the test accuracy; (ii) We demonstrate how LDI
depends on NN-Mass and #Params; (iii) We further show that models with similar NN-Mass (and
width) result in similar training convergence, despite having different depths and #Params.

After the extensive empirical evidence for our theoretical insights (i.e., the connection between
gradient propagation and topology), we next move on to random CNN architectures with three cells.
We conduct the following experiments on the CIFAR-10 and CIFAR-100 datasets: (i) We show that
NN-Mass can further identify CNNs that achieve similar test accuracy, despite having highly different
#Params/FLOPS/layers; (ii) We show that NN-Mass is a significantly more effective indicator of
model performance than parameter counts; (iii) We also show that our findings hold for CIFAR-100
and ImageNet; (iv) We further verify our findings for ops like depthwise separable convolutions.

Finally, we exploit NN-Mass to directly design efficient CNNs (for CIFAR-10) which achieve
accuracy comparable to significantly larger models. For these experiments, the models are trained

3Theoretically, a Poisson process assumes a constant rate of arrival of links.

5

Under review as a conference paper at ICLR 2021

a b dc

Figure 2: MNIST results: (a) Models with different number of parameters (#Params) achieve similar
test accuracy. (b) Test accuracy curves of models with different depths/#Params concentrate when
plotted against NN-Mass (test accuracy std. dev. ∼ 0.05− 0.34%). (c,d) Mean singular values of
Ji,i−1 are much better correlated with NN-Mass (R2 = 0.79) than with #Params (R2 = 0.31).

for 600 epochs. Overall, we train hundreds of different MLP and CNN architectures with each MLP
(CNN) repeated five (three) times with different random seeds, to obtain our results. More setup
details (e.g., architecture details, learning rates, etc.) are given in Appendix G (see Tables 1, 2, and 3).

4.2 MLP RESULTS (MNIST/SYNTHETIC DATA): TOPOLOGY VS. GRADIENT PROPAGATION

Test Accuracy. Fig. 2(a) shows test accuracy vs. #Params of DNNs with different depths on the
MNIST dataset. As evident, even though many models have different #Params, they achieve a similar
test accuracy. On the other hand, when the same set of models are plotted against NN-Mass, their
test accuracy curves cluster together tightly, as shown in Fig. 2(b). To further quantify the above
observation, we generate a linear fit between test accuracy vs. log(#Params) and log(NN-Mass) (see
brown markers in Fig. 2(a,b)). For NN-Mass, we achieve a significantly higher goodness-of-fit R2 =
0.85 than that for #Params (R2 = 0.19). This demonstrates that NN-Mass can identify DNNs that
achieve similar accuracy, even if they have a highly different number of parameters/FLOPS4/layers.
We next investigate the gradient propagation properties to explain the test accuracy results.

Figure 3: Models A and C have the
same NN-Mass and achieve very sim-
ilar training convergence, even though
they have highly different #Params and
depth. Model B has significantly fewer
layers than C but the same #Params, yet
achieves a faster training convergence
than C (B has higher NN-Mass than C).

Layerwise Dynamical Isometry (LDI). We calculate
the mean singular values of initial layerwise Jacobians,
and plot them against #Params (see Fig. 2(c)) and NN-
Mass (see Fig. 2(d)). Clearly, NN-Mass (R2 = 0.79) is
far better correlated with the mean singular values than
#Params (R2 = 0.31). More importantly, just as Proposi-
tion 2 predicts, these results show that models with similar
NN-Mass and width have equivalent LDI properties, ir-
respective of the total depth (and, thus #Params) of the
network. For example, even though the 32-layer models
have more parameters, they have similar mean singular
values as the 16-layer DNNs. This clearly suggests that
the gradient propagation properties are heavily influenced
by the topological characteristics like NN-Mass, and not
just by DNN depth and #Params. Of note, the linear trend
in Fig. 2(d) is similar to that seen in Fig. 1(b).

Training Convergence. The above results suggest the
following hypotheses: (i) If the gradient flow between
DNNs (with similar NN-Mass and width) is similar, their
training convergence should be similar, even if they have
highly different #Params and depths; (ii) If two models have same #Params (and width), but different
depths and NN-Mass, then the DNN with higher NN-Mass should have faster training convergence
(since its mean singular value will be higher – see the trend in Fig. 2(d)).

To demonstrate that both hypotheses above hold true, we pick three models – A, B, and C – from
Fig. 2(a,b) and plot their training loss vs. #epochs. Models A and C have similar NN-Mass, but C has
more #Params and depth than A. Model B has far fewer layers and nearly the same #Params as C,
but has a higher NN-Mass. Fig. 3 shows the training convergence results for all three models. As
evident, the training convergence of model A (7.8K Params, 20-layers) nearly coincides with that
of model C (8.8K Params, 32-layers). Moreover, even though model B (8.7K Params, 20-layers) is

4For our setup, more parameters lead to more FLOPS. FLOPS results are given for CNNs in Appendix H.8.

6

Under review as a conference paper at ICLR 2021

shallower than the 32-layer model C, the training convergence of B is significantly faster than that
of C (due to higher NN-Mass and, therefore, better LDI). Training convergence results for several
other models in Fig. 2(a,b) show similar observations (see Fig. 10 in Appendix H.1). These results
clearly validate the theoretical insights in Proposition 2, and emphasize the importance of topological
properties of neural architectures in characterizing the gradient propagation and model performance.
Other similar experiments for synthetic datasets are given in Appendix H.2.

4.3 CNN RESULTS ON CIFAR-10, CIFAR-100, AND IMAGENET DATASETS

Since we have now established a concrete relationship between gradient propagation and topological
properties, in the rest of the paper, we show that NN-Mass can be used to identify and design efficient
CNNs that achieve similar accuracy as models with significantly higher #Params/FLOPS/layers.

Model Performance. Fig. 4(a) shows the test accuracy of various CNNs vs. total #Params. As
evident, models with highly different number of parameters (e.g., see models A-E in box W),
achieve a similar test accuracy. Note that, there is a large gap in the model size: CNNs in box W

2 4 6 8 10 12

Number of Parameters (in Millions)

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. Number of Parameters

W A B C

D
E

200 400 600 800 1000 1200

NN-Mass

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass

Y

Z

X

A'
B' C'

D'
E'

a. b.

Figure 4: CIFAR-10 Width Multiplier wm = 2:
(a) Models with very different #Params (box W)
achieve similar test accuracies. (b) Models with
similar accuracy often have similar NN-Mass:
Models in W cluster into Z. Results are reported
as the mean of three runs (std. dev. ∼ 0.1%).

range from 5M parameters (model A) to 9M
parameters (models D,E). Again, as shown in
Fig. 4(b), when plotted against NN-Mass, the
test accuracy curves of CNNs with different
depths cluster together (e.g., models A-E in box
W cluster into A’-E’ within bucket Z). Hence,
NN-Mass identifies CNNs with similar accuracy,
despite having highly different #Params/layers.
The same holds true for models within X and Y.
More results with different width multipliers are
given in Appendix H.4. Again, the observations
are similar and for higher width, the models tend
to cluster even more tightly for NN-Mass.

NN-Mass vs. Parameter Counting. As
shown in Fig. 17 in Appendix H.6, for wm = 2,
#Params yield an R2 = 0.76 which is lower
than that for NN-Mass (R2 = 0.84, see Fig. 17(a, b)). However, for higher widths (wm = 3), the
parameter count completely fails to predict model performance (R2 = 0.14 in Fig. 17(c)). On the
other hand, NN-Mass achieves a significantly higher R2 = 0.90 (see Fig. 17(d)).

Results for CIFAR-100 Dataset. We now corroborate our main findings on CIFAR-100 dataset
which is significantly more complex than CIFAR-10. To this end, we train the models in Fig. 4 on
CIFAR-100. Fig. 18 (see Appendix H.7) once again shows that several models with highly different
number of parameters achieve similar accuracy. Moreover, Fig. 18(b) demonstrates that these models
get clustered when plotted against NN-Mass. Further, a high R2 = 0.84 is achieved for a linear fit on
the accuracy vs. log(NN-Mass) plot (see Appendix H.7 and Fig. 18).

Results for #FLOPS. So far, we have shown results for the number of parameters. However, the
results for #FLOPS follow a very similar pattern (see Fig. 19 in Appendix H.8). In summary, we
show that NN-Mass can identify models that yield similar test accuracy, despite having very different
#parameters/FLOPS/layers. We next use this observation to directly design efficient architectures.

NN-Mass scales to ImageNet. For ImageNet, we create several CNNs containing four cells and
total depth ∈ {48, 56, 60, 64, 68} layers, and width multiplier wm ∈ {1.5, 2}. Due to lack of
resources, we minimally trained these models on ImageNet dataset for 60 epochs. Fig. 5(a) shows the
test accuracy of these CNNs vs. total #Params, while Fig. 5(b) shows the test accuracy vs. NN-Mass.
As evident, although the model sizes are very different (e.g., model X is 3M parameters bigger
than model W; see other arrows also), the accuracy is quite similar. Once again, the models cluster
together when plotted against NN-Mass (e.g., see clusters for models {W,X}, {Y,Z}, and {P,Q} in
Fig. 5(b)). Note that, the accuracies do not saturate (similar to other CIFAR-10 and CIFAR-100
results in Fig. 4, 15, 18 and Fig. 5(c,d) in next section): Cluster {Y,Z} achieves 4% lower Top-1
accuracy (red points in Fig. 5(a,b)) than cluster {W,X}, whereas within each cluster, the models are
merely 0.2% and 0.7% away from each other. Same observation holds for Top-5 accuracy (blue
points in Fig. 5(a,b)). Finally, models {P,Q} cannot be compared in accuracy against {Y,Z} since
they have different width (recall that Proposition 2 requires the models within the same cluster to

7

Under review as a conference paper at ICLR 2021

a

2.2 M
3 M

b dc

3% gap

~1% gap

0.7% gap1.5 M 4% gap0.2% gap

Figure 5: (a,b) ImageNet: (a) Models {P,Q}, {W,X}, and {Y,Z} have very different #Params but
similar test accuracy. (b) When plotted against NN-Mass, the models with similar NN-Mass and
accuracy cluster together. (c,d) CIFAR-10 with DSConv: Again, models with similar NN-Mass
achieve similar accuracy but have quite different #Params/layers.

have both same width and NN-Mass). We have provided the wm = 1.5 points to show that NN-Mass
works for ImageNet across multiple widths. Hence, our ideas scale to ImageNet dataset.

Generalizability to other operations. DARTS is heavily influenced by depthwise separable con-
volutions (DSConv). To demonstrate that NN-Mass works with DSConv, we take our current setup
(layer-by-layer convolutions with channels connected via random long-range links) and replace all
convolutions with MobilenetV2 Expansion Blocks (1x1 conv→ 3x3 DSConv→ 1x1 conv) [Sandler
& et al. (2018)]. Random long-range links connect input channels across various Expansion Blocks.
Fig. 5(c) shows test accuracy vs. #Params of CNNs with DSConv on CIFAR-10. Again, even though
many models have different #Params, they achieve a similar test accuracy. On the other hand, when
the same set of models are plotted against NN-Mass, their test accuracy curves cluster together tightly,
as shown in Fig. 5(d), with a significantly higher goodness-of-fit (R2 = 0.97) than that for #Params
(R2 = 0.5). This demonstrates that NN-Mass can be used to quantify topological properties of
diverse/heterogeneous CNNs with regular convolutions, DSConv, pointwise conv, etc.

Extension to existing models. Our work exploits SotA Densenet-like models which are more recent
than Resnets. For existing Densenets [Huang et al. (2017)], cell-density (Eq. 1) = 1 (all-to-all
connections); thus, NN-Mass for Densenet =

∑
all cells[(#channels per layer for this cell) × (#layers

per cell)]. For VGG-like models, there are no shortcuts, so NN-Mass = 0. Our theory works for NN-
Mass = 0: Fig. 2(b) shows two clusters for [low-depth (16,20) NN-Mass 0] models and [high-depth
(24,28,32) NN-Mass 0] models. This is not surprising: without shortcuts, the gradient diminishes
as depth increases (e.g., see Resnets [He et al. (2016)]). Same holds for our NN-Mass=0 CNNs on
ImageNet and CIFAR-10. Hence, our ideas apply to a variety of existing models. The Resnet skip
connection topology is not the same as that for Densenets and, hence, this is left for future work.

Directly designing efficient CNNs with NN-Mass. In Appendix H.9, we design regular CNNs (no
DSConv) with long-range links for CIFAR-10 dataset and show how such models can be compressed
directly using NN-Mass equation (2) without searching for an efficient network. Overall, as shown in
Table 5 (Appendix H.9), our models reach a test accuracy of 96.82%-97.00%, while reducing the
number of parameters and FLOPS by up to 3× over large CNNs (e.g., 3.82M vs. 11.89M parameters).
Moreover, DARTS [Liu et al. (2018)], a competitive NAS baseline, achieves a comparable (97%)
accuracy with slightly lower 3.3M parameters. As mentioned earlier, our objective is not to beat
DARTS or any other NAS, but rather to provide theoretical insights into the behavior of neural
architectures. Our efficient, high-accuracy, theoretically grounded CNNs (that do not use specialized
search spaces like NAS) clearly demonstrate that we bridge this gap between theory and practice.

5 CONCLUSION

We have proposed a new, network science-based metric called NN-Mass which quantifies how effec-
tively information flows through a given architecture. We have also established concrete theoretical
relationships among NN-Mass, topological structure of networks, and layerwise dynamical isometry
that ensures faithful propagation of gradients through DNNs. Our experiments have demonstrated that
NN-Mass is significantly more effective than the number of parameters to characterize the gradient
flow properties, and to identify models with similar accuracy, despite having a highly different number
of parameters/FLOPS/layers. We have performed experiments on both synthetic and real datasets
(e.g., MNIST, CIFAR-10/100, and ImageNet). Finally, to show the practical implications of our work,
we have exploited the closed-form equation of our NN-Mass metric to directly design efficient CNNs.

Since topology is deeply intertwined with the gradient propagation, such topological metrics de-
serve major attention in the future for other architectures like Resnets/Mobilenets. Research at the
intersection of initialization and topology will also be important in future work.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Albert-Laszlo Barabasi. Network Science (Chapter 3: Random Networks). Cambridge University
Press, 2016. URL https://bit.ly/2ONAUqQ.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip H. S. Torr. A signal propagation
perspective for pruning neural networks at initialization. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HJeTo2VFwH.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
arXiv preprint arXiv:1902.07638, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Remi Monasson. Diffusion, localization and dispersion relations on “small-world” lattices. The
European Physical Journal B-Condensed Matter and Complex Systems, 12(4):555–567, 1999.

Mark Newman, Albert-Laszlo Barabasi, and Duncan J Watts. The structure and dynamics of networks,
volume 19. Princeton University Press, 2011.

Mark EJ Newman and Duncan J Watts. Renormalization group analysis of the small-world network
model. Physics Letters A, 263(4-6):341–346, 1999.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In Advances in neural information
processing systems, pp. 4785–4795, 2017.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. In Advances in neural information
processing systems, pp. 3360–3368, 2016.

Mark Sandler and et al. Inverted residuals and linear bottlenecks: Mobile networks for classification,
detection and segmentation. arXiv:1801.04381, 2018.

9

https://bit.ly/2ONAUqQ
https://openreview.net/forum?id=HJeTo2VFwH

Under review as a conference paper at ICLR 2021

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Wojciech Tarnowski, Piotr Warchoł, Stanisław Jastrzębski, Jacek Tabor, and Maciej A Nowak.
Dynamical isometry is achieved in residual networks in a universal way for any activation function.
arXiv preprint arXiv:1809.08848, 2018.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. In Advances in neural information processing systems, pp. 550–558,
2016.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440, 1998.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. arXiv
preprint arXiv:1906.00586, 2019.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. arXiv preprint arXiv:1904.01569, 2019.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122, 2015.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

A DNNS/CNNS WITH LONG-RANGE LINKS ARE SMALL-WORLD NETWORKS

Note that, the DNNs/CNNs considered in our work have both short-range and long-range links (see
Fig. 1(a)). This kind of topology typically falls into the category of small-world networks which can
be represented as a lattice network G (containing short-range links) superimposed with a random
networkR (to account for long-range links) [Monasson (1999); Newman & Watts (1999)]. This is
illustrated in Fig. 6.

B DERIVATION OF DENSITY OF A CELL

Note that, the maximum number of neurons contributing long-range links at each layer in cell c is
given by tc. Also, for a layer i, possible candidates for long-range links = all neurons up to layer
(i − 2) are wc(i − 1) (see Fig. 1(a)). Indeed, if tc is sufficiently large, initial few layers may not
have tc neurons that can supply long-range links. For these layers, we use all available neurons for
long-range links. Therefore, for a given layer i, number of long-range links (li) is given by:

li =

{
wc(i− 1)× wc if tc > wc(i− 1)

tc × wc otherwise
(3)

where, both cases have been multiplied by wc because once the neurons are randomly selected, they
supply long-range links to all wc neurons at the current layer i (see Fig. 1(a)). Hence, for an entire
cell, total number of neurons contributing long-range links (lc) is as follows:

lc = wc

dc−1∑
i=2

min{wc(i− 1), tc} (4)

10

Under review as a conference paper at ICLR 2021

Short-range links Long-range links

= +

Small-World Network Lattice Network (G) Random Network (R)

Each node has
k short-range

neighbors

…
…

…… … …

…
…

…

…

…

…… … …

…
…

…

…

…

…… … …

…
…

…

= +
CNN architecture with
long-range links

Lattice Network (G) containing
layer-by-layer connections

Random Network (R)
consisting of long-range links

a. Traditional Network Science:

b. A Convolutional Neural Network: wc incoming links at each node (channel)

Figure 6: (a) Small-World Networks in traditional network science are modeled as a superposition
of a lattice network (G) and a random network R [Watts & Strogatz (1998); Newman & Watts
(1999); Monasson (1999)]. (b) A DNN/CNN with both short-range and long-range links can be
similarly modeled as a random network superimposed on a lattice network. Not all links are shown
for simplicity.

On the other hand, the total number of possible long-range links within a cell (L) is simply the sum
of possible candidates at each layer:

L =

dc−1∑
i=2

wc(i− 1)× wc = w2
c

dc−1∑
i=2

(i− 1)

= w2
c [1 + 2 + . . .+ (dc − 2)]

=
w2

c (dc − 1)(dc − 2)

2

(5)

Using Eq. 4 and Eq. 5, we can rewrite Eq. 1 as:

ρc =
2
∑dc−1

i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

(6)

C PROOF OF PROPOSITION 1

Proposition 1 (NN-Mass and average degree of the network (a topological property)). The
average degree of a deep network with NN-Mass m is given by k̂ = wc +m/2.

Proof. As shown in Fig. 6, deep networks with shortcut connections can be represented as small-world
networks consisting of two parts: (i) lattice network containing only the short-range links, and (ii)
random network superimposed on top of the lattice network to account for long-range links. For
sufficiently deep networks, the average degree for the lattice network will be just the width wc of the
network. The average degree of the randomly added long-range links k̄R|G is given by:

k̄R|G =
Number of long-range links added byR

Number of nodes
=
wc

∑dc−1
i=2 min{wc(i− 1), tc}

wcdc

=
m(dc − 1)(dc − 2)

2d2c
(using 2 for one cell)

≈ m

2
(when dc >> 2, e.g., for deep networks)

(7)

Therefore, average degree of the complete model is given by wc +m/2.

11

Under review as a conference paper at ICLR 2021

D PROOF OF PROPOSITION 2

Proposition 2 (NN-Mass and LDI). Given a small deep network fS (depth dS) and a large deep
network fL (depth dL, dL >> dS), both with same NN-Mass m and width wc, the LDI for both
models is equivalent. Specifically, if Σi

S (Σi
L) denotes the singular values of the initial layerwise

Jacobians Ji,i−1 for the small (large) model, then, the mean singular values in both models are
similar; that is, E[Σi

S] ≈ E[Σi
L].

Proof. Consider a matrix M ∈ RH×W with H rows and W columns, and all entries independently
initialized with a Gaussian Distribution N (0, q), we calculate its mean singular value. We first
perform Singular Value Decomposition (SVD) on the given matrix M :

U ∈ RH×H ,Σ ∈ RH×W , V ∈ RW×W = SV D(M)

Σ ∈ RH×W = Diag(σ0, σ1, ..., σK)

Given a row vector ~ui ∈ RH in U , and a row vector ~vi ∈ RW in V , we use the following relations of
SVD in our proof:

σi = ~ui
TM~vi

~ui
T ~ui = 1

~vi
T ~vi = 1

It is hard to directly compute the mean singular value E[σi]. To simplify the problem, consider σ2
i :

σ2
i = σi × σT

i

= (~ui
TM~vi)(~ui

TM~vi)
T

= ~ui
TM~vi~vi

TMT ~ui

= ~ui
TMMT ~ui

(8)

Substituting B = MMT (where, B ∈ RH×H), and using mij to represent the ijth entry of the given
matrix M , the entry bij in B is given by:

bij =

H∑
k=1

m2
ik, when i = j

H∑
k=1

mikmkj , when i 6= j

Since mij follows an independent and identical Gaussian Distribution N (0, q), the diagonal entries
of B (bii) follow a chi-square distribution with H degrees of freedom:

bii ∼ χ2(H)

For the non-diagonal entries of B, i.e. i 6= j, suppose zk = xy, x = mik, and y = mkj ; then the
probability density function (PDF) of z is as follows:

PDFZ(zk) =

∫ ∞
−∞

PDFX(t)

|t|
PDFY (

zk
t

)dt =

∫ ∞
−∞

1

2π|t|
e−

t4+z2k
2t2 dt (9)

Based on probability density function of zk, the expectation of zk is given by:

E[zk] =

∫ ∞
−∞

PDFZ(zk)zkdzk

As shown in Eq. 9, PDFZ(zk) is an even function, then PDFZ(zk)zk is an odd function; therefore,
E[zk] = 0 and, thus, E[bij] =

∑H
k=1 E[zk] = 0, when i 6= j.

12

Under review as a conference paper at ICLR 2021

Figure 7: Mean Singular Value E[σi] only increases with H while varying W . For small-enough
ranges, the E[σi] vs. H relationship can be approximated by a linear trend.

Hence, we can now get the expectation for each entry in the Matrix B: E[bij] =

{
H, i = j

0, i 6= j
; that is:

E[B] = Diag(bii) = HI (10)
where, I ∈ RH×H is an identity matrix. Combining Eq. 8 and Eq. 10, we get the following results:

E[σ2
i] = E[~ui

TMMT ~ui]

= E[~ui
T]E[MMT]E[~ui]

= E[~ui
T]E[B]E[~ui]

= E[~ui
T]HIE[~ui]

= HE[~ui
T ~ui]

= H

(11)

Therefore, we have:
E[σ2

i] = H (12)

Eq. 12 states that, for a Gaussian M ∈ RH×W , E[σ2
i] is dependent on number of rows H , and

does not depend on W. To empirically verify this, we simulate several Gaussian matrices of widths
W ∈ {10, 20, ..., 100} and H ∈ (0, 1000). We plot E[σi] vs. H in Fig. 7. As evident, for different
W , the mean singular values are nearly coinciding, thereby showing that mean singular value indeed
depends on H . Also, for small-enough ranges of H , the relationship between E[σi] and H can be
approximated with a linear trend.

To see the above linear trend between the mean singular values (E[σi]) and H , we now simulate a
more realistic scenario that will happen in the case of initial layerwise Jacobian matrices (Ji,i−1).
As explained in the main paper, the layerwise Jacobians will theoretically have (wc + m/2, wc)
dimensions, where wc is the width of DNN and m is the NN-Mass. That is, now M = Ji,i−1,
W = wc, andH = wc+m/2. Hence, in Fig. 8, we plot mean singular values for Gaussian distributed
matrices of size (wc +m/2, wc) vs. NN-Mass (m). As evident, for wc ranging from 8 to 256, mean
singular values increase linearly with NN-Mass. We will explicitly demonstrate in our experiments
that this linear trend holds true for actual non-linear deep networks.

Finally, since the Jacobians have a size of (wc + m/2, wc), Eq. 12 suggests that its mean singular
values should depend on H = wc +m/2. Hence, when two DNNs have same NN-Mass and width,
their mean singular values should be similar, i.e., E[Σi

S] ≈ E[Σi
L] (irrespective of their depths).

E CNN DETAILS

In contrast to our MLP setup which contains only a single cell of width wc and depth dc, our CNN
setup contains three cells, each containing a fixed number of layers, similar to prior works such as

13

Under review as a conference paper at ICLR 2021

Figure 8: To simulate more realistic Jacobian matrices, we calculate the mean singular value of matrix
M with size [wc +m/2, wc] (wc is given by the Width in the title of each sub-figure). Clearly, E[σi]
varies linearly with corresponding NN-Mass for all wc values. Moreover, as wc increases, the mean
singular values (E[σi]) increase. Both observations show that E[σi] increases with k̂ = wc +m/2

(since the height of the Jacobian matrix H = k̂ depends on both wc and m).

Densenets [Huang et al. (2017)], Resnets [He et al. (2016), etc]. However, topologically, a CNN is
very similar to MLP. Since in a regular convolutional layer, channel-wise convolutions are added to
get the final output channel (see Fig. 1(c)), each input channel contributes to each output channel at
all layers. This is true for both long-range and short-range links; this makes the topological structure
of CNNs similar to our MLP setup shown in Fig. 1(a) in the main paper (the only difference is that
now each channel is a node in the network and not each neuron).

In the case of CNNs, following the standard practice [Simonyan & Zisserman (2014)], the width (i.e.,
the number of channels per layer) is increased by a factor of two at each cell as the feature map height
and width are reduced by half. After the convolutions, the final feature map is average-pooled and
passed through a fully-connected layer to generate logits. The width (i.e., the number of channels at
each layer) of CNNs is controlled using a width multiplier, wm (like in Wide Resnets [Zagoruyko &
Komodakis (2016)] and Mobilenets [Howard et al. (2017)]). Base #channels in each cell is [16,32,64].
For wm = 2, cells will have [32,64,128] channels per layer.

F EXAMPLE: COMPUTING NN-MASS FOR A CNN

Given a CNN architecture shown in Fig. 9, we now calculate its NN-Mass. This CNN consists
of three cells, each containing dc = 4 convolutional layers. The three cells have a width, (i.e.,
the number of channels per layer) of 2, 3, and 4, respectively. We denote the network width as
wc = [2, 3, 4]. Finally, the maximum number of channels that can supply long-range links is given
by tc = [3, 4, 5]. That is, the first cell can have a maximum of three long-range link candidates per
layer (i.e., previous channels that can supply long-range links), the second cell can have a maximum
of four long-range link candidates per layer, and so on. Moreover, as mentioned before, we randomly
choose min{wc(i− 1), tc} channels for long-range links at each layer. The inset of Fig. 9 shows how
long-range links are created by concatenating the feature maps from previous layers.

Hence, using dc = 4, wc = [2, 3, 4], and tc = [3, 4, 5] for each cell c, we can directly use Eq. 2 to
compute the NN-Mass value. Putting the values in the equations, we obtain m = 28. Consequently,
the set {dc, wc, tc} can be used to specify the architecture of any CNN with concatenation-type

14

Under review as a conference paper at ICLR 2021

1

2

3

4

5

6

7

8

tc = 3

tc = 4

tc = 5

Not all links are shown above. If a
channel is selected, it contributes
long-range links to all output
channels of the current layer

1

2

3

4

5

6

1

2

3

4

5

6

Concatenate feature
maps like Densenets

Average
Pool

Logits

Outputs after
softmax

…

… …

Fully-connected

Cell 1
Cell 2

Cell 3

Layer i=2: Long-range links (violet) from 4
previous channels because min{wc(i-1), tc} = 4

No long-range links between cells

Layer i: 0 1 2 3

Layer i=3: Long-range links (green) from 5
previous channels because min{wc(i-1), tc} = 5

Initial
conv

Max previous channels
for long-range links

All links

dc =4 layers

w
c

=
3

Figure 9: An example of CNN to calculate NN-Density and NN-Mass. Not all links are shown in the
main figure for simplicity. The inset shows the contribution from all long-range and short-range links:
The feature maps for randomly selected channels are concatenated at the current layer (similar to
Densenets [Huang et al. (2017)]). At each layer in a given cell, the maximum number of channels
that can contribute long-range links is given by tc.

long-range links. Therefore, to perform experiments, we vary {dc, wc, tc} to obtain architectures
with different NN-Mass and NN-Density values.

G COMPLETE DETAILS OF THE EXPERIMENTAL SETUP

G.1 MLP SETUP

We now explain more details on our MLP setup for the MNIST dataset. We create random archi-
tectures with different NN-Mass and #Params by varying tc and dc. Moreover, we just use a single
cell for all MLP experiments. We fix wc = 8 and vary dc ∈ {16, 20, 24, 28, 32}. For each depth
dc, we vary tc ∈ {0, 1, 2, . . . , 14}. Specifically, for a given {dc, wc, tc} configuration, we create
random long-range links at layer i by uniformly sampling min{wc(i−1), tc} neurons out of wc(i−1)
activation outputs from previous {0, 1, . . . , i− 2} layers.

We train these random architectures on the MNIST dataset for 60 epochs with Exponential Linear
Unit (ELU) as the activation function. Further, each {dc, wc, tc} configuration is trained five times
with different random seeds. In other words, during each of the five runs of a specific {dc, wc, tc}
configuration, the shortcuts are initialized randomly so these five models are not the same. This
kind of setup is used to validate that NN-Mass is indeed a topological property of deep networks,
and that the specific connections inside the random architectures do not affect our conclusions. The
results are then averaged over all runs: Mean is plotted in Fig. 2 and standard deviation, which is
typically low, is also given in Fig. 2 caption. Overall, this setup results in many MLPs with different
#Params/FLOPS/layers.

G.2 CNN SETUP

Much of the setup for creating long-range links in CNNs is the same as that for MLPs, except we have
three cells instead of just one. As explained in Appendix E, the width of the three cells is given as
wm× [16, 32, 64], where wm is the width multiplier. Note that, since we have three cells of different
widths (wc), tc also has a different value for each cell. The depth per cell dc is the same for all cells;
hence, the total depth is given by 3dc + 4. For instance, for 31-layer model, our dc = 9. For most of
our experiments, we set the total depth of the CNN as {31, 40, 49, 64}. Some of the experiments also
use a total depth of {28, 43, 52, 58}.

15

Under review as a conference paper at ICLR 2021

Table 1: CNN architecture details (width multiplier = 2)

Number
of Cells

Max. Long-Range
Link Candidates (tc) Depth Width Multiplier

3

[10,35,50]
[20,45,75]
[30,50,100]
[40,60,120]
[50,70,145]

31 2

3

[20,40,70]
[30,50,100]
[40,80,125]
[50,105,150]
[60,130,170]

40 2

3

[25,50,90]
[35,80,125]
[50,105,150]
[70,130,170]
[90,150,210]

49 2

3

[30,80,117]
[50,110,150]
[70,140,200]
[90,175,250]
[110,215,300]

64 2

Table 2: CNN architecture details (width multiplier = 1)

Number
of Cells

Max. Long-Range
Link Candidates (tc) Depth Width Multiplier

3

[5,8,12]
[10,30,50]
[30,40,70]
[41,61,91]
[50,90,110]

31 1

3

[5,9,12]
[11,31,51]
[31,41,71]
[41,62,92]
[50,90,109]

40 1

3

[5,10,11]
[11,31,52]
[31,41,73]
[42,62,93]
[50,90,109]

49 1

3

[5,10,12]
[11,32,53]
[31,42,74]
[42,62,94]
[49,90,110]

64 1

Again, we conduct several experiments for different {dc, wc, tc} values which yield many random
CNN architectures. The random long-range link creation process is the same as that in MLPs and, for
CNN experiments, we have repeated all experiments three times with different random seeds. Specific
numbers used for {dc, wc, tc} are given in Tables 1, 2, and 3. Each row in all tables represents a
different {dc, wc, tc} configuration. Of note, all CNNs use ReLU activation function and Batch Norm
layers.

For CNNs, we verify our findings on CIFAR-10 and CIFAR-100 image classification datasets. The
learning rate for all models is initialized to 0.05 and follows a cosine-annealing schedule at each
epoch. The minimum learning rate is 0.0 (see the end of Section H.9 for details on how we fixed
these hyper-parameter values). Similar to the setup in NAS prior works, the cutout is used for data
augmentation. All models are trained in Pytorch on NVIDIA 1080-Ti, Titan Xp, and 2080-Ti GPUs.
This completes the experimental setup.

16

Under review as a conference paper at ICLR 2021

Table 3: CNN architecture details (width multiplier = 3)

Number
of Cells

Max. Long-Range
Link Candidates (tc) Depth Width Multiplier

3

[10,30,50]
[40,60,90]
[70,90,130]
[100,120,170]
[130,150,210]

31 3

3

[11,31,51]
[42,62,92]
[72,93,133]
[103,123,173]
[133,153,212]

40 3

3

[11,31,52]
[43,63,93]
[73,95,135]
[104,124,176]
[134,154,214]

49 3

3

[12,32,52]
[44,64,95]
[76,96,136]
[106,126,178]
[135,156,216]

64 3

H ADDITIONAL RESULTS

H.1 MORE MNIST TRAINING CONVERGENCE RESULTS

We pick two groups of three models each – (X, Y, and Z) – and – (D, E, and F) and plot their training
accuracy vs. epochs. Models X and Y have similar NN-Mass but Y has more #Params and depth
than X. Model Z has far fewer layers and nearly the same #Params as X, but has higher NN-Mass.
Fig. 10(c) shows the training convergence results for all three models. As is evident, the training
convergence of model X (8.3K Params, 24-layers) nearly coincides with that of model Y (9.0K
Params, 32-layers). Moreover, even though model Z (8.3K Params, 16-layers) is shallower than
the 32-layer model Y (and has far fewer #Params), training convergence of Z is significantly faster
than that of Y (due to higher NN-Mass and, therefore, better LDI). These results clearly show the
evidence towards theoretical insights in Proposition 2, and emphasize the importance of topological
properties of neural architectures in characterizing gradient propagation and model performance.
Similar observations are found among models D, E, and F.

H.2 RESULTS ON SYNTHETIC DATA

In this section, we design a few synthetic experiments for MLP experiments to verify that our
observations in Section 4.2 hold for diverse datasets. Specifically, we design three datasets – Seg20,
Seg30, and Circle20 (or just Circle). Fig. 11(a) illustrates the Seg4 dataset where the range [0. 1] is
broken into 4 segments. Similarly, Seg20 (Seg30) breaks down the linear line into 20 (30) segments.
The classification problem has two classes (each alternate segment is a single class).

Fig. 11(b) shows the circle dataset where a unit circle is broken down into concentric circles (regions
between circles make a class and we have two total classes). The details of these datasets are given in
Table 4. Of note, we have used the ReLU activation function for these experiments (unlike ELU used
for MNIST).

For the above synthetic experiments, we once again conduct the following experiments: (i) We
explore the impact of varying #Params and NN-Mass on the test accuracy. (ii) We demonstrate how
LDI depends on NN-Mass and #Params.

Test Accuracy As shown in Fig. 12(a, b, c) and Fig. 12(d, e, f), NN-Mass is a much better
metric to characterize the model performance of DNNs than the number of parameters. Again,

17

Under review as a conference paper at ICLR 2021

(a) (b)

(c) (d)

Figure 10: More MNIST training convergence results (a, b are repeated from Fig. 2 but have been
annotated with different models (X, Y, Z, D, E, F)): (a) Models with different #Params achieve similar
test accuracy. (b) Test accuracy curves of models with different depths/#Params concentrate when
plotted against NN-Mass (test accuracy std. dev.∼ 0.05-0.34%). (c,d) Models X and Y have the
same NN-Mass and achieve very similar training convergence, even though they have highly different
#Params and depth. Model Z has significantly fewer layers than Y but the same #Params and yet
achieves faster training convergence than Y (Z has higher NN-Mass than Y). The above conclusions
hold true for models D, E, and F. Note that, the training convergence curves for similar NN-Mass
models are coinciding.

Table 4: Description of our generated Synthetic Datasets

Dataset name Description: Training Set, i ∈ [1, 60000]; Test Set, i ∈ [1, 12000]

Seg20 Feature: [Xi, Xi], Label: Yi, Xi = sample(1
20 [b i

20c, b
i
20c + 1]),

Yi = b i
20cmod2

Seg30 Feature: [Xi, Xi], Label: Yi, Xi = sample(1
30 [b i

30c, b
i
30c + 1]),

Yi = b i
30cmod2

Circle (Cir-
cle20)

Feature: [X1i, X2i], Label: Yi, X1i = Li ∗ cos(rand_num), X2i =
Li ∗ sin(rand_num), Li = sample(1

20 [b i
20c, Yi = b i

20cmod2

we quantitatively analyze the above results by generating a linear fit between test accuracy vs.
log(#Params) and log(NN-Mass). Similar to the MNIST case, our results show that R2 of test
accuracy vs. NN-Mass is much higher than that for #Params.

18

Under review as a conference paper at ICLR 2021

iX

iX

1

4

2

4

3

4

1

1

4

2

4

3

4

1

0

0iY =

1iY =

1

4

2

4

3

4

1

1

4

2

4

3

4

1

0

0iY =

1iY =

2iX

1iX

(a) Seg4

iX

iX

1

4

2

4

3

4

1

1

4

2

4

3

4

1

0

0iY =

1iY =

1

4

2

4

3

4

1

1

4

2

4

3

4

1

0

0iY =

1iY =

2iX

1iX

(b) Circle4

Figure 11: Illustration of synthetic datasets Seg4 and Circle4: (a). Seg20 (Seg30) dataset is similar to
Seg4, but divides the [0, 1] range into 20 (30) segments. (b). Circle (or Circle20) dataset is similar to
Circle4, but divides a unit circle into 20 concentric circles.

(a) Linear: Seg=20 (b) Linear: Seg=30 (c) Circular: Circle20

(d) Linear: Seg=20 (e) Linear: Seg=30 (f) Circular: Circle20

Figure 12: Synthetic results: (a, b, c) Models with different #Params achieve similar test accuracy
across all synthetic datasets. (d, e, f) Test accuracy curves for the same set of models come closer
together when plotted against NN-Mass.

Layerwise Dynamical Isometry Fig. 13 shows the LDI results for the Circle20 dataset. Again,
higher NN-Mass leads to higher initial singular value. Moreover, NN-Mass is better correlated with
LDI than #Params. Hence, this further emphasizes why networks with similar NN-Mass (instead of
#Params) result in a more similar model performance.

19

Under review as a conference paper at ICLR 2021

Figure 13: Synthetic results (Circle20 datasets): Mean singular value of Ji,i−1 is much better
correlated with NN-Mass than with #Params.

0.10 0.15 0.20 0.25 0.30

NN-Density

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Density

P

R

Q

Figure 14: CIFAR-10 Width Multiplier wm = 2: Shallower models with higher density can reach
comparable accuracy to deeper models with lower density. This does not help since models with
different depths achieve comparable accuracies at different densities.

H.3 IMPACT OF VARYING NN-DENSITY

As a baseline, we show that NN-Density cannot predict the accuracy of models with different depths.
We train different deep networks with varying NN-Density (see Table 1 models in Appendix G).
Fig. 14 shows that shallower models with higher density can reach accuracy comparable to deeper
models with lower density (which is quite reasonable since the shallower models are more densely
connected compared to deeper networks, thereby promoting more effective information flow in
shallower CNNs despite having significantly fewer parameters). However, NN-Density alone does
not identify models (with different sizes/compute) that achieve similar accuracy: CNNs with different
depths achieve comparable test accuracies at different NN-Density values (e.g., although a 31-layer
model with ρavg = 0.3 performs close to 64-layer model with ρavg = 0.1, a 49-layer model with
ρavg = 0.2 already outperforms the test accuracy of the above 64-layer model; see models P, Q, R in
Fig. 14). Therefore, NN-Density alone is not sufficient.

H.4 IMPACT OF VARYING WIDTH MULTIPLIER ON CIFAR-10

We now explore the impact of varying model width. In our CNN setup, we control the width of the
models using width multipliers (wm)5 [Zagoruyko & Komodakis (2016); Howard et al. (2017)]. The
above results are for wm = 2. For lower width CNNs (wm = 1), Fig. 15(a) shows that models in
boxes U and V concentrate into the buckets W and Z, respectively (see also other buckets). Note
that, the 31-layer models do not fall within the buckets (see blue line in Fig. 15(b)). We hypothesize
that this could be because the capacity of these models is too small to reach high accuracy. This
does not happen for CNNs with higher width. Specifically, Fig. 15(c) shows the results for wm = 3.
As evident, models with 6M-7M parameters achieve comparable test accuracy as models with up

5Base #channels in each cell is [16,32,64]. For wm = 2, cells will have [32,64,128] channels per layer.

20

Under review as a conference paper at ICLR 2021

to 16M parameters (e.g., bucket Y in Fig. 15(d) contains models ranging from {31 layers, 6.7M
parameters}, all the way to {64 layers, 16.7M parameters}). Again, for all widths, the goodness-of-fit
(R2) for linear fit between test accuracy and log(NN-Mass) achieves high values (0.74-0.90 as shown
in Fig. 16 in Appendix H.5).

0.5 1.0 1.5 2.0 2.5

Number of Parameters (in Millions)

94.50

94.75

95.00

95.25

95.50

95.75

96.00

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. Number of Parameters -- wm = 1

a.

U

V

100 200 300 400 500

NN-Mass

94.50

94.75

95.00

95.25

95.50

95.75

96.00

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass -- wm = 1

b.

W

Y
Z

X

Higher Width (wm=3)Lower Width (wm=1)

200 400 600 800 1000

NN-Mass

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass -- wm = 3

d.

W

Y

Z

X

5.0 7.5 10.0 12.5 15.0 17.5

Number of Parameters (in Millions)

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. Number of Parameters -- wm = 3

c.

Figure 15: Similar observations hold for low- (wm = 1) and high-width (wm = 3) models: (a,
b) Many models with very different #Params (boxes U and V) cluster into buckets W and Z (see also
other buckets). (c, d) For high-width, we observe a significantly tighter clustering compared to the
low-width case. Results are reported as the mean of three runs (std. dev. ∼ 0.1%).

H.5 R-SQUARED OF CIFAR-10 ACCURACY VS. NN-MASS

Fig. 16 shows the impact of increasing model widths on R2 of linear fit between test accuracy and
log(NN-Mass).

H.6 COMPARISON BETWEEN NN-MASS AND PARAMETER COUNTING FOR CNNS

For MLPs, we have shown that NN-Mass significantly outperforms #Params for predicting model
performance. For CNNs, we quantitatively demonstrate that while parameter counting can be a useful
indicator of test accuracy for models with low width (but still not as good as NN-Mass), as the width
increases, parameter counting completely fails to predict test accuracy. Specifically, in Fig. 17(a), we
fit a linear model between test accuracy and log(#parameters) and found that the R2 for this model
is 0.76 which is slightly lower than that obtained for NN-Mass (R2 = 0.84, see Fig. 17(b)). When
the width multiplier of CNNs increases to three, parameter counting completely fails to fit the test
accuracies of the models (R2 = 0.14). In contrast, NN-Mass significantly outperforms parameter
counting for wm = 3 as it achieves an R2 = 0.90. This demonstrates that NN-Mass is indeed a
significantly stronger indicator of model performance than parameter counting.

H.7 RESULTS FOR CIFAR-100

Results for CIFAR-100 dataset are shown in Fig. 18. As evident, several models achieve similar
accuracy despite having highly different number of parameters (e.g., see models within box W in
Fig. 18(a)). Again, these models get clustered together when plotted against NN-Mass. Specifically,
models within box W in Fig. 18(a) fall into buckets Y and Z in Fig. 18(b). Hence, models that got
clustered together for CIFAR-10 dataset, also get clustered for CIFAR-100. To quantify the above
results, we fit a linear model between test accuracy and log(NN-Mass) and, again, obtain a high
R2 = 0.84 (see Fig. 18(c)). Therefore, our observations hold true across multiple image classification
datasets.

a. b.

4.0 4.5 5.0 5.5 6.0 6.5

log(NN-Mass)

94.50

94.75

95.00

95.25

95.50

95.75

96.00

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass) -- wm = 1. R-squared = 0.74

5.5 6.0 6.5 7.0

log(NN-Mass)

96.0

96.2

96.4

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass). R-squared = 0.84

5.5 6.0 6.5 7.0

log(NN-Mass)

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass) -- wm = 3. R-squared = 0.90

c.

Figure 16: Impact of varying width: (a) Width multiplier, wm = 1, (b) wm = 2, and (c) wm = 3. As
width increases, the capacity of small (shallower) models increases and, therefore, the accuracy-gap
between models of different depths reduces. Hence, the R2 for linear fit increases as width increases.

21

Under review as a conference paper at ICLR 2021

1.0 1.5 2.0 2.5

log(#Parameters)

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

96.7

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(#Parameters) -- wm = 2. R-squared = 0.76

a. b.

5.5 6.0 6.5 7.0

log(NN-Mass)

96.0

96.2

96.4

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass). R-squared = 0.84

5.5 6.0 6.5 7.0

log(NN-Mass)

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass) -- wm = 3. R-squared = 0.90

d.c.

1.5 2.0 2.5 3.0

log(#Parameters)

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(#Parameters) -- wm = 3. R-squared = 0.14

Figure 17: NN-Mass as an indicator of model performance compared to parameter counting. (a) For
wm = 2, log(#parameters) fits the test accuracy with an R2 = 0.76. (b) For the same wm = 2
case, log(NN-Mass) fits the test accuracy with a higher R2 = 0.84. (c) For higher width (wm = 3),
parameter counting completely fails to fit the test accuracy of various models (R2 = 0.14). (d) In
contrast, NN-Mass still fits the accuracies with a high R2 = 0.9.

2 4 6 8 10 12

Number of Parameters (in Millions)

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. Number of Parameters

200 400 600 800 1000 1200

NN-Mass

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass
a. b.

W Y

Z

X

5.5 6.0 6.5 7.0

log(NN-Mass)

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

81.0

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass). R-squared = 0.84
c.

Figure 18: Similar results are obtained for CIFAR-100 (wm = 2). (a) Models in box W have highly
different #parameters but achieve similar accuracy. (b) These models get clustered into buckets Y
and Z. (c) The R2 value for fitting a linear regression model is 0.84 which shows that NN-Mass is a
good predictor of test accuracy. Results are reported as the mean of three runs (std. dev. ∼ 0.2%).

H.8 RESULTS FOR FLOATING POINT OPERATIONS (FLOPS)

All results for FLOPS (of CNN architectures in Tables 1, 2, and 3) are shown in Fig. 19. As evident,
models with highly different number of FLOPS often achieve similar test accuracy. As shown earlier,
many of these CNN architectures cluster together when plotted against NN-Mass.

H.9 NN-MASS FOR DIRECTLY DESIGNING COMPRESSED ARCHITECTURES

Our theoretical and empirical evidence shows that NN-Mass is a reliable indicator for models which
achieve a similar accuracy despite having different number of layers and parameters. Therefore, this
observation can be used for directly designing efficient CNNs as follows:

• First, train a reference big CNN (with a large number of parameters and layers) which
achieves very high accuracy on the target dataset. Calculate its NN-Mass (denoted mL).

• Next, create a completely new and significantly smaller model using far fewer parameters
and layers, but with a NN-Mass (mS) comparable to or higher than the large CNN. This
process is very fast as the new model is created without any a priori training. For instance,
to design an efficient CNN of width wc and depth per cell dc and NN-Mass mS ≈ mL,

22

Under review as a conference paper at ICLR 2021

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Floating Point Operations (GFLOPS)

94.0

94.5

95.0

95.5

96.0

96.5

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. FLOPS

31-layers

40-layers

49-layers

64-layers

0 100 200 300 400 500 600

NN-Mass

94.0

94.5

95.0

95.5

96.0

96.5

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass

31-layers

40-layers

49-layers

64-layers

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Floating Point Operations (GFLOPS)

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

96.7

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. FLOPS

31-layers

40-layers

49-layers

64-layers

200 400 600 800 1000 1200 1400

NN-Mass

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

96.7

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass

31-layers

40-layers

49-layers

64-layers

1 2 3 4 5 6 7

Floating Point Operations (GFLOPS)

96.0

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. FLOPS

31-layers

40-layers

49-layers

64-layers

200 400 600 800 1000

NN-Mass

96.0

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass

31-layers

40-layers

49-layers

64-layers

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Floating Point Operations (GFLOPS)

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. FLOPS

31-layers

40-layers

49-layers

64-layers

200 400 600 800 1000 1200 1400

NN-Mass

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass

31-layers

40-layers

49-layers

64-layers

a. CIFAR-10 width multiplier = 1

b. CIFAR-10 width multiplier = 2

c. CIFAR-10 width multiplier = 3

d. CIFAR-100 width multiplier = 2

Figure 19: Models with highly different number of FLOPS achieve similar test accuracies. The CNN
architectures are the same as those used in Figures 4, 15, and 18. The pattern for FLOPS is very
similar to that for the number of parameters. Hence, these results show that models with both highly
different number of parameters and FLOPS can achieve similar test accuracy. Again, these models
cluster together when plotted against NN-Mass.

we only need to find how many long-range links to add in each cell. Since, NN-Mass has
a closed form equation (i.e., Eq. 2), a simple search over the number of long-range links
can directly determine NN-Mass of various architectures. Then, we select the architecture
with the NN-Mass close to that of the reference CNN. Unlike current manual or NAS-based
methods, our approach does not require training of individual architectures during the search.

• Since NN-Mass of the smaller model is similar to that of the reference CNN, our theoretical
as well as empirical results suggest that the newly generated model will lose only a small

23

Under review as a conference paper at ICLR 2021

Table 5: Exploiting NN-Mass for Model Compression on CIFAR-10 Dataset. All our experiments
are reported as mean ± standard deviation of three runs. DARTS results are from [Liu et al. (2018)].

Model Architecture design
method

#Parameters/
#FLOPS #layers Specialized

search space? NN-Mass Test Accuracy

DARTS (first order) NAS [Liu et al. (2018)] 3.3M/– – Yes – 97.00± 0.14%
DARTS (second order) NAS [Liu et al. (2018)] 3.3M/– – Yes – 97.24 ± 0.09%

Train large models
to be compressed

Manual 11.89M/3.63G 64 No 1126 97.02± 0.06%
Manual 8.15M/2.54G 64 No 622 96.99± 0.07%

Proposed Directly via NN-Mass 5.02M/1.59G 40 No 755 97.00 ± 0.06%
Proposed Directly via NN-Mass 4.69M/1.51G 37 No 813 96.93 ± 0.10%
Proposed Directly via NN-Mass 3.82M/1.2G 31 No 856 96.82 ± 0.05%

amount of accuracy, while significantly reducing the model size. To validate this, we train
the new, significantly smaller model and compare its test accuracy against that of the original
large CNN.

We train our models for 600 epochs on the CIFAR-10 dataset (similar to the setup in DARTS [Liu
et al. (2018)]). Table 5 summarizes the number of parameters, FLOPS, and test accuracy of various
CNNs. We first train two large CNN models of about 8M and 12M parameters with NN-Mass of
622 and 1126, respectively; both of these models achieve around 97% accuracy. Next, we train three
significantly smaller models: (i) A 5M parameter model with 40 layers and a NN-Mass of 755, (ii) A
4.6M parameter model with 37 layers and a NN-Mass of 813, and (iii) A 31-layer, 3.82M parameter
model with a NN-Mass of 856.

We set the NN-Mass of our smaller models between 750-850 (i.e., within the 600-1100 range of the
manually-designed CNNs). Interestingly, we do not need to train any intermediate architectures to
arrive at the above efficient CNNs. Indeed, classical NAS involves an initial “search-phase” over a
space of operations to find the architectures [Zoph et al. (2018)]. In contrast, our efficient models
can be directly designed using the closed form Eq. 2 of NN-Mass (as explained in the beginning of
this section), which does not involve any intermediate training or even an initial search-phase like
prior NAS methods. As explained earlier, this is possible because NN-Mass can identify models with
similar performance a priori (i.e., without any training)!

As evident from Table 5, our 5M parameter model reaches a test accuracy of 97.00%, while the 4.6M
(3.82M) parameter model obtains 96.93% (96.82%) accuracy on the CIFAR-10 test set. Clearly, all
these accuracies are either comparable to, or slightly lower (∼ 0.2%) than the large CNNs, while
reducing #Params/FLOPS by up to 3× compared to the 11.89M-parameter/3.63G-FLOPS model.
Moreover, DARTS [Liu et al. (2018)], a competitive NAS baseline, achieves a comparable (97%)
accuracy with slightly lower 3.3M parameters. However, the search space of DARTS (like all other
NAS techniques) is very specialized and utilizes many state-of-the-art innovations such as depth-wise
separable convolutions [Howard et al. (2017)], dilated convolutions [Yu & Koltun (2015)], etc. On
the contrary, we use regular convolutions with only concatenation-type long-range links in our work
and present a theoretically grounded approach. Indeed, our current objective is not to beat DARTS
(or any other NAS technique), but rather underscore the topological properties that should guide the
efficient architecture design process. Ultimately, this theoretical knowledge (and its extensions to
other kinds of networks) can help us drastically reduce the search space of NAS by directly removing
architectures that are unlikely to improve accuracy.

A note on hyper-parameter (e.g., initial learning rate) optimization. Note that, throughout this
work, we optimized the hyper-parameters such as initial learning rate for the largest models and then
used the same initial learning rate for the smaller models. Hence, if these hyper-parameters were
further optimized for the smaller models, the gap between the accuracy curves in Figures 15, 18, 19,
etc., would reduce further (i.e., the clustering on NN-Mass plots would further improve). Similarly,
the accuracy gap between compressed models and the large CNNs would reduce even more in Table 5
if the hyper-parameters were optimized for the smaller models as well. We did not optimize the
initial learning rates, etc., for the smaller models as it would have resulted in an explosion in terms of
number of experiments. Hence, since our focus is on topological properties of CNN architectures, we
fixed the other hyper-parameters as described above.

24

	Introduction
	Background and Related Work
	Topological Properties of Neural Architectures
	Modeling DNNs via Network Science
	Proposed Metrics
	Relationships among topology, NN-Mass and gradient propagation

	Experimental Setup and Results
	Experimental Setup
	MLP Results (MNIST/Synthetic Data): Topology vs. Gradient Propagation
	CNN Results on CIFAR-10, CIFAR-100, and Imagenet Datasets

	Conclusion
	DNNs/CNNs with long-range links are Small-World Networks
	Derivation of Density of a Cell
	Proof of Proposition 1
	Proof of Proposition 2
	CNN Details
	Example: Computing NN-Mass for a CNN
	Complete Details of the Experimental Setup
	MLP Setup
	CNN Setup

	Additional Results
	More MNIST training convergence results
	Results on synthetic data
	Impact of Varying NN-Density
	Impact of varying width multiplier on CIFAR-10
	R-Squared of CIFAR-10 Accuracy vs. NN-Mass
	Comparison between NN-Mass and Parameter Counting for CNNs
	Results for CIFAR-100
	Results for Floating Point Operations (FLOPS)
	NN-Mass for directly designing compressed architectures

