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Abstract

Federated Learning (FL) aims to train a global inference model from remotely
distributed clients, gaining popularity due to its benefit of improving data privacy.
However, traditional FL often faces challenges in practical applications, including
model overfitting and divergent local models due to limited and non-IID data
among clients. To address these issues, we introduce a novel Bayesian meta-
learning approach called meta-variational dropout (MetaVD). MetaVD learns to
predict client-dependent dropout rates via a shared hypernetwork, enabling effec-
tive model personalization of FL algorithms in limited non-IID data settings. We
also emphasize the posterior adaptation view of meta-learning and the posterior ag-
gregation view of Bayesian FL via the conditional dropout posterior. We conducted
extensive experiments on various sparse and non-IID FL datasets. MetaVD demon-
strated excellent classification accuracy and uncertainty calibration performance,
especially for out-of-distribution (OOD) clients. MetaVD compresses the local
model parameters needed for each client, mitigating model overfitting and reducing
communication costs. Code is available at https://github.com/insujeon/MetaVD.

1 Introduction

Federated learning (FL) aims at training a global model from distributed clients without sharing or
collecting their sensitive raw data. Thanks to its privacy-preserving aspect of FL [1], it is increasingly
popular to be applied to various applications such as image classification [2, 3], object detection
[4, 5], keyboard suggestion [6, 7], recommendation [8, 9], and healthcare [10, 11]. The conventional
FL algorithm could achieve convergence when the data from different clients is independently and
identically distributed (IID) [12–14]. However, due to the differences in preferences, locations, and
usage habits of clients, the private data in FL are usually non-IID. When the data distributions of the
clients vary, the local model learned from each client can diverge, and thus learning an optimal global
model could fail [15, 16]. Furthermore, the scale of client data may not be sufficient to train a local
model with large parameters, causing model overfitting and poor generalization [17, 18].

To overcome the challenge caused by non-IID data, personalized federated learning (PFL) has
emerged [15, 16]. In the PFL, each client is allowed to have its own personalized model trained on
each client’s local data while still participating in the global model training. There are many branches
of PFL, such as those based on multitask learning [19, 20], meta-learning [21–26], and transfer
learning [27–30]. Although these approaches improve training convergence in non-IID data settings,
they may still experience model overfitting with limited client data. Recently, the Bayesian learning
paradigm has also been introduced in FL to address the overfitting by incorporating uncertainty in the
model parameters [31–37]. However, they may also struggle with divergent local models when the
data from different clients exhibit significant statistical variability. Motivated by these challenges, we
aim to address the issues of FL with the non-IID and limited client data simultaneously.

In this paper, we present Meta-Variational Dropout (MetaVD), a novel Bayesian meta-learning
approach [38–42] developed for PFL. MetaVD learns to predict client-dependent dropout rates
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via a hypernetwork [25, 43–45]. This mechanism facilitates a data-efficient estimation of client-
specific posterior simply by modulating a shared global NN parameter across all clients. The
adaptation of MetaVD to conventional FL algorithms (e.g., FedAvg [1], Reptile [22], MAML [21], or
PerFedAvg [23]) allows flexible model personalization across a variety of non-IID client distributions.
MetaVD also incorporates a unique model aggregation strategy based on client-specific dropout
uncertainty, providing a principled Bayesian way to consolidate local models into a global model.
This strategy significantly enhances the convergence of the FL algorithm on non-IID data. In
addition, MetaVD inherits the merit of Variational Dropout (VD) [46, 47], which facilitates model
compression. This not only improves model generalization for out-of-data (OOD) clients but also
reduces communication costs for parameter exchange. We performed an extensive analysis on
MetaVD covering a wide range of FL scenarios [18], including different scales, non-IID degrees,
partitions, and multi-domain settings [48]. In all of these experiments, MetaVD achieves excellent
results compared to other state-of-the-art baselines.

2 Background

A standard approach to FL (e.g., FedAvg [1]) iterates between the local training on the client
devices and global optimization at the server. Given M clients, each of which has a data set
Dm = {(xmi , ymi )}|D

m|
i=1 , the FL problem can be formulated as follows:

Server: min
w
J (w) =

M∑
m=1

gmJm(w), Client: Jm(w) =
1

|Dm|
∑
i

ℓ(xmi , y
m
i ;w). (1)

w denotes the model parameter, and the global learning objective J (w) at the server is a weighted
average of the local objectives Jm(w) over M clients. The weight gm is proportional to the size of
the local dataset (e.g., |Dm|/|D|). The local loss in a client device is usually defined as the empirical
negative log-likelihood on the m-th client’s dataset Dm (i.e., ℓ(Dm;w) = − log p(ym|xm, w)).
The local training is carried out in parallel fully (or partly) in each client device, with multiple
Stochastic Gradient Descent (SGD) [49] epochs to get the fine-tuned local parameter wm. Then,
the aggregation step computes the global parameter in the server by taking the weighted average of
the local parameters (i.e., w̄ ←

∑M
m=1 g

mwm). The global model parameter w̄ is then used as the
initial parameter for each client in the next round of local training. FL aims to train models on large
distributed datasets by only exchanging model parameters (e.g., w̄ and wm) between server and local
devices, thereby minimizing privacy leakage of client data.

Challenges in FL. There are many challenges to real-world FL applications. (1) Heterogeneity of
client data. The original FL algorithm converges well when the client data is IID [12–14]. However,
the client data often has different characteristics (e.g., classes or tasks follow non-IID). The wm
would drift away from each other, causing the w̄ to be suboptimal [15, 16]. (2) Sparse participation.
In practice, the total number of clients M can be extremely large, while communication between the
server and the clients can be intermittent or unreliable. This creates the challenge of inconsistent
training due to a small subset of participating clients in each round of communication [18]. (3) Poor
generalization due to limited data. When the training data available on each local device is limited,
the local model can easily overfit, resulting in poor generalization to unseen clients [17, 18]. (4)
Communication cost. FL optimization requires frequent communication between local devices and
the central server to exchange model parameters. This process is slow and could introduce additional
privacy concerns. Therefore, reducing model size is also an important area of research [50].

Bayesian FL. While conventional FL methods use a point estimate of the parameter as in Eq.1, recent
work [31–33] has incorporated probability distributions over the model parameters. In these Bayesian
FL approaches, the client device first estimates the local posterior from its data, and then the server
aggregates the partially updated local posteriors into a global posterior. Based on FedAvg, a Gaussian
distribution is used to represent each parameter in FedAG [32], and a posterior aggregation strategy
using the MCMC technique is proposed in FedPA [33]. FedBE [31] uses a Bayesian ensemble global
model with Gaussian or Dirichlet distributions. These methods improve prediction confidence and
model convergence. However, FedAG [32] and FedBE [31] assume a global Gaussian posterior,
but only consider point estimates of local parameters. FedPA [33] uses global and local Gaussian
posteriors, but only maintains the global posterior mean on the server, making it difficult to track
local uncertainties. In addition, the performance of previous methods can still be compromised by the
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statistical discrepancies in the client data, as they are not tailored to the heterogeneous FL scenario.
Recently, Bayesian PFL methods have also been introduced for non-IID data [34–37, 51, 52]. For
example, pFedGP [34] learns a common Gaussian kernel for all clients and infers personalized
classifiers for each client. pFedBayes [35] assumes an independent posterior model for each device
while learning a shared global prior. These approaches achieve a substantial predictive performance
improvement in non-IID data senerios compared to the previous Bayesian FL approaches. However,
their approach still has limitations, such as the high computational cost of inverting a large kernel
matrix in pFedGP [34] and imposing strong constraints in pFedBayes [35]. Their model aggregation
rule does not account for parameter uncertainty directly. In addition, probabilistic modeling typically
requires additional parameters to approximate the density, which can increase communication costs.

3 Approach: Meta-Variational Dropout

We propose a new Bayesian PFL approach, called Meta-Variational Dropout (MetaVD), which can
simultaneously handle model personalization, regularization, and compression. MetaVD also exploits
the uncertainties in model aggregation, thereby improving the training convergence on non-IID data.
In addition, MetaVD is a universal approach that is compatible with various existing FL algorithms.

3.1 Variational Inference for FL

Instead of approximating the local posterior using MCMC in Bayesian FL [31–33], we can utilize
the (amortized) Variational Inference (VI) framework of Bayesian meta-learning [38–42] that is
originally developed for few-shot multi-task learning [53–55]. Considering each m-th client in FL as
an individual task, an evidence lower-bound (ELBO) LELBO over all the M datasets is defined as

max
ϕ
LELBO(ϕ) =

M∑
m=1

gm{Eq(wm;ϕ)[log p(y
m|xm, wm)]− KL(q(wm;ϕ)||p(wm))}. (2)

Here, p(ym|xm, wm) represents a likelihood model constructed using a neural network (NN) on
each m-th client’s data [56–59], and wm is a client-specific NN parameter. q(wm;ϕ) is a variational
posterior (or probabilistic) distribution over the wm, which is also characterized by ϕ. gm is
the local weight as defined in Eq.(1). p(wm) is a prior distribution that acts as a regularizer for
the q(wm;ϕ). The local ELBO defined on each m-th client in Eq.(2) makes tradeoffs between
the expected log-likelihood on its local dataset Dm and the KL divergence with a prior. In fact,
maximizing the LELBO(ϕ) with respect to the variational parameter ϕ is equivalent to minimizing∑M
t=1 g

mKL(q(wm;ϕ)||p(wm|Dm)). In theory, q(wm;ϕ) is trained to approximate the true local
posterior distribution over the wm (i.e., q(wm;ϕ) ≈ p(wm|Dm)) [56–59].

A straightforward Bayesian PFL approach might be utilizing a separate local posterior model q(wm;ϕ)
for each client device (e.g., , ϕ = (ϕ1, · · · , ϕM )). However, only a sparse subset of clients can
participate in each FL round due to the communication availability of edge devices. Moreover, the
number of clients M can be extremely large in practice, and some clients might only have small
datasets. Thus, learning the variational parameter ϕm independently for each device is difficult. As
an alternative, we introduce a new hypernetwork-based [25, 43–45] conditional dropout posterior
modeling approach that can be data-efficiently trained across multiple clients in FL.

3.2 Meta-Variational Dropout

Posterior model. To promote efficient model personalization and reduce overfitting in Bayesian
FL, we define the posterior model in Eq.2 based on a Variational Dropout (VD) technique that
multiplies continuous Gaussian noise to the NN parameters during training to prevent overfitting
[46, 47, 60–62]. MetaVD extends the VD posterior by employing a global hypernetwork that learns
to predict client-specific dropout rates (or personal model structure). In MetaVD, the variational
posterior distribution for each m-th client’s parameter, q(wm;ϕ) in Eq.2, can be constructed as

q(wm;ϕ = (θ, ψ, em)) =

K∏
k=1

N (wmk |θk, αmk θ2k) where αm = hψ(e
m). (3)
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Figure 1: Overview of the Meta-Variational Dropout algorithm. (a) The server’s hypernetwork
predicts client-specific dropout rates from client embedding, em. The global parameters, θ, and
dropout variables, αm, are sent to each m-th client. (b) A few-shot local adaptation is performed
on each client’s device in parallel; then, the updated parameters are sent back to the server. (c) The
server then aggregates those parameters to update its variational parameters θ, ψ, and e.

The variational parameter ϕ is characterized by three distinct parameters (θ, ψ, e). The θ is a
global NN model parameter kept at the server (with no client index m), where K is the size of
the model parameter. The posterior distribution over the m-th client’s weight wm is described as
a product of independent Gaussian distributions. In the product term in Eq.(3), each k-th factor
describes a conditional Gaussian noise multiplication to the global NN parameter (e.g., wm = θ ∗ ϵm
where ϵm ∼ N (1⃗, αm) and 1⃗ is an K-dimensional all-one vector). The αmk represents the client-
specific dropout variable1 on each k-th index of NN parameter θk. The hψ indicates a hypernetwork
parameterized by ψ [43–45, 45] predicts the client-specific dropout rate αm. The em is a learnable
client embedding used as an input to the hψ. In essence, MetaVD is a technique that modulates
a global NN parameter with Gaussian noises. By predicting the client-specific dropout variable
via a hypernetwork, a single NN can be reconfigured for various different clients. Since learning
a hypernetwork across multiple local clients is more efficient than learning all the local posteriors
independently, this approach can mitigate the sparse client participation and limited data issues in FL.

Prior model. To optimize the posterior model q(wm;ϕ), we need to specify the KL divergence term
and the prior model p(wm) in Eq.(2). Prior modeling in MetaVD requires two criteria: (i) the KL
divergence terms must be independent of the NN parameter θ to ensure the lower-bound assumption in
VD [46, 47, 61, 62], and (ii) all clients must share the same prior model to support the multiplicative
posterior aggregation rule in Bayesian FL. We adopt the hierarchical prior [64, 65, 47] discussed in
[47] because of its straightforward analytic KL term derivation and proven effectiveness in network
regularization and sparsification. Under the hierarchical prior assumption, the KL divergence term in
Eq.(2) is simplified to KL(q(wm;ϕ)||p(wm)) =

∑K
k=1 0.5 log(1 + (αmk )−1); see Appendix B for a

more detailed derivation. This KL term is independent of the global NN parameter θ and efficiently
regularizes the dropout variable. The same hierarchical prior is applied to all M clients.

Client-side objective. Initially, the hypernetwork in the server approximates the dropout variable
αm for each m-th client. The global parameter θ and αm are transmitted to each client device. Then,
the posterior model in a m-th client is trained on local data using the following ELBO objective:

max
θ,αm

LmELBO(θ, α) =
1

|Dm|
∑
i

log p(ymi |xmi , f(ϵ; θ, αm))−
K∑
k=1

0.5 log(1 + (αmk )−1), (4)

which maximizes LmELBO on the client dataset Dm = {(xmi , ymi )}|D
m|

i=1 with respect to the variational
parameters (i.e., θ, αm). The optimization can be done by the stochastic gradient variational Bayes
(SGVB). [56–58], which reparameterizes the random weight variable wm using a differentiable
transformation as wmk = f(ϵk; θk, α

m
k ) = θk +

√
αmk θkϵk. with a random IID noise ϵk ∼ N (0, 1).

The intermediate weight wmk is now differentiable with respect to θk, hence αmk , and can be optimized
via the SGD [49]. The analytical KL term acts as a regularization for αmk .

Server-side objective. Once a local posterior adaptation is done in each client device, the updated
parameters θm∗ and αm∗ are returned to the server, then the server updates the variational parameters

1The dropout rate is p = α/(1 + α) ∈ [0, 1] [63, 46]. We refer to α as the dropout variable for simplicity.
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Algorithm 1 MetaVD algorithm with MAML and Reptile variant for FL

Input: # of communication round R, # of client N , server
learning rate η, client learning rate γ, inner learning rate l,
local steps E, inner steps I , KL divergence parameter β.

Initialize a global parameter θ, hypernetwork hψ(·) and e.

for r = 1, ..., R do ▷ FL Rounds
Sample M clients from 1, ..., N clients
for m = 1, ...,M do

Set θm = θ and αm = hψ(e
m)

Send θm and αm to the m-th client
θm∗ , αm∗ ← LOCALADAPTATION(θm, αm)

Compute global param θ
agg
∗ using θm∗ , α

m
∗ and Eq.(5)

∆θ ← θ
agg
∗ − θ

∆αm ← αm∗ − αm
θ ← θ + η∆θ

ψ ← ψ + η 1
M

Σmgm((∇ψαm)T∆αm)

for m = 1, · · · ,M do
em ← em + η(∇emψ)T (∇ψαm)T∆αm

procedure LOCALADAPTATION_MAML(θ, α)
for Each local step i from 1 to E do

Set θ′i = θi and α′
i = αi

Sample dataset Dmtr and Dmval from Dm

for Each inner step j from 1 to I do
θ′i ← θ′i − l∇θ′iL

m
ELBO(θ′i, α

′
i;D

m
tr ))

θi ← θi − γ∇θiL
m
ELBO(θ′i, α

′
i;D

m
val)

αi ← αi − γ∇αiLmELBO(θ′i, α
′
i;D

m
val)

Set θ∗ = θi and α∗ = αi
Send θ∗ and α∗ to the server

procedure LOCALADAPTATION_REPTILE(θ, α)
for Each local step i from 1 to E do

θi ← θi − γ∇θiL
m
ELBO(θi, αi;D

m))

αi ← αi − γ∇αiLmELBO(θi, αi;D
m)

Set θ∗ = θi and α∗ = αi
Send θ∗ and α∗ to the server

(e.g., θ, ψ, em) using the updated and local parameters. To update the global NN parameter θ, we first
assume the Bayesian posterior aggregation rule: p(w|D) ∝

∏M
m=1 p(w

m|Dm) [31–33, 66]. Since
each local posterior in Eq.(3) is a Gaussian (dropout) distribution, their product is also Gaussian:
N (w|θagg

∗ , ·) ≈
∏M
m=1N (wm|θm∗ , αm∗ (θm∗ )2). This gives us an exact aggregation rule2 to compute

the maximum a posterior (MAP) solution of the θagg
∗ as follows:

θagg
∗ =

1

M

∑
m

rmθm∗ where rm =
gm(αm∗ (θm∗ )2)−1∑
m g

m(αm∗ (θm∗ )2)−1
. (5)

Note that Eq.(5) has the intuitive interpretation that the aggregation weight rm is inversely propor-
tional to its corresponding dropout variable (or noise variance) αm∗ . Thus, parameters with high
uncertainty have correspondingly less influence on the global mean prediction. In this way, we
can fully exploit the uncertainty of the model parameters in the aggregation. To fully update each
global NN parameter θk, we follow the similar parameter update rule of FedAvg, except that the
Bayesian aggregation Eq.(5) is utilized as in Algo.1. For the parameter of hypernetwork ψ, a more
general update rule is used following [25]. We compute the changes in the updated dropout for each
client ∆αm as described in Algo.1, then an approximated gradient of the hypernetwork parameter is
computed using the chain rule as ∇ψLmELBO(α

m) = (∇ψαm)T∆αm, where ∇ψαm is the gradient
of the output of hypernetwork with respect to ψ. ∆αm is an approximation of the vector-jacobian
product, which we are inspired by the work of [25] and [69]. The gradient for ∇emLmELBO(α

m) can
be derived using the similar chain rule. The detailed update rules for each parameter are in Algo.1.

Combination with other meta-learning algorithms. Since the KL regularization in Eq.(4) is
independent of the global (or initial) parameter θ, MetaVD can be combined with several existing
meta-learning based PFL algorithms (e.g., Reptile [22, 70], MAML [21, 55], PerFedAvg [23, 71]).
For example, MAML [21, 55] requires some internal update steps using a subsampled dataset to
compute the second-order gradient for θ. Reptile [22, 70] uses only a first-order gradient computation
as described in Algo.1, which is similar to FedAvg except for the addition of the learning rate η.
Each local adaptation step is performed using the LmELBO in Eq.(4) and the local data set Dm. Unlike
conventional meta-learning based PFL algorithms, which maintain only one global initialization
parameter, MetaVD allows to change the mode of the initialization parameters for each client.

4 Experiments

To validate the MetaVD approach, we conducted extensive experiments in various scenarios following
the FL benchmark research [18], including different degrees of non-IID and client participation rates.

2We adapted this rule from [33]. In general, the mode of the product of M Gaussians,
∏M
m=1 N (µm, σm),

simplifies to µagg =
∑M
m=1 r

mµm where rm = ((σm)2)−1/
∑M
m=1((σ

m)2)−1 [67]. Interestingly, Eq.(5) is
equivalent to maximizing the logarithm of the product of the weighted posteriors [68]. In the heterogeneous
data, the product rule can achieve a smaller aggregation error than the mixture of Gaussian posteriors.
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CIFAR-100 dataset CIFAR-10 dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method Test (%) OOD (%) ∆ Test (%) OOD (%) ∆ Test (%) OOD (%) ∆

FedAvg [1] 42.35 43.08 +0.73 41.92 41.96 +0.04 71.65 71.57 −0.08
FedAvg+FT [18] 41.49 42.45 +0.96 40.99 39.83 −1.16 69.62 68.38 −1.24
FedProx [73] 42.23 44.11 +1.88 42.03 40.51 −1.52 72.27 73.75 +1.48
FedBE [31] 45.17 45.43 +0.26 44.29 44.23 −0.06 70.23 69.19 −1.04
pFedGP [34] 42.69 43.07 +0.38 42.44 42.53 +0.09 71.94 76.83 +4.89
Reptile [22] 47.87 47.73 −0.14 46.13 45.94 −0.19 73.93 76.36 +2.43
MAML [21] 48.30 49.14 +0.84 46.33 46.65 +0.32 76.06 74.89 −1.17
PerFedAvg (HF-MAML) [23] 48.19 47.35 −0.84 46.22 46.36 +0.14 75.42 79.56 +4.14

FedAvg+MetaVD (ours) 47.82 50.26 +2.44 47.54 47.55 +0.01 76.87 76.25 −0.62
Reptile+MetaVD (ours) 53.71 54.50 +0.79 52.06 51.50 −0.56 76.51 82.07 +5.56
MAML+MetaVD (ours) 52.40 51.78 −0.62 50.21 49.75 −0.46 77.27 79.05 +1.78
PerFedAvg+MetaVD (ours) 51.67 51.70 +0.03 50.02 48.70 −1.32 76.06 81.77 +5.71

Table 1: Classification accuracies with different (non-IID) heterogeneity degrees of α̇ = [5.0, 0.5] in
CIFAR-100 and α̇ = 0.1 in CIFAR-10. The higher score, the better.

We used multiple FL datasets [72], including CIFAR-10, CIFAR-100, FEMINIST, and CelebA. To
evaluate the effectiveness of the hypernetwork, we also performed an ablation study comparing
MetaVD to regular VD. Additionally, we assessed the uncertainty calibration and model compression
ability of MetaVD. Finally, we test MetaVD with multi-domain datasets.

Baselines. We compare our method with standard FL methods such as FedAvg [1] and FedProx [73],
meta-learning PFL algorithms like Reptile [22], MAML [21], and PerFedAvg [23], and Bayesian
FL methods including FedBE [31] and pFedGP [34]. To ensure consistency, we employ the widely-
used CNN model for FL [3, 74, 25] across all baselines. Additionally, "fine-tuning" (FT) refers to
performing few-shot adaptation steps with FedAvg before evaluation. An overview of baselines can
be found in Appendix D.

Implementation. For reproducibility, we run experiments in a containerized environment that
simulates FL communication with clients only on a server. We test T = 1000 of total FL rounds,
following the conventions in [18]. One baseline model can be run on a single GPU. All experiments
are run on a cluster of 32 NVIDIA GTX 1080 GPUs. MetaVD’s hypernetwork consists of an
embedding layer of dimension (1 +M/4), followed by three fully connected NNs with a Reaky
ReLU activation and an exponential activation for the dropout logit output. The predicted dropout
variable is then applied to the global weight of other baselines. In our study, we apply MetaVD to only
one fully connected layer before the output layer [75–78], which leads to significant performance
improvements in all experiments. See Appendix E for implementation details. Our code is available
at https://github.com/insujeon/MetaVD.

4.1 Generalization on Non-IID Settings
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Figure 2: Visualization of client’s data distribution
in different non-IID degrees (α̇ = [0.5, 0.1]).

Datasets and training. To evaluate the gen-
eralization capabilities of the models under
non-IID data conditions, we perform tests on
both CIFAR-10 and CIFAR-100 datasets with
varying degrees of heterogeneity. We follow
the similar evaluation protocols of the pFL-
Bench [18], using Dirichlet allocation to par-
tition each dataset into 130 clients with dif-
ferent Dirichlet parameters, denoted as α̇ =
[5, 0.5, 0.1]. As shown in Figure 2, the class
labels and data size per client are heteroge-
neous across clients. A smaller α̇ represents
a higher degree of heterogeneity. To evaluate
the test accuracy and generalization performance of the baselines on new clients, we randomly select
30 out of 130 clients as out-of-distribution (OOD) clients, which are not involved in the training
phase. See Appendix G for more details.
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Results. Table 1 shows the weighted average classification accuracy for participating (Test) and
non-participating (OOD) clients on CIFAR-10 and CIFAR-100 datasets with varying non-IID degrees.
The generalization gap, denoted by ∆, represents the difference between OOD and Test accuracy.
As shown in Table 1, PFL methods such as Reptile, MAML, and PerFedAvg generally outperform
non-PFL methods such as FedAvg and FedProx. While the Bayesian ensemble approach, FedBE,
improves on FedAvg, it still lags behind PFL methods in OOD accuracy. Additionally, pFedGP
exhibits suboptimal performance in the presence of heterogeneous distribution of data among clients.
As α̇ changes from 5.0 to 0.5, the test and OOD accuracy of all models decreases as the degree
of non-IID increases. When combined with MetaVD, all baselines show significant performance
improvements, regardless of whether they are FL or PFL algorithms (e.g., Reptile enhances from
47.87 to 53.71 adapting MetaVD).. These results demonstrate the adaptability and effectiveness of
MetaVD in mitigating model overfitting and handling non-IID client data in FL contexts.

4.2 Ablation Study

Settings. To evaluate the capability of the hypernetwork in MetaVD, we perform an ablation study
by comparing MetaVD with naive VD [46] and EnsembleVD [79] approaches on the CIFAR-100
dataset. The naive (global) VD model maintains a global dropout parameter shared by all clients; the
dropout parameter is treated as a global model parameter, as in FedAvg. EnsembleVD maintains M
independent dropout parameters for all clients. The client-specific dropout parameter can be stored in
each client analogous to the partial FL [80, 81, 5]. In contrast, MetaVD utilizes a hypernetwork to
learn the personal dropout rate across all clients. Bayesian posterior aggregation rules is applied in
all model based on dropout rates to update the global model parameter [82, 83].

CIFAR-100 dataset
Method Test (%) OOD (%) ∆

Reptile [22] 47.87 47.73 −0.14
Reptile+VD [46] 50.20 49.28 −0.92
Reptile+EnsembleVD [79] 52.49 52.36 −0.13

Reptile+MetaVD (ours) 53.71 54.50 +0.79

Table 2: MetaVD ablation study in CIFAR-100.

Results. Table 2 outlines the results of the abla-
tion study; MetaVD’s hypernetwork-based pos-
terior modeling outperforms all other baselines.
The dropout rates in baselines such as VD or En-
sembleVD could not fully learn the independent
dropout variables well due to restricted client
participation. On the other hand, both the hyper-
network and the global parameter converge well
in MetaVD. This observation demonstrates that
MetaVD’s hypernetwork provides a more data-efficient approach to learning client-specific model
uncertainty compared to other baselines. Further ablation studies performed on the FEMNIST dataset
are shown in Appendix H.

4.3 Uncertainty Calibration

CIFAR-100 dataset
Method ECE (%) MCE (%)

FedAvg [1] 0.60 36.79
FedAvg+FT [18] 0.69 45.04
FedProx [73] 0.67 39.69
FedBE [31] 0.50 34.66
Reptile [22] 0.77 50.52
MAML [21] 0.75 46.57
PerFedAvg (HF-MAML) [23] 0.69 45.27

FedAvg+MetaVD (ours) 0.39 25.27
Reptile+MetaVD (ours) 0.57 42.40
MAML+MetaVD (ours) 0.52 37.26
PerFedAvg+MetaVD (ours) 0.43 30.20

Table 3: Uncertainty calibration scores (ECE
and MCE) measured on the OOD client in
CIFAR-100 (α̇ = 0.1). The lower, the better.

Figure 3: Reliability diagrams for (a) Rep-
tile, (b) MAML, (c) Reptile+MetaVD, and (d)
MAML+MetaVD in CIFAR-100.

Settings. Identifying any potential bias in the model’s prediction is important to avoid serious
consequences, especially when the model is used to make important decisions [84–86]. In the FL
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environment, where customers have limited non-IID data, it is even more critical to properly calibrate
the prediction model. Therefore, we investigate whether the proposed MetaVD approach can also
improve the calibration measures for FL baselines. The Expected Calibration Error (ECE) measures
the expected deviation between a model’s predicted probability and the actual positive class frequency,
while the Maximum Calibration Error (MCE) measures the maximum difference. These calibration
metrics are commonly used to evaluate the reliability of probabilistic predictions.

Results. Table 3 summarizes the ECE and MCE values tested with the OOD clients in the CIFAR-
100 dataset and shows that the meta-learning based PFL algorithms (e.g., Reptile, MAML, and
PerFedAvg) tend to have higher ECE and MCE values than the conventional FL algorithms (e.g.,
FedAvg, FedProx, and FedBE). This means that PFL baselines achieve high classification accuracy,
but their probability predictions are more likely to be biased. This may be a byproduct of the
additional optimization-based adaptation steps of meta-learning with limited local client data. On
the other hand, our MetaVD approach significantly reduces both ECE and MCE values for all meta-
learning-based methods, indicating that MetaVD effectively mitigates overfitting and reduces bias on
the OOD clients. Figure 3 shows the reliability diagrams that visualize the model calibration [84–86]
in CIFAR-100 (α̇ = 0.5). They plot the expected sample accuracy as a function of confidence. If the
model is perfectly calibrated, then the diagram becomes the identity function. Any deviation from a
perfect diagonal represents miscalibration. While Reptile and MAML tend to be overconfident in
their predictions, Reptile+MetaVD comes fairly close to the desired diagonal function. Remarkably,
in most instances, adapting MetaVD leads to improved model calibration.

4.4 Client Participation

FEMNIST dataset
Sparsity s = 0.2 s = 0.1 s = 0.05

Method Test (%) OOD (%) ∆ Test (%) OOD (%) ∆ Test (%) OOD (%) ∆

FedAvg [1] 88.08 85.29 −2.79 88.13 84.70 −3.43 88.06 86.22 −1.84
FedAvg+FT [18] 88.33 86.37 −1.96 87.85 86.95 −0.90 87.66 87.11 −0.55
Reptile [22] 88.55 86.52 −2.03 88.39 87.20 −1.19 87.86 88.22 +0.36

FedAvg+MetaVD (ours) 88.81 85.28 −3.53 88.69 85.71 −2.98 88.66 86.21 −2.45
Reptile+MetaVD (ours) 89.90 89.04 −0.86 89.86 88.63 −1.23 89.43 88.71 −0.72

Table 4: Results of classification accuracies with different participant client rates of s = 0.2, s = 0.1,
and s = 0.05 in the FEMNIST dataset. We report the results of participating clients (Test) and
non-participating clients (OOD). The higher the better.

Settings. In real-world FL scenarios, such as intermittent connections between clients and servers or
limited client device performance, numerous clients may be unable to participate in each FL round.
This is important for cross-device FL with a large number of clients or resource-limited clients. In this
experiment, we evaluated the performance of the methods under different levels of client participation
in each FL round. We experimented with 200 clients in the FEMNIST dataset. For each FL round,
we randomly selected 40, 20, and 10 clients to participate during training, with participating client
rates s of 0.2, 0.1, and 0.05, respectively. To measure OOD accuracy, we excluded 40 preselected
clients from the selection of 200 clients so that they do not participate in the entire training.

Results. The overall classification results with different participant client rates s are summarized
in table 4. Reptile performs better than FedAvg. The effect of data heterogeneity on performance
degradation becomes more severe as more clients participate in training. The decrease in test accuracy
as the participating client rate s becomes smaller is due to having less training data as fewer clients
participate in each round. Meanwhile, Reptile+MetaVD outperforms the other baselines. Interestingly,
the performance drop for Reptile+MetaVD is not as significant as for Reptile, showing that MetaVD
can adapt well to FL scenarios with smaller participant sizes.

4.5 Muti-domain Datasets

Settings. Existing federated learning algorithms usually assume a single-domain approach, where
only one dataset is used in the experiment. Multi-domain learning [87–89] aims to utilize all available
training data across different domains to improve the performance of the model. In this section, we
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2 Domains (a) 2 Domains (b) 2 Domains (c) 3 Domains (d)
Method Test (%) OOD (%) Test (%) OOD (%) Test (%) OOD (%) Test (%) OOD (%)

FedAvg [1] 43.65 43.45 64.02 52.88 86.81 81.01 63.73 55.55
Reptile [22] 48.92 48.93 66.13 56.22 87.50 83.05 66.98 57.12
MAML [21] 47.39 48.51 66.56 55.72 88.57 84.52 67.08 58.15
PerFedAvg (HF-MAML) [23] 49.21 50.91 66.57 55.24 87.94 83.75 67.20 57.03

FedAvg+MetaVD (ours) 48.23 48.62 65.58 56.85 87.38 82.67 65.93 58.58
Reptile+MetaVD (ours) 52.26 54.75 68.35 59.07 88.63 85.03 68.78 61.59
MAML+MetaVD (ours) 51.34 52.82 68.24 61.21 88.59 85.02 68.81 61.60
PerFedAvg+MetaVD (ours) 51.18 53.06 67.93 61.32 88.27 85.32 68.05 61.17

Table 5: Classification accuracies with multi-domain datasets. (a) CelebA + CIFAR-100, (b) CIFAR-
100 + FEMNIST, (c) CelebA + FEMNIST, (d) CelebA + CIFAR-100 + FEMNIST.

further evaluate the performance of PFL algorithms on a multi-domain FL dataset, where we assume
that each client can have data from different domains. We use three different FL datasets to construct
the multi-domain task distributions: FEMNIST, CIFAR-100, and CelebA. To sample each client’s
local data, we use the Dirichlet sampling technique (α̇ = 0.5) used in the §4.1.

Results. Table 5 shows the classification accuracies for the Test and OOD clients when using a
combination of two or three datasets. The meta-learning based PFL algorithm consistently outper-
forms FedAvg in terms of classification accuracy. In addition, when MetaVD is applied to either
the FL or PFL algorithms, it significantly improves prediction accuracy in all multi-domain settings.
Notably, MetaVD shows greater improvements in OOD accuracy compared to the improvement in
test accuracy. Overall, these results demonstrate the versatility of MetaVD in improving robustness
and generalization even in multi-domain FL datasets.

4.6 Model Compression

CIFAR-10 dataset (α̇ = 0.5)
Method Test (%) OOD (%) Sparsity(%)

Reptile+MetaVD 83.20 83.40 0
MAML+MetaVD 81.32 81.81 0
PerFedAvg+MetaVD 81.06 81.47 0

Reptile+MetaVD+DP 81.40 80.98 80.06
MAML+MetaVD+DP 81.48 81.73 79.49
PerFedAvg+MetaVD+DP 82.43 82.19 78.20

Table 6: Results of model compression. MetaVD+DP
does not communicate the model parameters whose
dropout rates are larger than 0.8.

Settings. Federated learning optimiza-
tion requires frequent communication of
model parameters between devices and
the central server, which can be slow
and may raise privacy concerns. There-
fore, minimizing communication costs
by reducing the size of model parameters
is an important issue in FL. To explore
the compression capabilities of MetaVD,
we performed an additional experiment
on the CIFAR-10 dataset. The sign DP
indicates that each model parameter is
dropped during the FL communication.
We used the thresholding technique to drop the model parameter; Any parameter with a dropout rate
greater than 0.8 was dropped during the FL rounds.

Results. Table 6 shows the test and OOD accuracy results, as well as the sparsity (%) in the CIFAR-
100 dataset. The sparsity represents the proportion of zero-value model parameters in the personalized
layer. A higher sparsity percentage indicates more parameter pruning or elimination performed on the
weight. In our experiment, MetaVD was able to prune about 80% of the weights in the personalized
layer. In addition, when we dropped the communication of the parameters between the client and the
server using the dropout thresholding technique, MetaVD still showed relatively good performance.
In the case of Reptile+MetaVD+DP, the performance decreased by about 2% while using only
20% of the weights. On the other hand, MAML+MetaVD+DP and PerFedAvg+MetaVD+DP show
an improvement in performance of about 1%. This shows that MetaVD can compress the model
parameters required in the personalized layer, reducing the communication cost in FL without
sacrificing much performance. Appendix K shows more experiments on model compression results
on the CIFAR-100 dataset with different non-IID settings.

9



5 Conclusion

In this study, we presented a new novel Bayesian personalized federated learning (PFL) approach
called meta-variational dropout (MetaVD). MetaVD utilizes a hypernetwork that predicts the dropout
rates for each independent NN parameter, which enables effective model personalization and adapta-
tion in federated learning (FL) with non-IID and limited data scenarios. In addition, MetaVD is the
first approach to exploit variational dropout uncertainty in posterior aggregation in PFL. MetaVD’s
dropout posterior modeling provides a principled Bayesian aggregation strategy to consolidate local
models into a global model, thereby improving training convergence. MetaVD is also a generic
approach that is compatible with any other existing meta-learning-based PFL algorithms to avoid
model overfitting. In addition, MetaVD’s ability to compress model parameters can be used to reduce
communication costs. A potential limitation of our approach is that it may increase the complexity
of the model by introducing an additional hypernetwork. However, the hypernetwork is kept on the
server, and we have verified that applying MetaVD to just one last layer before the output layer yields
significant performance improvements in all experiments. Experimentally, MetaVD’s performance
has been validated on several PFL benchmarks, including CIFAR-10, CIFAR-100, FEMINIST, and
CelebA, as well as multi-domain datasets. It demonstrates superior classification accuracy and
uncertainty calibration, especially for out-of-distribution (OOD) clients. Overall, the experimental
results show MetaVD to be a highly versatile approach capable of addressing many challenges in FL.
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A The Global Posterior Decomposition in Bayesian FL

In Bayesian estimation, an alternative to Maximum Likelihood Estimation (MLE) is the inference or estimation of
the posterior distribution of the parameters given all the data, denoted as p(w|D ≡ D1∪· · ·∪DM ). This posterior
distribution is proportional to the product of the likelihoods and a prior, p(w|D) ∝ p(w)

∏M
m=1 p(D

m|w). In
the case of a uniform prior, the modes of the global posterior coincide with the MLE solutions. This establishes
an equivalence between the inference of the posterior mode and optimization. Under the uniform prior, any
global posterior distribution that exists decomposes into a product of local posteriors:

P (θ|D) ∝
M∏
m=1

p(θ|Dm) (6)

This proposition is well discussed in the recent Bayesian FL work [33]. In the FL context, the global model can
be computed in the server by multiplicatively aggregating the local models adapted to each client. However,
in practice, aggregating the posterior with the overfitted local models into the global one is difficult due to the
heterogeneity among clients’ data and the permutation invariance property of the NN architecture [90]. Thus,
frequent communications between the server and the client are still demanded in the FL. The challenge of
inferencing the local and global model and improving communication efficiency remains an active research area
for real federated applications.

B The Motivation of Hierarchical Prior in MetaVD

In Section 3.2, we adopt the hierarchical prior [64, 65, 91] proposed in [47] for several reasons. The first reason
is simply that it is a well-posed Bayesian prior that can avoid a degenerate posterior problem of the conventional
VD prior [46, 61, 62]. The second reason is that we want a sparse prior to reduce communication costs by
compressing the model; the hierarchical prior has been proven effective for parameter pruning. Although we
briefly mentioned the KL divergence term as KL(q(wm;ϕ)||p(wm)) =

∑K
k=1 0.5 log(1 + (αmk )−1) in the

manuscript for readability, here we provide more detailed descriptions of applying the hierarchical prior.

Under the hierarchical prior assumption, we consider the joint prior and joint posterior distributions [92]. The
joint prior, p(wm, γm) = p(wm|γm)p(γm), is defined as a combination of a zero-mean Gaussian distribution,
p(wm|γm) = N (wm|0, γm), and a uniform hyper-prior, p(γm) = U(γm|a, b), over the variance. Then, we
define a (conditional) joint variational posterior, q(wm, γm|ϕ) = q(wm|ϕ)q(γm), comprising the (conditional)
dropout posterior q(wm;ϕ = (θ, ϕ, em)) defined in Section 3.2 of the manuscript and an additional Dirac delta
distribution, q(γm), to approximate the true (joint) posterior p(wm, γm|Dm) (given the client’s dataset Dm).

ELBO. With the hierarchical prior p(wm, γm) = p(wm|γm)p(γm) and the (conditional) joint posterior
q(wm, γm|ϕ) = q(wm|ϕ)q(γm) of the MetaVD, we can derive the local objective for each client as follows:

KL(q(wm, γm|ϕ)||p(wm, γm|Dm)) =

∫
q(wm, γm|ϕ) log q(wm, γm|ϕ)

p(wm, γm|xm, ym)
∂wm∂γm

=

∫
q(wm, γm|ϕ) log q(wm, γm|ϕ)p(ym|xm)

p(ym|xm, wm)p(wm, γm)
∂wm∂γm (7)

=

∫
q(wm, γm|ϕ)

{
log

q(wm, γm|ϕ)
p(wm, γm)

+ log p(ym|xm)− log p(ym|xm, wm)
}
∂wm∂γm

= KL(q(wm, γm|ϕ)||p(wm, γm)) + log p(ym|xm)− Eq(wm,γm|ϕ)[log p(y
m|xm, wm)]. (8)

Eq. (2) is derived from Bayes’ rule: p(wm, γm|Dm) = p(ym|xm,wm)p(wm,γm)
p(ym|xm)

. By reordering Eq.(3), we get

log p(ym|xm) ≥ Eq(wm,γm|ϕ)[log p(y
m|xm, wm)]− KL(q(wm, γm|ϕ)||p(wm, γm)) (9)

= Eq(wm|ϕ)Eq(γm)[log p(y
m|xm, wm)]− KL(q(wm, γm|ϕ)||p(wm, γm))

= Eq(wm|ϕ)[log p(y
m|xm, wm)]− KL(q(wm, γm|ϕ)||p(wm, γm)) (10)

The lower-bound in Eq.(4) is due to the positivity of the KL(q(wm, γm|ϕ)||p(wm, γm|Dm)). Here, Eq. (5)
corresponds to the ELBO objective of Eq. (3) in the manuscript.

KL term. If we further decompose the KL divergence term in Eq. (5),
KL(q(wm, γm|ϕ)||p(wm, γm)) = KL(q(wm|ϕ)||p(wm|γm)) + KL(q(γm)||p(γm))

=

K∑
k=1

{0.5 log(1 + (αmk )−1)}+
K∑
k=1

{log(b− a)} (11)

The log(b− a) is independent of the unknown variables αm, θ, and γm. Thus, we do not need to specify the
value of hyperparameters a and b and can neglect them in practice3. Eq. (6) provides the rationale behind the

3For a more detailed proof of this, please see the appendix section of [47]
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KL divergence term that we mentioned in Section 3.2 of the manuscript. In fact, the independence between the
KL term and the parameter θ ensures compatibility with other optimization meta-learning algorithms. Also,
the two-level structure in a hierarchical system can generate a much more complex distribution, expanding the
potential solution spaces for selecting feasible prior. Thus, the hierarchical prior is a suitable prior for interpreting
the variety of different clients’ models in the FL environment. The same hierarchical prior is uniformly applied
across all 1...M clients to ensure the global posterior decomposition assumption in Eq.(1).

C Additional Related Works

Bayesian Neural Networks and Variational Dropout. To address the issue of overfitting caused by
limited data, Bayesian neural networks (BNN) [93, 56, 94, 57] were proposed, which impose a prior distribution
on each parameter. Various inference approaches have been proposed to model the posterior distribution
of BNNs [58, 46, 59]. Variational dropout (VD) [60, 46, 61, 62, 47] encompasses a set of techniques that
model the variational posterior distribution based on the dropout regularization method. Dropout regularization
[95, 96] randomly deactivates some of the model parameters during training by multiplying them with discrete
Bernoulli random noise. This method was initially popularized to prevent overfitting in neural network models.
Subsequently, fast dropout [63, 97] demonstrated that multiplying the parameters with continuous noise sampled
from Gaussian distributions yields similar results to conventional Bernoulli dropout [95]. VD approaches often
employ sparse priors for regularization [46, 61, 62, 47], which facilitate the learning of independent dropout
rates on the neural network parameters as variational parameters. This property distinguishes VD approaches
from conventional dropout, which uses a single fixed rate for all parameters.

D Dataset and Methods

We follow the datasets and the evaluation protocol of pFL-Bench [18], which is a recently proposed benchmark
for federated learning.

Datasets. Here, we present descriptions of the dataset used in our experiment.

• The CIFAR-10 and CIFAR-100 datasets [98] are popular for 10-class and 100-class image classifica-
tion respectively. Each dataset contains 50,000 training and 10,000 test images with a resolution of
32x32 pixels. Following the heterogeneous partition manners used in [18], we use Dirichlet allocation
to split this dataset into 130 clients with different Dirichlet parameters as α̇ = [5, 0.5, 0.1] (a smaller α̇
indicates a higher heterogeneous degree).

• The Federated Extended MNIST (FEMNIST) is a widely used FL dataset for 62-class handwritten
character recognition [72]. The original FEMNIST dataset contains 3,550 clients and each client
corresponds to a character writer from EMNIST [99]. Following [18], we adopt the sub-sampled
version, which contains 400 clients and a total of 85350 training and 21536 test images with a
resolution of 28x28 pixels.

• The CelebA is a FL dataset based on [100] for 2-class image classification; Smiling or Not. Following
[18], we adopt the sub-sampled version, which contains 500 clients and a total of 8752 training and
2347 test images with a resolution of 84x84 pixels. Each client is assigned images of a single celebrity.

We randomly select 30 clients for CIFAR-10 and CIFAR-100 and 40 clients for FEMNIST as OOD clients
who do not participate in the FL processes. For all of the datasets, we follow the same heterogeneous patterns
exhibited in the pFL-Bench, which covers a wide range of scales, partition manners, and non-IID degrees. This
enables comprehensive comparisons and analysis among different methods in the non-IID data environment.

Baselines. We present an overview of the baseline models used in our experiment, covering various popular
and state-of-the-art approaches across three categories: Non-PFL, meta-learning-based PFL, and Bayesian FL
methods.

The following Non-PFL methods are considered in our experiments:

• FedAvg [1] is a standard FL algorithm that averages gradients weighted by the data size of clients in
each FL round.

• FedProx [73] employs a proximal term to encourage updated local models for clients not to deviate
too much from the global model.

The following (meta-learning-based) PFL methods are considered in our experiment:

• Reptile [22] inserts a meta-learning fine-tuning phase of [70, 55] after the federated averaging algorithm
stage to provide a reliable personalized model.
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• MAML [21] enhances federated learning by integrating a MAML-based meta-learner [55], dividing
the dataset into support and query sets for more robust local training.

• PerFedAvg [23] method focuses on the convergence analysis of the HF-MAML algorithm [71] in the
FL scenario, offering a provably convergent method based on MAML to tackle non-convex functions.

The following Bayesian FL algorithm are also compared in our experiment:

• FedBE [31] enhances robust aggregation by adopting a Bayesian inference approach, sampling high-
quality global models, and combining them through Bayesian model ensemble using Gaussian or
Dirichlet distributions fitted to local models.

• pFedGP [34] employs Gaussian processes for personalized federated learning, leveraging shared
kernel functions parameterized by a neural network and a novel inducing point approach for the
generalization in the low data regime.

The following Pruning algorithm is also compared in our compression experiment in the appendix:

• SNIP [101, 102] algorithm is a deep learning pruning technique that identifies and removes less
important connections in neural networks before the training begins using a small subset of the dataset.
It is compared with our algorithm in the model compression experiment in the FL environment.

Additionally, Fine-tuning (FT) in the baseline’s name indicates fine-tuning the local models with a few steps
before evaluation within the FL processes, which is similar to the adaptation step of the optimization-based
meta-learning.

E Implementation Details.

Models. To maintain consistency with previous research, we employ the widely adopted CNN model for all
algorithms and baselines [25, 74, 3]. Specifically, the global model comprises three convolutional layers with 64
filters and 3x3 kernels, followed by three fully-connected layers of 256, 128, and 64 hidden units.

The hypernetwork architecture of MetaVD consists of an embedding layer, followed by two consecutive
blocks containing a linear layer and a LeakyReLU activation function, and one block containing a linear
layer with exponential activation to output the dropout logit parameter α. The dimension of client embedding
em is proportional to the number of clients M and is calculated as (1 +M/4). The hidden units’ size in the
hypernetwork was set to 200. The predicted dropout logit parameter is then applied to each weight of the MetaVD
layer within the global model. In our study, we selectively apply MetaVD to just one fully-connected layer right
before the output layer of the global model. This simple adaptation of MetaVD only in one fully-connected layer
yielded significant performance improvements across all experiments.

Hyperparameters. For all datasets, we set T to 1000 to ensure sufficient convergence following conventions
[18]. The batch size was set to 64, and local steps was set to 5. Personalization was executed with a batch size of
64 and a 1-step update. In order to ensure a fair comparison between the algorithms, the results presented in
all of our experiments are obtained with the optimal hyperparameters for each model. To do so, we conducted
an extensive parameter optimization using an optimization tool called Optuna4 [103]. We employed both the
Tree-structured Parzen Estimator algorithm and Random Sampler as hyperparameter samplers in Optuna.

For all methods, we investigated the server learning rate and local SGD learning rate within identical
ranges. The server learning rate η was explored within the range of [0.6, 0.7, 0.8, 0.9, 1.0]. The local
SGD learning rate was investigated within the range of [0.005, 0.01, 0.015, 0.02, 0.025, 0.03]. In MAML
and PerFedAvg, an additional client learning rate γ is required, for which we searched within the range of
[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1]. For MetaVD, an additional KL divergence parameter
β is needed, and we sought its optimal value within the range of [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
We follow the hyperparameter setting outlined in pFedGP, except for adjusting the batch size to 64 or 320 and
investigating the learning rate within the range of [0.03 to 0.1]. To ensure the reproducibility of the experiments,
we will release all code, including baselines, on our GitHub repository.

F Experiment Outline

To evaluate the effectiveness and robustness of the proposed PFL methods, we tested the algorithms under
various FL scenarios, including:

4https://optuna.org/
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• Degree of Data Heterogeneity: we assessed the performance of each algorithm in scenarios where data
from different clients are heterogeneous, considering factors such as variations in data distributions,
label imbalance, and situations while some clients have limited training data available.

• Ablation Study: we conducted an ablation study to verify the advantages of employing a hypernetwork
in MetaVD compared to naive Variational Dropout (VD) or Ensemble VD approaches in Federated
Learning.

• Client Participation: we evaluated the performance of each algorithm under different levels of client
participation rates in each FL round.

• Uncertainty Calibration: we used Expected Calibration Error (ECE) measures to evaluate the accuracy
of probabilistic predictions made by the predictive models. These measures help determine whether
a model is overconfident or underconfident in its predictions and identify any biases in the model’s
predictions.

• Communication Efficiency: we measured the communication overhead of each algorithm in terms of
the rates of model compression.

• Multi-domain Datasets: Multi-domain learning aims to leverage all available training data across
different domains to enhance the performance of the model, but it typically results in a suboptimal
global model. We tested our approach in FL with multi-domain learning.

• Model Compression: we compared MetaVD’s compression capabilities with the existing pruning
algorithm and evaluated the performance of MetaVD with and without compression.

G Additional Results with Non-IID Settings

CIFAR-100 dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method Test (%) OOD (%) ∆ Test (%) OOD (%) ∆ Test (%) OOD (%) ∆

FedAvg [1] 42.35 43.08 +0.73 41.92 41.96 +0.04 37.57 37.90 +0.33
FedAvg+FT [18] 41.49 42.45 +0.96 40.99 39.83 −1.16 36.79 37.00 +0.21
FedProx [73] 42.23 44.11 +1.88 42.03 40.51 −1.52 38.07 39.36 +1.29
FedBE [31] 45.17 45.43 +0.26 44.29 44.23 −0.06 40.89 41.56 +0.67
pFedGP [34] 42.69 43.07 +0.38 42.44 42.53 +0.09 37.65 38.09 +0.44
Reptile [22] 47.87 47.73 −0.14 46.13 45.94 −0.19 40.71 43.59 +2.88
MAML [21] 48.30 49.14 +0.84 46.33 46.65 +0.32 41.56 45.19 +3.63
PerFedAvg (HF-MAML) [23] 48.19 47.35 −0.84 46.22 46.36 +0.14 42.46 42.92 +0.46

FedAvg+MetaVD (ours) 47.82 50.26 +2.44 47.54 47.55 +0.01 42.34 42.65 +0.31
Reptile+MetaVD (ours) 53.71 54.50 +0.79 52.06 51.50 −0.56 44.56 44.62 +0.06
MAML+MetaVD (ours) 52.40 51.78 −0.62 50.21 49.75 −0.46 43.84 48.17 +4.33
PerFedAvg+MetaVD (ours) 51.67 51.70 +0.03 50.02 48.70 −1.32 43.31 46.19 +2.88

Table 7: Results of classification accuracies with different (non-IID) heterogeneity strengths of
α̇ = 5.0, α̇ = 0.5, and α̇ = 0.1 in the CIFAR-100 dataset. We report the results of participating
clients during the training (Test) dataset and non-participating clients (OOD). The higher, the better.

To evaluate the generalization capabilities of the models under non-IID data conditions, we conducted tests on
both CIFAR-10 and CIFAR-100 datasets with varying degrees of heterogeneous partitions. We randomly selected
30 out of 130 clients as non-participating out-of-distribution (OOD) clients, who were not involved during the
training phase. Table 11 and Table 12 display the weighted average accuracy while adjusting the non-IID degrees
with different Dirichlet parameters α̇. A smaller α̇ corresponds to a higher degree of heterogeneity. Test(%)
denotes the weighted average accuracy of participating clients’ test samples, OOD(%) signifies the weighted
average accuracy of the non-participants, and ∆ represents the participation generalization gap calculated as the
difference between OOD accuracy and test accuracy.

In both datasets, PFL methods such as Reptile, MAML, and PerFedAvg generally outperform non-PFL methods
like FedAvg and FedProx. The Bayesian ensemble approach on FedAvg (FedBE) offers a slight improvement in
overall performance but still lags behind PFL methods in terms of OOD accuracy. Notably, when combined with
MetaVD, all baselines experience significant performance enhancements, regardless of whether they employ
FL or PFL approaches. Importantly, our method consistently improves OOD accuracy across all degrees of
non-IID data, illustrating its versatility in effectively augmenting conventional FL algorithms without being
limited by specific optimization techniques, addressing non-IID data and model overfitting issues. Additionally,
our experimental results indicate that pFedGP performs relatively poorly when the data distribution among
clients is heterogeneous.
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CIFAR-10 dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method Test (%) OOD (%) ∆ Test (%) OOD (%) ∆ Test (%) OOD (%) ∆

FedAvg [1] 80.73 79.98 −0.75 78.28 78.90 +0.62 71.65 71.57 −0.08
FedAvg+FT [18] 80.20 79.63 −0.57 76.96 75.83 −1.13 69.62 68.38 −1.24
FedProx [73] 80.79 80.30 −0.49 78.55 77.60 −0.95 72.27 73.75 +1.48
FedBE [31] 81.55 81.07 −0.48 79.44 79.46 +0.02 70.23 69.19 −1.04
pFedGP [34] 83.73 83.27 −0.46 79.56 79.37 −0.19 71.94 76.83 +4.99
Reptile [22] 83.48 82.88 −0.60 79.35 79.41 +0.06 73.93 76.36 +2.43
MAML [21] 82.61 81.69 −0.92 80.31 80.03 −0.28 76.06 74.89 −1.17
PerFedAvg (HF-MAML) [23] 82.57 81.99 −0.58 80.87 80.85 −0.02 75.42 79.56 +4.14

FedAvg+MetaVD (ours) 82.60 82.74 +0.14 79.08 80.33 +1.25 76.87 76.25 −0.62
Reptile+MetaVD (ours) 84.70 84.28 −0.42 83.20 83.40 +0.20 76.51 82.07 +5.56
MAML+MetaVD (ours) 83.93 84.95 +1.02 81.32 81.81 +0.49 77.27 79.05 +1.78
PerFedAvg+MetaVD (ours) 83.88 83.96 +0.08 81.06 81.47 +0.41 76.06 81.77 +5.71

Table 8: Results of classification accuracies with different (non-IID) heterogeneity strengths of
α̇ = 5.0, α̇ = 0.5, and α̇ = 0.1 in the CIFAR-10 dataset. We report the results of participating clients
during the training (Test) dataset and non-participating clients (OOD). The higher the better.

In the original pFedGP paper [34], the data samples were partitioned across clients according to [25, 24],
resulting in each client having 2 and 10 classes for the CIFAR-10 and CIFAR-100 datasets, respectively. In
contrast, in our non-IID experiment, we do not predefine the number of classes each client has; instead, it is
determined by the Dirichlet parameter α̇. In addition, we found some limitations of pFedGP, which could not
classify data points when encountering unseen labels within a client (especially when the label shift [104, 105]
occurs between the training and testing distributions of the clients). To ensure that pFedGP would run on the
unseen labels, we circumvented this limitation by allowing the client to have access to 40 or 50 data points for
each class while evaluating the model’s performance.

Dirichlet parameter α̇
Dataset α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

CIFAR-100 99.78± 0.5 73.18± 5.2 33.78± 7.33
CIFAR-10 10± 0 9.10± 0.94 4.65± 1.49

Table 9: Statistics of the number of classes assigned to each client.

H Additional Ablation Results in FEMNIST Dataset

FEMNIST dataset
Method Test (%) OOD (%) ∆

Reptile 87.86 88.22 +0.36
Reptile+VD 87.93 85.88 −2.05
Reptile+EnsembleVD 87.99 87.97 −0.02
Reptile+MetaVD (ours) 89.43 88.71 −0.72

Table 10: MetaVD ablation study results in the FEMNIST dataset.

In this experiment, we further performed the ablation study using the FEMNIST dataset to evaluate the benefits
of MetaVD’s hypernetwork in FL. We compared MetaVD to naive VD [46] and Ensemble VD [79] approaches.
The naive (global) VD model keeps one global dropout parameter shared with all clients; the dropout parameter
is treated as a global model parameter as in FedAvg. In EnsembleVD, we updated client-specific dropout rates
in a manner analogous to the local adaptation step of MetaVD but maintained independent variational dropout
rates for different clients on the server. In contrast, MetaVD utilized a hypernetwork to learn the dropout rates.
All models employed Bayesian posterior aggregation rules based on dropout rates to update the global model
parameter.

The ablation study’s results on the FEMNIST dataset are outlined in Table 10 in the manuscript. It is evident
from the table that MetaVD’s conditional variational dropout-based hypernetwork surpasses all other baselines
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in classification accuracy. Here too, Reptile+MetaVD consistently outperforms other methods. We noticed that
in baselines like VD or EnsembleVD, client-specific dropout rates were not fully optimized due to restricted
client participation. Consequently, the initial dropout rates and KL divergence loss in VD and EnsembleVD
remained fairly static. Conversely, in MetaVD, both dropout rates and KL divergence loss converged in all tests.
This observation underscores that MetaVD’s hypernetwork presents a more data-efficient approach to learning
the client-specific model uncertainty compared to other baselines.

I Additional Results on Uncertainty Calibration

Addressing uncertainty calibration issues is crucial for enhancing the accuracy and reliability of a model’s
predictions, particularly when the model is employed for making significant decisions. Uncertainty calibration
metrics evaluate the accuracy of probabilistic predictions made by a predictive model. By identifying and
addressing any calibration issues, it becomes possible to improve the model’s prediction accuracy and reliability,
which is of essential importance in decision-making processes. In a Federated Learning environment where
clients have limited non-IID data, overfitting can easily occur, making the calibration of prediction uncertainty
even more critical. We conducted experiments to evaluate the effectiveness of our proposed algorithm in
improving uncertainty calibration, demonstrating its potential to strengthen model performance in various real
applications.

CIFAR-100 dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method ECE (%) MCE (%) ECE (%) MCE (%) ECE (%) MCE (%)

FedAvg [1] 0.29 22.05 0.53 32.35 0.60 36.79
FedAvg+FT [18] 0.41 28.36 0.46 31.91 0.69 45.04
FedProx [73] 0.43 21.92 0.40 26.74 0.67 39.69
FedBE [31] 0.43 29.75 0.38 27.54 0.50 34.66
pFedGP [34] 0.15 22.99 0.14 16.57 0.12 17.40
Reptile [22] 0.73 46.53 0.77 46.19 0.77 50.52
MAML [21] 0.40 27.74 0.70 48.16 0.75 46.47
PerFedAvg (HF-MAML) [23] 0.65 45.44 0.40 23.74 0.69 45.27

FedAvg+MetaVD (ours) 0.26 19.99 0.32 26.60 0.39 25.27
Reptile+MetaVD (ours) 0.37 25.24 0.32 23.86 0.57 42.40
MAML+MetaVD (ours) 0.31 23.18 0.38 32.56 0.52 37.26
PerFedAvg+MetaVD (ours) 0.26 20.46 0.39 27.59 0.43 30.20

Table 11: Results of uncertainty calibration scores (ECE and MCE) in the CIFAR-100 dataset. The
lower is the better.

CIFAR-10 dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method ECE (%) MCE (%) ECE (%) MCE (%) ECE (%) MCE (%)

FedAvg [1] 1.93 28.87 2.39 26.45 3.16 27.37
FedAvg+FT [18] 2.02 20.80 2.71 27.86 3.20 33.22
FedProx [73] 2.01 25.96 2.52 25.24 3.06 28.62
FedBE [31] 1.78 21.33 2.18 21.89 3.35 29.72
pFedGP [34] 1.23 8.34 0.91 6.23 0.84 6.08
Reptile [22] 2.40 30.53 3.06 38.89 2.75 27.76
MAML [21] 2.61 36.86 2.49 30.67 2.66 32.10
PerFedAvg (HF-MAML) [23] 2.19 26.78 2.39 27.13 2.58 24.47

FedAvg+MetaVD (ours) 1.52 18.02 1.76 21.17 1.40 13.92
Reptile+MetaVD (ours) 1.60 25.46 2.16 29.84 1.76 17.84
MAML+MetaVD (ours) 1.39 16.46 1.97 21.51 0.35 5.80
PerFedAvg+MetaVD (ours) 1.14 17.55 1.51 20.38 0.29 3.63

Table 12: Results of uncertainty calibration scores (ECE and MCE) in the CIFAR-10 dataset. The
lower is the better.
Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) are widely used metrics for measuring
uncertainty calibration. ECE represents the average discrepancy between the model’s confidence and its accuracy.
To compute ECE, we group samples based on their confidence levels and calculate the average confidence and
the percentage of correct samples for each group. ECE is then derived as the weighted average of the differences

21



between the average confidence and the percentage of correct samples across all groups. ECE values range from
0 to 1, where 0 signifies perfect calibration and 1 indicates complete miscalibration. MCE, on the other hand, is
akin to ECE but focuses on the largest gap for any group rather than the weighted average.

Table 11 and Table 12 summarize the ECE and MCE results for varying non-IID degrees in CIFAR-100 and
CIFAR-10 datasets, with Dirichlet parameters represented as α̇ = [5, 0.5, 0.1]. Typically, ECE and MCE values
tend to increase as clients possess more non-IID data, which is a result of overfitting each client’s local data. In
the CIFAR-10 dataset, all methods that incorporate MetaVD exhibit a decline in ECE and MCE values as α̇
decreases, in contrast to standard FL or PFL methods that show an increase in these values. MetaVD effectively
mitigates overfitting to local data and enhances calibration by leveraging the heterogeneity present in the training
data. Consequently, methods employing MetaVD consistently achieve the lowest ECE and MCE values in
almost all scenarios.

Examining a reliability diagram can provide a visual comparison of uncertainty calibration results, as it illustrates
the relationship between prediction probabilities and true labels. Ideally, if a model predicts a specific class
with a certain probability, the actual label should correspond to that confidence level, placing the point on the
reliability diagram’s diagonal line. However, if the prediction probability and the true label do not align, the
point would be below or above the diagonal line. In this context, ECE represents the average distance of each
point from the diagonal line, while MCE indicates the maximum distance of any point from the diagonal line,
offering a comprehensive understanding of the model’s calibration performance.

Figure 4 and Figure 5 present the reliability diagrams for CIFAR-100 and CIFAR-10 with α̇ = 0.5 respectively.
These figures allow us to compare the calibration performance of FedAvg, Reptile, MAML, and PerFedAvg,
both with and without the integration of MetaVD. Remarkably, in most instances, employing MetaVD leads to
improved calibration, drawing the reliability diagrams closer to the identity function. This supports our findings
that MetaVD significantly improves the uncertainty calibration of the models as well.

J Additional Results on Muti-domain Datasets

CelebA + CIFAR-100 dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method Test (%) OOD (%) ∆ Test (%) OOD (%) ∆ Test (%) OOD (%) ∆

FedAvg [1] 43.42 44.45 +1.03 43.65 43.45 −0.20 40.46 41.00 +0.54
Reptile [22] 50.40 49.07 −1.33 48.92 48.93 +0.01 43.41 42.16 −1.25
MAML [21] 49.97 48.40 −1.57 47.39 48.51 +1.12 44.80 44.79 −0.01
PerFedAvg (HF-MAML) [23] 50.61 49.61 −1.00 49.21 50.91 +1.70 44.20 44.13 −0.07
FedAvg+MetaVD (ours) 48.08 48.88 +0.80 48.23 48.62 +0.39 42.98 45.19 +2.21
Reptile+MetaVD (ours) 53.04 53.97 +0.93 52.26 54.75 +2.49 45.83 47.05 +1.22
MAML+MetaVD (ours) 52.82 53.47 +0.65 51.34 52.82 +1.48 46.83 48.33 +1.50
PerFedAvg+MetaVD (ours) 53.14 54.26 +1.12 51.18 53.06 +1.88 46.65 47.11 +0.46

Table 13: Classification accuracies with different (non-IID) heterogeneity degrees of α̇ =
[5.0, 0.5, 0.1] in multi-domain datasets (a); CelebA + CIFAR-100.

CIFAR-100 + FEMNIST dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method Test (%) OOD (%) ∆ Test (%) OOD (%) ∆ Test (%) OOD (%) ∆

FedAvg [1] 63.90 53.57 −10.33 64.02 52.88 −11.14 62.13 49.65 −12.48
Reptile [22] 66.47 57.60 −8.87 66.13 56.22 −9.91 64.10 55.81 −8.29
MAML [21] 66.86 53.25 −13.61 66.56 55.72 −10.84 64.56 56.21 −8.35
PerFedAvg (HF-MAML) [23] 67.47 57.15 −10.33 66.57 55.24 −11.33 65.16 56.70 −8.46
FedAvg+MetaVD (ours) 65.91 57.59 −8.32 65.58 56.85 −8.73 63.26 52.78 −10.48
Reptile+MetaVD (ours) 68.61 60.95 −7.66 68.35 59.07 −9.28 65.29 58.11 −7.18
MAML+MetaVD (ours) 68.41 58.86 −9.55 68.24 61.21 −7.03 65.46 58.07 −7.39
PerFedAvg+MetaVD (ours) 68.27 58.72 −9.55 67.93 61.32 −6.61 66.81 59.13 −7.68

Table 14: Classification accuracies with different (non-IID) heterogeneity degrees of α̇ =
[5.0, 0.5, 0.1] in multi-domain datasets (b); CIFAR-100 + FEMNIST.

Unlike existing federated learning algorithms that usually assume a single-domain approach where only one
dataset is used in the experiment. In this section, we further evaluate the performance of our method on real-world
non-IID FL experiments by introducing multi-domain datasets in which we assume each client can have data
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CelebA + CIFAR-100 + FEMNIST dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method Test (%) OOD (%) ∆ Test (%) OOD (%) ∆ Test (%) OOD (%) ∆

FedAvg [1] 63.57 53.10 −10.47 63.73 55.55 −8.18 61.86 52.98 −8.88
Reptile [22] 65.93 57.98 −7.95 66.98 57.12 −9.86 63.89 52.33 −11.56
MAML [21] 67.70 59.06 −8.64 67.08 58.15 −8.93 65.67 54.41 −11.26
PerFedAvg (HF-MAML) [23] 67.39 59.17 −8.22 67.20 57.03 −10.17 65.08 54.54 −10.54
FedAvg+MetaVD (ours) 63.62 55.87 −7.75 65.93 58.58 −7.35 64.59 55.61 −8.98
Reptile+MetaVD (ours) 67.63 60.95 −6.68 68.78 61.59 −7.19 65.18 56.46 −8.72
MAML+MetaVD (ours) 69.42 61.52 −7.90 68.81 61.60 −7.21 66.56 56.54 −10.02
PerFedAvg+MetaVD (ours) 67.83 60.74 −7.09 68.05 61.17 −6.88 65.11 55.64 −9.47

Table 15: Classification accuracies with different (non-IID) heterogeneity degrees of α̇ =
[5.0, 0.5, 0.1] in multi-domain datasets (d); CelebA + CIFAR-100 + FEMNIST.

from different domains. Multi-domain learning [87–89] aims to leverage all available training data across
different domains to enhance the performance of the model. However, directly utilizing data from different
domains typically results in a suboptimal global model. In the context of federated learning, it becomes even
more critical to apply multi-domain learning effectively. We use three different FL datasets to construct the
multi-domain task distributions: CelebA, FEMNIST, and CIFAR-100. The non-IID heterogeneous environment
has been also assumed in the field of multi-domain learning. We utilize the Dirichlet sampling technique
(α̇ = [5.0, 0.5, 0.1]) to sample each client’s local CIFAR-100 data.

Table 13, 14, and 15 illustrate the classification accuracies for Test and OOD clients with varying degrees of
heterogeneity. Employing MetaVD leads to significantly improved prediction accuracy, with larger improvements
in OOD accuracy compared to the improvement in Test accuracy, across all multi-domain settings and degrees of
heterogeneity. The results indicate that MetaVD can improve the versatility and performance of FL algorithms
when applied to a broad range of multi-domain datasets.

K Additional Results on Model Compression

CIFAR-10 dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method Test (%) OOD (%) Sparsity (%) Test (%) OOD (%) Sparsity (%) Test (%) OOD (%) Sparsity (%)

FedAvg+SNIP 81.03 80.46 70.0 78.53 79.30 70.0 71.67 73.13 70.0
Reptile+SNIP 83.21 82.10 70.0 81.43 81.72 70.0 74.56 69.57 70.0
MAML+SNIP 83.35 81.59 70.0 81.47 81.84 70.0 72.51 69.27 70.0
PerFedAvg+SNIP 83.33 83.49 70.0 80.97 82.47 70.0 76.27 75.90 70.0

Reptile+MetaVD 84.70 84.28 0 83.20 83.40 0 76.51 82.07 0
MAML+MetaVD 83.93 84.95 0 81.32 81.81 0 77.27 79.05 0
PerFedAvg+MetaVD 83.88 83.96 0 81.06 81.47 0 76.06 81.77 0

Reptile+MetaVD+DP 84.19 84.46 77.12 82.67 82.79 79.25 75.85 80.52 76.18
MAML+MetaVD+DP 84.37 84.95 76.76 82.65 83.64 78.85 77.77 80.74 72.47
PerFedAvg+MetaVD+DP 84.04 83.69 78.55 82.64 83.52 79.32 77.10 83.24 72.87

Table 16: Results of study on model compression with different (non-IID) heterogeneity strengths of
α̇ = 5.0, α̇ = 0.5, and α̇ = 0.1 in the CIFAR-10 dataset. MetaVD+DP does not communicate the
model parameters when the dropout rate is larger than 0.9.

Federated Learning optimization involves frequent communication of model parameters between devices and
the central server, which can be slow and may raise privacy concerns. Therefore, it is crucial to minimize
communication costs by reducing both the size of exchanged model parameters and the number of communication
rounds. MetaVD also has the benefit of compressing the model parameters needed for each client device. To
explore the compression capabilities of MetaVD, we conducted experiments on CIFAR-10 and CIFAR-100
datasets, comparing our method to the baseline Pruning algorithm SNIP [101]. For the implementation of the
SNIP algorithm in the context of Federated Learning, we referred to the work of Jiang et al. (2022) [102]; we let
SNIP prune the original model to the target sparsity right after the first round.

Table 16 and Table 17 demonstrate the results of Test(%), OOD(%), and Sparsity(%) percentage of the models
with or without MetaVD+DP. Sparsity represents the ratio of zero-valued model parameters in the personalized
layer. The DP refers to the process of dropping communication of weights in the FL algorithm, where weights
with a dropout rate greater than 0.9 are dropped after 150 rounds. We have set these 150 rounds to allow MetaVD
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CIFAR-100 dataset
Hetrogenity α̇ = 5.0 α̇ = 0.5 α̇ = 0.1

Method Test (%) OOD (%) Sparsity (%) Test (%) OOD (%) Sparsity (%) Test (%) OOD (%) Sparsity (%)

FedAvg+SNIP 43.76 44.11 70.0 42.53 41.54 70.0 37.80 40.34 70.0
Reptile+SNIP 49.54 49.61 70.0 48.38 48.62 70.0 42.03 43.68 70.0
MAML+SNIP 51.06 49.56 70.0 48.16 46.99 70.0 42.03 42.49 70.0
PerFedAvg+SNIP 50.66 48.85 70.0 48.71 48.46 70.0 43.23 43.09 70.0

Reptile+MetaVD 53.71 54.50 0 52.06 51.50 0 44.56 44.62 0
MAML+MetaVD 52.40 51.78 0 50.21 49.75 0 43.84 48.17 0
PerFedAvg+MetaVD 51.67 51.70 0 50.02 48.70 0 43.31 46.19 0

Reptile+MetaVD+DP 52.56 55.03 65.83 50.94 50.85 57.26 45.13 45.19 75.72
MAML+MetaVD+DP 52.31 52.29 74.61 50.30 50.88 77.88 45.75 45.78 72.26
PerFedAvg+MetaVD+DP 51.68 52.56 70.08 51.64 51.47 68.88 45.16 46.45 55.18

Table 17: Results of study on model compression with different (non-IID) heterogeneity strengths of
α̇ = 5.0, α̇ = 0.5, and α̇ = 0.1 in the CIFAR-100 dataset. MetaVD+DP does not communicate the
model parameters when the dropout rate is larger than 0.9.

to adequately learn the client-specific dropout rates. The target sparsity of the SNIP algorithm was set to 0.7.
Note that, in our MetaVD+DP setting, even though we dropped weights with a dropout rate greater than 0.9, the
actual sparsity values are observed to be lower and tend to be around 70%, as indicated in the tables.

Overall, most models removed over 70% of their parameters in the personalized layer without losing much
performance. In CIFAR-10, as heterogeneity increased, the performance gap between SNIP and MetaVD+DP
tended to increase. For instance, in CIFAR-10 with α̇ = 5.0, the OOD performance of SNIP model and
MAML+MetaVD+DP model were 81.59 and 84.95, respectively, whereas in CIFAR-10 with α̇ = 0.1, they
were 69.27 and 80.74 respectively, demonstrating an increased difference in performance. This was similar
in the case of Reptile+MetaVD+DP and PerFedAvg+MetaVD+DP. In CIFAR-100 dataset, the performance
gap, according to the increase in heterogeneity, was not noticeable. Surprisingly, dropping model parameters
could lead to performance improvements in some cases. For example, in CIFAR-100 with α̇ = 0.5, the PerFe-
dAvg+MetaVD+DP model’s OOD performance increased from 48.70 to 51.47. This experiment demonstrates
that the MetaVD method can decrease the communication cost in Federated Learning (FL) by compressing model
parameters. This emphasizes the efficiency of MetaVD, this approach can be applied to numerous FL algorithms
without significantly increasing communication costs. It also boosts the generalization performance for new,
unseen clients. These aspects make our approach a significant addition to the field of Federated Learning.
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Figure 4: Reliability diagrams for (a) FedAvg, (b) FedAvg+MetaVD, (c) Reptile, (d) Reptile+MetaVD,
(e) MAML, (f) MAML+MetaVD, (g) PerFedAvg and (h) PerFedAvg+MetaVD in CIFAR-100
(α̇ = 0.5).
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Figure 5: Reliability diagrams for (a) FedAvg, (b) FedAvg+MetaVD, (c) Reptile, (d) Reptile+MetaVD,
(e) MAML, (f) MAML+MetaVD, (g) PerFedAvg and (h) PerFedAvg+MetaVD in CIFAR-10 (α̇ =
0.5).
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