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Optimizing Recall or Relevance? A Multi-Task Multi-Head
Approach for Item-to-Item Retrieval in Recommendation
Jiang Zhang, Sumit Kumar, Wei Chang, Yubo Wang, Feng Zhang, Weize Mao, Hanchao Yu

Aashu Singh, Min Li, Qifan Wang
Meta Platforms Inc., USA

Abstract
The task of item-to-item (I2I) retrieval is to identify a set of rel-
evant and highly engaging items based on a given item. I2I re-
trieval is a crucial component in modern recommendation systems,
where users’ previously engaged items serve as trigger items to
retrieve relevant content for future engagement. However, existing
I2I models in industry are primarily built on co-engagement data
and optimized using the recall measure, which overly emphasizes
co-engagement patterns while failing to capture semantic relevance.
This often leads to overfitting short-term co-engagement trends
at the expense of long-term benefits such as discovering novel in-
terests and promoting content diversity. To address this challenge,
we propose MTMH, a Multi-Task and Multi-Head I2I retrieval
model that achieves both high recall and semantic relevance. Our
model consists of two key components: 1) a multi-task learning loss
for formally optimizing the trade-off between recall and relevance,
and 2) a multi-head I2I retrieval architecture for retrieving both
highly co-engaged and semantically relevant items. We evaluate
MTMH using proprietary data from a commercial platform serving
billions of users and demonstrate that it can improve recall by up to
14.4% and semantic relevance by up to 56.6% compared with prior
state-of-the-art models. We also conduct live experiments to verify
that MTMH can enhance both short-term consumption metrics and
long-term user-experience-related metrics. Our work provides a
principled approach for jointly optimizing I2I recall and semantic
relevance, which has significant implications for improving the
overall performance of recommendation systems.

Keywords
Semantic Relevance, Recommendation,Multi-headmulti-task Learn-
ing, Item-to-item Retrieval

ACM Reference Format:
Jiang Zhang, Sumit Kumar,Wei Chang, YuboWang, Feng Zhang,Weize Mao,
Hanchao Yu, Aashu Singh, Min Li, Qifan Wang. 2025. Optimizing Recall or
Relevance? A Multi-Task Multi-Head Approach for Item-to-Item Retrieval
in Recommendation. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD’25). ACM, New York, NY, USA,
10 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’25, Auguest 03–07, 2025, Toronto, ON, Canda
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

22.5 25.0 27.5 30.0 32.5 35.0 37.5
Semantic Relevance (%)

2

4

6

8

10

12

14

16

Re
ca
ll@

50
0 
(%

)

MTMH (Ours)
Co-engagement-based
Content-encoder-based

Figure 1: Recall vs. Relevance for I2I retrieval models. The
co-engagement based model (blue triangle) refers to an I2I
model trained exclusively on co-engagement data, while the
content-encoder based model (green circle) represents an I2I
model that directly utilizes embeddings generated by a pre-
trained item content encoder.

1 Introduction
Item-to-item (I2I) retrieval refers to the task of retrieving relevant
and highly engaged items for a given item (also named trigger item),
which is an important component in modern recommendation sys-
tems. In I2I retrieval, items from users’ past engagement history are
used as trigger items to retrieve new items for future engagement,
providing users with personalized experience [9, 41, 58].

Most existing industry I2I models utilize co-engagement data
to guide their training, operating under the assumption that items
users engage with in quick succession are likely to be relevant.
These I2I models often place excessive emphasis on co-engagement
patterns during retrieval because they are primarily trained to opti-
mize recall metrics based on this data, without explicitly optimizing
for semantic relevance [3, 12, 41, 58, 62]. This focus can lead to I2I
retrieval models overfitting to short-term co-engagement data, po-
tentially compromising long-term objectives such as user retention,
content diversity, and the discovery of new interests [49].

Enhancing the semantic relevance of I2I models is crucial for
improving the overall performance of recommendation systems
and offers several significant benefits. First, it can enhance the re-
call of user interests in retrieved items, thereby providing a more
personalized user experience [34]. Second, it facilitates the effec-
tive surfacing of fresh contents, particularly for new contents that
lacks sufficient user engagement data [14]. Lastly, it helps miti-
gate short-term co-engagement bias, fostering a healthier and more
valuable feedback loop that contributes to better long-term out-
comes in recommendation systems [18]. However, optimizing I2I
semantic relevance is challenging, primarily because quantifying
the semantic relevance between two items is difficult, especially for
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multi-modal content such as short videos. This challenge is com-
pounded by the lack of explicit supervision labels for optimizing
semantic relevance. Fundamentally, there is a trade-off between
recall and semantic relevance in I2I retrieval: semantically relevant
items may not always exhibit high co-engagement rates.

To illustrate this trade-off, we compare the recall and relevance of
two I2I retrieval models: (1) a co-engagement based model trained
solely on co-engagement data, and (2) a content-encoder based
model that utilizes a large pre-trained content encoder to gener-
ate item embeddings. As depicted in Figure 1, the co-engagement
based model achieves high recall but exhibits poor semantic rel-
evance. In contrast, the content-encoder based model is adept at
retrieving items with high semantic relevance, yet its recall is less
than 1%, significantly lower than that of the co-engagement based
model. This trade-off underscores the challenge of balancing co-
engagement rates and semantic relevance in I2I retrieval models.
More experimental details are provided in Section 2.

To address the aforementioned challenges, we propose MTMH,
a Multi-Task and Multi-Head I2I retrieval model that achieves
an optimal balance between recall and semantic relevance, as il-
lustrated in Figure 1. The design of MTMH incorporates two key
components: (1) a multi-task learning loss for jointly optimizing
recall and semantic relevance, and (2) a multi-head I2I model ar-
chitecture for retrieving items that are both highly co-engaged
and semantically relevant. Specifically, the co-engagement loss is
crafted to maximize the co-engagement rate (or recall), while the
semantic relevance loss is designed to preserve the semantic simi-
larity between items by distilling item semantic knowledge from
a pre-trained content encoder into the learned item embeddings.
The multi-task loss is computed as a weighted sum of the engage-
ment loss and relevance loss, providing a principled approach to
jointly optimize co-engagement efficiency and semantic relevance
during training. Moreover, we design a multi-head I2I retrieval
model that includes an engagement head and a relevance head. The
engagement head is trained solely on engagement loss to select
highly co-engaged items, while the relevance head is trained using
the multi-task learning loss to select items that are both highly
relevant and co-engaged. By merging retrieved items from both
heads, MTMH achieves improved recall and semantic relevance
simultaneously during serving time.

We evaluate the performance of MTMH using proprietary data
from a commercial platform serving billions of users. Our results
show that MTMH can improve I2I retrieval recall by up to 14.4%
and semantic relevance by up to 56.6%, achieving the best trade-off
between these two metrics compared with all baselines (see Sec-
tion 4.2). To further validate the effectiveness of MTMH, we deploy
MTMH on this commercial platform and conduct online A/B testing.
Our online evaluation results demonstrate that MTMH not only suc-
cessfully improves consumption metrics such as daily active users
and time spent, but also significantly enhances user-experience-
related metrics such as user interest recall, novel interest discovery
rate, content diversity and freshness (see Section 4.6). We summa-
rize our key contributions as follows:
• We systematically examine the fundamental trade-off between

recall and semantic relevance in I2I retrieval, uncovering their
interconnections and highlighting the challenges of balancing
and optimizing these two metrics.

0 10 20 30
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Figure 2: Recall vs relevance for I2I retrieval models. The
co-engagement based model (blue line) is trained via co-
engagement loss only, while the multi-task-based model
(green line) is trained on multi-task learning loss (co-
engagement loss + relevance loss).
• We propose MTMH, aMulti-Task andMulti-Head I2I retrieval

model, which provides a principled approach for jointly optimiz-
ing the trade-off between I2I co-engagement rate and semantic
relevance.

• We evaluate MTMH on proprietary data from a commercial
platform serving billions of users and demonstrate that it can
improve recall by up to 14.4% and semantic relevance by up to
56.6% compared with prior SOTAs.

• We integrate MTMH into production to verify that MTMH can
increase both topline consumption metrics and long-term user-
experience-related metrics.

2 Preliminary Study
In this section, we conduct a preliminary study to investigate the
trade-off between recall and semantic relevance in I2I retrieval,
providing insights and motivating the MTMH’s design.
Experimental setup. We train the aforementioned I2I retrieval
models using user data from period 𝑇1 and evaluate their perfor-
mance using data from period 𝑇2 after 𝑇1. During evaluation, we
first sample a set of users, and for each user we select 50 engaged
items from their past user interaction history (UIH) as trigger items.
Next, for each trigger item, we conduct Approximate Nearest Neigh-
bor (ANN) search based on embedding cosine similarity to identify
the top 2000 nearest candidate items and employ a preranker model
to further select top 30 out of 2000 candidates for each trigger item.
Finally, for each user, we sort candidate items retrieved by 50 trigger
items based on their ranking scores and select top 500 candidate
items to measure recall and semantic relevance. Note that the re-
call@500 is computed as the percentage of ground-truth engaged
items from future UIH hit by these 500 retrieved items. Semantic
relevance is measured by the average topic category (from human
labels) match rates between each trigger item and each candidate
item retrieved by this trigger.

Next, we present our key findings from this preliminary study.
We start with the following question:

2
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Q1: Can the embeddings generated by a large pre-trained
content encoder be directly used for I2I retrieval? To answer
this question, we compare the recall and semantic relevance per-
formance of the following two baseline models: 1) Co-engagement
based model: This model is trained on co-engagement data to learn
item embeddings. The training objective is to maximize the I2I
co-engagement rate. 2) Content-encoder based model: This model
leverages a large pre-trained content encoder with superior content
understanding capability to generate content embeddings for items,
and directly uses them for I2I retrieval.
Results for Q1. Figure 1 presents the evaluation results of co-
engagement based and content-encoder based models. We observe
that the co-engagement based model achieves 22.4% semantic rel-
evance, while the content-encoder based model achieves 37.5%.
This indicates that item embeddings generated by the pre-trained
content encoder exhibit significantly better semantic relevance
compared to the co-engagement based model. However, the re-
call of the content-encoder based model is less than 1%, while
the co-engagement based model achieves 16.3%. This stark con-
trast highlights a strong disconnection between semantic relevance
and co-engagement rate: high semantic relevance does not neces-
sarily translate into a high recall in I2I retrieval. Motivated by this,
we introduce a multi-task learning loss that jointly optimizes co-
engagement rate and semantic relevance.
Q2: Is it possible to simultaneously enhance recall and se-
mantic relevance of I2I retrieval model? Although multi-task
learning provides a structured approach to optimizing the trade-off
between recall and semantic relevance, it does not fully resolve the
fundamental challenge of balancing these two objectives: maximiz-
ing recall and maximizing semantic relevance cannot be achieved
simultaneously in multi-objective optimization. We hypothesize that
items co-engaged by a user are not always semantically relevant,
meaning that retrieving only high semantic relevance items may
overlook highly engaged but less relevant items (e.g., those popular
items). To test this, we compare the recall and semantic relevance
of a model trained via multi-task learning (denoted as the multi-
task based model) with a co-engagement based model. The formal
definition of the multi-task learning is provided in Section 3.2.
Results for Q2. As shown in Figure 2a, the multi-task based model
achieves over a 50% increase in semantic relevance compared to
the co-engagement based model, which is expected due to its multi-
task relevance modeling. In contrast, as illustrated in Figure 2b,
the recall of the multi-task based model is lower than that of the
co-engagement-based model. Specifically, when 𝐾 is smaller than
200, the multi-task based model achieves a recall comparable to that
of the co-engagement based model, suggesting that highly relevant
candidates can also exhibit high engagement efficiency. However,
as 𝐾 increases, the recall of the multi-task based model begins to
plateau much earlier than that of the co-engagement based model.
This finding indicates that retrieving more semantically relevant
items does not necessarily increase the overall recall.

Motivated by these findings, we design a multi-task multi-head
retrieval architecture. In this setup, one head is trained to retrieve
highly engaged items by minimizing only the co-engagement loss,
while the other head is trained to retrieve highly relevant items
by minimizing the multi-task learning loss (see Section 3.5 for
details). By merging candidates retrieved from both heads during

serving (as illustrated in Figure 2c), MTMH is able to retrieve items
that are extremely high in co-engagement (albeit with less semantic
relevance) from the first head, and items that are highly semantically
relevant from the second head, leading to both higher recall and
enhanced semantic relevance.

3 Methodology
3.1 Overview of MTMH Approach
We first provide an overview of our MTMH model in figure 3. The
goal of MTMH is to learn the item embeddings and use them to
retrieve highly engaged and relevant items based on past user en-
gagements. MTMH essentially consists of three key components:
1) a multi-task learning module for jointly optimizing recall and se-
mantic relevance (Section 3.2); 2) a multi-head design for retrieving
both highly co-engaged and semantically relevant items (Section
3.3) and 3) a pre-trained content encoder used to distill multi-modal
content knowledge into the learned item embeddings (Section 3.4);

To train the MTMH model, we first collect a set of positive and
negative <trigger, candidate> item pairs. Specifically, we construct
positive pairs from user interaction history (UIH). Given a UIH
containing 𝑇 past engaged items in chronological order, we pair
the 𝑇 -th item with each of the previous 𝑇 -1 items, forming 𝑇 -1
positive pairs. To further enhance the relevance of these positive
pairs, we leverage the Search-based Interest Model (SIM [36, 59])
to identify semantically relevant items within the user’s UIH and
assign higher weights. Additionally, we construct negative item
pairs by randomly sampling items that the user has not engaged
with and pairing them with the engaged items in each UIH.

3.2 Multi-task Learning
In this subsection, we present the multi-task learning module which
optimizes both recall and semantic relevance in I2I retrieval model.
At a high level, our multi-task learning loss is computed as the
weighted sum of a co-engagement loss and a semantic relevance
loss, as shown in Figure 3b. The co-engagement loss is designed
to maximize the embedding similarity between positive item pairs
(i.e. co-engaged items) while minimize the embedding similarity be-
tween negative item pairs. The semantic relevance loss is designed
to minimize the contrastive semantic information loss between
content embeddings generated by the content encoder and item
embeddings learned by I2I retrieval model.
Co-engagement loss.We employ the widely used InfoNCE loss
[35] as the co-engagement loss, which is formally defined as:

𝐿𝑒 = −
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log𝑝+𝑖, 𝑗 ,

𝑝+𝑖, 𝑗 =
𝑒
<𝐸𝑖 ,𝐸

+
𝑖,𝑗>

𝑒
<𝐸𝑖 ,𝐸

+
𝑖,𝑗
> +∑𝑘=𝐿

𝑘=1 𝑒
<𝐸𝑖 ,𝐸

−
𝑖,𝑘

>

(1)

where 𝑝+
𝑖, 𝑗

is the predicted probability for trigger item 𝑖 to identify
positive candidate item 𝑗 from a set of items based on item embed-
ding similarity. 𝐸𝑖 is the 𝑖-th trigger item embedding. 𝐸+

𝑖, 𝑗
is the 𝑗-th

item embedding which is positively paired with trigger item 𝑖 , and
𝐸−
𝑖,𝑘

is the 𝑘-th item embedding which is negatively paired with
trigger item 𝑖 . 𝑀 is the total number of trigger items, whereas 𝑁
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Figure 3: Overview of the proposedMTMH approach. 1) Themulti-task learning consists of a co-engagement loss and a relevance
loss, where the co-engagement loss has the format of InfoNCE [35], with the hard labels from the co-engagement data and the
relevance loss is based on knowledge distillation from the pre-trained content encoder. 2) The multi-head design includes an
engagement head (w/ only co-engagement loss) and a relevance head (w/ multi-task loss). 3) The pre-trained content encoder is
used to generate relevance supervision for transferring the content semantic knowledge to the learned embeddings.

is the number of candidate items which are positively paired with
each trigger item. 𝐿 is the number of items which are negatively
paired with each trigger item, and < 𝑥,𝑦 > represents the dot prod-
uct between embedding 𝑥 and 𝑦. By minimizing the co-engagement
loss, the embeddings of positive item pairs are pulled closer, while
the embeddings of negative item pairs are pushed apart.
Semantic relevance loss.Co-engagement modeling does not guar-
antee the preservation of semantic relevance in the learned item
embeddings, often resulting in suboptimal item relevance. To ad-
dress this, we introduce a semantic relevance loss that aligns the
contrastive similarity between item embeddings generated by the
I2I retrieval model with the contrastive similarity between item
content embeddings produced by the content encoder. In this way,
the semantic content knowledge is distilled into the learned embed-
dings. We use the content embeddings generated by the pre-trained
content encoder to build soft semantic relevance labels between
<trigger, candidate> pairs, and then use these soft relevance labels
to guide the semantic relevance optimization (see Figure 3b for
details). This process is also known as knowledge distillation [15].
Formally, the relevance loss is defined as:

𝐿𝑟 =

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐷𝐾𝐿 (𝑄𝑖,𝑗 | |𝑃𝑖,𝑗 ) =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝑞+𝑖,𝑗 log

𝑞+
𝑖,𝑗

𝑝+
𝑖,𝑗

+
𝐿∑︁
𝑘=1

𝑞−
𝑖,𝑘

log
𝑞−
𝑖,𝑘

𝑝−
𝑖,𝑘

)
(2)

where:

𝑞+𝑖, 𝑗 =
𝑒
<𝐹𝑖 ,𝐹

+
𝑖,𝑗>

𝑒
<𝐹𝑖 ,𝐹

+
𝑖,𝑗
> +∑𝑘=𝐿

𝑘=1 𝑒
<𝐹𝑖 ,𝐹

−
𝑖,𝑘

>
, 𝑞−
𝑖,𝑘

=
𝑒
<𝐹𝑖 ,𝐹

−
𝑖,𝑘

>

𝑒
<𝐹𝑖 ,𝐹

+
𝑖,𝑗
> +∑𝑘=𝐿

𝑘=1 𝑒
<𝐹𝑖 ,𝐹

−
𝑖,𝑘

>

𝑝−
𝑖,𝑘

=
𝑒
<𝐸𝑖 ,𝐸

−
𝑖,𝑘

>

𝑒
<𝐸𝑖 ,𝐸

+
𝑖,𝑗
> +∑𝑘=𝐿

𝑘=1 𝑒
<𝐸𝑖 ,𝐸

−
𝑖,𝑘

>

𝑄𝑖, 𝑗 = [𝑞+
𝑖, 𝑗
, 𝑞−
𝑖,1, ..., 𝑞

−
𝑖,𝐿

], and 𝑃𝑖, 𝑗 = [𝑝+
𝑖, 𝑗
, 𝑝−
𝑖,1, ..., 𝑝

−
𝑖,𝐿

].𝐷𝐾𝐿 (𝑄𝑖, 𝑗 | |𝑃𝑖, 𝑗 )
denotes the KL divergence between probability distributions 𝑄𝑖, 𝑗
and 𝑃𝑖, 𝑗 . 𝐹𝑖 is the 𝑖-th trigger item content embedding, 𝐹+

𝑖, 𝑗
is the

𝑗-th item content embedding positively paired with trigger 𝑖 , 𝐹−
𝑖,𝑘

is
the 𝑘-th item content embedding negatively paired with trigger 𝑖 .

Note that 𝑞+
𝑖, 𝑗

and 𝑞−
𝑖,𝑘

can be interpreted as the target probability
for trigger item 𝑖 to identify positively paired item 𝑗 and negatively
paired item 𝑘 based on item content embedding similarity respec-
tively. 𝑝+

𝑖, 𝑗
(defined in Eq. (1)) and 𝑝−

𝑖,𝑘
can be interpreted as the

predicted probability for trigger item 𝑖 to identify positively paired
item 𝑗 and negatively paired item 𝑘 based on item embedding simi-
larity. By minimizing the KL divergence between 𝑄𝑖, 𝑗 and 𝑃𝑖, 𝑗 , the
relative similarities between learned item embeddings are aligned
with those of the item content embeddings generated by the con-
tent encoder. Hence, item embeddings generated by the I2I retrieval
model can effectively preserve item semantic relevance.
Multi-task loss. The multi-task learning loss is defined as:

𝐿𝑚𝑡 = 𝐿𝑒 +𝑤𝑟 ∗ 𝐿𝑟 (3)

where𝑤𝑟 is an hyper-parameter to control the weight of relevance
loss. Increasing𝑤𝑟 is expected to improve the semantic relevance
of the model but might decrease the co-engagement rate (or recall)
at the same time (see Section 4.4 for details). Note that the default
value of𝑤𝑟 is 0.5, unless otherwise specified.

3.3 Multi-head Architecture
As discussed in Section 2, although the I2I retrieval model trained
via multi-task learning can retrieve items with high semantic rel-
evance, it may miss some highly engaged but less relevant items.
To overcome this challenge, we design a multi-head model with an
engagement head and a relevance head. Specifically, the engage-
ment head is trained to minimize co-engagement loss 𝐿𝑒 (Eq. 1)
only, focusing on retrieving highly co-engaged items. In contrast,
the relevance head is trained to minimize the multi-task loss 𝐿𝑚𝑡
(Eq. 3) to retrieve items with high semantic relevance.
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Figure 4: MTMH serving pipeline contains three modules:
1) a multi-ANN module to retrieve 𝐾𝑎𝑛𝑛 nearest candidates
from each head; 2) a preranker module to select top 𝐾 out of
𝐾𝑎𝑛𝑛 candidates from each head; 3) a quota-based merging
module to merge candidates from the two heads.

As demonstrated in Figure 4, at the bottom of the multi-head
model, a Sparse Neural Network (SparseNN) is used to map each
id feature of the input item into a unique embedding vector, and
a Dense Neural Network (DenseNN) is used to map the float fea-
tures of the input item into a latent vector. These vectors are then
concatenated and fed into two MLP heads, each of which has the
same input vectors but uses a dedicated MLP to map them into a
different item embedding space. Notably, increasing the number of
heads only slightly increases the total number of model parameters,
since the majority of parameters come from SparseNN.

3.4 Content Encoder
To effectively capture the item semantic representation, inspired by
recent works LLM2VEC [1] and VLM2VEC [19], we propose a multi-
modal contrastive learning framework to learn the correspondence
between content and concepts. Figure 5 shows the model architec-
ture. The content tower is composed of a pre-trained LLM encoder
[44] and visual encoder [55] that extract multimodal representa-
tions from the content. These representations are then aggregated
through a Multi-layer Perceptron (MLP) module to obtain a single
embedding. Similarly, the concept tower generates concept embed-
dings from a pre-trained LLM encoder. Contrastive loss between
the content and concept embeddings is used to train this model.
The pairs of content and concepts are sourced from multiple places,
including user-added hashtags, user search queries, and multimodal
LLM-generated tags. The relevance knowledge in this content en-
coder is then distilled to the learned MTMH model.

3.5 MTMH Serving Strategy
Building on the top of MTMH architecture, we now describe the
serving strategy of MTMH. As illustrated in Figure 4, the serving
pipeline of MTMH consists of three key modules: 1) a multi-ANN
module to conduct ANN search and retrieve top 𝐾𝑎𝑛𝑛 nearest can-
didates based on embeddings generated by each head in parallel;
2) a per-head preranker module to rank the candidates retrieved
from each head and preserve top 𝐾 candidates for each head; and
3) a quota-based candidate merging module which merges top K
candidates from each head based on their percentage quota.
Multi-ANNmodule. For candidate item embeddings generated by
each head ofMTMH,we performK-means clustering to divide items

MLP fusion content embedding

Lightweight transformer 
feature encoder MLP feature encoder

Pre-trained visual 
encoder

Content 
text

Content 
image/video

Pre-trained LLM 
encoder

… …

2D sequential token embeddings

Pre-trained LLM 
encoder

2D sequential token embeddings

Lightweight transformer 
feature encoder

Concept

Content embedding

Cross-modal contrastive learning

Content tower Concept tower

Figure 5: Model architecture of the content encoder. The con-
tent tower processes content inputs to generate multimodal
embeddings, while the concept tower extracts semantic em-
beddings from text concepts. Contrastive loss optimizes rele-
vance between content and concept representations.

into different clusters offline. During online serving time, given
a trigger item embedding generated by head 𝑖 , we first select 𝐶
nearest clusters based on the embedding similarity between trigger
embedding and cluster centroid embeddings. Then, we find the top
𝐾𝑎𝑛𝑛 nearest candidates from items among these𝐶 nearest clusters.
Since there is no computation dependency between the ANN search
for each head, the multi-ANNmodule can run per-head ANN search
in parallel efficiently. Note that in total, this module retrieves 2𝐾𝑎𝑛𝑛
candidate items for each trigger item (𝐾𝑎𝑛𝑛 = 𝑂 (1000) in MTMH).
Preranker module. The module uses a multi-task user-to-item
(U2I) model as preranker, in order to select top𝐾 out of 2𝐾𝑎𝑛𝑛 items
retrieved by the multi-ANN module. These 𝐾 items are expected
to have the highest probability of being engaged by the user. Since
preranker is trained to maximize the likelihood of selecting items
engaged by the user, it may be biased towards highly engaged
items by users and thus assign low ranking scores to semantically
relevant items. To mitigate such bias, we rank the 𝐾𝑎𝑛𝑛 candidate
items retrieved by each head separately, in order to guarantee that
𝐾 candidate items from each head are preserved (𝐾 = 𝑂 (10)).
Candidate merging module. This module takes the output items
of the preranker module as input, which is designed to merge the
top 𝐾 candidate items retrieved from each head based on their per-
centage quota. Specifically, it selects the top 𝛼% candidate items
from the engagement head and the top (100 − 𝛼)% candidate items
from the relevance head. Note that we remove duplicated candidates
from each head to guarantee that the total amount of candidate
items after merging is 𝐾 . A larger 𝛼 increases the number of candi-
dates retrieved from the engagement head, potentially increasing
I2I recall while decreasing I2I semantic relevance; conversely, a
smaller 𝛼 has the opposite effect. It is worth noting that 𝛼 is a hy-
perparameter that can be adjusted during serving time. This means
that we can flexibly trade between recall and semantic relevance
without retraining MTMH. 𝛼 will be 50 in the remaining sections.

4 Experiments
To assess the effectiveness of MTMH, we conduct a comprehen-
sive evaluation on a commercial recommendation platform serving
billions of users. Our evaluation focuses on two key aspects: I2I
co-engagement rate (i.e. recall) and I2I semantic relevance. We start
with offline evaluation, where we train MTMH alongside other
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Table 1: Offline evaluation results of MTMH and baselines. Note that we evaluate recall and semantic relevance of these models
on testing user data. For recall, we report recall@K with 𝐾 ∈ {5, 20, 100, 500}. For semantic relevance, we report the average
L1/L2 topic cateogory match rate between <trigger,candidate> item pairs. L1 topic divides items into relatively coarse-grained
semantic classes and L2 topic divides items into more fine-grained semantic classes.

Baseline Recall Semantic Relevance
Recall@5 Recall@20 Recall@100 Recall@500 L1 Topic L2 Topic

ItemCF [20] 1.01% 2.50% 6.89% 14.88% 21.31% 17.90%
NeuCF [12] 1.10% (+8.9%) 2.73% (+9.2%) 7.51% (+9.0%) 16.33% (+9.7%) 25.77% (+20.9%) 22.40% (25.1%)
MoL [62] 1.10% (+8.9%) 2.75%(+10.0%) 7.49% (+8.7%) 16.05% (+7.9%) 27.70% (+30.0%) 24.74% (+38.2%)
HLLM [3] 1.08% (+6.9%) 2.67% (+6.8%) 7.35% (+6.7%) 16.07% (+8.0%) 28.63% (+34.4%) 26.25% (+46.6%)
MTMH (Ours) 1.10% (+8.9%) 2.76% (+10.4%) 7.65% (+11.0%) 17.02% (+14.4%) 30.17% (+41.6%) 28.02% (+56.5%)

Table 2: Ablation study of MTMH. Note that MTMH-H1 and MTMH-H2 denote the engagement head and relevance head of
MTMH respectively. STMH is a mult-head model where each head is trained on single-task learning loss, and MTSH represents
a single-head model trained on multi-task learning loss.

Baseline Recall Semantic Relevance
Recall@5 Recall@20 Recall@100 Recall@500 L1 Topic L2 Topic

MTMH 1.10% 2.76% 7.65% 17.02% 30.17% 28.02%
MTMH-H1 1.11% (+0.9%) 2.77% (+0.4%) 7.57% (-1.0%) 16.16% (-5.1%) 28.58% (-5.3%) 25.73% (-8.2%)
MTMH-H2 1.12% (+1.8%) 2.72% (-1.4%) 6.61% (-13.6%) 11.37% (-33.2%) 34.70% (+15.0%) 33.73% (+20.4%)
MTSH 1.14% (+3.6%) 2.79% (+1.1%) 7.09% (-7.3%) 13.35% (-21.6%) 34.15% (+13.2%) 33.04% (+17.9%)
STMH 1.11% (+0.9%) 2.75% (-0.4%) 7.64% (-1.3%) 14.31% (-15.9%) 28.97% (-4.0%) 27.84% (-0.6%)

baseline models using user data from Period 𝑇1 and then test these
models on real user data from Period 𝑇2 after 𝑇1. The offline eval-
uation allowed us to compare the performance of MTMH with
prior SOTAs in a controlled setting (see Section 4.2). To further
validate our findings, we deploy MTMH on the commercial rec-
ommendation platform and compare its performance with the pro-
duction model. The online evaluation provides valuable insights
into how MTMH affects the real-world consumption metrics and
user-experience-related metrics (see Section 4.6).

4.1 Baselines and Offline Metrics
During offline evaluation, we compare MTMH with four baseline
I2I retrieval models. Note that all baseline models are trained to
minimize the same co-engagement loss defined in Eq. (1). Addition-
ally, we employ a propensity-score-based method to mitigate the
selection bias toward popular items during training [4], and a mixed
negative sampling strategy in [60] to reduce the selection bias of
negative I2I pairs. The baselines differ only from the model archi-
tectures and input item features used to generate item embeddings.
We describe them in detail below:

• ItemCF [20]: This model represents each item using an unique
embedding vector in Euclidean space purely based on its id,
which is originally proposed in [20].

• NeuCF [12]: This model uses a deep neural network (DNN) to
learn item embeddings, which has been widely used in prior
works. Note that the DNN in this model does not take any item
content features as input.

• MoL [62]: Instead of only taking content-unrelated trigger/item
features as input, this model also takes content features of items
as DNN input.

• HLLM [3], this model is modified from the most recent work [3],
which takes content embedding generated by pre-trained content
encoder models as augmented input of I2I retrieval model.

We report both recall and the semantic relevance of MTMH and
baselines. Specifically, for recall, we report recall@K on testing
data with 𝐾 ∈ {5, 20, 100, 500}. To measure the semantic relevance,
we categorize items into distinct topic category groups based on
their semantic relevance and report the topic match rate of <trig-
ger,candidate> item pairs. It’s worth noting that L1 topic categories
group items into broader topic classes, while L2 topic categories
group them into more fine-grained topic classes. We report both to
evaluate semantic relevance at varying levels of granularity.

4.2 Main Results
We first present offline evaluation results of MTMH and base-
lines. As shown in Table 1, MTMH achieves both the highest recall
and semantic relevance compared with all baselines. Specifically,
MTMH increases the recall@500 by at least 4.2% and up to 14.4%.
In terms of L2 topic relevance, MTMH outperforms all baselines by
at least 6.7% and up to 56.5%.

It is worth noting that both MoL and HLLM have better I2I se-
mantic relevance but worse recall@500 compared with NeuCF. As
mentioned in Section 4.1, MoL takes content features as input to
generate item embeddings and HLLM uses content embeddings
generated by LLM as input, which can greatly improve I2I semantic
relevance. However, this usually comes with the expense of sac-
rificing I2I co-engagement rate. In contrast, MTMH is capable of
preserving both highly co-engaged items and semantically rele-
vant items due to its multi-head serving design (see Section 3.5),
achieving both improved recall and semantic relevance.
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4.3 Ablation Study
Next, we conduct the ablation study of MTMH by comparing it
with the following baselines:

• MTMH-H1: It only uses the engagement head of MTMH.
• MTMH-H2: It only uses the relevance head of MTMH.
• MTSH (Multi-task single-head): This is a single-head model

trained by minimizing multi-task learning loss (see Eq. (3)).
• STMH (Single-task multi-head): This is a multi-head model with

one engagement head and one relevance head. Different from
MTMH, the engagement head is trained to solely minimize the
co-engagement loss (see Eq. (1)), while the relevance head is
trained to solely minimize relevance loss (see Eq. (2)).

As shown in Table 2, MTMH-H1 (i.e. the engagement head) has
the best recall compared with other baselines, and MTMH-H2 (i.e.
the relevance head) has the highest I2I semantic relevance while
the lowest recall@500 compared with other models. By merging
candidates retrieved from both heads, the recall@500 of MTMH is
further increased by 5.3% on top of MTMH-H1. At the same time,
it improves I2I semantic relevance by 5.6% w.r.t. L1 and 8.9% w.r.t.
L2 compared with MTMH-H1, since it preserves both co-engaged
and semantically relevant candidates retrieved by MTMH-H2.

Moreover, we observe that both STMH andMTSH trade recall for
better semantic relevance. For instance, compared with MTMH-H1
and baselines in Table 1, they exhibit significantly better semantic
relevance but much worse recall. By contrast, MTMHis the only
model which can improve I2I semantic relevance without trading
recall, which demonstrates the effectiveness of multi-headmodeling
and serving strategy in Section 3.1.

4.4 Recall and Relevance Trade-off
In this subsection, we evaluate the recall and semantic relevance
trade-off performance of baselines and MTMH with varying 𝛼 .
Note that 𝛼 is the hyper-parameter controlling the quota for the
engagement head during serving time. We use recall@500 and L2
topic relevance as our recall and semantic relevance metrics, and
report the results in Figure 6.

As shown in Figure 6a, MTMH is able to achieve both high recall
and semantic relevance, outperforming all baselines except MTSH
(multi-task single-head model) in terms of both metrics. While
MTSH achieves the best L2 topic relevance, its recall@500 is signifi-
cantly lower than that of the other models. Figure 6b demonstrates
how varying serving parameter 𝛼 can affect the recall and semantic
relevance trade-off of MTMH. We observe that decreasing 𝛼 im-
proves the I2I semantic relevance, since more semantically relevant
items retrieved by the relevance head of MTMH are preserved. By
contrast, increasing 𝛼 boosts the recall, by selecting more highly
co-engaged items retrieved by the engagement head of MTMH.
Moreover, we observe that when 𝛼 is larger than 50, decreasing
𝛼 can enhance I2I recall and semantic relevance simultaneously.
This is expected since items with less co-engagement efficiency
retrieved by the engagement head of MTMH are replaced by highly
relevant and co-engaged items retrieved from the relevance head
of MTMH . However, keeping reducing 𝛼 leads to the drop of recall,
specifically when 𝛼 > 70, since the relevance head may ignore
highly co-engaged but less semantically relevant items (e.g. popular
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Figure 6: Recall and semantic relevance trade-off evaluation
results. Note that top right part of these figures represents
both high recall and semantic relevance. 𝛼 inMTMH controls
the percentage of candidates from its engagement head. In
the left figure, the default 𝛼 value 50 is used.

items). In summary, we observe that 𝛼 = 50 provides us with the
optimal recall and semantic relevance trade-off.

Note that in practice, 𝛼 can be flexibly adjusted to adapt to the
specific requirements in production. For instance, for some applica-
tions where I2I semantic relevance is more important, smaller 𝛼 can
be used; while for applications focusing on more co-engagement
rate, larger 𝛼 should be used. By enabling 𝛼 as a serving parameter,
MTMH model can be deployed to serve different purposes without
being retrained.

4.5 Embedding Convergence of Fresh Content
Most industry retrieval models, including I2I, rely heavily on user
engagement data, leading to a strong bias toward older content.
However, a key aspect of recommendation systems is the rapid
delivery of fresh content, even with minimal user engagement, as
it enhances the overall user experience. To achieve this, the I2I
retrieval model must learn fresh content embeddings more quickly,
ensuring their fast convergence during training. To assess whether
MTMH accelerates fresh content delivery, we analyze the conver-
gence speed of fresh content embeddings during MTMH training.
Figure 7 compares the embedding convergence speed of fresh con-
tent between MTMH and our production model. The 𝑥-axis repre-
sents the number of updates to fresh content embeddings, while
the 𝑦-axis denotes the embedding delta—defined as the L2 distance
between embeddings at step 𝑡 and those at step 𝑇 = 2000. Our
results show that MTMH achieves faster embedding convergence
for fresh content compared to the production model. This finding
is further validated by online experiments (Section 4.6), which con-
firm that MTMH successfully delivers more fresh content, aligning
with expectations based on its improved embedding convergence.
The reason is that our MTMH not only learns the item embeddings
from the co-engagement data, but also incorporates the content
semantic relevance through the multi-task learning, improving the
model generalization on fresh content.

4.6 Online A/B Testing
We deployed MTMH on a real-world platform serving billions of
users and conducted a 7-day evaluation to assess its effectiveness.
We observe significant gains on both topline consumption metrics
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Figure 7: MTMH embedding convergence of fresh content.

and user-experience-related metrics. Table 3 reports the improve-
ments in several key metrics, which are described below.
Daily active users (DAU). This metric measures the number of
unique users who engage with the platform on a daily basis. We
observe 0.05% increase in DAU, indicating that more users are using
the platform each day.
Daily time Spent. This metric measures the amount of time users
spent on the platformwithin a day. The deployment of MTMH leads
to a 0.22% increase in users’ time spent, suggesting that users are
more engaged with the recommended items on the platform.
Distinct item views. This metric counts the number of unique
items viewed by users on the platform in a day. An increase in dis-
tinct item views indicates that more diverse and unique items are
retrieved and recommended to users. We report that MTMH brings
0.31% more distinct items into the platform.
Percentage of fresh content. This metric measures the percent-
age of fresh content with age less than 48 hours on the platform.
MTMH improves this metric by 0.25%, indicating that users are
seeing more fresh content.
Novel interest discovery rate. This metric tracks the number
of new interests or topics that users discover on the platform. An
increase in novel interest discovery rate indicates that users’ new
areas of interest can be discovered by the recommendation system
faster. We observe that MTMH can also increase this metric by
0.33%.
User interest recall. This metric measures how well the platform
is able to recommend content that aligns with a user’s existing
interests. An improvement in user interest recall suggests that our
model is able to retrieve more semantically relevant content. As
expected, MTMH successfully moves this metric up by 0.14%.

In summary, we conclude that MTMH improves both I2I co-
engagement efficiency and semantic relevance during online A/B
testing, consistent with what we observe during offline evaluation.

5 Related Work
I2I retrieval models. Early I2I retrieval methods include collab-
orative filtering [38, 39, 42], matrix factorization [16, 22, 23] and
neighbor-based methods [30, 40]. They primarily focus onmodeling
interactions between raw item IDs without considering rich fea-
tures like item attributes or content features [21, 28, 37, 54], which
are insufficient for capturing complex patterns and relationships be-
tween items. Recent years, deep neural networks (DNNs) have been
used in I2I retrieval to capture complex patterns and relationships
between items. Among them, two-tower model architecture has
emerged as a dominant paradigm, offering both effectiveness and

Table 3: Online A/B testing results for MTMH .

Metrics Changes

Daily active users +0.05%
Daily time spent +0.22%
Distinct item views +0.31%
Perentage of fresh content +0.25%
Novel interest discovery rate +0.33%
User interest recall +0.14%

efficiency [7, 17, 61]. Along this line of work, various techniques
like adaptive mechanisms [26, 57, 61] and self-attention [24, 53]
have been used to enhance two-tower models with richer input fea-
tures while maintaining computational efficiency. However, these
models are trained purely based on co-engagement data without
considering I2I semantic relevance. To tackle the semantic under-
standing challenge, various approaches have been proposed to take
content features as model input to improve I2I semantic relevance
[13, 14, 24, 32–34, 43, 49]. Different from prior works, MTMH pro-
vides a principled approach for jointly optimizing co-engagement
efficiency and semantic relevance via multi-task learning loss with-
out taking content features as input.
Large foundation models for retrieval. With the emergence of
large foundation models (e.g. large language models (LLMs)), there
has been growing interest in leveraging their superior semantic
understanding capabilities for recommendation tasks [2, 10, 25, 29,
31, 47, 51, 63, 64]. One line of work use LLMs for generative recom-
mendations through prompt engineering [8, 11]. Another line of
work integrate LLMs into retrieval systems [3, 8, 27, 46, 48] to better
understand complex item relationships. However, these approaches
face practical deployment challenges due to hugh runtime cost.
More recent works have explored methods to inject LLM knowl-
edge into recommendation models [6, 45], either by enhancing item
representations through content feature extraction [50, 52, 65], or
leveraging LLMs for data augmentation [5] and knowledge distilla-
tion [56]. In contrast to prior work, MTMH provides a principled
approach for distilling LLMs’ knowledge into retrieval models via
multi-task learningwithout increasingmodel complexity. Moreover,
the multi-head architecture design in MTMHenables us to flexibly
trade between co-engagement efficiency and semantic relevance,
which is unexplored in prior works.

6 Conclusion
This paper proposes MTMH, a multi-task and multi-head item-to-
item (I2I) retrieval model that addresses the fundamental trade-off
between recall and semantic relevance. MTMH provides a princi-
pled approach for jointly optimizing I2I co-engagement rate and
semantic relevance, via a multi-task learning loss and a multi-head
retrieval architecture. Our offline experimental results demonstrate
that MTMH improves I2I retrieval recall by up to 14.4% and se-
mantic relevance by up to 56.6%, outperforming all baselines. Our
online A/B testing further verifies its effectiveness in enhancing
both topline consumption metrics (e.g. daily active user and time
spent) and user-experience-related metrics (e.g user interest re-
call, novel interest discovery rate, content diversity, and freshness).
Overall, this work has the potential to significantly enhance the
performance of recommendation systems in various applications.
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