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ABSTRACT

Reinforcement learning can provide effective reasoning for sequential decision-
making problems with variable dynamics. Such reasoning in practical imple-
mentation, however, poses a persistent challenge in interpreting the reward func-
tion and corresponding optimal policy. Consequently, representing sequential
decision-making problems as probabilistic inference can have considerable value,
as, in principle, the inference offers diverse and powerful mathematical tools to
infer the stochastic dynamics whilst suggesting a probabilistic interpretation of
policy optimization. In this study, we propose a novel Adaptive Wasserstein Vari-
ational Optimization, namely AWaVO, to tackle these interpretability challenges.
Our approach uses formal methods to achieve the interpretability of guaranteed
convergence, training transparency, and sequential decisions. To demonstrate its
practicality, we showcase guaranteed interpretability including a global conver-
gence rate Θ(1/

√
T ) not only in simulation but also in real-world robotic tasks.

In comparison with state-of-the-art benchmarks including TRPO-IPO, PCPO and
CRPO, we empirically verify that AWaVO offers a reasonable trade-off between
high performance and sufficient interpretability. The real-world hardware imple-
mentation is demonstrated via an anonymous video 1.

1 INTRODUCTION

The representation of sequential decision-making problems as Reinforcement Learning (RL) or op-
timal control provides an effective means of reasoning optimal policies or control strategies in the
presence of uncertainties Levine (2018). Nevertheless, such reasoning encounters a persistent diffi-
culty to create a convincing interpretation of the sequential decision-making and its corresponding
optimal policies Devidze et al. (2021); Levine (2022). This challenge in comprehension poses a
significant barrier to the real-world implementation and adoption of RL in domains like advanced
manufacturing Napoleone et al. (2020), autonomous systems Fernandez-Llorca & Gómez (2023),
healthcare Albahri et al. (2023), and financial trading McNamara (2016).

Key Challenges. The complexity of interpretability within the context of RL can be conceptu-
alized through three distinct phases: a. Guarantee of convergence ensures that a RL framework
converges towards an optimal policy, e.g., in an asymptotic manner. b. Transparency in conver-
gence (or training) focuses on discerning the underlying mechanism through which a RL algorithm
achieves convergence towards an optimal or nearly optimal policy. An instance is the convergence
rate, where, based on a given number of training iterations, the rate enables the prediction of the
expected level of convergence with a certain degree of confidence. c. Interpretation of decisions
involves clarifying the extent to which latent factors influence the sequential decisions made, which
is an aspect of paramount importance particularly in instances where decisions lead to unfavor-
able outcomes. Moreover, due to legal mandates in industries, such as ensuring the trustworthiness
of self-driving vehicles Fernández Llorca & Gómez (2021); Fernandez-Llorca & Gómez (2023),
aerospace engineering Brat (2021); Torens et al. (2022), and high-frequency trading McNamara
(2016), this facet of interpretation is of even greater significance.

1https://youtu.be/LZJs1U778XU
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One widely adopted approach to achieving model interpretability involves the use of post-hoc expla-
nation methods. These methods provide retrospective rationales for model predictions, often through
the creation of saliency maps or exemplars, as discussed in previous research Lipton (2018); Kenny
et al. (2021). These approaches, while popular, can sometimes yield incomplete or inaccurate expla-
nations Slack et al. (2020). In response to these limitations, recent research has shifted focus towards
intrinsic interpretability, as detailed in prior studies Rudin (2019); Kenny et al. (2022). The funda-
mental idea behind this shift is to develop inherently interpretable models, allowing for a transparent
and understandable view of the decision-making process. This transparency enables the calibration
of user trust and facilitates the prediction of the system’s capabilities, as outlined in Key Challenges.

To our best knowledge, we present the first intrinsically interpretable constrained RL framework by
addressing sequential decision-making problems through the lens of probabilistic inference. Specif-
ically, we reframe constrained RL as Wasserstein variational optimization, leveraging an enhanced
foundational inference framework known as augmented Probabilistic Graphical Models (PGMs),
as illustrated in Figure 1 (Section 3). Our proposed Adaptive Sliced Wasserstein Variational
Optimization (AWaVO), as elaborated in Figure 2 (Section 4), consists of two primary steps: a.
Policy Updating: Primal Policy Optimization using Distributional Representation (PPO-DR) is con-
ducted to address dynamic uncertainties adaptively, as shown in Algorithm 1 (Section 4.2). More
importantly, PPO-DR enhances the transparency of the convergence process, thereby addressing a
significant portion of the deficiencies outlined in Key Challenges a. and b.; b. Inference Execution:
Wasserstein Variational Inference (WVI), as detailed in Section 4.1, is subsequently performed to
achieve the probabilistic interpretation of decisions, thereby tackling Key Challenges c.

Our contributions can be summarized: 1) Adaptive Generalized Sliced Wasserstein Distance, re-
ferred to as A-GSWD, incorporates the Sliced Wasserstein Distance (SWD) along with adaptive
Radon transforms and a variational distribution. To handle dynamic uncertainties, the proposed A-
GSWD adaptively determines the slicing directions of hypersurfaces to enhance the precision of
distribution distance computation; 2) Adaptive Sliced Wasserstein Variational Optimization, ab-
breviated as AWaVO, employs inference to reformulate the problem of sequential decision-making.
To tackle the Key Challenges, AWaVO leverages PPO-DR to enhance the transparency of con-
vergence under dynamic uncertainties. Additionally, WVI is employed to provide a probabilistic
interpretation of decisions; 3) Formal methods for interpretation are employed to demonstrate
theoretical comprehension on metric judgment of A-GSWD, transparency of training convergence,
and probabilistic interpretation of sequential decisions.

2 RELATED WORK

Reinforcement Learning as Inference. The relationship between sequential decision-making
and probabilistic inference has been explored extensively in recent years Levine (2018); Okada &
Taniguchi (2020); Liu et al. (2022). Despite variations in terminology, the core inference frame-
works remains consistent, namely, PGMs Koller & Friedman (2009). While substantial research
exists on learning and inference techniques within PGMs Levine (2018), the direct connection be-
tween RL (or control) and probabilistic inference is not immediately apparent. Welch et al. (1995)
establishes that control and inference are dual perspectives of the same problem. This connection
offers novel insights and enhanced understanding within control problems by leveraging mathemat-
ical tools of inference Toussaint & Storkey (2006); Kappen et al. (2012). Moreover, the study on
‘RL as inference’ represents another prominent trend. Specifically, Levine (2018) demonstrates that
RL is equivalent to probabilistic inference under dynamics. Chua et al. (2018); Okada & Taniguchi
(2020) approach dynamics modeling by employing Bayesian inference optimization. Furthermore,
O’Donoghue et al. (2020) revisits the formalization of ‘RL as inference’ and demonstrates that with
a slight algorithmic modification, this approximation can perform well even in problems where it
initially performs poorly. In this study, we formalize constrained RL as Wasserstein variational
optimization to achieve decision-interpretations.

Optimal Transport Theory. Forming effective metrics between two probability measures is a
fundamental challenge in machine learning and statistics communities. The optimal transport the-
ory, particularly the Wasserstein distance, has garnered significant attention across various domains
Solomon et al. (2014); Kolouri et al. (2017); Schmitz et al. (2018); Wang & Boyle (2023) due to its
accuracy, robustness, and stable optimization. Nevertheless, it can be computationally demanding,
especially with high-dimensional data. Recent advancements emphasize computational efficiency
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through differentiable optimization Peyré et al. (2017). Among these methods, Sinkhorn distance
Cuturi (2013); Altschuler et al. (2017) introduces entropy regularization to smoothen the convex
regularization. Another notable approach involves slicing or linear projection Ng (2005), i.e., Sliced
Wasserstein Distance (SWD) Bonneel et al. (2015), which leverages the measures’ Radon transform
for efficient dimensionality reduction. Then, variants of SWD such as Generalized SWD (GSWD)
Kolouri et al. (2019) improves projection efficiency. These advancements contribute to the effi-
ciency in optimal-transport-based metrics. However, they suffer from reduced accuracy as SWD
only slices distributions using linear hyperplanes, which may fail to capture the complex structures
of data distributions. To overcome the accuracy limitation, Augmented SWD (ASWD) Chen et al.
(2020) projects onto flexible nonlinear hypersurfaces, enabling the capture of intricate data distri-
bution structures. Building upon the ASWD framework, we introduce an adaptive variant called A-
GSWD which leverages the projection onto nonlinear hypersurfaces and combines it with PPO-DR
to achieve adaptivity. This adaptive approach enhances the efficiency and accuracy of Wasserstein
distance computation, improving upon the limitations of previous methods.

3 SEQUENTIAL DECISION-MAKING AS PROBABILISTIC INFERENCE

Sequential Decision-making Problems as Inference. A sequential decision-making problem,
formalized as a standard RL or control problem, can be seen as an inference problem Levine (2018):

p(τ |O0:T−1 = 1) ∝
∫ T−1∏

t=0

p(Ot = 1|st,at)︸ ︷︷ ︸
:=p(O|τ)

· p(s0)

{
T−1∏
t=0

p(at|st, θ)p(st+1|st,at)

}
︸ ︷︷ ︸

Markov property
:= p(τ |θ)

· p(θ|D)︸ ︷︷ ︸
:=pD(θ)

dθ

(1)
where st, at, τ = {(st,at)}T−1

t=0 and D = {(st,at, st+1)} are states, actions, a trajectory and
observed training dataset. Ot = {Or,t,Og,t} ∈ {0, 1} represents an additional binary variable
of the optimality for (st,at) in PGM Levine (2018); Okada & Taniguchi (2020). Or,t = 1 and
Og,t = 1 signify that the trajectory τ is optimized and compliant with the constraints, respectively.

Figure 1: A new graphical model for
constrained RL: refer to Algorithm 2 for
a comprehensive overview of (i) Param-
eter Identification, (ii) Policy Updating
and (iii) Inference Execution.

In Equation 1, we can deconstruct the various compo-
nents: the probability p(at|st, θ) signifies the stationary
policy π which maps one state st to one action at, where
at ∼ p(·|st, θ) = π(·|st) at each time step t; the tran-
sition probability p(st+1|st,at) represents state transi-
tions (also known as forward-dynamics models), where
st+1 ∼ p(·|st,at) Chua et al. (2018) at each time step
t; the prior probability pD(θ) is derived from the poste-
rior probability p(θ|D), where the parameter θ is inferred
from the training dataset D; and lastly, the optimality
likelihood p(O|τ) is defined in relation to the expected
reward and utility formulation of several trajectories, ex-
pressed as Fr · p (Or|τ) := r̃(τ) and Fg · p (Og|τ) :=
g̃i(τ) , where the operator family F = {Fr,Fg} and the
optimality family O = {Or,Og} establish this relation-
ship. In Section 4.1 and Section 5, we offer theoretical
understanding to illustrate how such specific definitions
influence the RL’s global convergence.

Constrained Reinforcement Learning as Probabilis-
tic Graphical Models. Specifically, we consider a
Constrained Markov Decision Process (CMDP) Altman
(1999), a formal framework for constrained RL, which
is formulated as a discounted Markov decision pro-
cess with additional constrained objectives, i.e., a tuple
⟨S,A, P,R,G, γ⟩: S is a finite set of states {s}; A is a
finite set of actions {a}; P : S ×A → S is a finite set of
transition probabilities {p(s′|s,a)}; R : S×A×S → R
is a finite set of bounded immediate rewards {r}; G : S × A × S → R comprises a finite collec-
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tion of unity functions {g}, where, upon satisfying the expected constraints gi, the unity-optimality
variable is specified as Og = 1; and γ ∈ [0, 1] is the discount rate. A CMDP is presented as:

max
π

Jr(π), s.t. Jg,i(π) ≤ bi + τc, i = 1, ..., n (2)

where Jr(π) := E[
∞∑
t=0

γtr(st,at)|π, s0 = s] and Jg,i(π) := E[
∞∑
t=0

γtgi(st,at)|π, s0 = s] are the

value function associated with the immediate reward r and the utility g, respectively; bi is a fixed
limit for the i-th constraint; and τc is the tolerance. Figure 1 shows how constrained RL can be
viewed as a novel variation of PGMs.

4 ADAPTIVE SLICED WASSERSTEIN VARIATIONAL OPTIMIZATION

In this section, we present AWaVO’s two primary submodules: WVI and PPO-DR. The detailed al-
gorithm is outlined in Algorithm 2, and the overarching algorithmic structure is depicted in Figure 2.

4.1 WVI: WASSERSTEIN VARIATIONAL INFERENCE

Variational Inference for Dynamic Uncertainties. Given uncertainties in a dynamics model,
it is reasonable to assume that the optimal trajectories {τ} are uncertain. To infer optimal poli-
cies under uncertainties, let us consider a variational inference: D(qθ(τ)||p(τ |O)), where, for
simplicity, we use p(τ |O) to represent p(τ |Ot:T = 1) ; and D(·||·) represents a distance metric
between two probabilities. Building upon Equation 1, the variational distribution qθ(τ) is con-
structed as qθ(τ) = q(a)p(τ |θ)pD(θ). The construction suggests an assumption that the state tran-
sitions are controlled by p(st+1|st,at). According to Equation 1, we formulate the posterior as
p(τ |O)∝p(O|τ)p(τ |θ)pD(θ). Note that our implementation (Section 6) uses p(O|τ)p(τ |θ)pD(θ).

While Kullback-Leibler (KL) divergence is widely used in conventional variational inference, its ap-
plication in certain practical implementations can be risky due to its limitations, including asymme-
try and infinity, arising when there are unequal supports. In this section, we extend the Wasserstein
distance into the variational inference, and present the derivation of how we transform the GSWD
between the two posteriors to the optimality likelihood p(O|τ) and its approximation q(a).

Adaptive Generalized Sliced Wasserstein Distance. GSWD has exhibited high projection effi-
ciency in previous studies Kolouri et al. (2019); Chen et al. (2020) (please refer to Appendix A for
a comprehensive background and definition of Wasserstein distance). However, the identification of
the hypersurface hyperparameters, such as l and θ̃, remains to be a challenge. The selection of these
parameters, specifying the hypersurface along with its slicing direction, is generally a task-specific
problem and requires prior knowledge or domain expertise. We now present a novel adaptive sliced
Wasserstein distance, called A-GSWD, that integrates GSWD with PPO-DR, an adaptive process
for determining the parameters of a hypersurface. Following GSWD’s definition (Equation 6 in Ap-
pendix A.2), we introduce the definition of A-GSWD by utilizing PPO-DR for the adaptive slicing:

A−GSWDk(µ, ν) =

(∫
R

θ̃

W k
k

(
Gµ

(
·, θ̃; grl

)
,Gν

(
·, θ̃; grl

))
dθ̃

) 1
k

(3)

where the push-forward operator Gµ(l, θ̃) =
∫
Gd δ(l − ⟨x, θ̃⟩)dµ. l ∈ R and θ̃ ∈ Rθ̃ represent the

parameters of hypersurfaces, both of which are the outputs from actor networks in PPO-DR. Rθ̃ ⊂
Rd is a compact set of all feasible parameters θ̃, where Rθ̃ = Sd−1 for grl(·, θ̃) = ⟨·, θ̃⟩. Although
the proposed adaptive slicing method, i.e., A-GSWD, improves the efficiency and accuracy of the
Wasserstein distance computation, its demonstration on a valid metric guarantee remains a problem
Kolouri et al. (2019). In Section 5, we prove that the proposed A-GSWD is a true metric that satisfies
non-negativity, symmetry, the triangle inequality and A−GSWDk(µ, µ) = 0, respectively.

We then employ A-GSWD to address the variational inference, i.e., minimizing the distance
D(qθ(τ)||p(τ |O)) = A−GSWDk(qθ(τ), p(τ |O)) between the variational distribution qθ(τ) and
the posterior distribution p(τ |O). Subsequently, the variational inference can be reformulated to
the minimization problem, as shown in WVI of Figure 2: arg min

qθ(τ)
A−GSWDk (q (a) , p (O|τ)),

where p(O|τ) represents the optimality likelihood, and the detailed derivation is in Appendix C.1.
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Figure 2: The algorithmic framework of AWaVO. We reform constrained RL as a Wasserstein vari-
ational optimization setup, consisting of two primary submodules: PPO-DR and WVI (Section 4).

4.2 PPO-DR: PRIMAL POLICY OPTIMIZATION USING DISTRIBUTIONAL REPRESENTATION

The current policy optimization for constrained RL can be classified into two categories: primal-
dual and primal approaches Xu et al. (2021). The former, transforming the constrained problem into
an unconstrained one, are most commonly used although sensitive to Lagrange multipliers and other
hyperparameters, such as the learning rate. On the other hand, the latter (i.e., primal approaches)
require less hyperparameter tuning but have received less attention in terms of convergence demon-
stration compared to the primal-dual approaches.

Policy Optimization combining Optimality Likelihood Based on the definition in Section 4.1,
a constrained RL problem, as outlined in Equation 2, can be iteratively substituted and resolved as:

argmax
q(a)

E[Fr · p (Or|τ)], Jg,i(π) ≤ bi + τc

argmin
q(a)

E[Fg · p (Og|τ)], otherwise
(4)

where we recall that {Fr,Fg} are two operators defined as Fr · p (Or|τ) := r̃(τ) and Fg ·
p (Og|τ) := g̃i(τ), respectively. Furthermore, we can calculate the accumulated reward and utility

function as r̃(τ) = E[
T−1∑
t=0

γtr(st,at)] and g̃i(τ) = E[
T−1∑
t=0

γtgi(st,at)], respectively. Consequently,

we obtain Jr(π) = E[r̃(τ)] and Jg,i(π) = E[g̃i(τ)] if T = ∞.

If we only define Fr ∝ log[·], it becomes equivalent to the formulation used in Levine (2018); Okada
& Taniguchi (2020; 2018). In this case, we can retrieve an optimization process that resembles
Model Predictive Path Integral (MPPI) Okada & Taniguchi (2018). The design of reward functions
in the traditional RL is typically based on task-specific heuristics, and is often considered as much
an art as science. We will present such interpretation in Section 5 to show how the reward operator
family F acts on convergence, as well as a more rigorous approach to ensure guaranteed global
convergence rate during the training process. Additionally, in Section 6, we empirically verify these
theoretical guarantees.

Policy Updating. As shown in Algorithm 1, we first update the policy towards either maximizing
Jr(π) or minimizing Jg,i(π) by using the distributional representation (introduced in Appendix B),
where the gradient of actor and critic network, denoted as δθµ and δθQ , are defined in Equation 10 in
Appendix B. Then, as shown in PPO-DR of Figure 2, the actor network generates the parameters of
hypersurfaces for adaptively selecting the slicing directions and hypersurfaces to improve the accu-
racy of the Wasserstein distance computation; and the critic network provides an entire state-action
distribution, which is directly utilized as the variational distribution of the optimality likelihood q(a)
in A-GSWD (i.e., Equation 3), as shown in Figure 2.

5 FORMAL METHODS FOR LEARNING INTERPRETABILITY

Proposition 1. (Metric): Given two probability measures µ, ν ∈ Pk(X ), and a mapping grl : X →
Rθ̃, A-GSWD defined in Equation 3 of order k ∈ [1,∞) is a true metric that satisfies non-negativity,
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Algorithm 1 PPO-DR: Primal Policy Optimization using Distributional Representation
Input: sk, sk+1, τc, θµ, θQ

Output: updated θµ, θQ

1: Constraint Estimation: estimate the constraints: Jg,i(πθ(s,a)) = E[g̃i(τ)], ∀i ∈ [1, p]
2: Policy Improvement:
3: if Jg,i(π) ≤ bi + τc,∀i ∈ [1, p] then
4: Update the policy towards maximizing Jr(π): θµ ← θµ + lµδθµ , and θQ ← θQ + lθδθQ
5: else
6: Update the policy towards minimizing Jg,i(π): θµ ← θµ− lµ∇θµ g̃i(τ), and θQ ← θQ− lQ∇θQ g̃i(τ)
7: end if

Algorithm 2 AWaVO: Adaptive Sliced Wasserstein Variational Optimization
Input: sk, sk+1, θµ, θQ

Output: ak

1: Initialize:
θ = [θµ, θQ]: the parameters of actor and critic network

2: Repeat
3: for t = 0, 1, 2, ..., T − 1 do
4: Parameter Identification: achieve pD(θ) by doing inference of the posteriors p(θ|D) (Section 3)
5: Policy Updating:

{
θµ, θQ

}
← Exec. Algorithm 1 (sk, sk+1, τc, θµ, θQ)

6: Inference Execution: do inference of the posterior probability, as described in Section 4.1
p(τ |Ot:T )← arg min

qθ(τ)
A−GSWDk (q (a) , p (O|τ))

7: sample actions ak ← p(τ |Ot:T ), execute ak, and observe sk+1

8: end for

symmetry, triangle inequality and A−GSWDk(µ, µ) = 0, if and only if grl in Equation 3 is an
injective mapping. See Appendix C.3 for Proof.

Remark 1. If the mapping grl lacks injectivity, A-GSWD is still considered as a pseudo-metric,
which maintains significant properties including non-negativity, symmetry and triangle inequality.

To establish a link between the reward operator family F and the global convergence of PPO-DR,
here, we first introduce the Conditions and then present Theorem 1 (Global Convergence).

Conditions. Regarding F , the reward operator family: (i) Fr is monotonically increasing and
continuously defined on (0, 1], and the range covers [rmin, rmax]; and (ii) Fg is monotonically de-
creasing and continuously defined on (0, 1], and the range covers [rmin, rmax].

Theorem 1. (Global Convergence): Given the policy in the i-th policy improvement πi, πi → π∗

and i → ∞, there exists Qπ∗
(s, a) ≥ Qπi

(s, a) if and only if the reward operator family F satisfies
the both Conditions. See Appendix C.3 for Proof.

Next we demonstrate a more rigorous understanding of how the precise definition of F impacts the
convergence rate. As far as we know, this is the first attempt to gain an inherent understanding of
how the reward design affects convergence in RL.

Theorem 2. (Global Convergence Rate): Let m and H be the width and layers of a neural network,
Ktd = (1 − γ)−

3
2m

H
2 be the iterations required for convergence of the distributional Temporal

Difference (TD) learning (defined in Equation 12), lQ = 1√
T

be the policy update (in Line 4 of
Algorithm 1) and τc = Θ( 1

(1−γ)
√
T
) + Θ( 1

(1−γ)Tm
H
4
) be the tolerance (in Line 3 of Algorithm 1).

There exists a global convergence rate of Θ(1/
√
T ), and a sublinear rate of Θ(1/

√
T ) if the con-

straints are violated with an error of Θ(1/m
H
4 ), with probability of at least 1− δ. This holds if and

only if the reward operator family F satisfies both Conditions. See Appendix C.3 for Proof.

Probabilistic interpretation on sequential decisions. We now quantitatively establish the rela-
tionships between latent factors, such as disturbances, that possibly influence decision-making and
the sequential decisions, namely trajectories, by providing a probabilistic interpretation. Referring
to the abbreviation presented in Equation 1, we reform it as: p(τ |D) = p(O|τ) · p(s,a|θ) · pD(θ).
Then, the latent factors are denoted by L = {Li}M−1

i=0 , where M represents the total num-
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(a) Acrobot tasks in OpenAI Gym (b) Cartpole tasks in OpenAI Gym

(c) Walker tasks in GUARD (d) Drone tasks in GUARD

Figure 3: Performance comparison over 10 seeds. CRPO and AWaVO outperform PaETS, with a
trade-off highlighted: although PaETS offers probabilistic interpretation with Bayesian networks,
its convergence is generally unstable. Our proposed AWaVO achieves a better balance in high
performance and interpretability. In contrast to two other constrained RL algorithms, i.e., TRPO-IPO
and PCPO, we observe an interesting result: PCPO performs better in tasks like Acrobot, Cartpole,
and Walker, while TRPO-IPO outperforms PCPO in the more complex drone tasks (Figure 3(d)).
Further, in Figure 6, we will explore more complex real-world tasks using an aerial robot.

ber of defined factors. By applying the chain rule to the posterior probability p(τ |D), we have

{p(τ |Li)}Mi=0 =
{

p(τ |D)
p(Li|D)

}M

i=0
, where the equation provides a decomposition of the joint posterior

probability p(τ |D) into conditional probabilities that involve individual factors Li. Practically, this
decomposition enables a probabilistic interpretation of each factor’s impact on the policy. While
the theoretical simplicity of this decomposition is noteworthy, its practical significance is particu-
larly evident in real-world safety-critical applications, such as robot autonomy. In Section 6, we
showcase numerical examples to illustrate such probabilistic interpretation.

6 EXPERIMENTS

In this section, we conduct empirical assessments of AWaVO’s performance in both simulated plat-
forms and real-world robot tasks. Initially, we perform tasks with multiple constraints in OpenAI
Gym framework Brockman et al. (2016). Then we showcase AWaVO’s practicality through real
quadrotor Flight Tasks (FTs), which provides a more comprehensive assessment of its performance.
These evaluations serve a dual purpose: to validate AWaVO’s performance; and, critically, to em-
pirically demonstrate its quantitative interpretability. This interpretability includes confirming prop-
erties such as the guaranteed convergence rate as demonstrated in Theorem 2 and the probabilistic
decision interpretation discussed in Section 5 within the context of sequential decision-making tasks.

Comparative Performance in Simulated Tasks. Here we conduct tasks with multiple con-
straints in OpenAI Gym framework Brockman et al. (2016) and GUARD Zhao et al. (2023), a safe
RL benchmark: Acrobot, Cartpole, Walker and Drone. We use four constrained RL as our bench-
mark approaches: PaETS Okada & Taniguchi (2020), i.e., a Bayesian RL combining with variational
inference, TRPO-IPO Liu et al. (2020), i.e., an enhanced variant of TRPO-Lagrangian Bohez et al.
(2019), PCPO Yang et al. (2020), i.e., an advanced variant of CPO Achiam et al. (2017) and CRPO
Xu et al. (2021), i.e., a primal constrained RL approach.
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Figure 4: Probabilistic interpretation of sequential decisions. We empirically demonstrate this inter-
pretation through the execution of three real-world FTs. Here, the probability p(τ |L0) reveals the
degree to which the measurement of external forces Ding et al. (2021), denoted as nf , influences
the quadrotor’s sequential decisions. For instance, in the case of ‘RS 02’, situated in an area with a
mix of wind and obstacles, both aerodynamic effects (i.e., external forces) from winds and obstacles
act on the quadrotor concurrently. Quantitatively, the red p(τ |L0)FT3 is approximately equal to the
sum of p(τ |L0)FT1 (only wind) and p(τ |L0)FT2 (only obstacles).

The parameter setting of AWaVO is shown in Table 1 of Appendix D.1, which is based on our
benchmarks, i.e., CRPO Xu et al. (2021) and GUARD Zhao et al. (2023). According to our pro-
posed Proposition 1 and the Proposition 1 presented in Kolouri et al. (2019), the defining function
grl(·, θ̃) can be defined as homogeneous polynomials, i.e., grl(·, θ̃) =

∑
|α|=m θ̃αx

α, where the
defining function grl is injective if the degree of the polynomial m is odd. Thus we set m = 3 based
on Kolouri et al. (2019). The comprehensive task descriptions are available in Appendix D.2.

As per the benchmarks provided by CRPO Xu et al. (2021) and GUARD Zhao et al. (2023), the train-
ing process comprises 1000 iterations for the Acrobot and Cartpole tasks and 6000 iterations for the
drone and walker tasks, respectively. We establish the constraint limit to facilitate a straightforward
comparison of constraint convergence; see Appendix D.2 for additional details. The tolerance is set
as τc = 0.5, following CRPO Xu et al. (2021). By analyzing the comparative training performances
in Figure 3, we observe that the superiority of CRPO and AWaVO stems from their primal safe RL
nature, which involves training under constraints and ensuring global convergence rate. Although
CRPO exhibits comparable or slightly better convergence performance than AWaVO, as evident in
Figure 3(d), we place greater emphasis on two other aspects: training convergence under uncertain-
ties and decision-making interpretation. In Figure 6 below, we provide comparative demonstrations
in real robot tasks to showcase how AWaVO effectively balances a trade-off between performance
and interpretability in a more complex sequential decision-making scenario.

Furthermore, we empirically verify the formal method Theorem 2 (Global Convergence Rate) on
the convergence rate, and conclude that, based on the average performance, the convergence rate
of AWaVO is in the range of Θ(1/

√
T ) < Crate ≤ Θ(1/T 1.2). According to the results shown in

Figure 3(d), CRPO performs better than our AWaVO in the simulated drone task, with the absence of
disturbances. Subsequently, in Figure 6 below, we further evaluate these approaches in a real-world
physical environment characterized by varying uncertainties, leading to different outcomes. It is

8
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Figure 5: We use our AWaVO as the tracking
controller for a quadrotor, where PPO-DR is
employed as the uncertainty estimator, and WVI
using A-GSWD is leveraged as the controller.

Figure 6: Performance comparison in a real
quadrotor: our AWaVO slightly outperforms the
constrained RL approach, i.e., PCPO, whilst
achieving interpretability in Figure 4.

worth noting that our approach incorporates two optimizations for handling uncertainties: variational
inference and policy updating. This combination reduces the frequency of policy updates whilst
enhancing our ability to handle uncertainties. In the upcoming real robot task, we will introduce
variable disturbances to demonstrate our capability to optimize policies under uncertain conditions.

Comparative Performance in Real-world Tasks. We demonstrate the effectiveness of our pro-
posed AWaVO by practically implementing it in real-world decision-making problems. The tracking
control framework, shown in Figure 5, is an end-to-end learning-based framework. The tasks’ aim
is to track the reference effectively and accurately, where VID-Fusion Ding et al. (2021) is used
to measure external forces such as aerodynamic effects. The specific FTs are shown in Figure 4,
where FT 1 - tracking reference trajectories under external forces without obstacles; FT 2 - tracking
trajectories around the static (no external forces) but dense obstacles; and FT 3 - tracking trajectories
under external forces around dense obstacles. The technical specification of the quadrotor is shown
in Table 2 of Appendix D.1. The training convergence is demonstrated in Figure 6. To view the
hardware experiments in action, please refer to the accompanying video demonstration 1.

Next, we illustrate the interpretation of sequential decisions, i.e., the actual control commands fed
into the four motors. Leveraging the Intel RealSense D435i depth camera onboard, we can detect
obstacles and estimate external forces. These latent factors, denoted as L = L0, L1, represent
external forces and obstacles, respectively. The probability p(τ |L) reveals why the quadrotor makes
these decisions and quantifies the extent to which factor L contributes to the sequential decisions,
i.e., τ . Figure 4 presents a quantitative interpretation, i.e., p(τ |L0), indicating the magnitude and
evolution that the external force nf impacts on the current control decisions.

Practically, this probabilistic interpretation represents significant progress in addressing a longstand-
ing and challenging question: why do the machine systems powered by Artificial Intelligence (AI)
technologies make certain decisions, and what are the exact latent factors influencing those deci-
sions? Such progress holds particular value for safety-critical industries like self-driving vehicles,
aerospace engineering and high-frequency trading in financial services, particularly in cases where
AI-based approaches exhibit erratic performance and thorough analysis is necessary.

7 CONCLUSION & LIMITATION

Enthusiasm towards the possible applications of RL is growing worldwide. Lacking sufficient abil-
ity to interpret an agent’s actions and its policy optimizations, however, makes it infeasible to deploy
RL in safety-critical domains like advanced manufacturing, autonomous systems and financial trad-
ing. Our primary motivation in introducing AWaVO, an intrinsically interpretable RL framework,
is to tackle key interpretability challenges concerning convergence guarantees, optimization trans-
parency, and sequential-decision interpretation. Empirical results demonstrate that the proposed
AWaVO balances a reasonable trade-off between high performance and quantitative interpretability
in both simulation and real-world robotic tasks. The primary limitation we encounter is ensuring
the trustworthiness of the posterior probability generated by the critic network, which operates as
a Bayesian network. Our ongoing efforts involve applying statistical methods to establish a spe-
cific confidence interval for the Bayesian network’s outcomes, and implementing AWaVO in several
safety-critical applications to demonstrate its effectiveness in additional real-world scenarios.

9
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8 REPRODUCIBILITY STATEMENT

Enhancing interpretability in reinforcement learning aligns with the broader goal of improving re-
producibility within the RL community. Therefore, from this standpoint, the accomplishments out-
lined in this paper, especially in terms of training transparency associated with the reward function
design, significantly contribute to enhancing the reproducibility of RL. Specially, to help readers
reproduce our experiments, we have detailed our architectural designs in Section 4, and implemen-
tation details in Table 1 and Table 2 of Appendix D.1. Our code will be made openly available upon
acceptance of our manuscript for publication. Additionally, we provide the video link to demonstrate
the real-world quadrotors experiments.
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Appendix

A BACKGROUND ON WASSERSTEIN DISTANCE

A.1 SLICED WASSERSTEIN DISTANCE

A fundamental challenge in both machine learning and statistics communities is to form effective
metrics between pairs of probability distributions. Weaker notions, such as divergence measures,
including KL divergence Kullback & Leibler (1951), have been proposed and widely used. However,
such measures do not satisfy the two basic properties of a metric, namely symmetry and triangle
inequality. To address this issue, interest has rapidly increased in optimal transport in recent years.
In this subsection, we introduce the Wasserstein distance and its variants, including SWD Rabin
et al. (2012); Nietert et al. (2022) and GSWD Kolouri et al. (2019), as metrics that conditionally
satisfy the properties.

Let Γ(µ, ν) be a set of all transportation plans γ ∈ Γ(µ, ν), where γ is a joint distribution
over the space X × X , and µ, ν ∈ Pk(X ) are two measures of probability distributions over
X . Pk(X ) represents a set of Borel probability measures with finite k-th moment on a Polish
metric space Villani et al. (2009). d(x, y) represents a distance function over X . The Wasser-
stein distance of order k ∈ [1,∞) between two measures µ, ν is defined as Villani et al. (2009):

Wk(µ, ν) =
(
infγ∈Γ(P,Q)

∫
X×X d(x, y)kdγ(x, y)

)1/k
. This definition, however, involves solving

an optimization problem that is computationally expensive in practical implementation, particularly
for high-dimensional distributions. Thus sliced k-Wasserstein distance Rabin et al. (2012); Nietert
et al. (2022), defined over spaces of hyperplanes in Rd, is proposed as a computationally efficient
approximation:

SWDk(µ, ν) =

(∫
Sd−1

W k
k

(
Rµ

(
·, θ̃
)
,Rν

(
·, θ̃
))

dθ̃

) 1
k

(5)

where Radon transform R Radon (2005) is introduced in SWD to map a function f(·) to the hyper-
planes

{
x ∈ Rd|⟨x, θ̃⟩ = l

}
, i.e., Rf(l, θ̃) =

∫
Rd f(x)δ(l − ⟨x, θ̃⟩)dx: l ∈ R and θ̃ ∈ Sd−1 ⊂ Rd

represent the parameters of these hyperplanes. In the definition of SWD, the Radon transform Rµ is
employed as the push-forward operators, defined by Rµ(l, θ̃) =

∫
Rd δ(l − ⟨x, θ̃⟩)dµ Kolouri et al.

(2019).

A.2 GENERALIZED SLICED WASSERSTEIN DISTANCE

While SWD offers a computationally efficient way to approximate the Wasserstein distance, the
projections are limited to linear subspaces, such as hyperplanes {x}. Due to the nature of these
linear projections, the resulting metrics typically have low projection efficiency in high-dimensional
spaces Kolouri et al. (2019); Deshpande et al. (2019). Thus various variants of SWD are proposed
to enhance its projection effectiveness. Specifically, the GSWD Kolouri et al. (2019), defined in
Equation 6, is proposed by incorporating nonlinear projections. Its main novelty is that General-
ized Radon Transforms (GRTs) G Beylkin (1984); Ehrenpreis (2003); Homan & Zhou (2017), i.e.,
Gf(l, θ̃) =

∫
Rd f(x)δ(l − β(x, θ̃))dx, are used to define the nonlinear projections towards hyper-

surfaces rather than linear projections to the hyperplanes in SWD. Let β(x, θ̃) be a defining function
when satisfying the conditions H.1-H.4 in Kolouri et al. (2019).

GSWDk(µ, ν) =

(∫
X

θ̃

W k
k

(
Gµ

(
·, θ̃
)
,Gν

(
·, θ̃
))

dθ̃

) 1
k

(6)

where θ̃ ∈ Xθ̃ and Xθ̃ is a compact set of all feasible parameters θ̃ for β(·, θ̃), e.g., Xθ̃ = Sd−1

for β(·, θ̃) = ⟨·, θ̃⟩. The GRT operator Gµ is utilized as the push-forward operator, i.e., Gµ(l, θ̃) =∫
Gd δ(l − ⟨x, θ̃⟩)dµ. For the theoretical properties of a metric, SWD is a true metric that satisfies

both symmetry and triangle inequality Bonnotte (2013), where the approximation error is obtained
and analyzed in Nadjahi et al. (2020). The GSWD defined by Equation 6 is a true metric if and only
if β(·) in G is a injective mapping Chen et al. (2020).
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B BACKGROUND ON DISTRIBUTIONAL REPRESENTATION IN BELLMAN
EQUATION AND TEMPORAL DIFFERENCE LEARNING

B.1 REASONING BEHIND DISTRIBUTIONAL REPRESENTATION

The motivation for employing a distributional representation is twofold. Firstly, it provides a more
comprehensive and richer value-distribution information, thereby enhancing the stability of the
learning process. This stability is particularly important for Bayesian learning processes, which
often encounter challenges in achieving stable convergence. Secondly, the distributional represen-
tation contributes significantly to interpretability. As illustrated in Equation 18 of the proof, it uses
quantiles derived from the distributional representation to formally establish the transparency of
convergence process outlined in Theorem 2.

B.2 DISTRIBUTIONAL REPRESENTATION IN BELLMAN EQUATION

Unlike traditional RL, where the primary objective is to maximize the expected value-action function
Q, the distributional Bellman equation Bellemare et al. (2017) was proposed to approximate and
parameterize the entire distribution of future rewards. In the setting of policy evaluation, given a
deterministic policy π, the Bellman operator T π is defined as Bellemare et al. (2017); Dabney et al.
(2018):

T πZ(s,a)
D
:= R(s,a) + γZ(S′, A′) (7)

where Zπ denotes the state-action distribution, and R(s,a) denotes the reward distribution. In con-
trol setting, a distributional Bellman optimality operator T with quantile approximation is proposed
in Dabney et al. (2018):

T Z(s,a)
D
:= R(s,a) + γZ(s′, argmax

a′
E
p,R

[Z(s′,a′)]) (8)

where we let Zθ := 1
N

N∑
i=1

δqi(s,a) be a quantile distribution mapping one state-action pair (s,a) to a

uniform probability distribution supported on qi. Based on Equation 7, a contraction is demonstrated

Dabney et al. (2018) over the Wasserstein metric:
−
d∞(ΠW1

T πZ1,ΠW1
T πZ2) ≤

−
d∞(Z1, Z2),

where
−
dk := supWk(Z1, Z2) denotes the maximal form of the k-Wasserstein metrics. Wk, k ∈

[1,∞] denotes the k-Wasserstein distance. ΠW1 is a quantile approximation under the minimal
1-Wasserstein distance W1.

B.3 DISTRIBUTIONAL REPRESENTATION IN TEMPORAL DIFFERENCE LEARNING

Building upon the aforementioned contraction guarantees, we utilize distributional TD learning to
estimate the distribution of state-action value, denoted as Z. In each iteration, we have the following:

ζik+1(s,a) = ζik(s,a) + ltd∆
i
k

= ζik(s,a) + ltd ×
−
d∞(ΠW1

T π(hi(s,a, s
′) + γζik(s

′)),ΠW1
T πζik(s,a))

(9)

where ζik ∈ S × A represents the estimated distribution of the state-action distribution Z in the
k-th TD-learning-iteration for all i = 0, ..., p. The TD learning rate is denoted as ltd. The function
hi : S × A × S → R maps the triple (s,a, s′) to a real number. Specifically, hi is defined as
hi = r when i = 0; and hi = gi when i ∈ [1, n]. The distributional TD error ∆i

k in Equation 12 is

calculated by
−
d∞(ΠW1

T π(hi(s,a, s
′) + γζik(s

′)),ΠW1
T πζik(s,a)).

In Algorithm 1, the gradient of actor and critic network, denoted as δθµ and δθQ , can be calculated
as follows:

δθµ = (1/N)
∑

∇θµπθµ(sn)E[∇aZθQ(sn,a)]a=πθµ (sn)

δθQ = (1/N)
∑

∇θQ

−
d∞(ΠW1

T πZθQ(sn,an),ΠW1
T π g̃i(τ))

(10)

where ΠW1 represents a quantile approximation under the minimal 1-Wasserstein distance W1.

15



Under review as a conference paper at ICLR 2024

C ALGORITHM DETAILS AND PROOFS

C.1 DETAILED DERIVATION OF THE OBJECTIVE FUNCTION

The aim of variational inference is to minimize the distance D(qθ(τ)||p(τ |O)) =
GSWDk(qθ(τ), p(τ |O)) between the variational distribution qθ(τ) and the posterior distribution
p(τ |O). Let Ptrans = p (s,a|θ) pD (θ), x̃ = x/Ptrans and ỹ = y/Ptrans and recall Equation 3 in
Section 4.1, i.e., the definition of GSWDk. Then the variational inference can be reformulated to
the minimization problem:

arg min
qθ(τ)

GSWDk (qθ (τ) , p (τ |O)) = arg min
qθ(τ)

GSWDk (q (a) · Ptrans, p (O|τ) · Ptrans)

= arg min
qθ(τ)

(∫
Xθ

W k
k

(
Gq(a)·Ptrans

(
·, θ̃
)
,Gp(O|τ)·Ptrans

(
·, θ̃
))

dθ̃

) 1
k

(i)
= arg min

qθ(τ)

(∫
Xθ

W k
k

(
Ptrans · Gq(a)

(
·, θ̃
)
,Ptrans · Gp(O|τ)

(
·, θ̃
))

dθ̃

) 1
k

= arg min
qθ(τ)

inf
γ∈Γ(Ptrans·Gq(a),Ptrans·Gp(O|τ))

(∫
Xθ

∫
X×X

d(x, y)kdγ(x, y)dθ̃

) 1
k

= arg min
qθ(τ)

inf
γ∈Γ(Gq(a),Gp(O|τ))

(∫ ∫
d(Ptransx̃,Ptransỹ)

kdγ(Ptransx̃,Ptransỹ)dθ̃

) 1
k

(ii)
= arg min

qθ(τ)
inf

γ∈Γ(Gq(a),Gp(O|τ))

(∫ ∫
(Ptrans · d(x̃, ỹ))k dγ(Ptransx̃,Ptransỹ)dθ̃

) 1
k

(iii)
= arg min

qθ(τ)
Ptrans · inf

γ∈Γ(Gq(a),Gp(O|τ))

(∫ ∫
d(x̃, ỹ)kdγ(x̃, ỹ)dθ̃

) 1
k

= arg min
qθ(τ)

Ptrans ·GSWDk (q (a) , p (O|τ))

(11)
where (i) follows from the push-forward operator definition: Gµ(l, θ̃) =

∫
Gd δ(l − ⟨x, θ̃⟩)dµ. (ii)

follows from d(cx̃, cỹ) = cd(x̃, ỹ), c ∈ (0, 1) as d is a metric. (iii) follows from the fact that
dγ(cx̃, cỹ) = dγ(cx, cy) = dγ(x, y) = dγ(x̃, ỹ), since dγ(cx̃, cỹ) is the measure of the subset of
X × X , which is just the re-scaled version of the subset (x̃, ỹ) by the map (x, y) 7→ (x, y).

Equation 11 presents that the objective can be transformed to the minimization problem, i.e.,
arg min

qθ(τ)
GSWDk (q (a) , p (O|τ)), where p(O|τ) represents the optimality likelihood.

C.2 DEFINITION OF DISTRIBUTIONAL TEMPORAL DIFFERENCE

We use distributional TD learning to estimate the distribution of state-action value, denoted as Z. In
each iteration, we have the following:

ζik+1(s,a) = ζik(s,a) + ltd∆
i
k

= ζik(s,a) + ltd ×
−
d∞(ΠW1T π(hi(s,a, s

′) + γζik(s
′)),ΠW1T πζik(s,a))

(12)

where ζik ∈ S × A represents the estimated distribution of the state-action distribution Z in the
k-th TD-learning-iteration for all i = 0, ..., p. The TD learning rate is denoted as ltd. The function
hi : S × A × S → R maps the triple (s,a, s′) to a real number. Specifically, hi is defined as
hi = r when i = 0; and hi = gi when i ∈ [1, p]. The distributional TD error ∆i

k in Equation 12 is

calculated by
−
d∞(ΠW1

T π(hi(s,a, s
′) + γζik(s

′)),ΠW1
T πζik(s,a)).

C.3 PROOFS

Here we give the proofs of Proposition 1 (Pseudo-metric), Proposition 2 (Policy Evaluation),
Proposition 3 (Policy Improvement), Theorem 1 (Global Convergence) and Theorem 2 (Global
Convergence Rate) in Section 5;
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Proposition 1. (Pseudo-metric): Given two probability measures µ, ν ∈ Pk(X ), and a map-
ping grl : X → Rθ̃, the adaptive generalized sliced Wasserstein distance A-GSWD of order
k ∈ [1,∞) is a pseudo-metric that satisfies non-negativity, symmetry, the triangle inequality and
A−GSWDk(µ, µ) = 0.

Proof : The non-negativity property naturally arises from the fact that the Wasserstein distance Wk is
a metric Villani et al. (2009). To prove symmetry, since the k-Wasserstein distance is a metric Villani
et al. (2009):

Wk

(
Gµ(·, θ̃; grl),Gν(·, θ̃; grl)

)
= Wk

(
Gν(·, θ̃; grl),Gµ(·, θ̃; grl)

)
Thus, there exists Chen et al. (2020):

A−GSWDk(µ, ν) =

(∫
R

θ̃

W k
k

(
Gµ(·, θ̃; grl),Gν(·, θ̃; grl)

)
dθ̃

) 1
k

=

(∫
R

θ̃

W k
k

(
Gν(·, θ̃; grl),Gµ(·, θ̃; grl)

)
dθ̃

) 1
k

= A−GSWDk(ν, µ)

Therefore, symmetry holds. Then, we prove the triangle inequality. Since the triangle inequality
holds for the Wasserstein distance, we can obtain Wk (Gµ1

,Gµ3
) ≤ Wk (Gµ1

,Gµ2
)+Wk (Gµ2

,Gµ3
).

Thus, there exists:

A−GSWDk(µ1, µ3) =

(∫
R

θ̃

W k
k (Gµ1 ,Gµ3) dθ̃

) 1
k

≤

(∫
R

θ̃

W k
k (Gµ1 ,Gµ2) +W k

k (Gµ2 ,Gµ3) dθ̃

) 1
k

≤

(∫
R

θ̃

W k
k (Gµ1

,Gµ2
) dθ̃

) 1
k

+

(∫
R

θ̃

W k
k (Gµ2

,Gµ3
) dθ̃

) 1
k

(13)

where the derivation of Equation 13 is based on the Minkowski inequality Bahouri et al. (2011),
which establishes that A−GSWDk satisfies the triangle inequality.

For the identity of indiscernibles, we can firstly obtain Wk(Gµ1
,Gµ2

) = 0 if and only if Gµ1
=

Gµ2
. Thus there exists A−GSWDk(Gµ1

,Gµ2
) = 0 if and only if Gµ1

= Gµ2
, i.e., grl in

Equation 5 is an injective mapping. ■

Based on the preceding proof, we can deduce the condition in Remark 1 that under which the
A-GSWD of order k ∈ [1,∞) exhibits the properties of a pseudo-metric.

Proposition 2. (Policy Evaluation) Dabney et al. (2018); Wang et al. (2023)): we consider a quantile
approximation ΠW1

under the minimal 1-Wasserstein distance W1, the Bellman operator T π under
a deterministic policy π and Zk+1(s,a) = ΠW1

T πZk(s,a). The sequence Zk(s,a) converges to

a unique fixed point
∼
Zπ under the maximal form of ∞-Wasserstein metric

−
d∞.

Proof : We recall a contraction proved in Dabney et al. (2018) over the Wasserstein Metric:
−
d∞(ΠW1T πZ1,ΠW1T πZ2) ≤

−
d∞(Z1, Z2) (14)

where Equation 14 implies that the combined operator ΠW1
T π is an ∞-contraction. Based on

Banach’s fixed point theorem, T π has a unique fixed point, i.e.,
∼
Zπ . Furthermore, the definition

of Bellman optimality operator, defined as Equation 8, which implies that all moments of Z are

bounded. Therefore, we conclude that the sequence Zk(s,a) converges to
∼
Zπ in

−
d∞ for p ∈ [1,∞].

■

Proposition 3. (Policy Improvement): Given an old policy πold, a new policy πnew and Q(s, a) =
E[Z(s, a)], there exists Qπnew(s, a) ≥ Qπold(s, a) when performing Algorithm 1, ∀s ∈ S and
∀a ∈ A if and only if the reward operator family F = {Fr,Fg} satisfies the both Conditions.
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Conditions. Regarding F , the reward operator family: (i) Fr is monotonically increasing and
continuously defined on (0, 1], and the range covers [rmin, rmax]; and (ii) Fg is monotonically de-
creasing and continuously defined on (0, 1], and the range covers [rmin, rmax].

Proof : We recall that {Fr,Fg} are two operators defined as r̃(τ) := Fr · p (Or|τ) and g̃i(τ) :=
Fg ·p (Og|τ), respectively. Since the two optimization objectives in policy updating, i.e., maxE[Fr ·
p (Or|τ)] and minE[Fg ·p (Og|τ)] (see Equation 4 in Section 4), and p (O|τ) is defined on (0, 1], we
can conclude the both Conditions that (i) Fr is monotonically increasing and continuously defined
on (0, 1], and the range covers [rmin, rmax]; (ii) Fg is monotonically decreasing and continuously
defined on (0, 1], and the range covers [rmin, rmax].

Then based on Equation 8, there exists:

V π(st) = E[Q(st, π(st))] ≤ max
a′∈A

E[Q(st, a
′)]

= E[Q(st, π
′(st))]

(15)

where Eπ[·] =
∑

a∈A π(a|s)[·], and V π(s) = EπE[Zk(s, a)] is the value function. According to
Equation 15 and Equation 8, it yields:

Qπold = Qπold(st,πold(st))

= rt+1 + γEst+1
Eπold

Qπold(st+1,πold(st+1))

(i)

≤ rt+1 + γEst+1
EπnewQ

πold(st+1,πnew(st+1))

≤ rt+1 + Est+1Eπnew [γrt+2

+ γ2Est+2
Qπold(st+2,πnew(st+2))|]

≤ rt+1 + Est+1
Eπnew [γrt+2 + γ2rt+3 + ...]

= rt+1 + Est+1
V πnew(st+1)

= Qπnew

(16)

where (i) relies on Equation 15, and πnew corresponds to the maximum Q in the Bellman function.
Therefore, we have Qπnew(s, a) ≥ Qπold(s, a) ■

Then we provide Lemma 1 and the proof of Theorem 1.

Lemma 1. (Bellemare et al. (2017)): The Bellman operator T π is a p-contraction under the p-

Wasserstein metric
−
dp.

Theorem 1. (Global Convergence): Given the policy in the i-th policy improvement πi, πi → π∗

and i → ∞, there exists Qπ∗
(s, a) ≥ Qπi

(s, a) if and only if the reward operator family F satisfies
the both Conditions.

Proof : Since Proposition 3 suggests Qπi+1(s, a) ≥ Qπi(s, a), the sequence Qπi(s, a) is monoton-
ically increasing if and only if the reward operator family F satisfies the both Conditions. Further-
more, Lemma 1 implies that the the state-action distribution Z over R has bounded p-th moment,
so the first moment of Z, i.e., Qπi(s, a), is upper bounded. Therefore, the sequence Qπi(s, a)
converges to an upper limit Qπ∗(s, a) with ∀s ∈ S and ∀a ∈ A. ■

To prove Theorem 2, we provide Lemma 2 and its proof below.

Lemma 2. (Convergence rate of neural TD learning): Let m be the width of the actor-critic net-

works, and
−
Zt =

1
N

N∑
i=1

δqi(s,a) be an estimator of Zi
t . In the TD learning, with probability at least

1− δ, there exists ∥∥∥∥ΠW1

−
Zt −ΠW1Z

∗
t

∥∥∥∥ ≤ Θ(m−H
4 )

+Θ([(1− γ)K]−
1
2 [1 + log

1
2 δ−1])

(17)
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Proof : Based on Gluing lemma of Wasserstein distance Wp Villani (2009); Clement & Desch
(2008), there exists:∥∥∥∥ΠW1

−
Zt −ΠW1Z

∗
t

∥∥∥∥ (i)
=

N∑
i=1

∥∥∥∥∥−
qit − qi,∗t

∥∥∥∥∥
=

N∑
i=1

∥∥∥f (H)
i ((s,a), θQKtd

)− f
(H)
i ((s,a), θQ

∗
)
∥∥∥

≤
N∑
i=1

∥∥∥f (H)
i ((s,a), θQKtd

)− f
(H)
0,i ((s,a), θQ)

∥∥∥
+

N∑
i=1

∥∥∥f (H)
0,i ((s,a), θQKtd

)− f
(H)
i ((s,a), θQ

∗
)
∥∥∥

(ii)

≤ Θ(m−H
4 ) +

N∑
i=1

∥∥∥f (H)
0,i ((s,a), θQKtd

)− f
(H)
i ((s,a), θQ

∗
)
∥∥∥

(iii)

≤ Θ(m−H
4 ) + Θ([(1− γ)Ktd]

− 1
2 [1 + log

1
2 δ−1])

(18)

where H denotes the layers of the neural network. (i) holds relying on 1-Wasserstein distance W1

and one-dimensional quantile qi,∗t . As each quantile can be viewed as a form of local linearization,
(ii) follows from Lemma 5.1 in Cai et al. (2019):

N∑
i=1

∥∥∥f (H)
i ((s,a), θQKtd

)− f
(H)
0,i ((s,a), θQ)

∥∥∥2 ≤ 1

mH

N∑
i=1

br∣∣∣[(1(W (h)
i x

(h−1)
i > 0)− 1(W

(0)
i x

(h−1)
i > 0)) ·W (h)

i x
(h−1)
i ]2

∣∣∣
≤ 4C0

mH

N∑
i=1

[

m∑
r=1

1(
∣∣∣W (0)

i,r x
(h−1)
i

∣∣∣ ≤ ∥∥∥W (h)
i,r −W

(0)
i,r

∥∥∥
2
)]

≤ 4C0

mH
(

m∑
r=1

∥∥∥W (h)
i,r −W

(0)
i,r

∥∥∥2
2
)

1
2 (

m∑
r=1

∥∥∥∥∥ 1

W
(0)
i,r

∥∥∥∥∥
2

2

)
1
2 ≤ 4C0C1

m
H
2

(19)

where the constant C0 > 0 and C1 > 0. Thus we upper bound
N∑
i=1

∥∥∥f (H)
i − f

(H)
0,i

∥∥∥ ≤ Θ(m−H
4 ),

which holds (i) in Equation 18. Then (ii) follows from Lemma 1 in Rahimi & Recht (2008), with
probability at least 1− δ, there exists:

N∑
i=1

∥∥∥f (H)
0,i ((s,a), θQKtd

)− f
(H)
i ((s,a), θQ

∗
)
∥∥∥

≤ 1√
1− γ

N∑
i=1

∥∥∥f (H)
0,i ((s,a), θQπ

Ktd
)− f

(H)
i ((s,a), θQ

∗
)
∥∥∥

≤ C3√
(1− γ)Ktd

(1 +

√
log

1

δ
)

(20)

where (iii) holds, and therefore Equation 18 holds. ■

Theorem 2. (Global Convergence Rate): Let m and H be the width and the layer of neural network,
Ktd = (1 − γ)−

3
2m

H
2 be the iterations required for convergence of the distributional TD learning

(defined in Equation 12), lQ = 1√
T

be the policy update (in Line 4 of Algorithm 1) and τc =

Θ( 1
(1−γ)

√
T
) + Θ( 1

(1−γ)Tm
H
4
) be the tolerance (in Line 3 of Algorithm 1). There exists a global

convergence rate of Θ(1/
√
T ), and a sublinear rate of Θ(1/

√
T ) if the constraints are violated with
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an error of Θ(1/m
H
4 ), with probability at least 1− δ. Importantly, this conclusion holds if and only

if the reward operator family F satisfies both Conditions.

Proof : Proposition 3 suggests that the sequence Qπi(s, a) achieves global convergence if and only
if the reward operator family F satisfies Conditions. Then we let △θQ = θQt+1 − θQt , and suppose
the critic networks are H-layer neural networks. Based on Lemma 6.1 in Kakade & Langford (2002),
there exists

(1− γ)[Jr(π
∗)− Jr(πt)]

= E[Qπt
(s,a)− EQπt

(s,a′)]

= E[∇θf
(H)((s,a), θQ)T − E[∇θf

(H)((s,a′), θQ)T]]△θQ

+ E[Qπt(s,a)−∇θf
(H)((s,a), θQ)T△θQ ]

+ E[∇θf
(H)((s,a′), θQ)T△θQ −Qπt

(s,a′)]

=
1

lQ

[
lQE[∇θ log(πt(a|s))T]△θQ −

l2QLf

2
∥△θQ∥22

]
+ E[Qπt(s,a)−∇θf

(H)((s,a), θQ)T△θQ ] +
lQLf

2
∥△θQ∥22

+ E[∇θf
(H)((s,a′), θQ)T△θQ −Qπt

(s,a′)]

(i)

≤ 1

lQ
E[log(

πt+1(a|s)
πt(a|s)

)] +
lQLf

2
∥△θQ∥22

+
√

E[Qπt
(s,a)− f (H)((s,a),△θQ)]2

+
√

E[f (H)((s,a),△θQ)−∇θf (H)((s,a), θQ)T△θQ ]2

+
√
E[∇θf (H)((s,a′), θQ)T△θQ − f (H)((s,a′),△θQ)]2

+
√
E[f (H)((s,a′),△θQ)−Qπt

(s,a′)]2

=
1

lQ

[
E[DKL(π

∗||πt)]− E[DKL(π
∗||πt+1)]

]
+ 2
√
E[f (H)((s,a),△θQ)−∇θf (H)((s,a), θQ)T△θQ ]2

+ 2
√
E[Qπt(s,a)− f (H)((s,a),△θQ)]2 +

lQLf

2
∥△θQ∥22

(21)

where (i) follows from the Lf -Lipschitz property of log(πt(a|s)). Next, we upper bound the term√
E[f (H)((s,a),△θQ)−∇θf (H)((s,a), θQ)T△θQ ]2 as shown below.√

E[f (H)((s,a),△θQ)−∇θf (H)((s,a), θQ)T△θQ ]2

=

N∑
i=1

∥∥∥f (H)
i ((s,a),△θQ)−∇θf

(H)
i ((s,a), θQ)T△θQ

∥∥∥
≤

N∑
i=1

[ ∥∥∥f (H)
i ((s,a),△θQ)−∇θf

(H)
0,i ((s,a), θQ)T△θQ

∥∥∥
+
∥∥∥∇θf

(H)
0,i ((s,a), θQ)T△θQ −∇θf

(H)
i ((s,a), θQ)T△θQ

∥∥∥ ]
= 2

N∑
i=1

∥∥∥f (H)
i ((s,a),△θQ)− f

(H)
0,i ((s,a),△θQ)

∥∥∥
(ii)

≤ 4
√
C0C1

m
H
4

(22)

where (ii) follows from Equation 19. Then, in order to upper bound√
E[Qπt(s,a)− f (H)((s,a),△θQ)]2, taking expectation of Equation 21 from t = 0 to
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T − 1, yields

(1− γ)
[
Jr(π

∗)− E[Jr(π)]
]

= (1− γ)
1

T

T−1∑
t=0

[Jr(π
∗)− Jr(πt)]

≤ 1

T

[ 1
lQ

E[DKL(π
∗||πt)] +

8T
√
C0C1

m
H
4

+
T lQLf

2
d2θ

+ 2

T−1∑
t=0

N∑
i=1

∥∥∥f (H)
i ((s,a), θQt+1 − θQt )− f

(H)
i ((s,a), θQ

∗
)
∥∥∥ ]

=
E[DKL(π

∗||πt)]

lQT
+

8
√
C0C1

m
H
4

+
lQLf

2
d2θ

+
2

T

N∑
i=1

∥∥∥f (H)
i ((s,a), θQKtd,t

)− f
(H)
i ((s,a), θQ

∗
)
∥∥∥

(iii)

≤ E[DKL(π
∗||πt)]

lQT
+

8
√
C0C1

m
H
4

+
lQLf

2
d2θ

+
4
√
C0C1

Tm
H
4

+
2C3

T
√
(1− γ)Ktd

(1 +

√
log

1

δ
)

(23)

where (iii) follows from Lemma 2 (Equation 18). Thus, substituting Ktd = (1 − γ)−1m
H
2 and

lQ = Θ(1/
√
T ) into Equation 23, with probability at least 1− δ, yields:

Jr(π
∗)− E[Jr(π)] ≤ C5

1

(1− γ)
√
T

+ C6
1

(1− γ)m
H
4

+ C7
1

(1− γ)Tm
H
4

+ 2C3

√
log 1

δ

(1− γ)Tm
H
4

≤ Θ(
1

(1− γ)
√
T
) + Θ(

1

(1− γ)Tm
H
4

√
log

1

δ
)

(24)

where C5 = E[DKL(π
∗||πt)] +

Lfd
2
θ

2 , C6 = 8
√
C0C1 and C7 = 4

√
C0C1 +2C3. Therefore, there

exists:
Jr(π

∗)− E[Jr(π)] ≤ Θ(
1

(1− γ)
√
T
)

+ Θ(
1

(1− γ)Tm
H
4

√
log

1

δ
)

(25)

where Equation 25 suggests that there exists a global convergence rate of Θ(1/
√
T ), with probability

at least 1− δ.

Following Line 6 in Algorithm 1 and recalling Equation 21, Equation 22 and Equation 23, the
convergence process is similarly stated for the constraint approximation J i

g (π), ∀i ∈ [1, p] here

E[J i
g (π)]− J i

g (π
∗) ≤ Θ(

1

(1− γ)
√
T
)

+ Θ(
1

(1− γ)Tm
H
4

√
log

1

δ
)

(26)

the constraint violation is then bounded below
E[J i

g (π)]− bi ≤
[
J i
g (π

∗)− bi
]
+
[
E[J i

g (π)]− J i
g (π

∗)
]

≤ τc +
[
E[J i

g (π)]− J i
g (π

∗)
]

≤ τc +Θ(
1

(1− γ)
√
T
) + Θ(

1

(1− γ)Tm
H
4

√
log

1

δ
)

(27)
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where we have τc = Θ( 1
(1−γ)

√
T
) + Θ( 1

(1−γ)Tm
H
4
), therefore, we obtain:

E[J i
g (π)]− bi ≤ Θ(

1

(1− γ)
√
T
)

+ Θ(
1

(1− γ)Tm
H
4

√
log

1

δ
)

(28)

where Equation 28 suggests that there exists a sublinear rate of Θ(1/
√
T ) if the constraints are

violated with an error of Θ(1/m
H
4 ), with probability at least 1− δ. ■
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D EXPERIMENT SUPPLEMENTARY

D.1 EXPERIMENTAL SETTING

The parameter setting of AWaVO is shown in Table 1, and the technical specification of the quadrotor
is shown in Table 2.

Table 1: Parameter Setting of AWaVO
Parameters Definition Values

lµ,cart Learning rate of actor in Cartpole Xu et al. (2021) 0.0005
lθ,cart Learning rate of critic in Cartpole Xu et al. (2021) 0.0005
lµ,acro Learning rate of actor in Acrobot Xu et al. (2021) 0.005
lθ,acro Learning rate of critic in Acrobot Xu et al. (2021) 0.005
lµ,guard Learning rate of actor in Walker and Drone Zhao et al. (2023) 0.001
lθ,guard Learning rate of critic in Walker and Drone Zhao et al. (2023) 0.001

µ
Actor neural network: fully connected with H

hidden layers (m neurons per hidden layer) -

θ
Critic neural network: fully connected with H

hidden layers (m neurons per hidden layer) -

D Replay memory capacity 106

B Batch size 128
γ Discount rate 0.998
- Training episodes 1000
m the width of neural network 128
H the layer of neural network 2
T Length in each episode 500
N Time steps 20

Table 2: Technical Specification of Hardware

No. Component Specific Model
1 Frame QAV250
2 Sensor - Depth Camera Intel RealSense D435i
3 Sensor - Down-view Rangefinder Holybro ST VL53L1X
4 Flight Controller Pixhawk 4
5 Motors T-Motor F60 Pro IV 1750KV
6 Electronic Speed Controller BLHeli-32bit 45A 3-6s

7 On-board Companion Computer DJI Manifold 2-c
(CPU Model: Intel Core i7-8550U)

8 Mounts 3D Print for Sensors/
Computer/Controller/Battery

D.2 TASK DESCRIPTIONS IN THE SIMULATED PLATFORMS

Acrobot and Cartpole tasks in OpenAI Gym. In Cartpole Brockman et al. (2016), the pole
movement is constrained within the range of [−2.4, 2.4]. Each episode has a maximum length of
200 steps and is terminated if the angle of the pole exceeds 12 degrees. During training, the agent
receives a reward of +1 for each step taken. However, it incurs a penalty of +1 if (i) it enters the
areas [−2.4,−2.2], [−1.3,−1.1], [−0.1, 0.1], [1.1, 1.3], or [2.2, 2.4], or (ii) the angle of the pole
exceeds 6 degrees.

In Acrobot Brockman et al. (2016), the agent is rewarded for swinging the end-effector at a height
of 0.5, where each episode has a maximum length of 500 steps. Conversely, it faces a penalty if (i)
torque is applied to the joint when the first pendulum swings in an anticlockwise direction, or (ii) if
the second pendulum swings in an anticlockwise direction with respect to the first pendulum.
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Walker and Drone tasks in GUARD. Walker Zhao et al. (2023), a bipedal robot, comprises four
primary components: a torso, two thighs, two legs, and two feet. Notably, unlike the knee and ankle
joints, each hip joint possesses three hinges in the x, y, and z coordinates, enabling versatile turning.
Maintaining a fixed torso height, Walker achieves mobility through the control of 10 joint torques.

Drone in GUARD Zhao et al. (2023) is designed to emulate a quadrotor, simulating the interaction
between the quadrotor and the air by applying four external forces to each of its propellers. These
external forces are configured to counteract gravity when no control actions are applied. To ma-
neuver in three-dimensional space, the Drone utilizes four additional control forces applied to its
propellers

Constraint Limit Setting. In accordance with the benchmark Xu et al. (2021), we established
the constraint limit as 50 in Acrobot, as depicted in Figure 3(a). In the remaining scenarios, namely
Cartpole in Figure 3(b), Walker in Figure 3(c), Drone in Figure 3(d), and the real quadrotor in Fig-
ure 6, the constraint limit serves as a lower boundary, indicating the level of tolerance the constraints
can endure. The agent’s stable performance for specific tasks occurs when it operates below this con-
straint limit. We hypothesize that there may be potential benefits in establishing a fixed limit, bi, by
decoupling the cumulative value into specific fixed limits. This is left for future work.
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