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ABSTRACT

This paper introduces “Succinct Compression”, a method to provide lossless com-
pression of Deep Neural Network (DNN) models for fast and memory-efficient
inference. The key insight of our method leverages the concept of Succinct Data
Structures, which supports fast queries without decompressing the compressed
representations. Our method consists of three new insights. First, we introduce
two basic building blocks to formulate DNN models, and how they can be ex-
tended to be synergistic with compressed models (e.g. pruned or quantized mod-
els). Then, we propose a scheme to enable mixed-formulation inference for differ-
ent layers, to better extract its benefits. Finally, our method exploits a specialized
execution pipeline to incorporate different model formulations for fast inference.
We quantitatively demonstrate that: our method can (1) enable faster and more
memory-efficient inference on uncompressed models; (2) be synergistic with a
variety of structure-altered/unaltered compression schemes with better speedup
and compression ratio, while preserving the accuracy; and (3) can outperform all
other state-of-the-art Model Coding approaches.

1 INTRODUCTION

Recent efforts on Pareto improvements of compressed Deep Neural Network (DNN) models, on
inference time, space consumption and the accuracy, have recently bloomed due to the great success
of DNNs in practice. Prior works either aggressively simplify/optimize the structure of DNN models
(e.g. Pruning and Neural Architecture Search) or retrench the representation of model parameters
(e.g. Quantization and Model Coding), with a major focus on the compression ratio and the accuracy.
Given a variety of methodologies for efficient compression, there still lacks a general method to
further optimize the inference performance and compression ratio, without affecting the accuracy of
both uncompressed and compressed models.

This paper introduces “Succinct Compression”, a method to provide lossless compression of Deep
Neural Network (DNN) models for fast and memory-efficient inference. The emphasis of our
method is to enhance the inference performance and compression ratio without affecting the ac-
curacy at the same time, for a variety classes of uncompressed and compressed models. The unique
characteristic of our method is to exploit Succinct Data Structures, which enables fast queries with-
out decompressing the compressed representations.

We consolidate three new insights to better incorporate Succinct Data Structures. ➊ we propose
two semi-structured formulations to represent DNN models in element-wise or block-wise manners,
and provide simple extensions to allow them for the combinations of other compression techniques.
➋ we enable mixed formulations of different layers in the model, to better extract the potential of
Succinct Data Structures. ➌ we design a specialized execution pipeline to perform the inference on
different formulations, by carefully engineering the inner operators of Succinct Data Structures.

Our evaluation shows that our method can be very effective for the inference efficiency, and gen-
erally applicable for uncompressed and compressed models (including for ResNet-50, ResNet-101,
VGG-16, MobileNet-V2 and DeiT-B). For uncompressed models, our method can achieves most
1.07× speedup and 1.17× compression ratio at the same time, without affecting the accuracy. We
then show that our method can bring significantly more benefits by combining other compression
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schemes, where all models are pre-processed via other compression methods. For instance, by
combining structure-altered compression (such as pruning), our method enables the at most 8.8×
acceleration of inference on ResNet-101, with 39.90× compression ratio meanwhile. Similarly, the
speedup can be further enhanced to reach 9.3× by incorporating structure-unaltered method (such
as quantization). We also compare our method with a variety of the state-of-the-art Model Coding
schemes, and show that our method outperforms all of them.

2 RELATED WORKS

A large body of relevant works on compressing DNN models consists of two categories, based on
the orientation of their methodology: structure-altered and -unaltered methodologies. We outline
key directions in each category, briefly describe their features and justify the novelty of our method.

2.1 STRUCTURE-ALTERED METHODS FOR COMPRESSION

Structure-altered Methods refer to those compression methods by simplifying/optimizing the
DNN model architectures, and representative methods in this direction include Pruning, Low-Rank
Factorization, Neural Architecture Search (NAS) and Knowledge Distillation (KD). We describe
each of them in brief as follow.

➊ Pruning removes the redundant connections within DNN models without incurring a consider-
able degradation of the accuracy. There are two categories of Pruning. One is Unstructured Prun-
ing (Dong et al. (2017); Lee et al. (2019); XIAO et al. (2019); Park* et al. (2020)), which aggres-
sively removes neurons with small relevance whenever it’s possible. Though such an approach can
deliver decent compression ratio with only a marginal degradation of the accuracy, the inference
overheads suffers from the inefficient usage of the memory, due to the frequent operations on sparse
matrices (Gale et al. (2019); Blalock et al. (2020)). The other is Structured Pruning (Huang & Wang
(2018); Lin et al. (2018); Yu et al. (2018); He et al. (2019); Zhao et al. (2019); Yu et al. (2021)),
which only removes irrelevant units of DNN models at a granularity of the elementary structures
(e.g. weights, filters and layers). Though these methods can benefit the performance/compression
ratio due to the reduction of the total computational costs, the accuracy is usually not as expected.

➋ Low-Rank Factorization (Mamalet & Garcia (2012); Sainath et al. (2013); Zhao et al. (2017); Li
et al. (2018)) uncovers the latent compact structure of the network through low-rank matrix factor-
ization of weight layers. Though these approaches may only incur a marginal degradation in terms
of the accuracy, they requires extra computational costs and the benefits in memory efficiency may
not be consistent in different models.

➌ NAS (Mellor et al. (2021); Zhao et al. (2021)) automatically output neural network architectures
using specific search strategies applied to a large search space. Therefore, a huge amount of extra
computational costs are required and such methods need to be performed before the deployments of
the selected models.

➍ KD (Feng et al. (2021); Wang (2021); Zhu et al. (2021)) is to train a large model and then use
it as a teacher to train a more compact model. Similarly, KD also demands a huge amount of extra
computational costs for training different models, therefore they are usually performed off-line.

In this work, we consider Pruning as the representative method in this direction, to justify the com-
patibility of our method with Structure-altered methods (as described in Section 7.2).

2.2 STRUCTURE-UNALTERED METHODS FOR COMPRESSION

Structure-unaltered Methodologies refer to those compression methods by compressing DNN
models without altering the model architecture, and there are two representative methods in this
direction, which are Quantization and Model Coding. We describe each of them in brief as follow.

➊ Quantization reduces the bitwidth of parameters within DNN models, and such an approach can
be achieved via quantization-aware training (Bengio et al. (2013); Alizadeh et al. (2020)) or post-
training quantization (Banner et al. (2019); Cai et al. (2020)). Note that it’s also feasible to perform
extreme quantization (e.g. binarization) for this purpose (Cai et al. (2017); Bulat et al. (2021)) but
usually suffers from a significant degradation of the accuracy.
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➋ Model Coding represents DNN models via an extra bit sequence. Several well-studied coding
strategies like Huffman Coding (van Leeuwen (1976)), Tunstall Coding (Tunstall (1967)) and Arith-
metic Coding (Witten et al. (1987)) have been attempted for compressing DNN models (Han et al.
(2016a); Reagen et al. (2017); Zhe et al. (2021)). More recently, there are a growing interests in
customized coding strategies in the context of DNN models (Louizos et al. (2017); Havasi et al.
(2018); Oktay et al. (2020b)). However, these approaches suffers from costly pre-processing to con-
vert model parameters as encoded values, and the overheads of decoding are significant during the
inference runtime.

Our work considers Quantization as the representative method in this direction, to justify the synergy
of our method with Structure-unaltered methods (as described in Section 7.3). Also, we compare
our method against a variety of Model Coding methods to show that our method can outperform all
other state-of-the-art methods (as described in Section 7.4).

2.3 NOVELTY OF OUR METHOD

The novelty of our method is three-folded. ➊ We are the first to introduce Succinct Data Structures
in the context of DNN models, which allow fast queries on compressed representations. ➋ we design
specific formulations to make DNN models more compatible with Succinct Data Structures, which
reduces the overheads for both pre-processing and decoding during the inference runtime. ➌ our
method is generally applicable to available DNN models, and achieve Pareto improvements in both
inference time and memory efficiency, without affecting the accuracy.

3 FORMULATING DNN MODELS

The first part of our method is to formulate DNN models appropriately, so that Succinct Data Struc-
tures can take advantage of. Succinct Data Structures exploits the delimiters within a long string, to
perform fast queries directly on the compressed representations. To this end, we propose the model
formulation called Runtime-Accessible Sequence (RAS), which refers to semi-structured format us-
ing a minimal amount of delimiters to construct hierarchical information (e.g. layers). Our proposed
RAS consists of two basic building blocks, including (1) Element-wise RAS, which uses delimiters
to separate different elementary operands within DNN models; and (2) Block-wise RAS, which
applies delimiters to separate different sets of data operands within DNN models, based on the
computation kernels. Based on the above Element-wise and Block-wise RAS, we provide simple
extensions of RAS, to make them synergistic with other compression methods.

Figure 1: A comparison of different kinds of Runtime-Accessible Sequence (RAS).
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3.1 ELEMENT-WISE RUNTIME-ACCESSIBLE SEQUENCE

One formulation in our method is Element-wise Runtime Accessible Sequence (denoted as Element-
wise RAS). Element-wise RAS utilizes delimiters to separate elementary data operands. In the
context of DNN models, the pre-defined delimiters (e.g. vertical bar and number sign) are used at
the boundaries of different elementary data operands from DNN models, and these delimiters are
used to query for elementary data operands accordingly.

Figure 1-(A) shows an example of Element-wise RAS; there are two vertical bars encompassing
several elementary operands. This methodology forms the Element-wise RAS, and the number sign
is used to represent the border of this union. To properly formulate the whole network into Element-
wise RAS, we concatenate such unions by using a separate delimiter (e.g. ‘#’).

3.2 BLOCK-WISE RUNTIME-ACCESSIBLE SEQUENCE

The limitation of Element-wise RAS is that frequent queries are required for every single data
operand, before the computation for model inference. Therefore, to improve the efficiency of
operand query, we suggest the other formulation of DNN models: Block-wise Runtime-Accessible
Sequence (denoted as Block-wise RAS). Different from Element-wise RAS, Block-wise RAS forms
basic building blocks for query and access based on the computation kernels, namely denoted as a
block. Such a block stores a consecutive number of elementary data operands, which are used for a
computation kernel. Between different blocks, Block-wise RAS exploits delimiters for separation,
so that they can be efficiently queried.

Figure 1-(B) shows an example of Block-wise RAS: the Block-wise RAS aggregates five operands
with two square brackets, as one individual block. This transformation of elementary operands,
by synthesizing multiple operands and using a distinct delimiters, can provide faster queries by
extracting them at one time over Element-wise RAS.

3.3 EXTENDING BOTH RAS FOR COMPRESSED MODELS

Since compressed models, supported by other compression schemes, usually maintain a high extent
of the sparsity1, current designs of Element/Block-wise RAS may not be capable to extract the
maximum potentials of Succinct Data Structures on compressed models. To resolve this issue, we
provide simple extensions to RAS so that they can be synergistic with other compression schemes.
The key insight is to form elementary data operand in a similar manner as inverted indexes, by
forming a tuple consisting of the exact values and the relative positions.

Figure 1-(C)/(D) shows examples of these optimized RAS formulated in Element- or Block-wise
manner. The difference hereby is that, we refine the elementary operands as tuples. In such a
tuple, the first element refers to the relative distance between this and its left neighbor (a number
or a delimiter); and the second element stores the value of the corresponding data operand. This
approach is synergistic with sparse models because for unstructured pruning, the relative distance,
contained in the reshaped tuple, can effectively exploit the sparse model structures.

4 CONVERTING RAS TO Succinct Data Structures

The second part of our method is about how to covert RAS into Succinct Data Structure for efficient
inference. We first provide a selection scheme to embrace the heterogeneity of different layers
within DNN models, to maximize the benefits of our method. Then, we describe the rationale of our
selected Succinct Data Structure - Wavelet Tree.

4.1 LAYER-WISE SELECTION OF THE RAS TYPE

In practice, soely using Element-wise or Block-wise RAS for one model cannot fully unleash the
potentials, since the sparsity and access frequency vary across the whole model. Therefore, it’s

1Note that Quantization and Model Coding can be viewed to exploit bit-level sparsity, so that the redundancy
of data representation within DNN models can be reduced.
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demanded to perform the selection of RAS at a certain granularity of model structure. We consider
layer-level in this work, by connecting the size of elementary operands with the following criterion.

• Access Frequency of elementary data operands is used to determine which RAS to be
used for the overall efficiency. More specifically, we define whether a particular layer
is computationally intensive or not based on the ratio of FLOPs to #Parameters (namely
FLOPs-Parameter-ratio, FPr). As long as above FPr, our method uses Block-wise RAS.
Otherwise, Element-wise RAS is used.

How RAS Types are Distributed? We confirm that, from our experimental studies, all convolution
layers and the weight matrices, inside the multi-head attention layers of Transformers, exploit Block-
wise RAS, due to the intensively usage of stored data; And Element-wise RAS is applied to less-
frequently-accessed layers (FC layers, in our experimental studies).

4.2 Succinct Data Structures AND WAVELET TREE

Succinct Data Structures were first pioneered by Jacobson (1988), which refers to a set of data
structures using the near-information-theoretic bound space to store the compressed representation,
and still provide fast query and access operations directly on these compressed representations. In
general, Succinct Data Structures have the following representative inner operators.

Given a string S whose length and alphabet are L and σ, there are three operations directly on the
compression (shown below).

• Rankq(x) returns the number of symbol q appearing in S0:x where q ∈ σ and x < L.

• Selectq(x) returns the position of x-th occurrence of symbol q in S.

• Access(x) returns the symbol at the position x of S.

Though there are a number of Succinct Data Structures available for real-world applications, we
choose Wavelet Tree (Grossi et al. (2003)) as the core of our method. We choose Wavelet Tree
(WT) because there are already a number of evident successes in applying WT for large-scale, data-
intensive applications, such as Data Store (Agarwal et al. (2015); Khandelwal et al. (2016)), Graph
Processing (Khandelwal et al. (2017)), and it presents outstanding merits of runtime fast queries
without losing memory efficiency: it allows Rank, Select and Access to only take O(logσ) time
while maintaining space consumption within n log(σ) +O(n) bits (where input is of length n with
σ distinct symbols). Therefore, our method deploys WT as the compression technique during the
inference runtime.

5 MODEL INFERENCE IN Succinct Data Structures

The third part of our method is to perform model inference via Succinct Data Structures. There are
three steps: ➊ Identify the RAS flag to guide the subsequent steps; ➋ Execute different retrieval
strategies for either Element- or Block-wise RAS; and ➌ Perform the inference.

➊ Identify the RAS Flag. Our method first identifies the RAS flag to obtain which type of RAS
being used for the current layer. The flag is tagged at the beginning of all RAS for different layers.
Therefore, identifying and parsing the flag is necessary for the subsequent steps.

➋ Execute Different Retrieval Strategies based on the Flag. Our method then retrieves all the
operands within this layer. For a given type of RAS, the retrieval strategy is structurally organized
similarly: for both Element-wise and Block-wise RAS: we use two Select operators to locate the
corresponding values for current layer within the compressed representation, while the access of
these data differs. The differences between two strategies for different types of RAS are: since
Block-wise RAS retrieves a series of operands at a time, additional operations for extracting them
are necessary.

➌ Inference over the extracted operands. Our method finally performs the inference for the
current layer. Note that, for inference on compressed models, the inference may require additional
decoding, if the combined methods introduce more levels of indexes.
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6 EXPERIMENTAL METHODOLOGY

Platform and Baseline: All experiments are done via the latest version of PyTorch (Paszke et al.
(2019b)), on a platform equipped with Intel Core i9-12900KF and NVIDIA RTX 3090. We consider
five mainstream models, including ResNet-50, ResNet-101 (He et al. (2015)), VGG-16 (Simonyan
& Zisserman (2015)), MobileNet-V2 (Sandler et al. (2019)) and DeiT-B (Touvron et al. (2021)).

Methodology: For all uncompressed and compressed models, we measure (1) the end-to-end la-
tency to examine the performance benefits; (2) the overall memory usage to examine the memory
efficiency; and (3) the accuracy. To implement the execution pipeline of our method, the inference
pipeline requires less-than-byte packing and unpacking. This can be done directly using Bit Manip-
ulation Instructions extensions (e.g. NVIDIA (a)), due to the fact that the processing granularity
of modern SIMD architectures (including CPU SIMD and GPU) is at byte-level. We use PyTorch
Bindings with Fortran, to exploit these hardware intrinsic functions for the implementations (i.e.
Alexeev).

Model Setups: All these models are trained on the ImageNet dataset (Deng et al. (2009)), which
are used as uncompressed models (used in Section 7.1). To examine the benefits of our method over
compressed models, we apply representative Pruning (described in Section 7.2) and Quantization
methods (described in Section 7.3) on the trained models, and use them as the compressed models.
Furthermore, we compare our method with other Model Coding methods to show the benefits.

7 EXPERIMENTAL RESULTS

7.1 IMPACTS ON UNCOMPRESSED MODELS

We first examine the impacts of our method on uncompressed models. Figure 2 reports the model
size and speedup of our method over the uncompressed models. We draw two observations. First,
our method provides considerable improvement for uncompressed models on both speedup and
compression. For instance, MobileNet-V2 achieves 1.07× speedup and 1.17× compression ratio
at the same time, and ResNet-101 achieves 1.04× speedup and 1.11× compression ratio at the
same time. Second, we note that the improvements on VGG-16 are relatively worse than others.
This is because the FC layers within VGG-16 incur significant overheads for the acceleration and
compression.

Figure 2: Results on uncompressed models for Model Size (left); CR and Speedup (right)

7.2 IMPACTS ON PRUNED MODELS

We then examine the impacts of our method on Pruned models. Table 1 reports the results on
selected models after using three representative state-of-the-art pruning methods (i.e. layer-level
pruning: DBP (Wang et al. (2019)); filter-level pruning: HRank (Lin et al. (2020)); and unstructured
pruning: SNIP (Lee et al. (2020))). We first quantitatively demonstrate the outstanding impacts from
our method on all models, then we elaborate the key observation.

Our method yields significantly better improvements when all models are pruned in advance, in
terms of both speedup and compression ratio. The results show that our method achieves the speedup
of 4.7×/8.8×/3.9×/3.8× and the compression ratio as 39.48×/39.90×/3.78×/3.81×, without affect-
ing the accuracy, for ResNet-50/ResNet-101/VGG-16/DeiT-B. Our results suggest that our method
is synergistic with the state-of-the-art pruning methods.
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We make the key observation that: our method yields better benefits from filter-level/unstructured
pruning, compared with layer-level pruning. As shown in Table 1, the speedup from our method can
be up to 1.91×/8.07× for filter-level/unstructured pruned models, but the improvement for layer-
level pruned models (DBP) is limited to just 1.28×. This is because the filter-level/unstructured
pruning decreases the “width”/parameters of each layer, and there result in less Access operations
for extracting data operands, since these layers are formulated in Block-wise RAS based on our
methodology.

Table 1: Succinct Compression on Pruned Models: Target sparsity refers to the expected sparsity
within the networks after conducting pruning, and we can tolerate the error within ±4%. The en-
tries “xx/yy” under the Size, CR (Compression Ratio) and Speedup columns show the comparison
between only using pruning (left) and applying our method on the top of pruned models (right).
UP-ViT (Yu & Wu (2021)) is the pruning method specialized for transformers.

NN M
Target

Sparsity
(%)

Accuracy
(Top-1)

(%)

Size
(MB)

CR
(×)

CR
Improved

(×)

Speedup
(×)

Speedup
Improved

(×)

R
es

N
et

-5
0

- 0 75.5 102 1 1 1 1

D
B

P

40 75.1 60.8/52.9 1.68/1.93 1.15 1.4/1.6 1.14
50 74.8 50.2/43.6 2.03/2.34 1.15 1.7/1.8 1.06
60 73.5 41.0/35.3 2.49/2.89 1.16 2.3/2.6 1.13
70 72.3 33.2/28.6 3.07/3.56 1.16 3.0/3.4 1.13

H
R

an
k 40 74.4 61.0/53.1 1.67/1.92 1.15 1.3/1.9 1.46

50 72.5 49.9/43.2 2.04/2.36 1.15 1.4/2.6 1.86
60 69.9 41.2/35.5 2.48/2.87 1.16 2.1/2.7 1.23
70 68.1 31.0/26.7 3.29/3.83 1.16 2.7/4.5 1.67

SN
IP

90 74.8 10.3/8.7 9.90/11.69 1.18 1.12/2.8 2.50
95 74.7 5.2/4.4 19.6/23.34 1.19 1.14/3.5 3.07
97 74.7 3.1/2.6 32.9/39.48 1.20 1.15/4.7 4.09

R
es

N
et

-1
01

- 0 76.4 171 1 1 1 1

D
B

P

40 76.2 103/91.2 1.66/1.88 1.13 1.2/1.5 1.25
50 76.2 87/76.3 1.97/2.24 1.14 1.6/2.0 1.25
60 75.3 70/61.2 2.44/2.79 1.14 1.9/2.4 1.26
70 74.9 50.7/44.1 3.37/3.88 1.15 2.5/3.2 1.28

H
R

an
k 40 76.3 102/90.3 1.68/1.89 1.13 1.1/2.1 1.91

50 76.1 85/74.7 2.01/2.29 1.14 1.4/2.6 1.86
60 75.0 71/62.3 2.41/2.75 1.14 1.8/2.9 1.61
70 74.3 50/43.4 3.42/3.94 1.15 2.3/4.4 1.91

SN
IP

90 76.0 17.1/14.6 10.0/11.7 1.17 1.08/5.3 4.91
95 75.9 8.6/7.3 19.9/23.56 1.19 1.09/6.4 5.87
97 75.9 5.1/4.3 33.5/39.90 1.19 1.09/8.8 8.07

V
G

G
-1

6

- 0 71.3 533 1 1 1 1

D
B

P

40 71.3 320/290.4 1.67/1.84 1.10 1.7/1.9 1.12
50 71.3 262/236.0 2.03/2.26 1.11 2.3/2.4 1.04
60 71.1 210/189.2 2.54/2.82 1.11 2.7/2.9 1.07
70 70.2 158/141.1 3.37/3.78 1.12 3.8/3.9 1.03

H
R

an
k 40 71.3 323/292.8 1.65/1.82 1.10 1.5/1.7 1.13

50 70.8 254/228.6 2.10/2.33 1.11 1.7/1.8 1.06
60 70.5 214/192.1 2.49/2.77 1.11 1.8/2.1 1.17
70 69.8 160/142.9 3.33/3.73 1.12 2.0/2.4 1.20

SN
IP

90 71.0 53/46.1 10.06/11.57 1.15 1.08/1.3 1.20
95 69.9 26.7/22.9 19.96/23.26 1.17 1.08/1.4 1.30
97 69.9 16/13.6 33.31/39.08 1.17 1.1/1.7 1.55

D
ei

T-
B

- 0 81.8 347 1 1 1 1

U
P-

V
iT

40 81.7 210/189.2 1.65/1.83 1.11 1.5/1.9 1.27
50 81.7 170/152.6 2.04/2.27 1.11 2.3/2.9 1.26
60 81.6 141/125.8 2.46/2.76 1.12 2.6/3.3 1.27
70 81.5 103/91.2 3.37/3.81 1.13 2.9/3.8 1.31
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7.3 IMPACTS ON QUANTIZED MODELS

Next we examine the impacts of our method on quantized models. we use first quantize all models at
a set of different levels with different bit precision (2/4/8 bits). To quantize our selected models, we
use the state-of-the-art quantization methods, including LSQ (Esser et al. (2020)) for CNNs and PQT
(Liu et al. (2021)) for transformer. After quantization, we apply our method upon these quantized
models. We first report our quantitative results in terms of the speedup and compression ratio. Then,
we elaborate the key observation.

Table 2: Succinct Compression on Quantized Models: The entries “xx/yy” under the Size, CR
(Compression Ratio) and Speedup columns show the comparison between only using quantization
(left) and applying our method on the top of quantized models (right). For the quantization of DeiT-
B, we modify the framework PQT to output fixed-bits-length results and handcraft a DeiT-B model
comprised of 2-bits parameters (marked with ‘*’), since PQT is incapable for the 2-bit precision.

NN M Precision
(bits)

Accuracy
(Top-1)

(%)

Size
(MB)

CR
(×)

CR
Improved

(×)

Speedup
(×)

Speedup
Improved

(×)

R
es

N
et

-5
0 - 32 75.5 102 1 1 1 1

L
SQ

8 75.4 25.5/21.6 4.00/4.72 1.18 3.5/3.8 1.09
4 75.3 12.8/10.7 7.97/9.56 1.20 3.4/6.6 1.94
2 72.5 6.4/5.1 15.94/19.92 1.25 2.9/7.0 2.41

R
es

N
et

-1
01 - 32 76.4 171 1 1 1 1

L
SQ

8 76.3 42.8/36.6 4.00/4.67 1.17 3.2/3.9 1.22
4 76.3 21.4/18.0 7.99/9.51 1.19 3.1/7.2 2.32
2 74.2 10.7/8.8 15.98/19.50 1.22 2.5/9.3 3.72

V
G

G
-1

6 - 32 71.3 533 1 1 1 1

L
SQ

8 71.3 134/117.5 3.98/4.53 1.14 3.4/3.2 0.94
4 71.5 66.6/56.9 8.00/9.36 1.17 3.1/3.4 1.10
2 69.5 33.3/28.0 16.01/19.05 1.19 2.6/3.8 1.46

D
ei

T-
B

- 32 81.8 347 1 1 1 1

PQ
T 8 81.3 86.8/75.5 4.00/4.60 1.15 2.6/3.3 1.27

4 75.9 43.6/36.9 7.96/9.39 1.18 2.4/5.2 2.17
* 2 67.2 21.7/18.1 15.99/19.19 1.20 1.8/6.7 3.72

After quantization, our method can achieve the maximum level of speedup across all experiments,
and still maintain a considerable amount of the reduction in terms of the memory footprint. On
ResNet-101 quantized at 2-bit precision, the speedup can be achieved by 9.3×. For other quantized
models at 2-bit granularity, ResNet-50/VGG-16/DeiT-B, the speedup can reach to 7.0×/3.8×/6.7×.
As for the compress ratio, combining quantization and our method can further compress the models
to a certain extent. For all four models selected for our experiments, our method can realize more
than 19× compression ratio.

We make the key observations that: similar to our methods on Pruning, our method on quantized
models also bring more benefits on CONV-dominated models, rather than FC-dominated models.
For VGG-16 with large FC layers, the improvement of speedup is restricted to 1.10× at most. This
is similar with the results when our method is applied on pruned models. We also report results
by applying our method on DeiT-B. Though this model is distinctively different from CNNs, our
method can still provide a considerable amount of space reduction and inference acceleration, by up
to 19.19× compression and 6.7× speedup.

7.4 A COMPARISON AGAINST OTHER MODEL CODING METHODS

Finally, we compare our method with the state-of-the-art Model Coding methods, including Rate-
distortion Optimized Coding (ROC) (Zhe et al. (2021)), Entropy Penalized Reparameterization
(EPR) (Oktay et al. (2020a)), DeepCABAC (Wiedemann et al. (2019)), Minimal Random Code
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Table 3: A comparison between Succinct Compression and other Model Coding Methods: for a fair
comparison, we only consider the best results from baseline methods. (‘-’ means the speedup is not
capable to be validated, since they are not reported in the original paper.)

Neural Network Models Method Size
(MB)

CR
(×)

Speedup
(×)

Error
(Top-1)

(%)

ResNet-50

Uncompressed 102 1 1 24.5
OPQ 2.68 38.0 1.3 24.5

Deep Compression 6.41 15.91 0.8 25.7
DeepCABAC 6.06 16.8 - 25.9

EPR(DFT) 5.49 18.6 - 26.0
ROC (Tunstall) 5.10 20.0 4.3 24.9
Our Method 2.10 48.56 9.2 24.5

MobileNet-V2

Uncompressed 13.2 1 1 29.0
OPQ 0.57 23.2 1.2 29.3

Deep Compression 0.97 13.62 1.1 30.5
ROC (Tunstall) 1.2 11.0 1.7 29.8
Our Method 0.44 30.11 5.6 29.3

Small VGG-16

Uncompressed 60 1 1 6.6
OPQ 0.13 461.5 1.5 7.0

Deep Compression 1.64 36.57 1.2 7.2
DeepCABAC 0.95 63.2 - 9.0

MIRACLE 0.16 375.0 - 10.0
EPR (DFT) 0.10 600.0 - 10.0

Our Method 0.09 641.5 4.7 7.0

Learning (MIRACLE) (Havasi et al. (2018)), Deep Compression (Han et al. (2016b)). Our experi-
ments aim to examine the tradeoffs of our method on compression ratio, inference time and accuracy
loss. In order to have a fair comparison, the input models for our method are pre-processed using
OPQ method for Pruning and Quantization (Hu et al. (2021)), since other approaches also apply
Pruning and Quantization methods (or other methods) before applying their methods.

Table 3 reports the results of this experiment. Our results show that our method can significantly
outperform the state-of-the-art Model Coding methods on both compression ratio and speedup by
a large magnitude, with the lowest loss of the accuracy. On ResNet-50, MobileNet-V2 and Small
VGG-16, our method demonstrates the compression ratio up to 48.56×/30.11×/641.5× with con-
spicuous 9.2×/5.6×/4.7× speedup, with the minimum accuracy loss.

We make the key observation that: incorporating Pruning and Quantization with our method am-
plifies the benefits significantly to achieve the best outcome throughput the whole paper, compared
with solely utilizing either Pruning or Quantization. On ResNet-50, our method outperforms the best
results reported in Section 7.2 (i.e. 39.48× compression ratio, 4.7× speedup, 25.3% top-1 error),
with 48.56× compression ratio, 9.2× speedup and only 24.5% top-1 error. Second, our method can
enable lossless compression and acceleration at the same time. As shown in Table 3, there is no
accuracy degradation for all models by using our method.

8 CONCLUSIONS

We present “Succinct Compression”, a method to provide lossless compression of Deep Neural Net-
work (DNN) models for fast and memory-efficient inference. Our method exploits Succinct Data
Structures with three novel insights, which can be generally applicable to a variety of models (i.e.
CNNs and Transformers). Our method is also synergistic with both structure-altered/-unaltered
compress schemes (such as Pruning and Quantization). Our results justify the above benefits. On
uncompressed models, our method provides at most 1.07× speedup with 1.17× compression ratio.
The benefits from our method can be further amplified. By incorporating Pruning (and/or Quanti-
zation), we can achieve the maximum speedup/compression ratio at 9.3×/641.5×. We extensively
examine and show that our method can significantly outperform six other Model Coding methods.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct: Enabling queries on com-
pressed data. In 12th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 15, Oakland, CA, USA, May 4-6, 2015, pp. 337–350. USENIX Association, 2015.
URL https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/agarwal.

Dmitry Alexeev. Fortran Bindings in PyTorch. URL https://github.com/alexeedm/
pytorch-fortran.

Milad Alizadeh, Arash Behboodi, Mart van Baalen, Christos Louizos, Tijmen Blankevoort, and Max
Welling. Gradient ℓ1 regularization for quantization robustness, 2020.

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-training 4-bit quantization of
convolution networks for rapid-deployment, 2019.

Gilad Baruch, Shmuel T. Klein, and Dana Shapira. Accelerated partial decoding in
wavelet trees. Discrete Applied Mathematics, 274:2–10, 2020. ISSN 0166-218X.
doi:https://doi.org/10.1016/j.dam.2018.07.016. URL https://www.sciencedirect.
com/science/article/pii/S0166218X18303974. Stringology Algorithms.
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A ADDITIONAL DETAILS OF THE EXPERIMENTS

We disclose additional experimental details to make our work reproducible by others. More specif-
ically, we focus on the detailed configurations of RAS types for different layers in the Deep Neural
Network models, which is the most influential factor on the inference performance.

To this end, we provide additional details on how we decide the usage of different RAS and the
quantitative supports, based on the requirement described in Section 3.3. Since our selection criteria
is based on FPr (FLOPs-Parameter-ratio), we also provide relevant details for each layer.

Table A demonstrates the detailed results of this method on ResNet-50. As explained in our paper,
the CONV layers demand Block-wise RAS for coarse-grained accesses, since accesses to these
layers are relatively frequent; and the FC layers can be used via Element-wise RAS, since accesses
to these layers are less frequent.

Table 4: ResNet-50 MACs and RAS Type
Layers #Parameters MACs MACs/#Parameters RAS Type
conv1 9.41k 118.01M 12541 Block-wise

layer1.conv 215.81k 680.39M 3153 Block-wise
layer2.conv 1.22M 1.04G 852 Block-wise
layer3.conv 7.1M 1.47G 207 Block-wise
layer4.conv 14.96M 811.02M 54213 Block-wise

fc 2.05M 2.05M 1 Element-wise
Total 25.6M 4121.47M 161

The same trend of the RAS distribution can also be found on VGG-16, where FC layers accounts for
around 90% of all model parameters. Such an overwhelming proportion directly results in the fact
that: the inference performance of our method on VGG-16 is significantly weakened, compared to
the results on other models (where FC layers occupy less space).

Table 5: VGG-16 MACs and RAS Type
Layers #Parameters MACs MACs/#Parameters RAS Type
conv1 1.79k 89.92M 50179 Block-wise
conv2 36.93k 1.85G 50095 Block-wise
conv3 73.86k 926.45M 12543 Block-wise
conv4 147.58k 1.85G 12536 Block-wise
conv5 295.17k 925.65M 3136 Block-wise
conv6 590.08k 1.85G 3135 Block-wise
conv7 590.08k 1.85G 3135 Block-wise
conv8 1.18M 925.25M 784 Block-wise
conv9 2.36M 1.85G 783898 Block-wise
conv10 2.36M 1.85G 783898 Block-wise
conv11 2.36M 462.52M 196 Block-wise
conv12 2.36M 462.52M 196 Block-wise
conv13 2.36M 462.52M 196 Block-wise

fc1 102.76M 102.76M 1 Element-wise
fc2 16.78M 16.78M 1 Element-wise
fc3 4.1M 4.1M 1 Element-wise

Total 138.355M 15478M 112
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B INFERENCE ENGINE

Since the inference of our method requires extra supports to access more hardware-detailed func-
tions, we extend PyTorch Paszke et al. (2019a) for our design. As shown in Figure 3, there are two
parts in our extended version. First, we build extensions to support the harmonic transition from the
tensor interface to our formalization. Second, we build a module to support runtime query, access
and computation over Wavelet Tree Grossi et al. (2003).

Figure 3: Wavelet Inference Engine

B.1 TENSOR INTERFACE

We extend an override of the PyTorch tensor interface, for a new set of mechanisms including the
storage, slice and data accesses. This guarantees the ease of usage from our method, since no
extra efforts are needed. The rationles behind our extensions are as follows. First, the data storage
format of PyTorch’s tensor becomes inefficient when managing Succinct Data Structures: PyTorch
separates the calculation logic and data storage for the tensor, and the storage is managed by a
special module under the assumption that all the data can be stored as a whole block of continuous
memory. So that the interpretation of these data (e.g., slice and view) is easy to be offloaded to
tensor’s implementation. Hereby, we describe how we can connect Succinct Data Structures with
the tensor interface.

Slicing is an indispensable function of tensor manipulation, and we extend this function by replacing
the original offset-based slicing with Wavelet Tree’s select primitive. On our RAS formulation, se-
lect operation is natively equivalent to slicing. By leveraging the delimiters in RAS, select can locate
any sub-parts under small time consumption. For instance, there is a slicing request T [4][2][1] on a
4-dimension tensor T whose size is (128, 3, 224, 224). To response this request, we can execute 5
select operations in order to get the required range, which are selectd1(5), selectd2(3), selectd3(2)
and selectd3(3) (where d1, d2 and d3 are the delimiters for dimension-1/2/3, respectively). Consid-
ering the equivalence between select and slicing, we substitute classic slicing with select operations
in Succinct Data Structures.

Address-based access, which is another rudimentary operation supported by the tensor interface,
is more difficult to be used for Wavelet Tree. Therefore, we override the original access function
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with access operations in Succinct Data Structures. Unlike tensors (whose data are arranged con-
tinuously), data (in Wavelet Trees) are stored in a tree-like structure, with positions specifically
identified by delimiters (e.g., Ian Munro et al. (2016)). To query data in Wavelet Tree, the di-
rect approach is to recursively conduct rank0 queries on each level of the bitmap Navarro (2014).
However, as the size of bitmap grows (e.g., to 1MB), the query process becomes inefficient due to
the pointer-chasing issues. We provide additional supports for this, by utilizing a combination of
Wavelet Matrix Claude et al. (2015) and Accelerated Decoding Baruch et al. (2020) to accelerate
access query on GPU (Described in the next section).

B.2 WAVELET TREE QUERYING MODULE

As mentioned in Section B.1, in Succinct Data Structures, the query mechanism and data arrange-
ment format are highly associated. Therefore, it’s necessary to co-design them for the better perfor-
mance. For data storage, rather than storing a tree-like structure which is the standard formulation
of Wavelet Tree, we rearrange the Wavelet Tree to be formed in a SIMD-friendly format, 2D array.
Compared to commonly-used linear data structure like 2D array, pointer-traced tree structures incur
additional challenges in data transfer and runtime access Lu et al. (2017); NVIDIA (b). Therefore,
the conventional approach for Wavelet Tree can’t be directly accelerated on a GPU platform. To ad-
dress this issue, we leverage Wavelet Matrix Claude et al. (2015), an equivalent of Wavelet tree but
expressed as 2D array, for our implementation on GPU. As shown in Figure 4, our implementation
of a Wavelet Tree now becomes a matrix with bitmaps, which, under the hood, can be stored in a 1D
array of bytes. This linear data structure allows our method to exploit GPUs more effectively.

Figure 4: Wavelet Tree Query Module

To improve the performance of rank and select, we follow the methodology (described in Baruch
et al. (2020)) to improve the performance. Our early characterization reveals that: rank0 function 2

accounts for more than 90% computation time and is usually overlapped with other rank0 calcula-
tions, if the system accesses on adjacent elements. Baruch et al. (2020) proposes a solution for this
issue (though not addressed in DNN inference), by keeping the previous rank0 result in a specific
register. Our extensions allocate a block of cache for each layer, to facilitate with the reuse of previ-
ous results. We give out an pictorial example of this in Figure 4: the previous calculation results are
stored as tuples in per layer cache; and, when the system invoke a new rank0 function, the execution
can directly start from the nearest recording. For a formal description of our algorithm, we provide
the pseudo-codes in Algorithm 1.

2rank0 is performed on each layer’s bitmaps to count the number of zeros in a certain range.
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Algorithm 1 Access(x)
Require: 0 ≤ x < the length of bitmap
Ensure: symbol, where symbol is the xth element of original string
l← 0
r ← len(σ) ▷ σ is the alphabet
level← 0
B ←WM [level] ▷ WM is the Wavelet Matrix comprised of bitmaps
while r − l ̸= 1 do

(y, preResult)← GetNearestRecording(x)
q ← rank0(B, y, x) + preResult ▷ rank0 counts the zeros between y and x
StoreRecording(x, q)
if B[x] = 0 then

x← q
r ← (r − l)/2

else
x← Z[level] + (x− q) ▷ Z[level] is the number of zeros in current level
l← (r − l)/2

end if
level← level + 1
B ←WM [level]

end while
symbol← σ[l]
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