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Abstract
We propose a new approach to falsify causal discovery algorithms without ground truth, which is
based on testing the causal model on a variable pair excluded during learning the causal model.
Specifically, given data on X,Y,Z = X,Y, Z1, . . . , Zk, we apply the causal discovery algorithm
separately to the ’leave-one-out’ data sets X,Z and Y,Z. We demonstrate that the two resulting
causal models, in the form DAGs, ADMGs, CPDAGs or PAGs, often entail conclusions on the
dependencies between X and Y and allow to estimate E(Y | X = x) without any joint observations
of X and Y , given only the leave-one-out datasets. This estimation is called ”Leave-One-Variable-
Out (LOVO)” prediction. Its error can be estimated since the joint distribution P (X,Y ) is available,
and X and Y have only been omitted for the purpose of falsification.

We present two variants of LOVO prediction: One graphical method, which is applicable to
general causal discovery algorithms, and one version tailored towards algorithms relying on specific
a priori assumptions, such as linear additive noise models. Simulations indicate that the LOVO
prediction error is indeed correlated with the accuracy of the causal outputs, affirming the method’s
effectiveness.
Keywords: Out of variable generalization, Benchmarking causal models, Benchmarking without
ground truth.

1. Introduction

Causal discovery (Spirtes et al., 1993), the inference of (typically acyclic) causal graphs from ob-
servational data, has attained substantial research interest since the development of the PC algo-
rithm (Spirtes et al., 1993; Glymour et al., 2019), which leverages the causal Markov condition
and faithfulness assumption. Research gained further momentum after it was observed that addi-
tional assumptions render identification solvable also within Markov equivalence classes, see, e.g.,
Kano and Shimizu (2003); Shimizu et al. (2006); Sun et al. (2006); Hoyer et al. (2008); Zhang and
Hyvärinen (2009); Peters et al. (2011); Kocaoglu et al. (2017); Gnecco et al. (2021); Rolland et al.
(2022); Montagna et al. (2023). These approaches are meanwhile complemented by supervised
learning methods: Lopez-Paz et al. (2015) treats cause-effect inference as a binary classification
problem, Nauta et al. (2019); Lachapelle et al. (2020); Zheng et al. (2020); Ke et al. (2023) use
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techniques from deep learning to learn multivariate causal graphs using architectures tailored for
learning properties of probability distributions. Further, it has been shown that data from changing
environments helps in identification of causal models (Tian and Pearl, 2001; Peters et al., 2016;
Zhang et al., 2017; Mooij et al., 2020; Rothenhäusler et al., 2021). However, even after decades of
creative contributions, it is fair to say that causal discovery did not experience any widely celebrated
breakthroughs in practical applications despite interesting success stories, e.g., Shen et al. (2020);
Lagemann et al. (2023). One reason, if not the main one, is that researchers working on practical
applications find it hard to judge which method works best or if any works reasonably well for their
use case. Extensive evaluations are mainly performed on simulated data, a practice about which
serious doubts are in order (Reisach et al., 2021). Despite the existence of instructive examples for
interventional data (Lagemann et al., 2023), such as knockout experiments in genetics (Hamilton
et al., 1989), it is a serious limitation to entirely rely on interventions. This is not only because inter-
ventional experiments are expensive but also because interventions can not necessarily be attributed
to single nodes (Zhang et al., 2023). Thus, some datasets may require a separate discussion about
what node is intervened on, which motivated research on learning causal graphs from unknown in-
tervention targets (Jaber et al., 2020). Further, ”ground truth” reported in the literature (Sachs et al.,
2005) has later been challenged elsewhere (Mooij et al., 2020, Section 5.8). In other words, despite
all the interesting experimental data sets, automatic retrieval of a vast number of interventional data
for trustworthy benchmarking seems currently out of reach. In practical applications, researchers
often solve causal inference tasks like treatment effect estimation in directed acyclic graphs (DAGs)
with comparable low complexity and raise doubts about whether more complex DAGs can be trusted
(Imbens, 2020).

Motivated by the lack of benchmarking data, Faller et al. (2024) suggests a ”self-compatibility”
check, which applies causal discovery algorithms to subsets of variables and quantifies to what
extent the algorithm’s outputs on subsets contradict the output on the entire set of variables. The
paper discusses different measures of disagreement. However, some disagreement is not unlikely,
and the paper provides no guidance on which level of disagreement is large enough to reject the
algorithm’s outcome. Given data on variables W = (X,Y,Z) = (X,Y, Z1, . . . , Zk), similar to
Faller et al. (2024), our method begins with applying the causal discovery algorithm in question to
subsets of variables, namely X,Z and Y,Z. The novelty lies in introducing a new measurement:
We demonstrate that the causal models on the two subsets often allow us to infer E[Y |X = x]
only based on the two datasets X,Z and Y,Z. Comparing this to an estimate obtained from the
joint distribution P (X,Y ), we obtain the LOVO prediction error. Unlike the discrete metrics in
Faller et al. (2024)), this prediction error is continuous and, therefore, constitutes an optimizable
loss function. Moreover, by focusing on a bivariate relation, we ensure a statistically well-behaved
target. Most importantly, we establish a rigorous criterion to decide when to reject the algorithm’s
output by developing a baseline to which we compare the prediction error.

While our task can be seen as a missing data problem (for which causal structure is known to
enable better imputation, see e.g. Mohan and Pearl (2021)), here, missingness comes from dropping
on purpose for testing causal hypotheses. We call our scenario ”Leave-One-Variable-Out (LOVO)”
cross-validation in analogy to leave-one-out (LOO) cross-validation in statistical learning (Stone,
2018). While LOO cross-validation evaluates a model prediction for a datapoint that has not been
used for learning, we test the prediction of the causal model at a variable pair (X,Y ) whose relation
has not been used for learning. We will discuss conditions under which causal models render this
task solvable. In other words, while statistical learning is based on an inductive bias that allows
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to interpolate a function at a point that has not been seen before, causal learning may ”interpolate”
dependencies between variable pairs that have not been seen together. This way, we further elaborate
on the view of previous works (Tsamardinos et al., 2012; Dhir and Lee, 2019; Gresele et al., 2022;
Guo et al., 2024) that causal models help for generalization across variables, called ”out-of-variable
generalization” in Guo et al. (2024), with the difference that we predict a statistical relation that is
actually known and only temporarily dropped for the purpose of testing. One of the early works that
observed that causal models enable predicting relations between variables not observed together is
Tsamardinos et al. (2012), where Maximal Ancestral Graphs (MAGs) on overlapping subsets of
variables are used to infer dependencies between variables, each of which only occurs in one of the
subsets.

Structure of the paper: After Section 2 formally defines LOVO prediction and lays out the gen-
eral structure of LOVO cross-validation, in Section 3, we examine under which conditions causal
models enable LOVO prediction and propose a practical estimation method. Section 4 defines
the ”non-causal baseline,” i.e., a simple LOVO prediction rule to be used when nothing is known
about the causal structure. Section 5 reports experiments where we apply LOVO prediction to the
causal discovery algorithms DirectLiNGAM (Shimizu et al., 2011) and Repetitive Causal Discovery
(Maeda and Shimizu, 2020). All proofs are given in the appendix.

Notation and technical assumptions: To simplify mathematical discussions and notation, we
will always assume that the joint distribution P (X,Y,Z) has a density (the probability mass func-
tion for the case of discrete variables) with respect to a product measure. Further, except for results
that explicitly refer to continuous variables, we use discrete sum over probabilities without being ex-
plicit about replacing them with integrals over densities otherwise. For standard concepts of causal
discovery like the causal Markov condition, d-separation, and Markov equivalence, we refer to the
literature, e.g., Spirtes et al. (1993); Pearl (2000).

2. Building blocks for LOVO cross-validation

We interpret LOVO prediction as the task of inferring P (Y |X), or the reduced problem of inferring
the regression function f(x) = E[Y |X = x], or the correlation ρXY , from P (X,Z) and P (Y,Z).
This prediction is used to assess the reliability of a causal discovery algorithm as follows: Given data
on the whole set of variables W , we select one pair of variables (X,Y ) and create the two leave-
one-out datasets (X,Z) and (Y,Z). Next, we run the causal discovery method separately on both
sets. As we show later, the outputs GX , GY often provide information about the relation between X
and Y , aiding in LOVO prediction. Correspondingly, we call this specific way of LOVO prediction
based on GX , GY causally informed LOVO prediction. Its prediction error is then estimated by
comparing it to an estimate obtained from the joint distribution P (Y,X). To obtain the overall
LOVO cross-validation error, we repeat the procedure for all choices of pairs (X,Y ) from W and
take the average. Finally, to decide whether the error is still acceptable or so large that we should
reject the outcome of the causal discovery algorithm, we compare the cross-validation error to the
error of a baseline LOVO predictor, which estimates P (Y |X) from P (X,Z) and P (Y, Z) without
using any causal information.

Since we perform causal inference on subsets of the whole dataset, we need a class of causal
graphs that enables marginalizations. Following Faller et al. (2024), we use acyclic directed mixed
graphs (ADMGs) (Richardson, 2003) which contain the usual causal edges → as well as edges
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↔ (indicating a confounding path that can not be blocked by any observed variable). There ex-
ist slightly different definitions of ADMGs across the literature, varying in whether to allow co-
occurrence of both types of edges as confounded causal links A ↔→ B. We allow these confounded
causal links1 and say that a child B of A is a confounded child, if A ↔→ B, and an unconfounded
child if A→ B is the sole edge between the two nodes, similarly for parents. If A↔ B, we say that
A and B are siblings. We denote the children, parents, and siblings of a node A by ch(A), pa(A),
and sib(A), respectively. Moreover, we use the symbol − to denote any type of directed or bidi-
rected edge, and A ̸− B to indicate that A and B are not connected by an edge. For details of
marginalization in ADMGs, we refer to Richardson (2003), but it is rather intuitive: directed paths
A → ∗ → B turn into edges A → B when marginalizing over the mediators, confounding paths
A ← ∗ → B or A ← ∗ ↔ B into bidirected edges A ↔ B when marginalizing over the common
cause. By G, we refer to the DAG or ADMG for the entire set of nodes W 2, and GX , GY are its
marginalizations when leaving out Y,X .

3. Constructing LOVO predictors via causal discovery

3.1. Connection of causality and LOVO prediction

We first consider a small toy scenario on three variables (X,Y, Z), whose joint graph is assumed
to be a DAG, to provide an intuition under which conditions causally informed LOVO prediction is
feasible. Alongside, we illustrate that it makes sense to proceed by the following steps:
1. Infer the joint DAG (or later ADMG) G from the two marginal graphs GX , GY .
2. Use the joint graph G to reconstruct P (X,Y ) from P (X,Z) and P (Y,Z).
Suppose a causal discovery algorithm yields the outputs

GX = (X → Z), GY = (Z → Y )

when applied to the leave-one-out subsets (X,Z), (Y,Z). First, we want to explore if these outputs
allow us to draw conclusions about the entire graph. Employing the marginalization rules mentioned
earlier, we find that the edge X → Z ∈ GX can arise if and only if X → Z, X → Y → Z, or both
structures are contained in G. Since the second option contradicts GY = (Z → Y ), we conclude
X → Z ∈ G. Similarly, we obtain that Z → Y ∈ G. Lastly, we need to check if G could contain
other edges: By acyclicity, the only potential additional edge is X → Y . However, if X → Y ∈ G,
then GY would be Z

→↔ Y . Knowing G, we can conclude X ⊥⊥ Y | Z, and therefore,

P (X,Z, Y ) = P (X,Z)P (Y |Z),

which determines E[Y |X = x]. Thus, if the true underlying graph is X → Z → Y , we are able
to construct a LOVO predictor. While we use a conditional independence statement entailed by
G here, we want to stress that not every LOVO predictor is based on conditional independencies.
Theorem 5 or Table 1 in the supplement contain cases where it can be inferred despite X ̸⊥⊥ Y | Z,
using other statistical properties entailed by the joint causal model. If, for instance, the joint DAG is
X → Y → Z, linear models enable the identification of E[Y |X = x]. Moreover, in the preceding
step to infer G from GX , GY , we heavily make use of the arrows’ directions. If, in the example
above, we had only gained knowledge on the skeletons of GX , GY , the joint graph could be any

1. Nonetheless, our approach can be adapted to the other definition, see Supplement B.1.
2. This implicitly assumes that the joint data is Markov to some ADMG.
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graph in which Z is not an isolated node. This is not special to this example; instead inferring
E[Y |X = x] can not follow from the conditional independencies observed in P (X,Z) and P (Y,Z)
via any mathematical laws (except for degenerate cases, e.g, when Z uniquely determines X,Y ),
as formalized in the following lemma:

Lemma 1 (No probabilistic law enables LOVO prediction) Let X,Y be real-valued variables
whose conditional distributions P (X|Z = z), P (Y |Z = z) have densities p(x|z) and p(y|z) with
respect to the Lebesgue measure. Let Z = {Z1, . . . , Zk} be variables with arbitrary range. Then
P (X,Z) and P (Y,Z) can never uniquely determine P (X,Y ). In particular, even the sign of their
correlation is ambiguous.

The proof is quite explicit about the remaining ambiguity: when generating P (X,Z) and P (Y,Z)
via structural equation models with noise variables NX

Z and NY
Z , respectively, the dependencies

between NX
Z and NY

Z only influence the joint distribution, but not the marginals. Note that Z can
consist of multiple variables here; thus, the lemma is a general result.

However, also causal models do not always enable LOVO prediction. For example, G = (Z →
X → Y ) can not be uniquely reconstructed from its marginal graphs GX = (Z → X) and
GY = (Z → Y ) since, e.g., the graphs X ← Z → Y and Z → Y → X have the same
marginal graphs. While the graph G = (X → Y ← Z) is uniquely determined from its marginal
graphs, GX = (X ̸− Z) and GY = (Z → Y ), here, the second step fails. Because X ⊥⊥ Z,
we can not combine P (X,Z) and P (Y,Z) to extract information on the connection strength from
X to Y . Appendix A presents an overview of the realizability of LOVO for all possible graphs
consisting of three nodes and two edges, indicating that in many cases, one of the two steps fails.
However, in practice, it suffices if we can construct a LOVO predictor for a few pairs of nodes in the
graph; then, we simply compute the cross-validation error as an average over those pairs for which
we can construct the LOVO predictor. Furthermore, small graphs are particularly challenging for
LOVO prediction because the overlap between (X,Z) and (Y,Z) is small. The next section and the
simulations reveal that for larger graphs, we typically discover at least one (and often several) pairs
that can be handled.

3.2. LOVO prediction via parent adjustment

This section discusses the general case in which Z may contain multiple variables, and the joint
graph may be a DAG or an ADMG. Analogously to our first example, whenever there is a set ZS

that renders X and Y conditionally independent, we can define a LOVO predictor via the equation

P (y|x) =
∑
zS

P (y|zS)P (zS |x).

Since graphs with more than three nodes often contain at least some pairs of conditionally inde-
pendent nodes, we mainly rely on this LOVO predictor. Specifically, in a DAG, X and Y are
conditionally independent with respect to an appropriate conditioning set if and only if they are not
connected by an edge. In this case, the union of parents of X and Y is a d-separating set. In con-
trast, in ADMGs, the absence of a direct link does not guarantee the existence of an m-separating
set (e.g., for X → Z

↔→ Y ). Here, the union of parents is m-separating if there is no link and all the
parents are unconfounded. Hence, the question arises of how to identify these unlinked pairs with
only the marginal graphs available. For example, Figure 1 shows how if we would add the edge
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G =

W3 W5

W2

W4

W1

GW3 =

W3 W5

W2W1

GW4 =

W5

W2

W4

W1

Figure 1: Adding edges between X = W3 and Y = W4 introduces changes in the marginal graphs.

G =

W3 W5

W2

W4

W1

GW2 =

W3 W5

W2

W4

Figure 2: When G is known to be causally sufficient, W1 ̸→W2 can be inferred based on just GW2 .

W3 → W4 or W3 ↔ W4 to G, this introduces additional edges in the marginal graphs, represented
by the blue and orange edges. Therefore, the marginal graphs allow us to conclude that these edges
are not in G. Similarly, one can find that W3 ← W4 /∈ G. In general, even though X does not
appear in GY as a node, it indirectly shapes the graph. As a confounder, that is C ← X → D ∈ G,
it creates the edge C ↔ D ∈ GY , and as a mediator P → X → C ∈ G, it leads to P → C ∈ GY .
These relations allow us to deduce the absence of an edge, as formalized in the following lemma.

Lemma 2 (excluding links in ADMGs) Let G an ADMG whose marginalizations are GX and
GY . If X has a child in GX that is neither a sibling nor a child of Y in GY , or the same holds with
reversed the roles of X and Y , then X ̸− Y in G.

For the graph G depicted in Figure 1, the lemma allows to deduce W3 ̸− W4 as W4 has the child
W5 in GW4 , which is not a child or sibling of W3 in GW3 . Similarly, one can conclude W1 ̸− W5

and W2 ̸−W5. In contrast, the lemma can neither certify W1 ̸−W2 nor W3 ̸−W5.
If we know that G is a DAG, we can decide whether an edge exists and, if so, determine its

type in even more cases. Knowing that G contains no bidirected edges, we can trace each bidirected
edge C ↔ D ∈ GX back to C and D being children of Y in the joint model. Continuing the
previous example, but now looking at the pair (W1,W2), the bidirected edge W3 ↔ W4 ∈ GW2

implies that W3,W4 are both children of W1, compare Figure 2. Therefore, if there would be an
edge W1 → W2 ∈ G, the edges W3 ↔ W2,W4 ↔ W2 would appear in GW2 , which they do not.
Thus, W1 ̸→W2 ∈ G. The next lemma summarizes all conclusions we can make.

Lemma 3 (determining edge types in DAGs) Assume G is a DAG with marginalizations GX , GY .
Then X has at least two children in G if and only if GY contains a bidirected edge. Moreover,

(1) if X has at least two children in G, then X → Y ∈ G if and only if Y has a sibling in GY .
(2) If Y has at least two children in G, and X has fewer, then X → Y ∈ G if and only if X has

multiple children in GX .
(3) In the case that both have fewer than two children in G,

(a) if chGX (X) ̸= chGY (Y ), then X ̸− Y ∈ G;
(b) if neither paGX (X) ⊆ paGY (Y ), nor vice versa, then X ̸− Y ∈ G;
(c) if chGX (X) = chGY (Y ) = {C}, and neither paGY (Y ) ⊆ paGX (X) ⊆ paGY (Y ) ∪

paGY (C) nor vice versa, then X ̸− Y ∈ G;
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(d) if chGX (X) = chGY (Y ) = {C}, and neither paGY (Y ) ⊆ paGX (X) ⊆ paGY (Y ) ∪
paGY (C) nor at the same time paGX (X) ⊆ paGY (C) and paGY (Y ) ⊆ paGX (C), then
X → Y ∈ G.

(4) All the above criteria hold for reversed roles of X and Y .

This lemma leaves only a few exceptions where it does not make a statement about the edge type; in
particular, it determines the edge type whenever X or Y has at least two children in G or when they
do not have precisely the same children in the marginal graphs. Moreover, the lemma is exhaustive
in the sense that if none of the conditions apply, it is impossible to determine whether X and Y are
linked. In the example, it finds all five unlinked pairs.

One limitation of both lemmas is that they are restricted to causal discovery algorithms out-
putting ADMGs. In contrast, many algorithms learn DAGs or produce partially oriented graphs
such as CPDAGs or PAGs. However, given the straightforward nature of the proof of the lemmas, it
is unsurprising that analogous results can readily be derived for other graph types, see Appendix B.

Once a pair is identified as unlinked, the next step is to derive a d- or m-separating set by
inferring the union of parents and verifying their unconfoundedness with X,Y . If there is no edge
X − Y ∈ G, the parents and the siblings of X are the same in both GX and G, as are those of Y .
This allows us to directly assess the parents and their unconfoundedness directly from GX , GY , and
leads to the following LOVO predictor.

Theorem 4 (LOVO via parent adjustment) Let all parents of X be unconfounded. Likewise, let
all parents of Y be unconfounded. If ZS denotes the union of the parents of X and Y , then we have

P (y|x) =
∑
zS

P (y|zS)P (zS |x). (1)

Overall, our method first employs Lemma 2 or 3 to determine whether X and Y are linked. Lemma
3 is used when assuming causal sufficiency in the joint model; otherwise, Lemma 2 is used. If
the variables are unlinked, their parents are determined using paG(X) = paGX

(X) and paG(Y ) =
paGY

(Y ). To implement Theorem 4 in practice, we resort to the following simple procedure:
Three-step LOVO predictor

(1) Learn a predictor P̂ (Y |Z) or a regression function f̂ with f̂(z) := Ê[Y |Z = z].
(2) Apply the predictor to the z-values of the pairs (x, z) sampled from P (X,Z) to generate

artificial pairs (x, ŷ), with ŷ sampled from P̂ (y|z) or chosen as ŷ := f̂(z), respectively.
(3) Use these pairs to learn the predictor P̂ (Y |X), Ê[Y |X] or ρ̂XY .

As in the example on three nodes, Theorem 4 relies on conditional independence statements pos-
tulated by G. In contrast, the preceding steps to infer the non-existence of the edge and the joint
parents from the marginal distributions employ the built-in inductive bias of causal models, partic-
ularly the faithfulness of the joint model. Although we do not claim that LOVO prediction necessi-
tates causal models, the results in this section suggest that they are a natural way to solve this task
and conditional independence information alone is insufficient for LOVO prediction. This is a key
distinction to the falsification approach in Biza et al. (2020), where the estimated Markov blanket
of a target variable Y is used for predicting Y from as few variables as possible, and the predictions
are good whenever Y is conditionally independent of the remaining variables with respect to the
estimated Markov blanket.
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3.3. LOVO tailored to Linear non-Gaussian Acyclic Models (LiNGAM)

Some causal discovery algorithms are based on structural equation models, such as the linear addi-
tive noise model (LiNGAM). The LiNGAM for the DAG G postulates that

Wi =
∑

Wj∈pa(i)

λijWj +Nj , i = 1, . . . , k + 2, (2)

where the λij are real coefficients and the Nj are independent centered non-Gaussian variables.
Since the structure matrix Λ = (λij) collecting all coefficients is sparse according to the acyclic
graph G, it can be transformed into a strictly lower triangular matrix through simultaneous row and
column permutations. We assume faithfulness, that is, for all edges (i, j) ∈ G, the total causal effect

mij =
∑

π directed path
from j to i

∏
k→l edge on π

λlk (3)

is not zero. This assumption is fulfilled for Lebesgue almost all structure matrices Λ compatible
with a fixed graph G. Reflecting the model, the corresponding algorithms commonly output not
only a DAG but also the matrix Λ. Thus, when developing a LOVO predictor, it appears natural
to incorporate the learned matrix in order to falsify the algorithm’s entire output. Additionally, this
enables LOVO prediction even if a direct link exists, as long as we can determine its type using
Lemma 3.

Theorem 5 (LOVO via LiNGAM) Suppose PW follows a linear additive noise model for some
DAG G. If Lemma 3 allows us to identify the edge type between X and Y , (X → Y, Y → X, or
X ̸− Y ), and the children sets are not ch(Y ) = {X,Zj} and ch(X) = {Zj} or vice versa, then3

(1) the structure matrix Λ can be uniquely identified from P (X,Z) and P (Y,Z).
(2) If, in addition, all second and higher order moments of N are finite, P (X,Z) and P (Y,Z)

uniquely determines P (X,Y,Z), except for a measure zero set of moments of N .

As in the previous theorem, all graphical assumptions in the theorem can be verified from the
marginal graphs. Knowing the structure matrix, we can construct the LOVO predictor as follows.
Denoting ZS = paG(Y ) ∩ Z, and using that under the model assumptions Y = λYZS

ZS +
λY XX +NY , and NY is centered and independent of (X,ZS), we obtain

E(Y | X = x) = λYZS
E(ZS | X = x) + λY Xx,

which can be estimated from P (X,Z).

4. Baseline: LOVO prediction in absence of causal information

Although the two proposed LOVO predictors provide a reasonable approximation of E(Y | X = x)
whenever the marginal graphs GX , GY are accurate, some error will persist. To decide which level
of deviation is still acceptable, we ask whether the causal information helped the prediction by

3. Lemma 3 assumes GX , GY to be ADMGs, whereas most LiNGAM-based causal discovery algorithms produce
DAGs entailing explicit latent nodes. However, such a DAG can be easily transformed into an equivalent ADMG by
replacing each structure W1 ← L→W2, with L a latent node, by W1 ↔W2.
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comparing the prediction error to the error of the best LOVO predictor without causal information,
also called baseline predictor. Note that one may consider P (Y |X) = P (Y ) (that is, assuming
independence of X and Y ) as the best predictor in the absence of any causal knowledge. We reject
this idea for two reasons: First, the dependencies between X,Z and between Y,Z may be so strong
that it is impossible that X and Y are independent, see No 4. in Table 1 in the supplement, last
column. Second, the predictor P (Y |X) = P (Y ) is unlikely to be the right one in graphs with
several nodes unless one assume relatively sparse graphs.

Instead of assuming independent X,Y as the best ”causally agnostic” predictor, we use the
”MaxEnt prediction” (Jaynes, 2003), which is the joint distribution that maximizes entropy subject
to the given marginal distributions P (X,Z) and P (Y,Z) (Garrido Mejia et al., 2022). It is given
by the unique joint distribution with X ⊥⊥ Y |Z. To see this, note that the joint entropy reads (Cover
and Thomas, 1991)

H(X,Y, Z) = H(X,Z) +H(Y |X,Z) = H(X,Z) +H(Y |Z)− I(Y : X |Z),

which is maximal when the conditional mutual information I(Y : X |Z) vanishes.
To justify MaxEnt as a reasonable approach for our purpose, we remind the reader of the in-

tuition that the MaxEnt distribution is the ”most mixed” distribution within the set of distributions
satisfying the given bivariate constraints, which seems like a better compromise rather than choos-
ing distributions closer to the boundary. Grünwald and Dawid (2004) provides a game-theoretic
view on MaxEnt and shows that it minimizes the worst-case logarithmic cross-entropy loss.

Definition 6 (MaxEnt Baseline predictor) Given P (X,Z) and P (Y,Z), the MaxEnt baseline
predictor is defined by

PMaxEnt(y|x) =
∑
z

P (y|z)P (z|x). (4)

One can easily show, see Lemma 8 in the appendix, that the MaxEnt predictor is correct for all
DAGs whose ”moral graph” 4 does not have an edge X −Y . Since the overall shape of the MaxEnt
predictor aligns with the one of the parent adjustment LOVO predictor, we can again use the three-
step procedure to estimate it from finite data. An important difference between the two predictors is
that the MaxEnt baseline generally adjusts for more variables. However, comparison of regression
models with an equal number of features is ”fairer” with respect to statistical inaccuracies entailed
by finite data. Therefore, when using the MaxEnt predictor as a baseline against the parent adjust-
ment predictor, we recommend comparing against random adjustment sets ZR of equal size. In
this slightly modified version, the baseline is generically worse than parent adjustment whenever
P (X,Y,Z) is Markov to a graph G, in which ZR does not d-separate X and Y .

5. Experiments

The code to reproduce our experiments is available at GitHub5.

4. The moral graph (Lauritzen, 1996) is the undirected graph obtained by removing orientations and connecting parents
of a common child.

5. https://github.com/DanielaSchkoda/LOVO.
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Lemma 3

Figure 3: For Lemma 2 and small values of q, and Lemma 3 regardless of p, only in a few graphs
no single unlinked pair can be detected, so LOVO is realizable in most cases.

5.1. LOVO prediction given the true marginal graphs GX , GY

First, we want to shed light on the question of how frequently Lemmas 2 - 3 succeed in excluding
edges. To this end, we randomly generate 1000 Erdős–Rényi DAGs on 10 nodes by choosing a
random ordering and then inserting each edge with probability p varying between 0.1 and 0.9. For
each generated graph, we check if, for at least one pair of nodes (X,Y ), we can rule out that they are
linked based on the marginal graphs GX , GY . For Lemma 2, we use ADMGs instead of DAGs; they
are generated following the same procedure, except that we fix p = 0.3 and additionally include
bidirected edges with a probability q ∈ [0.1, 0.9]. Figure 3 shows in how many runs no single pair
without edge can be found, and therefore, LOVO prediction would not be possible. In Appendix
E.1, we illustrate the average number of pairs identified as unlinked in each graph.

Next, we assess the parent adjustment LOVO predictor, where we use the correlation ρ between
X and Y as the estimation target. We generate graphs as above with p = 0.3, and, for ADMGs,
q = 0.1. To obtain data in accordance with the graphs, we employ a linear additive noise model, with
noise uniformly distributed on [−1, 1] and coefficients drawn uniformly from [−1,−0.5] ∪ [0.5, 1].
We set the sample size to n = 5000. Again, based on the true marginal graphs GX , GY , for each
pair (X,Y ), we evaluate whether they might be linked. If not, we compute the three-step LOVO
predictor ρ̂LOVO according to Theorem 4, as well as the baseline predictor ρ̂Base, for which we
calculate a MaxEnt predictor with a random adjustment set of the same size as the union of parents
multiple times, and then take the average. Moreover, we directly calculate the sample correlation
coefficient ρ̂ from P (X,Y ) in order to estimate the prediction errors ρ̂Base−ρ̂, ρ̂LOVO−ρ̂. For a more
accurate error assessment, in the above steps, we never use all samples; instead, we split the data
into three parts of sample size n/3 each. The first two parts are used for P (X,Z) and P (Y,Z),
respectively, required in the three-step procedure, while the third part is reserved to estimate ρ̂.
Finally, we average the results across all pairs to derive the cross-validation errors CV LOVO, CV Base,
which are compared in Figure 4 (left and middle). As before, we use ADMGs combined with
Lemma 2 and DAGs with Lemma 3. In the ADMG setting, the LOVO predictor abstains in 0.5%
of the replications, and in the DAG setting, never. The supplement includes similar experiments for
other graph types.

To analyze the LOVO via LiNGAM predictor, we sample DAGs and data as before and again
use the correlation as the estimation target. The right plot in Figure 4 compares the prediction error
of LOVO to the MaxEnt baseline predictor with all variables Z as the adjustment set. Again, the
LOVO predictor never abstains.
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Figure 4: When provided with the true marginal graphs GX and GY , the parent adjustment LOVO
predictor and the LiNGAM LOVO predictor outperform the baseline.
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Figure 5: The scatter plots show LOVO versus baseline loss for parent adjustment LOVO applied
to graphs estimated with DirectLiNGAM and RCD; and for DL LOVO prediction.

5.2. LOVO applied to DirectLiNGAM and RCD

Next, we apply the LOVO predictor to two causal discovery algorithms, namely DirectLiNGAM
(Shimizu et al., 2011) and Repetitive Causal Discovery (RCD) (Maeda and Shimizu, 2020). The
first method produces DAGs, and the second one uses the alternative definition of ADMGs, which
forbids the co-occurrence of a directed and a bidirected edge. Correspondingly, we use the slightly
adjusted LOVO predictors described in Appendix B.1-B.2. We sample DAGs and the data as before,
but double the sample size and use the first half to learn GX , GY . For DirectLiNGAM, we use
p = 0.5 to ensure that Lemma 7 often applies. For RCD, we adhere to p = 0.3 but decrease the
number of nodes to 5 because of its slower execution time. Figure 5 (left and middle) compares the
LOVO cross-validation error to the baseline. For DirectLiNGAM, LOVO abstained in 23% of the
cases, and for RCD in 3%. To examine whether the LOVO cross-validation error indeed increases
with the number of mistakes in the learned graphs, we repeat the above experiment with varying
sample sizes for learning the graphs, specifically, nlearn = 100, 500, 1000, 5000. In Appendix E.2,
we plot the LOVO loss for each value of nlearn. Moreover, we concatenate all the results to calculate
the Spearman correlation coefficient of the LOVO cross-validation error and

1. whether an edge X − Y exists in G, averaged over all (X,Y ) used in the cross-validation.
2. the sum of the Structural Hamming Distances (SHDs) of ĜX to GX and of ĜY to GY ,

averaged over all (X,Y ) used in the cross-validation.

Including the first measurement is motivated by the fact that the parent adjustment LOVO predictor
relies on the absence of an edge and, therefore, mistakes here are expected to lead to inaccurate
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Figure 6: The scatter plots show how LOVO performance correlates with causal discovery perfor-
mance. The LOVO error increases with the number of pairs misidentified as unlinked and with the
SHD. The corresponding Spearman correlation coefficients included in the titles all significantly
deviate from zero, with p-values 0.0, 0.0, 0.0, and 4 · 10−44.
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Figure 7: Architecture of our DL LOVO predictor: the encoder learns appropriate features of the
two marginal distributions from which the correlation of X and Y is inferred.

LOVO prediction. The second measurement more straightforwardly evaluates the accuracy of the
learned graphs. We obtain significant positive correlations in all cases, as presented in Figure 6.

Appendix E.4 includes experiments on real-world data.

5.3. Training DL for trivariate LOVO

enecccfgidufkrkkcddtvncefhjucgtirvkfkufrvnlu So far, we have constructed LOVO predictors either
by restricting to unlinked pairs or by assuming LiNGAM. To support the hypothesis that also causal
models without such restrictive assumptions help for LOVO predictions, we now show that a deep
learning architecture that has been proposed for causal discovery can be modified to a LOVO pre-
dictor. To this end, we built on Ke et al. (2023), who use a transformer-based architecture to directly
infer the adjacency matrix of the causal graph from a given dataset. We apply the encoder part from
their architecture to each marginal dataset to get representation vectors eX,Z and eY,Z . These repre-
sentations are concatenated and used as input to a feed-forward layer (see Figure 7 for an overview
and Section E.5 in the appendix for more details). This way, the network can be trained to predict
the correlation ρX,Y from given marginal datasets. We want to stress that we do not input any para-
metric model assumptions in the architecture and, therefore, also do not input any preconceptions
about how to construct a LOVO predictor. Figure 5 (right) shows that it outperforms our baseline in
most cases. To shed light on the challenging question of whether our DL LOVO predictor implicitly
learns a causal representation, we try to predict the causal structure between X and Z from the
learned representation eX,Z . If a second model could learn to map the representation to the causal
structure, this suggests that the learned features are suitable for both tasks. To this end, we train
a simple feed-forward network to predict the underlying causal structure, encoded as categories
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{→,←,↔, ̸−} (see again Section E.5 for more details). As a na ”ive baseline, we consider the
average training label (where the categories are represented via one-hot-encoding). Indeed, we can
predict the causal structure better than our baseline (see Figure 16 in the appendix).

6. Conclusions

We have shown that causal hypotheses built via applying causal discovery to two Leave-One-
Variable-Out datasets can, in principle, enable the prediction of the statistical relations between
the two variables X,Y that were dropped. As a concrete LOVO predictor, we first propose pre-
diction via adjusting for parents, which relies on the absence of edges and is applicable to general
causal discovery algorithms that produce DAGs or ADMGs. We further demonstrate how LOVO
prediction can be customized for specific structural equation models, such as LiNGAM, enabling
prediction even when a direct link is present. In simulation experiments, we observe a significant
correlation between the LOVO prediction error and the accuracy of the estimated causal graphs.
This reinforces our conjecture that the goodness of LOVO predictions can be utilized to evaluate
(inferred) causal relationships.
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Appendix A. LOVO predictors for DAGs with two arrows

As mentioned earlier, the case of three nodes is particularly challenging, and our approach pre-
sented in Section 3.2 may not always succeed. Therefore, we present alternative LOVO predictors
that can be beneficial in these cases. Specifically, we consider the ”promise”-scenario of three vari-
able (X,Y, Z), where we are given the information that the joint distribution P (X,Y, Z) has been
generated by a causal directed acyclic graph (DAG) with two arrows only. In Table 1, we group the
12 possible DAGs according to the 3 possible skeletons X −Z −Y , X −Y −Z, Y −X −Z, with
each skeleton allowing for 4 different DAGs. We will see that in each of these groups, the collider
is special, but the three other Markov equivalent DAGs entail the same LOVO predictor.

No. 1-3: DAGs with X ⊥⊥ Y |Z This is the simplest case where the conditional independence
directly entails the solution

P (X,Z, Y ) = P (X,Z)P (Y |Z), (5)

without any parametric assumptions. The solution is most intuitive for the DAGs X → Z → Y
(No.1) and X ← Z → Y (No.2), where the algebraic structure of (5) resembles the data generat-
ing process by applying the stochastic map P (Y |Z) to the joint distribution of X,Z. While 5 is
certainly also valid for X ← Z ← Y , now P (Y |Z) turns into an ”anticausal” conditional. When
parametric assumptions are imposed for causal conditionals (e.g. linear non-Gaussian models (Kano
and Shimizu, 2003) or non-linear additive noise models (Hoyer et al., 2008)), P (Y |Z) now results
from Bayesian inversion of those models. For linear models, the Pearson correlation between X
and Y is easily obtained via6

ρXY = ρXZ · ρZY . (6)

If X,Y have zero mean and unit variance, the best linear predictor for Y from X then reads
E[Y |X = x] = ρXY · x. By slight abuse of terminology, we therefore call ρXY the ”linear LOVO
predictor,” which implicitly refers to this convention.

Note that this LOVO predictor coincides with the MaxEnt baseline predictor, and therefore, the
cases where (6) does not hold are the interesting ones for us.

6. This follows from zero partial correlation, which is defined by ρX,Y |Z =
ρXY −ρX,ZρZ,Y√
1−ρ2

X,Z

√
1−ρ2

Y,Z

.
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No. DAG linear predictor stochastic matrix bivariate necessary
predictor causality conditions

1 X → Z → Y ρXY = ρXZ · ρY Z PY |X = PY |ZPZ|X X → Z

Y ← Z

2 X ← Z → Y ρXY = ρXZ · ρY Z PY |X = PY |ZPZ|X X ← Z

Y ← Z

3 X ← Z ← Y ρXY = ρXZ · ρY Z PY |X = PY |ZPZ|X X ← Z

Y → Z

4 X → Z ← Y ρXY = 0 PY |X = PY X → Z ρ2XZ + ρ2Y Z ≤ 1

Y → Z

5 X → Y → Z ρXY = ρXZ/ρY Z PY |X = P−1
Z|Y PZ|X X → Z I(X : Z)

Y → Z ≤ I(Y : Z)

6 X ← Y → Z ρXY = ρXZ/ρY Z PY |X = P−1
Z|Y PZ|X X ↔ Z I(X : Z)

Y → Z ≤ I(Y : Z)

7 X ← Y ← Z ρXY = ρXZ/ρY Z PY |X = P−1
Z|Y PZ|X X ← Z I(X : Z)

Y ← Z ≤ I(Y : Z)

8 X → Y ← Z ? ? X ̸− Z
Y ← Z

9 Y → X → Z ρXY = ρY Z/ρXZ PY |X = PY |ZP
−1
X|Z X → Z I(X : Z)

Y → Z ≥ I(Y : Z)

10 Y ← X → Z ρXY = ρY Z/ρXZ PY |X = PY |ZP
−1
X|Z X → Z I(X : Z)

Y ↔ Z ≥ I(Y : Z)

11 Y ← X ← Z ρXY = ρY Z/ρXZ PY |X = PY |ZP
−1
X|Z X ← Z I(X : Z)

Y ← Z ≥ I(Y : Z)

12 Y → X ← Z ? ? X ← Z
Y ̸− Z

Table 1: All possible DAGs on X,Y, Z with two arrows, together with their LOVO predictors.

No. 4: variable Z as collider Due to X ⊥⊥ Y , we ignore X and take P (Y ) as the correct LOVO
predictor for Y . We will later see, however, that this case is hard to recognize from the bivariate
distributions because the bivariate causal models X → Z and Y → Z can also originate from the
joint models X → Y → Z and Y → X → Z.

No. 5-7: DAGs with X ⊥⊥ Z |Y Now, the conditional distribution of X given Z is a concatenation
of Markov kernels

P (Z|X) = P (Z|Y ) · P (Y |X). (7)

In linear models we conclude ρXY · ρY Z = ρXZ , from which we can directly construct the linear
LOVO predictor.

In the case where X,Y, Z are variables with finite ranges X ,Y,Z , we introduce the stochastic
matrices PX|Z := (p(x|z))x∈X ,z∈Z and obtain the matrix equation PZ|X = PZ|Y ·PY |X . Whenever
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the matrix PZ|Y is invertible7, we thus obtain

Pmediator Y
Y |X := P−1

Z|Y · PZ|X . (8)

No. 8: variable Y as collider This is a negative case: as explained in Section 3.1, it is unclear
how to construct a good LOVO predictor.

No. 9-11: DAGs with Y ⊥⊥ Z |X Here we obtain

PY |Z = PY |XPX|Z , (9)

which implies the predictor
Pmediator X
Y |X := PY |ZP

−1
X|Z , (10)

if PX|Z is invertible.

No. 12: variable X as collider As for No. 8, we can not infer the strength of the influence of Y
on X and abstain from constructing a LOVO predictor.

Inspecting the column with the bivariate causal graphs in Table 1, we find only 7 cases where
the joint DAG can be uniquely identified from the bivariate graphs, namely the numbers No. 1, 2,
3, 6, 8, 10, 12. Unfortunately, recognizing 8 and 12 is not helpful for our purpose because we can
not offer a LOVO predictor there. Moreover, the predictor of No. 1-3 coincides with our baseline.
Overall, we are left with only two cases where a LOVO predictor is realizable and simultaneously
beats the baseline. We can improve upon that by considering additional conditions on the marginals
from which the respective DAG can be excluded, as listed in the last column of the table.

For instance, X ⊥⊥ Z |Y implies that the dependence between X and Z can not be larger than the
dependence between Y and Z. In the non-parametric case, this can be formalized via the Shannon
mutual information, for which we have the data processing inequality I(X : Z) ≤ I(Y : Z).
For linear models, we have ρXZ ≤ ρY Z . Further, the collider X → Z ← Y is only possible if
ρ2XZ + ρ1Y Z ≤ 1, otherwise the correlation matrix 1 ρXZ 0

ρXZ 1 ρY Z

ρY Z 0 1

 ,

would not be positive semi-definite.

Appendix B. LOVO extended to further graph types

Three graph types, which have so far not been considered and yet are the outputs of many causal dis-
covery algorithms, are ADMGs without confounded causal links, Directed Acyclic Graphs (DAGs),
Completed Partially Directed Acyclic Graphs (CPDAGs) and Partial Ancestral Graphs (PAGs). This
section extends parent adjustment to these graph types. As before, we identify unlinked pairs and
then find valid adjustment sets. To highlight the differences between the graph types, we revisit the
example used in Subsection 3.2, but this time with the edge W1 → W3 omitted, resulting in the
graph shown in Figure 8. For this slightly modified graph, Lemma 2 identifies all unlinked pairs
except (W3,W5) and Lemma 3 finds all six unlinked pairs. When referring to this example, we may
use the shorthand i to denote the node Wi.

7. Note that the inverse is not a stochastic matrix except for the trivial case of determinism.
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B.1. ADMGs without confounded causal links

The alternative ADMG definition prohibiting confounded causal links uses single bidirected edges
in place of our confounded causal links ↔→ or ↔←. This substitution leads to a loss of information.
For instance, when leaving out X in each of the following three graphs,

XY Z , XY Z , and XY Z,

according to the ADMG definition used so far, one obtains three distinct marginal graphs, namely

Y ↔ Z, Y
↔→ Z, and Y

↔← Z.

In contrast, the other definition always yields Y ↔ Z. Despite these differences, Lemma 2 remains
valid. Recall that it asserts that whenever X has a child in GX that is not a sibling of Y in GY , then
X and Y are not linked in G. We write GX , GY for the ADMGs with the previously used definition,
and GX , GY for the ADMGs where confounded causal links are substituted for bidirected edges.
Because every child of X in GX is also a child of X in GX , and every sibling of Y in GY is also
a sibling of Y in GY , lemma remains true when considering GX and GY . Similarly, one can show
that Lemma 3 still holds. However, the next step, that is, reading off the parents of X,Y from the
marginal graphs, becomes more involved. Specifically, a bidirected edge between Y ↔ Zi ∈ GY

precludes their parent-child relationship: In G, we could have Y → Zi, Y ← Zi, or Y ̸− Zi. So,
each sibling of Y in GY could be a parent in G or not, and therefore, we can not infer the parents
whenever Y has siblings in GY . Accordingly, whenever sibGX (X) ̸= ∅ or sibGY (Y ) ̸= ∅, we
refrain from a prediction for all pairs with siblings. Note that when Lemma 3 is employed, we
anyways exclude all these pairs since an edge might exist according to condition (1). However, this
does not necessarily apply when Lemma 2 is used. As stated above, in the running example, Lemma
2 detects five pairs as unlinked. For all of them, X has no siblings in GX and likewise Y none in
GY , so we do not need to abstain.

B.2. Directed Acyclic Graphs

Turning to DAGs, it is evident that they are not able to model latent confounding, which, however,
is typically present in the marginal graphs GX and GY . To address this mismatch, we assume to
be given DAGs G̃X , G̃Y , which are derived from GX , GY by orienting each bidirected edge into
a directed one. Often, only one direction avoids the creation of cycles. Otherwise, we opt for
a random direction. We are aware that it might be unrealistic to expect an algorithm assuming
causal sufficiency to generate precisely such a DAG when latent confounding is actually present.
Nonetheless, we argue that this assumption is still reasonable since we do not necessitate the LOVO
predictor based on this assumption to yield a perfect prediction but only require it to outperform the
non-causal predictor based on a random adjustment set.

Within this scenario, inferring the edge type is possible in fewer cases. Figure 8 illustrates why
in the example, the pair (1, 5) can not be certified as unlinked anymore, but (1, 2) still can.

Lemma 7 (excluding links based on DAGs) Let G be a DAG, and G̃X , G̃Y DAGs obtained from
GX , GY by exchanging each bidirected edge for a directed one. If X has a child in G̃X that is not
a neighbor of Y in G̃Y , then G does not contain any edge X − Y .
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G =

W3 W5

W2

W4

W1

GW1 =

W3

W2

W4 W5

W1

GW5 =

W3 W5

W2

W4

G =

W3 W5

W2

W4

W1

GW1 =

W3 W5W4

W1

GW2 =

W3 W5

W2

W4

Figure 8: Adding the edge 1 → 5 to G, introduces a bidirected edge in GW5 . However, this
additional edge is not visible in G̃W5 since it turns into 4 → 5, which was already present before.
Thus, (1, 5) can not be confirmed as unlinked. In contrast, we can conclude 1 ̸− 2. Lemma 7 states
that if 2 and 1 were connected in G, then 1 would be linked to 3 in GW1 since 3 is a child of 2 in
GW2 . Indeed, adding either 1→ 2 or 2→ 1 would yield a connection between 1 and 3 as visualized
by the blue and yellow edges.

G =

W3 W5

W2

W4

W1

C(G̃W1) =

W3 W5W4

W1

C(G̃W2) =

W3 W5

W2

W4

H =

W3 W5

W2

W4

W1

C(H̃W1) =

W3 W5W4

W1

C(H̃W2) =

W3 W5

W2

W4

Figure 9: Altough adding the edge 1→ 2 to G introduces changes in the marginal CPDAG C(G̃W1),
we can not identify this pair as unlinked. In contrast to the scenario in Figure 8, we can not be certain
that 3 is a child of 2 and do not find any child to utilize in Lemma 7. Indeed, there is another graph
H , with the edge between 2 and 3 reversed, an edge 1→ 2, and the same marginal CPDAGs as G.

Proof Since X has a child C in G̃X , either X ↔ C or X → C in GX . In the first case, X ← Y →
C ∈ G, and thus Y → C ∈ GY contrary to the assumption of the lemma. In the second case, if G
would feature the edge X → Y , then combining both edges yields Y ← X → C and therefore Y
and C are connected in GY , contrary to the assumption of the lemma. Similarly, if the reverse edge
Y → X would be part of G, then Y ← X → C ∈ G, which results in Y → C ∈ GY and again
contradicts the assumption.

In the example, the lemma detects four of the six unlinked pairs, namely (1, 2), (1, 3), (2, 5), and
(3, 4).

B.3. Partially Directed Acyclic Graphs and Partial Ancestral Graphs

A CPDAG is an equivalence class of DAGs, which collects all DAGs entailing the same conditional
independence statements. Consequently, CPDAGs also do not capture latent confounding. Because
algorithms learning CPDAGs often rely on conditional independence testing, we again expect latent
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G =

W3 W5

W2

W4

W1

C(G̃W1) =

W3

W2

W4 W5

W1

C(G̃W3) =

W3 W5

W2

W4

Figure 10: Unlike the pair (1, 2), the pair (1, 3) can be confirmed to not be connected. The graph
C(G̃W3) features directed edges, which allow to conclude that 4 is definitively a child of 1 in G̃W1 ,
while not being a neighbor of 3 in G̃W3 . As before, the orange edges show that, if 1 → 3 ∈ G,
nodes 3 and 4 were neighbors in G̃W3 .

G =

W3 W5

W2

W4

W1

P(GW1) =

W3

W2

W4 W5

W1

P(GW3) =

W3 W5

W2

W4

G =

W3 W5

W2

W4

W1

P(GW3) =

W3 W5

W2W1

P(GW4) =

W3

W2

W4 W5

W1

Figure 11: The edge 1 → 3 can not be excluded since neither 1 nor 3 has definite children in their
marginal PAGs . In contrast, 3→ 4 can be excluded due to the child 5 of 4 in P(GW4).

confounding to manifest as directed or undirected edge in the learned CPDAG. More precisely, we
assume we are given the CDPAGs C(G̃X) and C(G̃Y ) corresponding to G̃X and G̃Y as defined
in the previous subsection. Since a CPDAG represents an equivalence class of DAGs, or in other
words, a DAG except for uncertainty regarding some of the edge directions, Lemma 7 remains valid.
Unsurprisingly, we can exclude fewer pairs because edges might be unoriented and, therefore, we
can less frequently find a node that is definitely a child of X in G̃X and at the same time not a
neighbor of Y in G̃Y . Figure 9 and 10 demonstrate this for our running example. Overall, the
lemma can certify two pairs as unlinked, namely (1, 3) and (3, 4).

PAGs are similar to CPDAGs insofar as they both represent an equivalence class of graphs
encoding the same conditional independence statements. The key difference is that PAGs can rep-
resent latent confounding. Specifically, PAGs feature directed edges (X → Y ) and bidirected edges
(X ↔ Y ) with the same meaning as in ADMGs. As in the alternative definition, confounded
causal links are not allowed and are replaced by single bidirected edges. Additionally, circle edges
(X Y , X Y ) can be present, where a circle at an endpoint indicates uncertainty about the
presence of an arrowhead or tail, similar to the undirected edges in CPDAGs. Sometimes, undi-
rected edges (X − Y ) are also included to represent selection bias; however, we do not consider
them here. Since the circles represent uncertainty, we can directly read off the definite as well as
the possible children, parents, neighbors, and siblings of each node. Therefore, Lemma 2 is still
applicable if only the PAGs P(GX),P(GY ) corresponding to GX , GY are available.8 Again, due
to the uncertainty, we can find fewer unlinked pairs. In the running example, only the pair (3, 4) is
found to be unlinked, as illustrated in Figure 11.

For CPDAGs as well as PAGs, having found unlinked pairs, the next step is determining a valid
adjustment set. With many edges being unoriented, it is often impossible to identify the parents of

8. Note that these PAGs may not exist as explained above. In such cases, the lemma is not applicable.
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X,Y . Therefore, we rely on a different adjustment set: Assuming a causally sufficient joint model,
no path between X and Y with more than two edges can consist solely of colliders. Thus, these
paths can be blocked by including all interior nodes in the adjustment set. For paths of length two
(X − Z − Y ), a case distinction must be made:

• If Z could be either a collider or a non-collider, we can not determine a valid adjustment set
and must abstain.

• If Z is definitely a non-collider, it is included in the adjustment set.

• If Z is a definite collider and was not already added to the the adjustment set in any previous
step, the adjustment set remains valid. Otherwise, we abstain.

If this procedure succeeds in finding a valid set, the LOVO predictor can be formed via the three-step
predictor defined in Section 3.2.

Appendix C. When is MaxEnt LOVO correct?

The following simple criterion tells us when the MaxEnt predictor is right:

Lemma 8 (MaxEnt baseline) Let G be a causal DAG connecting Z, X, Y and Gm be the cor-
responding moral graph.9 If Gm does not contain the edge X − Y , then the MaxEnt predictor is
correct.

Proof Due to the Markov condition for undirected graphs (Lauritzen, 1996), X ⊥⊥ Y |Z if there is
no link X − Y in Gm, which implies P (y|x, z) = P (y|z). □

If Z consists of just one variable Z, the number of DAGs for which Lemma 8 holds can be
counted as follows: obviously, it only holds for DAGs with less than 3 arrows. For the one with 2
arrows, the skeleton must read X − Z − Y . To ensure that Gm does not contain X − Y , there can
not be a collider at Z, thus only the Markov equivalence class of X → Z → Y is remaining (with
3 elements). For the 6 DAGs with one arrow, X ⊥⊥ Y |Z is always satisfied. Hence, we obtain 9
DAGs for which our MaxEnt LOVO is optimal, and the total number of DAGs with 3 nodes reads
25.

Appendix D. Proofs

D.1. Proof of Lemma 1

Define the conditional cumulative distribution functions FX(x|z) := P (X ≤ x|Z = z) and
FY (y|z) := P (Y ≤ y|Z = z). We then define structural equation models for P (Y |Z = z)
P (Y |Z = z) with uniformly distributed noise variables: X = fX(Z, NX) and Y = fY (Z, NY ),
where fX(z, NX) = F−1

X (NX |z) and fY (z, NY ) = F−1
Y (NY |z). Whenever we generate z-values

with distribution P (Z), we obtain the right marginal distributions P (X,Z) and P (Y,Z). Note
that this holds even for dependent noise with arbitrary P (NX , NY ) with the only constraint that
their marginals need to be uniform (in other words, P (NX , NY ) is a copula) since the dependences
between NX and NY do not affect the marginals. When we choose P (NX , NY ) = P (NX)P (NY ),

9. Following Lauritzen (1996), page 7, the moral graph corresponding to a DAG G is the undirected graph that contains
an edge a− b if and only if a and b are directly connected in G or if they have a common child.
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we obtain the MaxEnt solution PMaxEnt(X,Y,Z) = P (X,Z)P (Y |Z). However, when we choose
NY = NX , the variables X and Y are positively correlated when conditioned on Z. When we
choose NY = (1 − NX) instead, X and Y are negatively correlated when conditioned on Z. Let
CovMaxEnt(X,Y ), Covpos(X,Y ), and Covneg(X,Y ) denote the covariances of X,Y with respect
to the three different choices of the dependences of NX , NY . We then have

Covpos(X,Y ) > CovMaxEnt(X,Y ) > Covneg(X,Y ).

This follows because

Covpos(X,Y |Z = z) > CovMaxEnt(X,Y |Z = z) > Covneg(X,Y |Z = z),

holds for any z from the law of total covariance:

Cov(X,Y ) = E[Cov(X,Y |Z)] + Cov(E[X|Z],E[Y |Z]),

since the conditional expectations E[X|Z] the E[Y |Z] are both functions of Z, which only depend
on the respective marginal distribution and are therefore unaffected by the dependences of the noise
variables. □

D.2. Proof of Lemma 2

Going slightly beyond the statement in the lemma, we show the following criteria for excluding
each possible edge type.

1) We can exclude the existence of a direct edge X → Y in G if
a) X occurs causally after Y in the sense that in GX there exists an ancestor of X that is

at the same time a descendant of Y in GY ; or
b) at least one of the following implications is violated

i) P → X ∈ GX =⇒ P → Y ∈ GY ,
ii) X → C ∈ GX =⇒ Y → C ∈ GY or Y ↔ C ∈ GY ,

iii) X ↔ S ∈ GX =⇒ Y ↔ S ∈ GY ,
iv) Y → C ∈ GY =⇒ X → C ∈ GX .

2) Likewise, the arrow Y → X can be excluded by swapping the roles of X and Y .
3) The bidirected edge X ↔ Y can be excluded if one of the following implications is violated

a) X → C ∈ GX =⇒ Y → C ∈ GY or Y ↔ C ∈ GY ,
b) Y → C ∈ GY =⇒ X → C or X ↔ C ∈ GX .

Since the criteria in point 3) already entail the criteria in 1) and 2), all three points taken together
yield the lemma.

We prove statement 1), and the rest works similarly. Condition a) excludes X → Y because we
had a causal cycle otherwise. We show b) by showing its contrapositive, that is, if X → Y ∈ G,
then all four implications hold.
i) If P → X ∈ GX , then P → X ∈ G since all directed edges in GX \ G are of the form
P → C for P ∈ pa(Y ), C ∈ ch(Y ) but X is not a child of Y . Combined with X → Y this yields
P → Y ∈ EY .
ii) If X → C ∈ GX , then X → Y → C ∈ G or X → C ∈ G. In the first case, it directly
follows that Y → C ∈ GY . In the second case, Y ↔ C is added in the marginalization GY since
X → Y ∈ G.
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iii) If X ↔ S ∈ GX , then X ↔ S ∈ G, which combined with X → Y ∈ G implies Y ↔ S ∈ GY .
iv) If Y → C ∈ GY , then X → C ∈ G or Y → C ∈ G, which both imply X → C ∈ GX since
X → Y ∈ G. □

D.3. Proof of Lemma 3

The criterion for X having at least two children or not, as well as condition (1), can be derived from
the marginalization rule that C1 ← X → C2 ∈ G turns into an edge C1 ↔ C2 in GY and this is the
only way that bidirected edges can arise.

Conditions (2) and (3a) follow from rule 1b)iv) specified in the proof of Lemma 2, and (3b)
follows from rule 1b)i).

Turning to conditions (3c) and (3d), if X and Y have the same child C in GX , GY , the structure
of X,Y,C ∈ G can in principle be either of the following:

i) X → Y → C, ii) Y → X → C, or iii) X → C ← Y.

To differentiate between them, we include the parents in our consideration. Denoting P = paG(X)∩
Z, Q = paG(Y ) ∩ Z and R = paG(C) ∩ Z, we obtain the following differences in the marginal
graphs.

i) ii) iii)

GX

X C

P Q R

X C

P Q R

X C

P Q R

GY

Y C

P Q R

Y C

PQ R

Y C

PQ R

These differences further imply different relations for the sets of parents in the marginal graphs:
i) paGX (X) ⊆ paGY (Y ) ⊆ paGX (X) ∪ paGX (C),

ii) paGY (Y ) ⊆ paGX (X) ⊆ paGY (Y ) ∪ paGY (C),
iii) paGX (X) ⊆ paGY (C), paGY (Y ) ⊆ paGX (C).

Combining them yields the conditions in the lemma.
Finally, we prove that if neither of the conditions in the lemma apply, we can not identify

the edge type. First, note that if no condition in the lemma is satisfied, then either chGX (X) =
chGY (Y ) = {C} and two of the conditions i) - iii) apply at the same time, or both have no child in
the marginal graphs and paGX (X) ⊆ paGY (Y ) or vice versa. For all these cases, we need to find
two DAGs G1, G2 on the entire set of nodes with different edge types between X and Y but with
the same marginalizations. In the case of one common child and i) as well as ii), we can define
G1, G2 by

paGi(X) = paGX (X), paGi(W ) = paGY (W ) for all W ∈W \ {X}, i = 1, 2.

Additionally, in G1 we include X → Y → C, and in G2 we add Y → X → C. If i) and iii) hold,
we define G1, G2 by

paGi(X) = paGX (X), paGi(W ) = paGY (W ) for all W ∈W \ {X}, i = 1, 2,

and include X → Y → C in G1 , as well as X → C ← Y in G2. All other cases work similarly. □
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D.4. Proof of Theorem 5

(1) For a matrix M ∈ Rl×m, and an index i ∈ [l], Mi:,: denotes the submatrix of all rows starting
from the ith one. Similarly, for a subset A ⊆ [l], MA,: is the submatrix consisting of all rows with
indices in A, and M

Â,:
the submatrix that arises by omitting all A rows. Throughout the proof

we assume that W is enumerated as W = (X,Y, Z1, . . . , Zk). Following Salehkaleybar et al.
(2020), we can rewrite (2) as W = MN with the ”mixing matrix” M := (I−Λ)−1 which linearly
combines the independent ”sources” N1, . . . , Nk+2. Note that I − Λ is invertible since Λ is strictly
lower triangular after applying simultaneous row and column permutations, and the entries of M
coincide with the total causal effects defined via (3). By observing only the variables (X,Z), we
have a (slightly) over-complete ICA with k + 1 observed variables and k + 2 sources, namely(

X
Z

)
= M2̂,:N (11)

where M2̂,: is the submatrix with the row for W2 = Y missing, and, similarly(
Y
Z

)
= M1̂,:N. (12)

The main idea of the proof is to identify M2̂,: from P (X,Z), as well as M1̂,: from (Y,Z) and then
combine them to reconstruct M . From Theorem 15 in Salehkaleybar et al. (2020), if Y has at least
two children, then,

a) if Y has a unique (with respect to the topological order) oldest child Wj , then M2̂,: can be
identified up to swapping the columns corresponding to Y and Wj and up to rescaling of the
column corresponding to Y .

b) Otherwise, M2̂,: can be identified uniquely up to rescaling the Y column.
If Y has exactly one child Wj , then the column in M2̂,: corresponding to Y is a multiple of the
column for Wj , in formulas,

M2̂,2 = λj,2M2̂,j .

If Y has no children at all, M2̂,2 = 0. In both cases, obtaining N ′ from N by omitting N2, and, in
the case of one child, additionally replacing Nj by N ′

j = Nj + λj,2N2, the vector (X,Z) fulfills
the complete, and therefore identifiable, ICA model(

X
Z

)
= M2̂,2̂N

′.

Thus,
c) if Y has at most one child, the submatrix M2̂,2̂ can be identified uniquely.

Relating back to M , in all cases, P (X,Z) uniquely determines M2̂,2̂ or M
2̂,{̂2,j}, with Wj being

the oldest child of Y . In scenario a), additionally, we know two candidate columns A,B, where
either M2̂,2,M2̂,j = A,B up to rescaling or vice versa. To find the correct assignment, we use the
information obtained from P (Y,Z); that is, we identified all columns of M1̂,: except for column 1,
and at most one other column. In particular, we determined M3:,2 or M3:,j . Therefore, comparing
whether A2: or B2: coincides with M3:,2 or M3:,j , yields correct assignment as well as correct scale.
However, this fails in one exceptional case, specifically when A2: = B2: up to scaling. Writing out
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the entries in M2:,1 M2:,j in terms of the λij , and using faithfulness, we obtain that this can occur
only if ch(Y ) = {X,Zj} and ch(X) = {Zj}, which is excluded in the assumptions of the theorem.

In case b), the only ambiguity in M2̂,: concerns the scaling of the Y column, which again can
derived from the information we have on M1̂,:.

The same holds for reversed roles. So, if for both (11), and (12) identifiability cases a) or b)
apply, we can infer M2̂,:, and M1̂,: and combine them to M .

If case c) applies in one of the ICAs, assume the one related to (X,Z), we are still missing the
value of m21. Since Y has multiple, and X at most one child, according to Lemma 3, X → Y ∈ G if
and only if X has multiple children in GX . If so, we can choose one of these children C. Employing
that in the joint model, all directed paths from X to C go through Y , we obtain

m21 = mC1/mC2.

If X ↛ Y , λ21 = 0, which determines m21 via Λ = I −M−1.
If case c) applies in both ICAs, then both X,Y have at most one child, which corresponds to

conditions (3a)-(3d) in Lemma 3. In cases (3a)-(3c), we know X ̸− Y , and therefore λ21 = λ12 =
0, which gives m12,m21 via Λ = I−M−1. In case (3d), we know that X and Y have the same child
C in the marginal graphs, whereas in the joint graph, X → Y → C without a direct connection
between X and C, since this would contradict the fact that X has only one child. Therefore, as
above

m21 = mC1/mC2.

Moreover, we that find m12 = 0 due to acyclicity. Again, the same holds for reversed roles. Finally,
we can compute Λ as Λ = I −M−1.

(2) To prove the identifiability of P (X,Y,Z), we use the fact that once the projected mixing
matrices M1̂,:, M2̂,: in (11), (12) are known, under the genericity assumption on the moments, all
cumulants of the exogenous sources N can be identified (citation removed for anonymous submis-
sion). These cumulants uniquely determine P (N), which, combined with the overall mixing matrix
M , yields P (X,Y,Z). □

Appendix E. Additional experiments

E.1. How often do Lemmas 2 - 3 succeed in excluding edges?

While the measurements depicted in Figure 3 give insight into how often the Lemmas find at least
one pair without edge per graph, which is the crucial factor for the realizability of LOVO, another
interesting question is what proportion of unlinked pairs are recognized by the lemmas as such.
To address this, Figure 12 compares the average number of detected unlinked pairs (blue) to the
number of pairs in the graph that are actually not connected, which is expected to be (1−p) ·

(
10
2

)
in

an Erdős–Rényi DAG with edge probability p, and (1− p)(1− q) ·
(
10
2

)
for ADMGs with directed

edge probability p and bidirected edge probability q (grey).

E.2. LOVO applied to DirectLiNGAM and RCD with varying sample size

This section provides more details on the experiment described in 5.2. Specifically, we analyze
the LOVO prediction loss for varying sample sizes, which is expected to relate to the accuracy
of the learned graphs. Indeed, the mean SHD of a marginal graph learned with DirectLiNGAM

27



SCHKODA FALLER BLÖBAUM JANZING
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Figure 12: For Lemma 3 and p ≥ 0.3, the average number of detected absent edges (blue) is close
to the true number of absent edges (grey), whereas Lemma 2 does not find all absent edges.

0.00 0.05 0.10 0.15 0.20
Baseline loss

0.00

0.05

0.10

0.15

0.20

P
a
re

n
t 

a
d
ju

s
tm

e
n
t 

L
O

V
O

 l
o
s
s

DirectLiNGAM, n_learn=100

0.00 0.05 0.10 0.15 0.20
Baseline loss

0.00

0.05

0.10

0.15

0.20

P
a
re

n
t 

a
d
ju

s
tm

e
n
t 

L
O

V
O

 l
o
s
s

DirectLiNGAM, n_learn=500

0.00 0.05 0.10 0.15 0.20
Baseline loss

0.00

0.05

0.10

0.15

0.20

P
a
re

n
t 

a
d
ju

s
tm

e
n
t 

L
O

V
O

 l
o
s
s

DirectLiNGAM, n_learn=1000

0.00 0.05 0.10 0.15 0.20
Baseline loss

0.00

0.05

0.10

0.15

0.20

P
a
re

n
t 

a
d
ju

s
tm

e
n
t 

L
O

V
O

 l
o
s
s

DirectLiNGAM, n_learn=5000

0.0 0.2 0.4 0.6
Baseline loss

0.0

0.2

0.4

0.6

P
a
re

n
t 

a
d
ju

s
tm

e
n
t 

L
O

V
O

 l
o
s
s

RCD, n_learn=100

0.0 0.2 0.4 0.6
Baseline loss

0.0

0.2

0.4

0.6

P
a
re

n
t 

a
d
ju

s
tm

e
n
t 

L
O

V
O

 l
o
s
s

RCD, n_learn=500

0.0 0.2 0.4 0.6
Baseline loss

0.0

0.2

0.4

0.6

P
a
re

n
t 

a
d
ju

s
tm

e
n
t 

L
O

V
O

 l
o
s
s

RCD, n_learn=1000

0.0 0.2 0.4 0.6
Baseline loss

0.0

0.2

0.4

0.6

P
a
re

n
t 

a
d
ju

s
tm

e
n
t 

L
O

V
O

 l
o
s
s

RCD, n_learn=5000

Figure 13: Evolution of LOVO prediction loss when learning sample sizes increases, and by that,
the accuracy of the learned graphs increases.
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Figure 14: While the self-compatibility score and LOVO loss are significantly correlated, the two
metrics show distinct patterns, reflecting their different objectives of incompatibility counting and
LOVO prediction.

is 12.3, 6.9, 6.5, 6.5 for nlearn = 100, 500, 1000, 5000, respectively, and 4.0, 2.4, 1.5, 0.3 for RCD.
Figure 13 shows that the LOVO prediction loss tends to decrease with increased learning sample
size. A notable observation is that, for RCD with smaller sample sizes, the LOVO loss is very
close to the baseline loss and often abstains from making predictions, doing so in about 52% of
the replications. This is due to RCD almost always only learning bidirected and no directed edges,
meaning it does not commit to any causal directions, which makes it harder to challenge its out-
put; compare Section A11 in Faller et al. (2024). In the cases where predictions are made, the
learned union of parents, which is the adjustment set in LOVO, is almost always empty. Conse-
quently, ρ̂LOVO = 0, and both prediction errors are close to the absolute value of true correlation
ρXY . Moreover, the scatter plot reveals two clusters cluster characterized by error values below
and above 0.3. The cluster with lower errors corresponds to pairs correctly identified as unlinked,
while the other cluster contains pairs where an edge exists. Note that we can relate the points
in the scatter plot to pairs, even though each point represents the cross-validation error averaged
over all pairs, since the cross-validation error was often only computed using one pair and the
LOVO predictor abstained for all other pairs. The cluster related to higher values gets smaller for
increased sample size and eventually disappears. Also the number of how often LOVO abstains
decreases; to 37%, 29%, 3% for nlearn = 500, 1000, 5000. In contrast, for DirectLiNGAM, LOVO
abstained more rarely for lower sample sizes, specifically in 0.3%, 2%, 1%, 23% of the replications
for nlearn = 100, 500, 1000, 5000.

E.3. Comparison to Self-Compatibility

To compare with the self-compatibility score from Faller et al. (2024), we repeat the same exper-
iment. Recall that the self-compatibility score runs the algorithm in question on various subsets
and counts the incompatibilities the resulting graphs entail. Figure 14 plots the LOVO loss against
the self-compatibility score evaluated on RCD and DirectLiNGAM. For the data-generation, the
same parameters as in the preceding subsection are used, and we collect the results for all the four
different values of nlearn into one plot.

E.4. LOVO applied to DirectLiNGAM and RCD on real-world data

We evaluate RCD and DirectLiNGAM on two real-world data sets: a protein-signaling data set from
Sachs et al. (2005) with 7466 samples across 11 features and a biodiversity and productivity data
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Figure 15: For both data sets, the original papers postulate ground-truth causal graphs, which are
visualized here. The left plot shows the Sachs data; all the new nodes refer to features in the data
set, and the remaining ones are unobserved variables.

Table 2: The LOVO and baseline errors for the real-world data sets suggest that neither Di-
rectLiNGAM nor RCD is a suitable algorithm for these data.

DirectLiNGAM RCD “Ground truth”

Sachs et al. (2005)
LOVO error 0.152 - 0.187
Baseline error 0.146 - 0.187

Grace et al. (2016)
LOVO error 0.403 - 0.354
Baseline error 0.376 - 0.436

set from Grace et al. (2016) comprising 1126 samples and 12 variables (Figure 15). For the second
data set, the original study estimated effects using two separate models: one for the upper seven
variables and another for the remaining variables in the lower three rows, except soil fertility. Given
the larger sample size in the second model, where the variables are measured for each of the 1126
plots versus the coarser-scale sites used for the upper variables, we focus our analysis on the second
model.

On both datasets, RCD very rarely commits to a non-trivial output in the sense that it almost
always returns a complete ADMG, which indicates that the datasets do not satisfy the method’s
assumptions. Given these outputs not entailing any statements, LOVO always abstains. In contrast,
DirectLiNGAM always returns a DAG, and we can compute the LOVO cross-validation error, which
is worse than the baseline in both cases; see Table 2. As a comparison, we also apply LOVO to the
hypothesized ground truth graphs depicted in Figure 15. The required marginal graphs GX , GY

are derived via the marginalization rules. For the protein dataset, the LOVO prediction error is
comparable to the baseline error, while for the ecology dataset, the LOVO error is smaller.
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Figure 16: Prediction error for recovering the causal structure from the learned representation of
the deep learning model on unseen examples (as described in Section 5.3). Our prediction model
has a lower loss than the baseline in all examples.

E.5. Further details for Subsection 5.3

Architecture The main component of the deep learning model used in Section 5.3 is the encoder
from Ke et al. (2023). This encoder gets as input a data matrix W ∈ Rn×d, where n ∈ N is the
number of samples and d ∈ N is the number of variables (in our case d = 2). Initially, each entry of
this matrix is embedded into Rh/2 with a linear transformation. We also embed the column index
(i.e. the node identity) of every entry into Rh/2. Unlike Ke et al. (2023), we use another linear
transformation for this. We concatenate this input embedding and identity embedding to get an
h-dimensional representation of every entry. Eventually, we add a row of zeros to the initial data
matrix W , which will be used later for the encoder summary. This gives us an initial embedding
e0 ∈ Rn+1×d×h.

Ke et al. (2023) propose to alternatingly use attention blocks that calculate attention weights
between samples for every node and between nodes for every sample. At attention layer i we
expect an input tensor ei−1 ∈ Rn+1×d×h and start by applying a classical self-attention block to
all matrices ei−1

j ∈ Rd×h, j = 1, . . . , n that result from indexing the sample dimension in ei−1.
Implementation-wise, this amounts to passing ei−1 to a standard attention layer and considering the
first dimension as batch dimension. We then apply a feed-forward layer. This results in a tensor
êi ∈ Rn+1×d×h. The second attention block is then applied to the matrices êi:,j , j = 1, . . . , d, that
result from indexing the nodes, i.e., we reshape the tensor to have the second dimension as batch-
dimension (and reshape it back after the attention block). After every attention block, we add a
feed-forward layer, and we add a pre-layer norm and a residual connection to every attention block
and feed-forward layer.

The final encoder summary is obtained by another attention block, where we consider the col-
umn dimension the batch dimension again, and we only use the (n+ 1)-th row as key and all other
rows as queries. This gives us a final embedding e ∈ Rd×h, which we flatten to be in Rd·h.

Instead of the decoder proposed by Ke et al. (2023), we add another feed-forward layer that
receives the concatenated embeddings of each marginal dataset as input and outputs a scalar.

For the second model that predicts the causal structure from the hidden representations eX,Z of
the first model, we simply used a feed forwards layer with four output dimensions and a softmax
layer to encode the four possible causal structures {→,←,↔, no edge} as categories.

Training Note that Ke et al. (2023) propose to train the model on a dataset, where each ”datapoint”
consists of a synthetically generated adjacency matrix as target with a matrix containing multiple
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Table 3: Hyperparameters for training the deep learning models.

Hyperparameter Value

Batch size 1
Learning rate 1e-4
Gradient clipping value 10
Epochs 2
Encoder layers 3
Feed forward hidden layers 1
Feed forward widening 4
Activation GELU
Attention heads 8
Hidden dimension h 64
Samples per dataset 3000
Test examples 100
Loss Transitive Prediction MSE
Training examples Transitive Prediction 100000
Loss Structure from Embedding Cross-entropy
Training examples Structure from Embedding 1000

samples drawn from this graph as input features. For every such datapoint, we generate one of the
12 DAGs consisting of two nodes and three edges (compare Table 1) with equal probability, and
data with sample size 3n as in Section 5.1. Again, we split the data into three equal-sized subsets.
Let m ∈ N be the number of datapoints of the training set and denote the sample matrices for the
j-th adjacency matrix with

M j
X,Z := {xji , z

j
i }i=1,...,n

M j
Y,Z := {yji , z

j
i }i=n+1,...,2n

M j
X,Y := {xji , y

j
i }i=2n+1,...,3n.

We then solve the minimization problem

argmin
f∈F

m∑
j=1

(
f(M j

X,Z ,M
j
Y,Z)− ρ̂jX,Y

)2
,

where F is the function class defined by the model architecture and ρ̂jX,Y is the correlation coeffi-

cient computed from the third part of the samples M j
X,Y . The parameter settings of the main model

training are summarized in Table 3. Most notably, we generated 100000 pairs of marginal data
matrices and respective ground truth correlation coefficient ρX,Y .

The second model (that is trained to predict the causal structure) is simply a feed-forward
network with a single hidden layer. To train it, we generate k ∈ N more marginal samples
{xji , z

j
i }i=1,...,M and apply the encoder from the pre-trained model above to get a dataset

{(ejX,Z , sj)}j=1,...,k,
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Figure 17: Lemma 7 detects at least one feasible pair in almost all runs for p ∈ [0.2, 0.8] and
DAGs as well as CPDAGs. Lemma 2 employed with PAGs finds feasible pairs in most runs when
p ∈ [0.3, 0.5], but often does not find any when p is close to 0 or 1.

where sj ∈ {→,←,↔, ̸−} denotes the true underlying causal structure that generated the j-
datapoint. We use a cross-entropy loss to train this model. The second model is trained on 1000
pairs of embeddings eX,Z and (one-hot encoded) underlying structure. We trained the LOVO pre-
diction model using a squared loss and the second model using the cross-entropy loss. Unless stated
otherwise, we used the same parameters for the main model and the second model.

Computational resources The main deep learning model from Section 5.3 was trained on an
AWS EC2 instance of type p3.2xlarge. These machines contain Intel Xeon E5-2686-v4 proces-
sors with 2.3 GHz and 8 virtual cores as well as 61 GB RAM. The training ran less than an hour.
All inference and further experiments were run on a MacBook Pro with Apple M1 processor and 32
GB RAM and can be run in less than an hour.

E.6. Evaluating the LOVO variants for DAGs, CPDAGs, and PAGs

This section sheds light on our LOVO version for DAGs, CPDAGs, and PAGs as proposed in Ap-
pendix B. As in Section 5.1, we first explore how often Lemmas 7 for DAGs and CPDAGs and
Lemma 2 using the limited information entailed by PAGs succeed in finding unlinked pairs. Again,
we report the mean number of excluded edges in each run (Figure 18) as well as the number of runs
where no single unlinked pair can be found (Figure 17). Next, we employ the LOVO prediction
based on the true marginal graphs and simulated data and plot the LOVO loss in comparison to the
baseline loss in Figure 19. For DAGs, we use parent adjustment as before, whereas for CPDAGs
and PAGs, we adjust using the set of all nodes on paths between X and Y excluding colliders as
described in Section B.3.

33



SCHKODA FALLER BLÖBAUM JANZING
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Figure 18: For Lemma 7 and p ≥ 0.3, the average number of detected absent edges (blue) is close
to the true number of absent edges (grey), whereas Lemma 2 does not find all absent edges.
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Figure 19: In all three cases, the LOVO loss rarely surpasses the baseline loss. For DAGs, we
observe that the LOVO error is considerably smaller in most cases, while for CPDAGs and PAGs,
the errors are often identical. This can be attributed to the same phenomenon encountered when
applying LOVO to RCD in 5.2: we frequently need to abstain, resulting in only one or a few pairs
contributing to the cross-validation average. If all these pairs have the empty set as their adjustment
set, the baseline loss aligns with the LOVO loss.
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