Under review as a conference paper at ICLR 2022

FOURIER FEATURES IN REINFORCEMENT LEARNING
WITH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In classic Reinforcement Learning (RL), encoding the inputs with a Fourier fea-
ture mapping is a standard way to facilitate generalization and add prior domain
knowledge. In Deep RL, such input encodings are less common, since they could,
in principle, be learned by the network and may therefore seem less beneficial. In
this paper, we present experiments on Multilayer Perceptron (MLP) that indicate
that even in Deep RL, Fourier features can lead to significant performance gains,
in both rewards and sample efficiency. Furthermore, we observe that they in-
crease the robustness with respect to hyperparameters, lead to smoother policies,
and benefit the training process by reducing learning interference, encouraging
sparsity, and increasing the expressiveness of the learned features. According to
our experiments, other input preprocessings, such as random Fourier features or
Polynomial features, do not give similar advantages. But a major bottleneck with
conventional Fourier features is that they exponentially increase the number of
features with the state dimension. We remedy this by proposing a simple, light
version that only has a linear number of features, yet still maintains the benefits.
Our experiments cover both shallow/deep, discrete/continuous, and on/off-policy
RL settings. To the best of our knowledge, this is the first reported application of
Fourier features in Deep RL.

1 INTRODUCTION

In Reinforcement Learning (RL), the performance of algorithms depends critically on data repre-
sentation, i.e. the way the states of the system are represented as features. Choosing appropriate
features for a task is an important way of adding prior domain knowledge, since redistributing infor-
mation into states facilitates generalization. For linear function approximations, the data is usually
hand-designed according to the task at hand and projected into a higher-dimensional space to facil-
itate linear separation (Sutton & Barto} |2018)). Examples feature encodings used in classic RL for
linear function approximation are Polynomial Features (Lagoudakis & Parr, |2003), Fourier Features
(Konidaris et al., 2011)) and Tile Coding (Albus, [1971)). However, the main bottleneck of such fea-
ture encodings is that they do not scale to high-dimensional inputs as they grow exponentially with
the dimension of the input.

In recent years, Deep RL has experienced dramatic growth in interest due the ability of Neural
Networks (NN) to learn feature representations, allowing algorithms to learn complex tasks from
raw sensory data without prior knowledge (Mnih et al., 2015} Schulman et al., 2017} [Lillicrap et al.|
2015 Haarnoja et al., 2018). In Deep Learning, it is common to apply min-max normalization
(Bishop et al.,|1995) or batch normalization (loffe & Szegedy, 2015). But preprocessing inputs with
hand-designed features is less common since such features could, in principle, be learned by the
network and thus may seem less beneficial. In recent work in Deep Learning (outside of RL), it
has been shown that preprocessing inputs with Random Fourier Features (Rahimi & Recht, [2007)
helps Multilayer Perceptrons (MLP) to learn high-frequency functions (Tancik et al. [2020; Wang
et al., [2021) and improves the training performance for NN (Mehrkanoon & Suykens| 2018} [Mitra
& Kaddoum| 2021). In Deep RL, it has been observed that Tile Coding can improve performance,
sample efficiency and robustness to hyperparameter variations by mitigating learning interference
(Ghiassian & Huizhen Yu, 2018 |Ghiassian et al., [2020; [Liu et al.l [2019). Fourier features have
been primarily used in standard RL, where they show better performance compared to other features

Under review as a conference paper at ICLR 2022

Figure 1: Example of a 3-layers MLP fed with preprocessed inputs. The state s is preprocessed
by a feature function ((.) ({(s) = FF(s) for Fourier Features and ((s) = s for raw inputs) before
being passed into the MLP with the action a. Learned features ¢(s, a) are used for the prediction of
the Q-value (s, a).

encodings, including Tile Coding (Konidaris et al.,[2011). However, to the best of our knowledge,
the use of Fourier features has not yet been studied in Deep RL.

In this work, we empirically investigate the effects of preprocessing inputs with Fourier Features, as
illustrated in Fig. [T} on Deep RL. Our main contributions are as follows:

* While Fourier Features are standard in classic Reinforcement Learning, we are, to our best
knowledge, the first to suggest that Fourier Features are beneficial in Reinforcement
Learning with Neural Networks.

* We study the performance benefits of Fourier Features across a range of tasks and cover
both discrete and continuous environments. We observe significant performance gains, in
both rewards and sample efficiency, and extend the range of usable hyperparameters. In
our experiments, Fourier Features outperform other common input preprocessings.

* We empirically investigate the effects of Fourier features on the learning process. Ac-
cording to our experiments, Fourier features lead to smoother Neural Networks, mitigate
learning interference, promote sparsity and increase the expressivity of learned features.

* We propose a light, scalable version of Fourier Features to avoid the exponential explo-
sion of traditional Fourier Features, while maintaining much of their benefits.

2 APPLYING FOURIER FEATURES TO REINFORCEMENT LEARNING WITH
NEURAL NETWORKS

Fourier Features (FF) are generated by the order-m Fourier Feature function FF : R” — R?,
mapping a state s € R" into a p-dimensional feature space (Konidaris et all 2011), with p =
(m+1)". For 1 < ¢ < p, the feature i is given by:

FF;(s) = cos(my(s) " c), (1

where ¢ : R™ — [0,1]" is a bijective normalizer and each coefficient vector ¢’ takes a value in
{0,...,m}"™ (one-to-one). The inner product z/J(s)Tci determines the frequency along dimension
1 and creates interactions between state variables. The major bottleneck of Fourier features is that
their dimension grows exponentially with the dimension n of the state space. To remedy this, we
propose the following subset of Fourier features. We call order-m Fourier Light Features (FLI")
the n(m + 1) Fourier Features where at most one of the elements of ¢’ is nonzero.

Overall Performance We apply Fourier Features (FF-NN) and Fourier Light Features (FLF-NN)
on the off-policy Deep-Q Network (DQN) algorithm (Mnih et al., [2015) for the discrete action
environments and on the on-policy Proximal Policy Optimization (PPO) algorithm (Schulman et al.,
2017) for continuous action environments and compare to the algorithms without encoding (NN).
For the normalization, we compute the min/max normalization when state variables are bounded and
a nonlinear normalization based on arctan otherwise. All hyperparameters are optimized for each
environment for the NN approach (see details in Appendix [J). For computation time reasons and
a fair comparison, only learning rate and Fourier order are re-optimized for FF-NN and FLF-NN.
Results of FLF-NN for deeper architectures (Appendix [A)) show that our conclusion remain valid.

Under review as a conference paper at ICLR 2022

Acrobot-v1 CartPole-v1 LunarLander-v2 MountainCar-v0

— — ™
FENN FENN

o P o e 10
B e hf M“"Ww‘l e FLEAN FLEAN
/ Nk

d
sode
d

etumn Per Ep

/\ | 1500
| — — W
—s00 FENN J FENN 200
FLF-NN o FLF-NN
—2000
020000 40000 60000 0000 100000 120000 140000 160000 020000 40000 60000 0000 100000 120000 140000 160000 020000 40000 60000 50000 100000 120000 140000 160000 0 20000 40000 60000 0000 100000 120000 140000 160000
Time: Time: Timesteps Timesteps

Figure 2: The use of Fourier features improves performance and sample efficiency of DQN
on discrete control tasks. Evaluation learning curves of NN (blue), FF-NN (orange), and FLF-
NN (green), reporting episodic return versus environment timesteps. Results are averaged over 30
trainings (different seeds), with shading indicating standard deviation.

HalfCheetah-\2 InvertedDoublePendulum-v2 Swimmer-v2

ey T
‘ 1

T

“““““

2 600 |
£ 4
i

Figure 3: The use of Fourier Light features improves the performance and sample efficiency of
PPO on a continuous control task. Evaluation learning curves of NN (blue) and FLF-NN (green),
reporting episodic return versus environment timesteps. Results are averaged over 10 trainings with
shading indicating the standard deviation.

Figure [2shows the averaged returns per episode for DQN on four discrete-action environments from
OpenAI Gym (Brockman et al, [2016). Figure [3]shows the averaged returns per episode of PPO on
three continuous-action control tasks from Mujoco (Todorov et al., 2012). For the latter, we only test
FLF because the number of traditional Fourier Features explodes due to the higher state dimension.
In all tasks, FLF significantly improve upon the baseline (DQN/PPO), in both cumulative rewards
and sample efficiency. Where the dimension is small enough so that we can apply FF, we obtain
similar performance by FF and FLF.

Robustness to Hyperparameter Changes RL algorithms can be very sensitive to hyperparameter
changes (Henderson et al.,[2018}Islam et al.,2017). The following experiments indicate that Fourier
features reduce the sensitivity to hyperparameters. Figure faillustrates how the performance varies
with the learning rate, keeping other hyperparameters constant. FF-DQN and FLF-DQN require a
smaller learning rate, but perform well over a larger range compared to raw inputs. In Figures{4bjand
Mc|we vary only the buffer size or target update frequency while keeping other hyperparameters fixed.
In the cases where standard DQN shows large variations for different buffer sizes and frequencies,
we observe that FF-DQN is both better and less sensitive. This indicates a more stable learning
process, with potentially less interference (see also Section [3.3), and makes Fourier Features even
more interesting to nonstationary and online problems. Additional results on other discrete action
tasks are in Appendix

3 OBSERVED EFFECTS ON TRAINING NEURAL NETWORKS

In this section, we look at different metrics in order to investigate why Fourier features help the
Neural Network to learn better and faster. We study the effects of Fourier features on the sparsity
and expressiveness of the NN, which in turn can reduce catastrophic interference. Catastrophic
interference occurs when the learner “’forgets” what it has learned in the past by overwriting pre-
vious updates to better fit the learned function to recent data (McCloskey & Cohenl |1989; [French)

Under review as a conference paper at ICLR 2022

o som wewe s 0 awe o e oo e
Butte Size But

(a) Learning Rate Variations over n = 10 trainings (b) Buffer Size Variations over n = 5 trainings

(c) Target Update Variations over n = 5 trainings

Figure 4: Fourier Features are more robust to learning rate, buffer size and target update
frequency. Cumulative reward over different hyperparameter variations, for NN (blue) and FF-NN
(orange) on MountainCar-v0 and CartPole-v1l. Results are averaged over n trainings and shading
indicating the 95% confidence interval (CI).

1991)). Such interference can significantly slow down learning and even prevent the network from
converging to an optimal solution. In sparse representations, only few features are active (nonzero)
for any given input, so that each update only impacts few weights and is less likely to interfere with
other updates (Liu et al.,[2019; [Hernandez-Garcia & Sutton, 2019} |Ghiassian et al., 2020} Pan et al.,
2020). Another beneficial effect of sparsity is the promotion of locality, where similar inputs should
produce similar features. It may be thus easier for the agent to make accurate predictions for an ex-
plored local region as the local dynamics are likely to be a simpler function than the global dynamics.
Ghiassian et al.| (2020) showed that Tile Coding improves the learning of sparse features. Enforcing
sparsity can also promote expressiveness through the identification of key attributes by encouraging
the input to be well-described by a small subset of attributes. To achieve good performance, a NN
needs to extract expressive and fine-grained local features. This is particularly true when consecutive
raw inputs are similar and small differences between inputs may lead to different actions. [Kumar
et al.| (2020) and [Luo et al.| (2020) identified in RL an implicit under-parameterization of Neural
Networks where under-parameterization is defined as an excessive aliasing of learned features, i.e.,
learned features are mapped into a much smaller subspace than the feature space that could be gen-
erated by the NN. Consequently, the neural network behaves as an under-parameterized network,
generates less rich features and leads to poorer performance.

3.1 SPARSITY OF LEARNED REPRESENTATIONS

We measure sparsity with two proxy measures: normalized overlap and instance sparsity (Liu et al.,
2019; Hernandez-Garcia & Sutton, [2019; [Pan et al., 2020). In the following, we take into account
the number of dead neurons, i.e. neurons that have a zero response value for any input, and call
the other m neurons alive. Let d the number of neurons in the penultimate layer. The normalized
activation overlap, as proposed by |[Hernandez-Garcia & Sutton| (2019), is

d
1
overlap(gﬁ(sh al)a ¢)(82; G,Q)) = E Z 1((231(81 ,a1)>0)A(i(s2,a2)>0) - (2)
i=1
When the normalized overlap between two representations is zero, there is no interference between
their corresponding inputs. The normalization avoids misleadingly low scores in cases where only
few neurons are alive. The instance sparsity is the percentage of active units in the feature vector
@(s,a) for a given input value (s, a) (Liu et al., 2019). We estimate these sparsity measures using

Under review as a conference paper at ICLR 2022

Table 1: Fourier features and Fourier Light features promote sparsity on discrete control tasks.
Sparsity scores with percentage of dead neurons, normalized activation overlap and instance sparsity
obtained for DQN fed with raw inputs (NN), Fourier features (FF-NN) and Fourier Light features
(FLF-NN), averaged across environment timesteps. Averages are taken across all timesteps and
margins of error of the 95% confidence interval (CI) are computed over 30 trainings. Lower sparsity
scores are better and better scores are in bold.

Architecture MountainCar-v0 Acrobot-vl CartPole-vl Catcher-vl LunarLander-v2
Dead Neurons 0.47 + 0.09 0.0 0.07 +0.02 0.02 0.0
NN Normalized Overlap 0.72 + 0.08 049+0.04 0.63+0.04 0.34+0.01 0.30 +0.01
Instance Sparsity 0.78 +£0.07 0.644+0.02 0.66+0.03 0.48 £0.01 0.46 £+ 0.02
Dead Neurons 0.0 0.01 0.0 0.0 0.0
FE-NN Normalized Overlap 0.37 = 0.06 0.05+0.02 0.52+0.02 0.20 +0.02 0.23 +0.03
Instance Sparsity 0.57 + 0.05 0.13+0.04 0.60 +0.02 0.40 +0.03 0.40 + 0.02
Dead Neurons 0.0 0.0 0.0 0.0 0.0
FLF-NN Normalized Overlap 0.43 +£0.10 0.16 £0.02 0.794+0.07 0.28 £0.01 0.39 + 0.04
Instance Sparsity 0.62 £ 0.08 0.30 £0.03 0.854+0.06 0.45 £ 0.02 0.55 £+ 0.04

a set D of state-action pairs drawn i.i.d from rollouts obtained with sub-optimal pre-trained policies
and random policies; for details see Appendix [D] Our results are summarized in Table [T} the cor-
responding curves as a function of environment steps can be found in Appendix [E} In all tasks, FF
results in lower (and thus better) normalized overlap and instance sparsity. There are no dead neu-
rons in FF/FLF, suggesting a better use of the Neural Network capacity. However, FLF increases the
sparsity in one instance (CartPole-v1), even though the learning performance of FLF-NN is better
than NN on all instances. Hence, sparsity does not seem to be the only beneficial effect of FF/FLF.

3.2 EXPRESSIVENESS OF LEARNED REPRESENTATIONS

To measure expressiveness, we compute the effective rank srank; of the learned feature matrix ®
built on the set D, normalized by the number of neurons in the penultimate layer (Kumar et al.,
2020). This estimates the proportion of the sum of the k highest singular values o1 (®) > ... >
Omin(b,d) (®) > 0 of @ that capture 1 — ¢ (usually § = 0.01) of the sum of all singular values:

k

C L oi(P
S ARl ®
doimoi(®)

where b is the number of state-action pairs used to build ® and d is the number of neurons in the
penultimate layer of the NN. Intuitively, this quantity represents the number of “effective” unique
components of the feature matrix ® that form the basis for linearly approximating the targets. When
the network aliases inputs by mapping them to a smaller subspace, ® has only a few active singular
directions and sranks (®) takes thus a small value.

1
sranks(®) = p min < k :

Figure[5|shows the normalized effective rank over the environment timesteps of training. The learned
features are more expressive for FF/FLF in all instances, which may induce a better use of the net-
work capacity and explain better performance. These results are consistent with the absence of dead
neurons for FF/FLF reported in Table [I} Features learned with FLF-NN are more expressive than
those with FF-NN in most instances. In Deep RL, because targets are estimated with boostrapping,
a decrease in the effective rank of learned features can lead to a sequence of NNs with potentially
decreasing expressivity and results in degenerate behaviors, generalization problems and drops in
performance (Kumar et al., 2020} [Luo et al., 2020). In Figure E], the curves with FF/FLF and raw
data have a similar general trend, but in most instances, the decrease in the effective rank is less
pronounced with FF/FLF. This suggests a more stable learning process with less catastrophic inter-
ference for FF-NN and FLF-NN. Additional results on discrete tasks can be found in Appendix [F}

3.3 LEARNING INTERFERENCE

To investigate interference, we estimate the stiffness of the gradient alignment (Fort et al.,|2020)
p(87 a, S/a Cl/) = COS(VWL(W; s, CL), VWL(W’ Sl7 O,/)), “4)

Under review as a conference paper at ICLR 2022

Acrobot-v1 CartPole-v1 LunarLander-v2 MountainCar-v0

a9%0 — W 8 —) — W 08
FENN FENN FENN
FLENN _ FLE-NN FLE-NN

2 075 £ 04 FENN
FLENN

e == 00

020000 40000 60000 §0000 100000 120000 140000 160000 020000 40000 60000 §0000 100000 120000 140000 160000 020000 40000 60000 S0000 100000 120000 140000 160000 020000 40000 60000 0000 100000 120000 140000 160000
Time Time: Timesteps Timesteps

Figure 5: The use of Fourier features, and Fourier Light features enhance the expressiveness
of the learned features on discrete control tasks. Learning curves of the normalized effective rank
sranks (®) for NN fed with raw inputs (blue), Fourier features (orange), and Fourier Light features
(green), averaged over 30 trainings with shading indicating the 95% CI.

with parameters W, loss L, and cosine similarity cos(u,v) = u” v/||u||||v||. More context and
related work are provided in Appendix |Gl A stiffness p(s,a, s’,a’) close to zero means that an
update made to (s, a) does not affect the prediction in (s’, a’) whereas a negative value determines an
interference. Based on stiffness, we consider four proxy measures for gradient interference evaluated
on the DQN experience replay buffer B:

* Average of Stiffness (AS): E(s q).(s'.a/)~8lp(S,a, 8", a")],

* Average of Interference (Al): E(, o) (s .ary~8lp(S,a,8",a")|p(s,a,s’,a") < 0] which only
considers (negatively) interfering samples and determines the average of interference,

e Interference Risk (IR): CVaRgg(p(s,a,s’,a")) = E[p(s,a,s’,d')|p(s,a,s',a") <
VaRo o(p(s,a,s",a’)) A p(s,a,s’,a’) < 0] which is the conditional value at risk of inter-
ference where VaRg 9(p(s, a, 8',a")) is the 0.9-quantile of the distribution of p(s, a, s’,a’),

* Percentage of Interfering sample pairs (Percl) within a minibatch sampled from 5.

Our results averaged across all timesteps are reported in Table [2[and curves showing the evolution
of interference during the training can be found in Appendix [G| In all cases, AS shows that an up-
date with a state-action pair has less impact on other NN predictions with FF/FLF compared to raw
inputs. This is confirmed by higher (better) Al and IR scores. Only for Percl we see worse scores
with FF/FLF. However, similar contradictory results for methods improving sparsity were reported
by [Pan et al.| (2020), which suggests a more complex relationship between Percl and actual learn-
ing performance. Our observations indicate that Fourier features help to generalize appropriately
without overgeneralizing and leads to a more stable training and better performance. Interestingly,
FLF-NN seem to have even less interference than FF-NN, while we observed sparser representa-
tions for FF-NN in Section Such results suggest that even if sparsity mitigates catastrophic
interference, FLF may have other beneficial effects that reduce catastrophic interference.

3.4 SMOOTHNESS OF NEURAL NETWORK

In Neural Networks, larger weights are associated with poorer relative performance on new data
(Neyshabur et al.l 2015} Bartlett et al.| 2017 [Neyshabur et al.l [2017). Similarly, in Reinforcement
Learning, regularization approaches that enforce small weight norms, such as weight decay, tend
to produce better results (Farebrother et al., 2018 |Liu et al., [2020; |Cobbe et al., 2019). A common
approach is to normalize weights to ensure that the learned layers are 1-Lipschitz, thereby improving
the smoothness of the model, improving convergence (Salimans & Kingmal, |2016; |Gogianu et al.,
2021)), and reducing the generalization gap (Rosca et al.,2020; Gouk et al., 2021;|Wang et al.,[2019).

We investigate the smoothness by estimating bounds on the Lipschitz constant, taking the lower
bounds from (Rosca et al.| [2020) and the upper bound from (Gouk et al.| [2021). See Appendix
for more context and details. In three out of the four tasks shown in Figure 6] FF features clearly
improve the Lipschitz smoothness, while FLF do not have a clear effect. Additional metrics, based
on the [y, o, and [, norm of different layers, indicate that FLF can lie between FF and raw data,
sometimes even surpassing FF; see Appendix

Under review as a conference paper at ICLR 2022

Table 2: Fourier features and Fourier Light features mitigate learning interference on discrete
control tasks. Interference measures with Average of Stiffness (AS), Average of Interference (Al),
Interference Risk (IR), and Percentage of Interference within a batch (Percl) averaged across all
timesteps for DQN fed with raw inputs (NN), Fourier features (FF-NN) and Fourier Light features
(FLF-NN) on discrete control tasks. The symbol | (1) indicates that a lower (higher) score is better.
Better interference measures are in bold.

Architecture MountainCar-v0 Acrobot-vl CartPole-vl Catcher-vl LunarLander-v2
AS | 0.24 0.09 0.22 0.07 0.06
N Al 1 ~0.83 ~0.60 -0.92 ~0.63 -0.56
R 1 ~0.91 -0.92 ~0.99 ~0.94 ~0.94
Percl | 0.38 0.43 0.39 0.45 0.46
AS | 0.10 0.03 0.05 0.04 0.06
Al 1 —0.47 —0.37 ~0.73 ~0.40 -0.49
FF-NN R 1t ~0.87 ~0.80 ~0.98 ~0.84 ~0.92
Percl | 0.44 0.48 0.47 0.47 0.46
AS 0.05 0.04 0.05 0.04 0.04
Al 1 ~0.54 ~0.38 ~0.86 ~0.54 ~0.67
FLENN - p 4 ~0.87 ~0.79 ~0.98 ~0.82 ~0.94
Percl | 0.47 0.47 0.47 0.47 0.48

Acrobot-vi CartPole-vt LunarLander-v2 MountainCar-v0
— W
NN
10° FLF-NN

NN | Y N
FENN FENN FE-NN
FLE-NN FLENN FLENN o

0 20000 40000 (0000 $000 100000 120000 140000 160000 0 20000 40000 60000 50000 100000 120000 140000 160000 020000 40000 6000 0000 100000 120000 140000 160000 0 20000 40000 60000 50000 100000 120000 140000 160000
mesteps Timesteps Timesteps Timesteps

Figure 6: Preprocessing inputs with Fourier features or Fourier Light features improve the
smoothness of the Neural Network. Lower and upper bounds on the Lipschitz constant of NN
over training timesteps, for NN fed with raw inputs (blue), FF (orange), and FLF (green). Bounds
are averaged over 30 trainings. A lower score is better.

4 COMPARISON WITH OTHER INPUT PREPROCESSINGS

We compare Fourier features with three standard input preprocessings: Polynomial Features (PF-
NN), Random Fourier Features (RFF-NN), and Tile Coding (TC-NN). For more context, definitions,
and experimental setup, see Appendix[Il In the experiments shown in Fig.[7] none of the other input
preprocessings achieve the performance of FF-NN/FLF-NN, even though we tuned their hyper-
parameters through an extensive search. In the following, we evaluate the effects on the Neural
Network using the metrics from Section. [3]

Sparsity measures, as reported in Table [3| suggest that standard input preprocessings degrade spar-
sity. Even Tile Coding, reported to promote sparsity in (Ghiassian et al.,|2020), produces less sparse
representations than standard DQN. Tile Coding, just as FF/FLF, does not have dead neurons, while
PF-NN and RFF-NN increase the number of dead neurons.

Expressiveness is indicated by the learning curves of effective rank in Figure[§] PF-NN and RFF-
NN generate poorer features than NN fed with raw inputs. As expected given the absence of dead
neurons, TC-NN produces richer features than NN and is on par with FF/FLF-NN.

Interference scores, shown in Table El, indicate that PF-NN, RFF-NN, and TC-NN highly interfere
during the training with poor Average of Interference (AI) and Interference Risk (IR) scores. These
results are consistent with the poor sparsity scores.

Under review as a conference paper at ICLR 2022

MountainCar-vo CartPole-v1

NN O e A
/ﬂ y j VW\/\MA W'\“ﬂ

—100

Average Retum Per Episode

100 e

| | FF-NN

A FLF-NN
JEYPR AR | VAN o
P

REE-NN
TC-NN

o 20000 40000 0000 S0000 100000 120000 140000 160000 o 20000 40000 0000 S0000 100000 120000 140000 160000
i i

Figure 7: Fourier Features/Fourier Light features outperform other standard input prepro-
cessings on discrete control tasks. Evaluation learning curves of NN (blue), FF-NN (orange),
FLF-NN (green), PF-NN (red), RFF-NN (purple) and TC-NN (brown) reporting episodic return
versus environment timesteps. Results are averaged over 30 trainings with shading indicating the
standard deviation.

Table 3: Input preprocessings do not necessarily promote sparsity in discrete control tasks.
Sparsity scores with dead neurons in % (DN), normalized overlap (NO) and instance sparsity (IS)
obtained for DQN fed with raw inputs (NN), Fourier features (FF-NN), Fourier Light features (FLF-
NN), Normalized inputs (NI-NN), Polynomial features (PF-NN), Random Fourier features (RFF-
NN) and Tile Coding (TC-NN) on discrete control tasks averaged across all timesteps. Averages
and margins of error of the 95% CI are over 30 trainings. Lower scores better.

Task NN FF-NN FLF-NN PF-NN RFF-NN TC-NN

DN 047+0.09 0.0 0.0 0.66+0.08 048=+0.04 0.0
MountainCar-v0 NO 0.72+0.08 0.37 £0.06 043+0.10 0.80+0.08 0.87+0.06 0.77+0.13
IS 0.78+0.07 0.57+0.05 0.62+0.08 084+008 0.90+0.05 0.86=+0.09

DN 0.07+0.02 0.01+0.00 0.0 023+0.02 0.88=£0.07 0.0
CartPole-v1 NO 0.63+0.04 0.524+0.02 0.79+0.07 0.73+0.07 0.58+£0.03 0.66+0.06
IS 0.66+0.03 0.60=+0.02 085+0.06 0.75+0.05 0.61+0.03 0.70=+0.04

Smoothness, as measured by the Lipschitz bounds shown in Figure 9] is improved by all input
preprocessings, with TC/FF/FLF giving the best performance, followed by PF/RFF. In the shown
instance, smoother networks correlate with better learning performance.

5 CONCLUSION

We studied the effect of Fourier feature encoding on Deep RL for a set of discrete and continuous
control problems. We found that Fourier features provide a systematic increase in final performance,
sample efficiency, learning stability, and robustness to hyperparameters. A detailed empirical analy-
sis of the reason for this behavior showed that Fourier features improve the sparsity, expressiveness
and smoothness of the NN, and reduce catastrophic interference during learning. Additionally, a
light version of Fourier features with only a linear number of features compared to the input size
leads to similar benefits.

We have just begun to understand how Fourier features and more broadly input preprocessing may
improve neural network training. Our work suggests thus several promising future research di-
rections. The first is to investigate whether Fourier features behave as an implicit regularizer and
decrease the generalization gap. Second, we plan to further study the correlations between per-
formance, sparsity, expressiveness, learning interference, and smoothness of neural networks. Our
experiments show that preprocessing inputs may improve performance of Neural Networks in Deep
RL, and there is a wide range of research directions that can be pursued. The code for reproducing
all experiments will be made publicly available on github at the end of the double-blind review.

Under review as a conference paper at ICLR 2022

MountainCar-v0 CartPole-v1
08 NN
FF-NN
{ FLF-NN
07 0.8 PE-NN
RFF-NN
06 \ TC-NN
06
05 7 NN
FF-NN
= FLF-NN =] | .
g o4 PF-NN g \
REF-NN 04
03 TC-NN \
02
02 e —
\\&R
o1 —L - _ —
ZKJAI
0.0 0.0
0 20000 40000 60000 BOOOO 100000 120000 140000 160000 0 20000 40000 60000 S0000 100000 120000 140000 160000

Timesteps Timesteps

Figure 8: Learning curves of the normalized effective rank sranks(®) for NN fed with raw inputs
(blue), Fourier features (orange), Fourier Light features (green), Polynomial features (red), Random
Fourier Features (purple) and Tile Coding features (brown) on discrete control tasks. Results are
averaged over 30 training with the shade that indicates the 95% CI.

Table 4: Interference measures with Average of Stiffness (AS), Average of Interference (Al), In-
terference Risk (IR), Percentage of Interference within a batch (Percl) and Average Q-Interference
(AQI) averaged across all timesteps for standard input preprocessings on discrete control tasks where
J and 1 mean lower and higher the score is better, respectively.

Tasks NN FF-NN FLF-NN PF-NN RFF-NN TC-NN
AS | 024 0.1 0.05 0.21 0.14 0.1
MountainCar-v0 Al T -0.83 -0.47 —0.54 -0.81 —0.88 —0.86
IR T =091 -0.87 -0.87 -0.95 -0.93 -0.93
PercI | 0.38 0.44 0.47 0.39 0.43 0.44
AS | 022 0.05 0.05 0.13 0.49 0.07
CartPole-v1 Al T =092 -0.73 —0.86 —0.84 -0.97 -0.95
IR T =099 -0.98 -0.98 -0.87 -0.99 -0.97
PercI | 0.39 0.47 0.47 0.43 0.25 0.46

MountainCar-v0

Lipschitz Constan

Figure 9: Lower and upper bounds on the Lipschitz constant of NN over training timesteps, of NN
(blue), FF-NN (orange), FLF-NN (green), PF-NN (red), RFF-NN (purple), and TC-NN (brown).
Bounds are averaged over 30 trainings with shading indicating the 95% CI

Under review as a conference paper at ICLR 2022

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

James S Albus. A theory of cerebellar function. Mathematical biosciences, 10(1-2):25-61, 1971.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in Neural Information Processing Systems, 30:6240-6249, 2017.

Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal
difference learning. In International Conference on Machine Learning, pp. 767-777. PMLR,
2020.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university press, 1995.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Van-
derPlas, Arnaud Joly, Brian Holt, and Gaé&l Varoquaux. API design for machine learning software:
experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Min-
ing and Machine Learning, pp. 108—122, 2013.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In International Conference on Machine Learning, pp. 1282—1289.
PMLR, 2019.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
dqn. arXiv preprint arXiv:1810.00123, 2018.

Stanislav Fort, Pawet Krzysztof Nowak, Stanislaw Jastrzebski, and Srini Narayanan. Stiffness: A
new perspective on generalization in neural networks, 2020.

R. French. Using semi-distributed representations to overcome catastrophic forgetting in connec-
tionist networks. Proceedings of the AAAI Conference on Artificial Intelligence, 1991.

Sina Ghiassian and Richard S. Sutton Huizhen Yu, Banafsheh Rafiee. Two geometric input trans-
formation methods for fast online reinforcement learning with neural nets. arXiv, 2018.

Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving performance in
reinforcement learning by breaking generalization in neural networks. In Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 20, pp.
438-446, Richland, SC, 2020. International Foundation for Autonomous Agents and Multiagent
Systems. ISBN 9781450375184.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256. JMLR Workshop and Conference Proceedings, 2010.

Florin Gogianu, Tudor Berariu, Mihaela Rosca, Claudia Clopath, Lucian Busoniu, and Razvan Pas-
canu. Spectral normalisation for deep reinforcement learning: an optimisation perspective. arXiv
preprint arXiv:2105.05246, 2021.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural net-
works by enforcing lipschitz continuity. Machine Learning, 110(2):393-416, 2021.

10

Under review as a conference paper at ICLR 2022

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic al-
gorithms and applications. CoRR, abs/1812.05905, 2018. URL http://arxiv.org/abs/
1812.05905.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Sheila A. Mcllraith and Kilian Q. Weinberger (eds.),
Proceedings of AAAI Conference on Artificial Intelligence, (AAAI-18). AAAI Press, 2018.

J. Fernando Hernandez-Garcia and Richard S. Sutton. Learning sparse representations incrementally
in deep reinforcement learning. arXiv, 2019.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448-456.
PMLR, 2015.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of
benchmarked deep reinforcement learning tasks for continuous control. arXiv preprint
arXiv:1708.04133, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation in reinforce-
ment learning using the fourier basis. In Twenty-fifth AAAI conference on artificial intelligence,
2011.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In International Conference on Learning Rep-
resentations, 2020.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4:1107-1149, 2003.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Long Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Mach. Learn., 8:293-321, 1992. doi: 10.1007/BF00992699. URL https://doi.org/10.
1007/BF00992699.

Vincent Liu, Raksha Kumaraswamy, Lei Le, and Martha White. The utility of sparse represen-
tations for control in reinforcement learning. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 33(01):4384-4391, Jul. 2019. doi: 10.1609/aaai.v33i01.33014384. URL
https://ojs.aaail.org/index.php/AAAI/article/view/43409.

Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in policy
optimization-an empirical study on continuous control. In International Conference on Learn-
ing Representations, 2020.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
6470-6479, 2017.

Xufang Luo, Qi Meng, Di He, Wei Chen, and Yunhong Wang. I4r: Promoting deep reinforcement
learning by the indicator for expressive representations. In IJCAI, pp. 2669-2675, 2020.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165.
Elsevier, 1989.

Siamak Mehrkanoon and Johan AK Suykens. Deep hybrid neural-kernel networks using random
fourier features. Neurocomputing, 298:46-54, 2018.

11

http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://ojs.aaai.org/index.php/AAAI/article/view/4349

Under review as a conference paper at ICLR 2022

Rangeet Mitra and Georges Kaddoum. Random fourier feature based deep learning for wireless
communications. arXiv preprint arXiv:2101.05254, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529-533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/natureld236.

Behnam Neyshabur. Implicit regularization in deep learning. arXiv preprint arXiv:1709.01953,
2017.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on Learning Theory, pp. 1376—-1401. PMLR, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in Neural Information Processing Systems, 30:5947-5956,
2017.

Yangchen Pan, Kirby Banman, and Martha White. Fuzzy tiling activations: A simple approach to
learning sparse representations online. In International Conference on Learning Representations,
2020.

Andy Patterson. Pyfixedreps. https://github.com/andnp/PyFixedReps, 2020.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dor-
mann. Stable baselines3. https://github.com/DLR-RM/stable—baselines3}2019.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Proceedings
of the 20th International Conference on Neural Information Processing Systems, pp. 1177-1184,
2007.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards generalization
and simplicity in continuous control. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 6553-6564, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. arXiv preprint arXiv:1810.11910, 2018.

Mihaela Rosca, Theophane Weber, Arthur Gretton, and Shakir Mohamed. A case for new neural
network smoothness constraints. In Jessica Zosa Forde, Francisco Ruiz, Melanie F. Pradier, and
Aaron Schein (eds.), Proceedings on ”I Can’t Believe It’s Not Better!” at NeurlPS Workshops,
volume 137 of Proceedings of Machine Learning Research, pp. 21-32. PMLR, 12 Dec 2020.
URLhttps://proceedings.mlr.press/v137/rosca20a.html.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29:901—
909, 2016.

Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: analysis and

efficient estimation. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 3839-3848, 2018.

12

http://dx.doi.org/10.1038/nature14236
https://github.com/andnp/PyFixedReps
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/stable-baselines3
https://proceedings.mlr.press/v137/rosca20a.html

Under review as a conference paper at ICLR 2022

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv preprint arXiv:1904.11455, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimensional domains. arXiv preprint
arXiv:2006.10739, 2020.

Norman Tasfi. Pygame learning environment. https://github.com/ntasfi/
PyGame—-Learning—-Environment, 2016.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012.

Huan Wang, Stephan Zheng, Caiming Xiong, and Richard Socher. On the generalization gap in
reparameterizable reinforcement learning. In International Conference on Machine Learning, pp.
6648-6658. PMLR, 2019.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature net-
works: From regression to solving multi-scale pdes with physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering, 384:113938, 2021.

Shangtong Zhang and Richard S Sutton. A deeper look at experience replay. arXiv preprint
arXiv:1712.01275, 2017.

13

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment

Under review as a conference paper at ICLR 2022

A FOURIER FEATURES AND FOURIER LIGHT FEATURES IN DEEPER
ARCHITECTURES

In this section, we present results obtained with hyperparameters in the original code base for deeper
architectures (Raffin}, 2020) to confirm our results found in Section[Z] that Fourier Light features with
NN lead to better performance, in both reward and sample efficiency. Hyperparameter settings can
be found in Appendix

Acrobot-v MountainCar-v0

— —
FLE-NN FLENN

100 mn

pisode
sode
!

Per Ep
tum Per Epi

R
verage Re

0 20000 10000 000 0000 100000 120000 140000 160000 0 20000 10000 000 80000 100000 120000 140000 160000
Timesteps Timesteps

Figure 10: Evaluation learning curves of NN (blue) and FLF-NN (green) with DQN on discrete
control tasks, reporting episodic return versus environment timesteps. Results are averaged over 10
trainings (different seeds), with shading indicating standard deviation.

B LEARNING CURVE OF DQN ON CATCHER-V1

Learning curves for the Catcher-v1 task (Tasfi, 2016) investigated in Section 3] are reported in Fig-
ure Hyperparameter settings can be found in Appendix

e TSRS
40 /X

/

f

30
20

10

Average Return Episode

S e SN S

NN
Fourier Basis + NN
Fourier Light + NN

=10

0 25 50 75 100 125 150
Episodes

Figure 11: Learning curves of NN (blue) and FLF-NN (green) with DQN on Catcher-v1, reporting
episodic return versus environment timesteps. Results are averaged over 30 trainings (different
seeds), with shading indicating standard deviation.

14

Under review as a conference paper at ICLR 2022

C FURTHER RESULTS ON HYPERPARAMETER VARIATIONS FOR DQN

In RL, the data distribution is constantly shifting because of both the changing policy and shifting
training targets, e.g with bootstrapping. In addition, in most RL problems data are correlated and
hurt training of NNs. Experience replay buffers (Lin, |1992; Mnih et al., 2015) and target networks
(Mnih et al., [2015) were introduced in RL to mitigate these interference problems and have become
critical in training of many deep RL algorithms including DQN. However, it is at the cost of higher
computational and memory cost and a slower offline learning (Plappert et al.,2018)). Previous works
also highlighted difficulties to properly tune the buffer size where an either too small or too big buffer
can have a negative effect in performance (Zhang & Sutton| [2017). In Figures[I2a]and [I2b] we vary
only the buffer size or target update frequency while keeping other hyperparameters fixed over 5
trainings. In the cases where standard DQN shows large variations for different buffer sizes and
frequencies, we observe that FF-DQN is both better and less sensitive (except for the Acrobot-v1
task). Such results suggest a more stable training.

Acrobot-v1 Catcher-vl

—- —- W
FENN FENN

0 50000 100000

200000 250000 300000 0 50000 100000 150000 200000 250000 300000
Buffer Size
CartPole-v1
—— NN 600 — NN
FENN FENN

w 1] 3 //'
| 1 4 E 300 v N 2
60 S
& 20
150
100
200
0 5000 100000 15000 200000 250000 300000 0 S0000 100000 IS0000 200000 250000 300000
Buffer Size Buffer Size
Acrobot-vi Catcher-v1
—e— NN 0 —e— NN
FRNN FRNN
0
. —o—e—og—o - e
0 e “o N/ -
Ve L 4
o’ T T i 2 ¢
Y \ / N g
\/ Ne—Le z
s ¥ EES
S
5 0|
g 4
%0 §
z Z
10
95
20
0 100 0 0 w00 500 o 100 200 00 0 500
Target Update Frequency Target Update Frequency
MountainCar-v0 CartPole-v1
&0 - W
100 FENN
0
W
A = | 7 -
— % 2 E] ¢ N\ / >~
v 4 2 w0 e
¢ &
—t Z 0 [
% / 2
¥ v o 5 200
& E]
H 2 0o /
2 -180 x
o eved
-
0 FENN 100
0 100 20 00 %00 500 o 100 200 w0 00
Target Update Frequency Target Update Fi

(b) Target Update Frequency

Figure 12: Fourier Features are more robust to buffer size and target update frequency. Cu-
mulative reward over different buffer size values (Figure[I2a) and target update frequencies (Figure
[I2b) for NN (blue) and FF-NN (orange) on MountainCar-v0 and CartPole-v1. Results are averaged
over 5 trainings with shading indicating the 95% CI.

15

Under review as a conference paper at ICLR 2022

D EXPERIMENTAL SETUP FOR OBSERVING THE EFFECTS ON TRAINING
NEURAL NETWORKS

We restrict our analysis to DQN with the same hyperparameter setting used in Sect. We es-
timate both sparsity and the expressiveness measures during the training over the same learned
feature matrix ®(D) = (¢(s1,a1),...,¢(sy,a,))T every 1,000 environment timesteps, where
D := {(s1,a1),...,(Sp,ap)} is a datatset of b = 3,000 state-action pairs. State-action pairs in
D are drawn i.i.d from rollouts obtained with sub-optimal pre-trained policies and random policies.
This construction of D aims to cover state-action pairs likely to be used during the DQN learning.
Consequently, our estimations of the percentage of dead neurons are less restrictive than the true
percentage of dead neurons. Nevertheless, we believe that measuring sparsity scores over D makes
more sense since it removes neurons only active in parts of the state space that are less likely to be
visited by the agent.

E SPARSITY LEARNING CURVES FOR DQN ON DISCRETE CONTROL TASKS

Normalized overlap as function of environment steps corresponding are reported in Figure [I3] Av-
erage of these score across timesteps can be found in Table |l We estimate sparsity scores every
1,000 timesteps and average them over 30 trainings.

Acrobot-v1 CartPole-v1 Catcher-vl

05 08
0.35

p
g

030
NN
FF-NN
FLF-NN

0.25

02

Normalized Overlal
Normalized Overlap

NN 0.20

04 FF-NN
FLF-NN

NN
FF-NN
FLF-NN

01

0 25000 50000 75000 100000 125000 150000 0

Timesteps

25000 50000 75000 100000 125000 150000 0

Timesteps

25000 50000 75000 100000 125000 150000

Timesteps

0

LunarLander-v2

NN
FF-NN
FLE-NN

25000 50000 75000 100000

Timesteps

125000 150000

MountainCar-v(

NN
FF-NN
FLF-NN

25000 50000 75000 100000 125000 150000

Timesteps

Figure 13: Learning curves of the normalized overlap for NN (blue), FF-NN (orange), and FLF-
NN (green) with DQN on discrete control tasks, reporting normalized overlap versus environment
timesteps. Results are averaged over 30 trainings (different seeds), with shading indicating the 95%
CL

16

Under review as a conference paper at ICLR 2022

F NORMALIZED EFFECTIVE RANK CURVES FOR DQN ON DISCRETE
CONTROL TASKS

The normalized effective rank srank;(®) (Section[3.2)) as a function of environment steps is reported
for DQN on discrete control tasks in Figure @ We estimate normalized effective rank every 1,000
timesteps and average them over 30 trainings.

Acrobot-vl CartPole-vl Catcher-vl
0950 | — W 08 — N
FF-NN FE-NN
0925 FLF-NN 07 FLE-NN 0.85
06
0900
0.0
L 0875 L0 - P .
g E g T
= 7 04 7 FLF-NN
0850 075
- 03
0825
0 070
0800
- ol
0775
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
090 — W 08
FF-NN
. 07
085 CLENY
06
0.0
05
— N
2 os E NN
g 204 P
g g FLF-NN
070 03
02
065
ol
0.60 b
00
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps

Figure 14: Learning curves of the normalized effective rank sranks(®) for NN fed with raw inputs

(blue), Fourier features (orange), and Fourier Light features (green), averaged over 30 trainings with
shading indicating the 95% CI.

17

Under review as a conference paper at ICLR 2022

G INTERFERENCE LEARNING CURVES FOR DQN ON DISCRETE CONTROL
TASKS

Connection between Gradient Alignment and Stiffness. The learning interference at a time ¢ with
parameters W and a loss L is defined as (Lopez-Paz & Ranzato| [2017; [Riemer et al.| [2018))

L(Wit1;8,a) — L(Wy; s, a).

Assuming a small learning rate 7 and using the Taylor series expansion on the loss L, we have for
an update made to W with (s¢, a;):

L(Wyi1;8,a) — L(Wy; 8,a) = Vi L(Wy; s, a0)T (Wi — W)
= —nVwL(Wy; s, ar)" Vw L(Wy; s, a))

where the quantity Vyy L(Wy; s¢,a;)T Vi L(Wy; s,a) is the gradient alignment (Bengio et al.,
[2020}; [Lopez-Paz & Ranzato), 2017; [Riemer et all, 2018}, [Schaul et all, [2019). The positiveness or

negativeness of this quantity determines whether the update is constructive (i.e positive generaliza-
tion) or destructive (i.e. interference) on (s, a). The stiffness measure used in Section is based

on gradient alignment [2020) by normalizing loss gradients.

Evolution of Interference During the Training. We estimate interference every 1,000 timesteps
and average them over 30 trainings. For each point in the learning curves, we randomly draw 64
samples from the experience replay buffer to estimate the interference. All interference measures
are defined in Section[3.3]

Acrobot-v1 CartPole-vl Catcher-vl

— W — W 035 — W
07 FF-NN FF-NN
06 030

o5 025

020
03 015
02 010

ol 005

0.0 00 0.00

25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000
imesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
035 — 10 ——
FF-NN FF-NN
030 FLE-NN FLF-NN

08
025

06
020
9

A
AS

015 || 04

0.10
02
005

000 00

25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000
Timesteps Timesteps
Figure 15: Learning curves of the Average Stiffness (AS) for NN fed with raw inputs (blue), Fourier
features (orange), and Fourier Light features (green). Results are averaged over 30 trainings with

shading indicating the 95% CI.

18

Under review as a conference paper at ICLR 2022

Acrobot-v1 CartPole-vl Catcher-v1
— W
FF-NN —0.40
FLE-NN
—045
~0.50 X
= FE-NN
— FLE-NN B e
055 ,J
- MM
~0.65
25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000
Timesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
040 00 s
FE-NN FE-NN
—045
FLE-NN FLE-NN
~0.50
055
= 060
~0.65
-0.70
075
~0.80
25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000
Timesteps Timesteps

Figure 16: Learning curves of the Average Interference (AI) for NN fed with raw inputs (blue),
Fourier features (orange), and Fourier Light features (green). Results are averaged over 30 trainings
with shading indicating the 95% CI.

Acrobot-v1 CartPole-v1 Catcher-v1
—0.775
00 — NN 00 — NN — NN
FENN FENN 0500 FE-NN
FLFNN FLF-NN
—0.825 /\\“\u\, ey e
o khaaAcin i it WPSPSIRH)
[
~0.850
~0875
~0.900
—0.925
I I R
~0.950
25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000
Timesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
~0.800
— 00
~0.825 2R
—— FLE-NN
-02
~0.850
~0.875 -04

&

R

~0.900
-06

~0.925

-08 |
~0.950

~0.975 -10

25000 50000 ;;‘i:‘}‘(::(:‘cpl:)tm(ll 125000 150000 25000 50000 ;:r::::lc':\(ll}(m 125000 150000
Figure 17: Learning curves of the Interference Risk (IR) for NN fed with raw inputs (blue), Fourier
features (orange), and Fourier Light features (green). Results are averaged over 30 trainings with
shading indicating the 95% CI.

19

Under review as a conference paper at ICLR 2022

Acrobot-vl CartPole-vl Catcher-vl
05 05
04 04
03 03
B B
£ £
02 02
ol ol
— W — W — W
—— FENN — FF-NN 025 —— FENN
00 —— FLENN 0o | — FLENN —— FLENN
25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000
Timesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
0500
0475
0450

0425

0400

Percl
Percl

0375

0350

0325 | — aN

— W
— FNN —— FENN

0300 | — FEENN 00 — FLENN

25000 50000 75000 100000 125000 150000 25000 50000 75000 100000 125000 150000

Timesteps Timesteps

Figure 18: Learning curves of the Percentage of Interference (Percl) for NN fed with raw inputs
(blue), Fourier features (orange), and Fourier Light features (green). results are averaged over 30
trainings with shading indicating the 95% CI.

20

Under review as a conference paper at ICLR 2022

H SMOOTHNESS OF NEURAL NETWORKS FOR DQN ON DISCRETE
CONTROL TASKS

Smoothness of the Neural Network. The exact computation of the Lipschitz constant for a NN is
NP-hard (Scaman & Virmaux) 2018), but lower bounds and upper bounds can be estimated. The
lower bound is obtained by computing for each state-action pairs (s, a) in a dataset 300, 000 state-
action pairs the norm of the gradient of the Q-value with respect to the state-action pairs and we
report the largest norm encountered (Rosca et al.| 2020). Whereas to establish the upper bound, we
compute the Lipschitz constants of each layer in isolation and multiply them (Gouk et al.l [2021).
Under the 5 and /1 norm, the upper bound of the Lipschitz constant of an MLP is given by the spec-
tral norm and the maximum absolute column sum norm measure of the weight matrix (Neyshabur,
2017; |Gouk et al.| 2021). We measure these bounds every 1,000 timesteps of the training and we
average results over 30 trainings.

Acrobot-v1 CartPole-vl Catcher-v1
U - — 107 —
— -
el y e
10 = w0/ —_—
e { -
z g | g
£ | e Z [Z 10
S | // 3 [S
g w0 | S oo | £}
i W g | 3
= | B i
]]] | a
10°
1o0° NN 100§ NN NN
| FF-NN | FF-NN FF-NN
FLF-NN FLF-NN FLF-NN
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
10*
I NN
10° FF-NN _—— |]
FLF-NN — '//
10 / P
/ I)
f e 104 y /
Z o Z /
£ 107 } 210 -
8 8 ,/’/
]] z
£ 10! £
=} =} / ”
' 104
10 1/
100 N
FF-NN 10°
= FLF-NN J
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps

Figure 19: Learning curves of the lower and upper bounds of the Lipschitz constant of NN for NN
fed with raw inputs (blue), Fourier features (orange), and Fourier Light features (green), averaged
over 30 trainings with shading indicating the 95% CI.

Simplicity of the Neural Network. Liu et al.| (2020) observed that on many tasks, smaller policy
weight norms correlate with better generalization ability. Figure 20 Figure [21] Figure 22] visualize
the o, 11, lins weight norms on both layers, respectively. In most cases, FF and FLF reduce the [y
and [; weight norms especially in the second layer.

21

Under review as a conference paper at ICLR 2022

175

150

125

100

h Norm

120

100

1, Norm

&, Norm

1, Norm

Acrobot-vl
— NN
FE-NN
—— FLENN

1 Norm

0 25000 50000 75000 100000 125000 150000
Timesteps.
LunarLander-v2

— NN
FE-NN
—— FLF-NN

0 25000 50000 75000 100000 125000 150000
Timesteps

Acrobot-v1

o 25000 50000 75000 100000 125000 150000
Timesteps
LunarLander-v2
—— NN
FF-NN
—— FLF-NN

0 25000 50000 75000 100000 125000 150000
Timesteps.

2x10"

1, Norm

& Norm

I, Norm

100

100

CartPole-v1 Catcher-vl
—— NN
FF-NN
17 ~——— FLF-NN
16
E
=1
z
<15
14
— NN
FF-NN
~——— FLF-NN 13
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps. Timesteps.
MountainCar-v0
0 25000 50000 75000 100000 125000 150000
Timesteps
(a) In the First Layer
CartPole-v1 Catcher-v1l
12 NN
FF-NN
10 —— FLF-NN
8
=
=3
Z 6
4
— NN
FF-NN 2
~——— FLF-NN
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps
MountainCar-v0
— NN
FF-NN
~—— FLF-NN

0 25000 50000 75000 100000 125000 150000
Timesteps.

(b) In the Second Layer

Figure 20: Learning curves of the lo weight norm for NN fed with raw inputs (blue), Fourier features
(orange), and Fourier Light features (green), averaged over 30 trainings with shading indicating the

95% CI.

22

Under review as a conference paper at ICLR 2022

Acrobot-v1 CartPole-v1 Catcher-v1
- (_///
E E E
-} S s
Z Z z
0
— NN
o FE-NN 20
~—— FLF-NN
0
0 25000 50000 75000 100000 125000 150000 o 25000 50000 75000 100000 125000 150000 o 25000 50000 75000 100000 125000 150000
Timesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
—— NN —— NN
1200 FENN FE-NN
~—— FLF-NN ~——— FLF-NN
1000
10*
800
] £
S S
Z Z.
= 60 =
400
102
200
0
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps
(a) In the First Layer
Acrobot-vl CartPole-v1 Catcher-v1
12 5 == HN
FE-NN
~——— FLF-NN
10
4
8
£ g3
=) -]
Z 6 4
= =,
4
2 RN 1
FENN
— FLENN
0 107! 0
o 25000 50000 75000 100000 125000 150000 o 25000 50000 75000 100000 125000 150000 o 25000 50000 75000 100000 125000 150000
Timesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
0
— W — W
FF-NN FF-NN
5 —— FLFNN 102 —— FLF-NN
20
£ E o
515 £ 10
Z 2.
10
10°
5
0
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps

(b) In the Second Layer

Figure 21: Learning curves of the /; weight norm for NN fed with raw inputs (blue), Fourier features
(orange), and Fourier Light features (green), averaged over 30 trainings with shading indicating the
95% CI.

23

Under review as a conference paper at ICLR 2022

Acrobot-v1 CartPole-v1 Catcher-v1
— N
600 FE-NN 175
—— FLF-NN
500 150
400 10! 125
£ £ £ — W
e e e FF-NN
2 2 2 100
ER = = —— FLENN
00 75
50
100 — W
FF-NN
25
o —— FLENN
0 25000 50000 75000 100000 125000 150000 o 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
— N — NN
P FF-NN 0 FF-NN
—— FLENN —— FLFNN
50
i =
g g
£ % E
20
10
0
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps
(a) In the First Layer
Acrobot-v1 CartPole-v1 Catcher-vl
o — W
FF-NN
g —— FLENN
102 0
£ g®
s s
= T
40
30
—
10! FE-NN 0
—— FLFNN
10
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
Timesteps Timesteps Timesteps
LunarLander-v2 MountainCar-v0
oo T NN —
FE-NN FE-NN
1200 —— FLF-NN 10 —— FLF-NN
1000
E s00 g
e e
E 0 Z
400
200
10!
o
0 25000 50000 75000 100000 125000 150000 o 25000 50000 75000 100000 125000 150000
Timesteps Timesteps

(b) In the Second Layer

Figure 22: Learning curves of the I,y weight norm for NN fed with raw inputs (blue), Fourier fea-
tures (orange), and Fourier Light features (green), averaged over 30 trainings with shading indicating
the 95% CIL.

24

Under review as a conference paper at ICLR 2022

I OTHER INPUT PREPROCESSINGS

Polynomial Features (PF). The feature vector consists of all polynomial combinations of the state
variables with degree less than or equal to a specified degree (Lagoudakis & Parr, 2003} |[Sutton &
Barto, [2018).

Random Fourier Features (RFF). Random Fourier Features were initially introduced to approx-
imate an arbitrary stationary kernel function by exploiting Bochner’s theorem (Rahimi & Recht,
2007). Recent works have shown promising results where RFF boost performance of deep neu-
ral networks (Mehrkanoon & Suykens, 2018)), reduce the probability of misclassification (Mitra &
Kaddoum, [2021)), or can facilitate MLPs to learn high-frequency functions (Tancik et al., 2020). In
RL, Rajeswaran et al.| (2017) used them with Natural Policy Gradient to outperform performance
obtained with NNs. The i-th feature of the Random Fourier Feature mapping RFF : R™ — RP? is

RFF;(s) = /v cos (1(s)"ei + b ©)

where ¢ ~ N(0,0%1,), b ~ U(0,27), 1 is a normalizer, and p is the number of features we want
to generate. The term 2/,/p is used as normalization factor to reduce the variance of the estimates.
RFF and Fourier features have a very close definition, except that the vector ¢ creating interaction
between state variables is sampled from a normal distribution. RFF are studied to understand if it is
rather the structure or the choice of ¢ that can explain the good performances.

Tile Coding (TC). Tile Coding (Albus, |1971; [Sutton & Bartol 2018)) is a generalization of state
aggregation, in which we cover the state space with overlapping grids (tilings) where each grid
divides the state space into small squares (tiles). The representation of a state for each tiling is a
one-hot vector of dimension the number of tiles that has one for the tile where the state is in and
zero otherwise. Concatenation of one-hot vectors for each tiling forms Tile Coding features. A nice
property of Tile Coding is that generalization occurs to states other than the one trained if those
states fall within any of the same tiles. |Ghiassian et al.| (2020)) already proposed to preprocess inputs
of Neural Network with Tile Coding to promote sparsity of learned representations and obtain better
performance.

Experiments. We study performance on two discrete control environments, MountainCar-v0Q and
CartPole-v1 using the DQN algorithm, optimizing hyperparameter with Optuna (Appendix [J), but
consider the same MLP architecture for DQN and each input preprocessing. All experiments are
averaged over 30 runs (30 different random seeds), with offline evaluations performed on the policy
every 1, 000 training/environment timesteps.

J REPRODUCING EXPERIMENTS

The entire code for reproducing all experiments will be made publicly available on github at the end
of the double-blind review.

Discrete Control Tasks. We compare the performance of DQN on five discrete-action environ-
ments from OpenAl Gym (Brockman et al., 2016): Acrobot-vl, CartPole-v1l, LunarLander-v2,
MountainCar-v0, and Catcher-v1 (Tasfi, |2016). We use a MLP architecture with a single hidden
layer.

Continuous Control Tasks. We compare performance on three continuous-action control tasks
from Mujoco (Todorov et al., |2012): HalfChettah-v2, InvertedDoublePendulum-v2, and Swimmer-
v2. Because of the higher state dimension, we were only able to test Fourier Light Features. We use
a MLP with two hidden layers.All experiments are averaged over 10 runs, with offline evaluations
performed on the policy every 1,000 environment timesteps.

Common Settings. The first for discrete action domains are from OpenAl Gym (Brockman et al.,
2016) with version 0.18.0 and continuous action domains from Mujoco (Todorov et al., 2012). The
discrete action environment Catcher-v1 is from PyGame-Learning-Environment (Tasfi, 2016). For
Deep Reinforcement Learning implementations, we adopt the code from StableBaselines-3 (Raf-
fin et al., 2019) with version 0.10.0 based on Pytorch 1.8.0. We use Adam optimizer (Kingma &
Bal 2014}, Xavier initializer (Glorot & Bengio, 2010), and ReLLU activation functions across all
experiments. We evaluate offline each algorithm every 1, 000 training/environment timesteps.

25

Under review as a conference paper at ICLR 2022

Table 5: Sampling Values for DQN

Hyperparameter Range

Number of Hidden Layers 1

Number of Neurons per Hidden Layer {16, 32,64, 128, 256}[]

Batch Size {16, 32, 64, 100, 128, 256, 512}
Replay Buffer Size {1e4,5e4, 1e5,1e6}

Discount Factor {0.9,0.95,0.98,0.99,0.995,0.999, 0.9999}
Learning rate [le — 5,1]

Target Update Frequency {0.9,0.95,0.98,0.99,0.995,0.999, 0.9999}
Train Frequency {1,4,8,16,128, 256, 1000}
Exploration Fraction [0,0.5]

Final Value of Random Action Probability [0,0.2]

Fourier Order (FF) {1,2,3,4,5}

Hyperparameter Sampling on Discrete Control Tasks. Since hyperparameters for the discrete
control tasks were not included at the time of experiments, we tune hyperparameters with Optuna
2.4.0 (Akiba et al., [2019) for each discrete control task. We sample hyperparameter values in Table
E]using the TPE (Tree-structured Parzen Estimator) algorithm (Bergstra et al., 2011). Since TPE can
be very sensitive to the scores of the first trials, we run 5 independent hyperparameter research where
one research is composed of 500 trials. Each trial corresponds to a training of 120, 000 timesteps
with hyperparameters sampled by TPE and the score of each trial is based on the return of 100
rollouts of the learned policy. Because Deep RL algorithms are highly unreliable (Henderson et al.,
2018 |Islam et al.| 2017), we take the 15 best hyperparameter settings returned by Optuna and run 5
additional trainings of 150, 000 timesteps. The best hyperparameter setting we take is the one with
the better final average return over the 5 trainings.

For searching the learning rate and Fourier Order of FF and FLF, we adopt the same strategy by
doing just one research with Optuna. For the Fourier Light order, we sample values between 1 and
the Fourier Light order corresponding to the number of traditional Fourier features found previously
for the research for FF.

Hyperparameter Sampling on Continuous Control Tasks. On continuous tasks, we keep the
hyperparameters from the original codebase, StableBaselines-3-zoo (Raffin| [2020). For searching
the learning rate and Fourier Light Order in continuous control tasks, we adopt the same strategy as
the one detailed in the previous subsection by doing just one research of 500 trials with Optuna. In
this setting, each trial corresponds to a training of 800, 000 timesteps with hyperparameters sampled
by TPE. Similarly, the best hyperparameter setting we take is the one with the better final average
return over 5 trainings of 800, 000 timesteps. The range of values for the Fourier Light order in
continuous control tasks is between 1 and 50.

Normalization. Before being passed into the Fourier features mapping or Fourier Light features
mapping, input data need to be normalized by a normalizer ¢ : R" — [0, 1]" (Section . We
compute either the min/max normalization when state variables are bounded or we apply a nonlinear
transformation based on arctan where:

arctan(2it)
Yi(s) = % +0.5 (7)

with ¢ the normalizer shift parameter and ¢ the normalizer scale parameter. ¢ and c are arbitrarily
chosen to obtain 1;(Smax) = 0.9 and ¢;(Smin) = 0.1 wWhere Smax; and smin ; are respectively the
maximum and minimum state variable ¢ values observed over 5 x 5,000 rollouts generated by 5
suboptimal policies.

Training timesteps. For DQN, we run 160, 000 timesteps for Acrobot-v1, CartPole-v1, Catcher-
vl, LunarLander-vl and MountainCar-v0. For Catcher-vl, we fix the episode length to 500
timesteps. For PPO, we run 2e8 timesteps for HalfCheetah-v2 and Swimmer-v2 and 1e8 timesteps
for InvertedDoublePendulum-v2.

Implementation Details for Standard Input Preprocessing. For generating Polynomial features
we use Scikit-Learn (Buitinck et al., 2013) and for Tile Coding features we adopt the implemen-

26

Under review as a conference paper at ICLR 2022

tation of [Patterson| (2020). For Random Fourier features and Tile Coding features, inputs are first
normalized with the same normalization defined for Fourier features/Fourier Light features. In our
first experiments, we noticed that just changing the learning rate was not sufficient to achieve con-
vergence. We then keep the same MLP architecure and found another hyperparameter setting with
Optuna by using the same hyperparameter ranges reported in Table[5} According to the experiments
performed by (Ghiassian et al.|(2020), we set the number of tilings to 8 and the number of tiles to 4.

Hyperparameter Setting. The following tables report the hyperparameter values found using the
approach described above.

Table 6: DQN Hyperparameter Setting found for Acrobot-v1.

Hyperparameter DQN FF-DQN FLF-DQN
Number of Neurons per Hidden Layer 256 256 256
Number of Hidden Layers 1 1 1
Batch Size 256 256 256
Replay Buffer Size 1000000 1000000 1000000
Discount Factor 0.995 0.995 0.995
Learning Rate 2.20e — 04 5.25e—04 1.40e—-03
Target Update Frequency 450 450 450
Gradient Steps 256 256 256
Train Frequency 256 256 256
Exploration Fraction 0.032343 0.032343 0.032343
Final Value of Random Action Probability ~ 0.101575 0.101575 0.101575
Fourier Order — 3 10

Table 7: DQN Hyperparameter Setting found for CartPole-v1.

Hyperparameter DQOQN FF-DQN FLF-DQN
Number of Neurons per Hidden Layer 256 256 256
Number of Hidden Layers 1 1 1
Batch Size 128 128 128
Replay Buffer Size 10000 10000 10000
Discount Factor 0.99 0.99 0.99
Learning Rate 1.10e — 03 5.85e—05 5.32¢e — 05
Target Update Frequency 350 350 350
Gradient Steps 8 8 8
Train Frequency 16 16 16
Exploration Fraction 0.038783 0.038783 0.038783
Final Value of Random Action Probability 0.069806 0.069806 0.069806
Fourier Order — 3 7

27

Under review as a conference paper at ICLR 2022

Table 8: DQN Hyperparameter Setting found for Catcher-v1.

Hyperparameter DQN FF-DQN FLF-DQN
Number of Neurons per Hidden Layer 512 512 512.0
Number of Hidden Layers 1 1 1
Batch Size 256 256 256
Replay Buffer Size 100000 100000 100000
Discount Factor 0.99 0.99 0.99
Learning Rate 8.72e — 04 8.17e—05 4.37e —04
Target Update Frequency 250 250 250
Gradient Steps 2 2 2
Train Frequency 8 8 8
Exploration Fraction 0.087147 0.087147 0.087147
Final Value of Random Action Probability = 0.166414 0.166414 0.166414
Fourier Order — 4 6

Table 9: DQN Hyperparameter Setting found for LunarLander-v2.

Hyperparameter DQN FF-DQN FLF-DQN
Number of Neurons per Hidden Layer 1024 1024.0 1024
Number of Hidden Layers 1 1 1
Batch Size 100 100 100
Replay Buffer Size 1000000 1000000 1000000
Discount Factor 0.99 0.99 0.99
Learning Rate 1.47¢ — 03 1.34e—04 8.29¢ —05
Target Update Frequency 50 50 50
Gradient Steps 128 128 128
Train Frequency 128 128 128
Exploration Fraction 0.141211 0.141211 0.141211

Final Value of Random Action Probability ~ 0.188717 0.188717 0.188717
Fourier Order — 1 9

Table 10: DQN Hyperparameter Setting found for MountainCar-v0.

Hyperparameter DQN FF-DQN FLF-DQN
Number of Neurons per Hidden Layer 256 256 256
Number of Hidden Layers 1 1 1
Batch Size 64 64 64
Replay Buffer Size 100000 100000 100000
Discount Factor 0.995 0.995 0.995
Learning Rate 3.40e — 03 4.43e—04 3.93e—04
Target Update Frequency 200 200 200
Gradient Steps 128 128 128
Train Frequency 128 128 128
Exploration Fraction 0.420173 0.420173 0.420173
Final Value of Random Action Probability ~ 0.093216 0.093216 0.093216
Fourier Order — 4 9

28

Under review as a conference paper at ICLR 2022

Table 11: PPO Hyperparameter Setting of HalfCheetah-v2 (Raffin, [2020)

Hyperparameter PPO FLF-PPO
Number of Neurons per Hidden Layer 256 256
Number of Hidden Layers 2 2
Batch Size 64 64

Clip Range 0.1 0.1
Learning Rate 2.0633e — 05 6.8897e — 05
Number of Epochs 20 20
GAE Parameter 0.92 0.92
Entropy Coefficient 4.0176e — 04 4.0176e — 04
Max Gradient Norm 0.8 0.8
Number of Steps 512 512
Value Function Coefficient 0.5096 0.5096
Fourier Order — 3

Table 12: PPO Hyperparameter Setting of InvertedDoublePendulum-v2 (Raffin, 2020)

Hyperparameter PPO FLF-PPO
Number of Neurons per Hidden Layer 256 256
Number of Hidden Layers 2 2
Batch Size 64 64

Clip Range 0.1 0.1
Learning Rate 2.0633e — 05 6.8897e — 05
Number of Epochs 20 20
GAE Parameter 0.92 0.92
Entropy Coefficient 4.0176e — 04 4.0176e — 04
Max Gradient Norm 0.8 0.8
Number of Steps 512 512

Value Function Coefficient 0.5096 0.5096
Fourier Order — 3

Table 13: PPO Hyperparameter Setting of Swimmer-v2 (Raffin, 2020)

Hyperparameter PPO FLF-PPO
Number of Neurons per Hidden Layer 256 256
Number of Hidden Layers 2 2
Batch Size 32 32

Clip Range 0.3 0.3
Learning Rate 5.4972e — 05 5.0205e — 05
Number of Epochs 10 10
GAE Parameter 0.95 0.95
Entropy Coefficient 5.5476e — 02 5.5476e — 02
Max Gradient Norm 0.6 0.6
Number of Steps 512 512
Value Function Coefficient 0.38782 0.38782
Fourier Order — 3

29

Under review as a conference paper at ICLR 2022

Table 14: DQN Hyperparameter Setting found for Polynomial Features.

Hyperparameter CartPole-vl MountainCar-v0
Number of Neurons per Hidden Layer 256 256
Number of Hidden Layers 1 1
Batch Size 512 128
Replay Buffer Size 50000 100000
Discount Factor 0.9999 0.98
Learning Rate 2.57e — 04 6.54e — 03
Target Update Frequency 450 250
Gradient Steps 8 4
Train Frequency 8 16
Exploration Fraction 0.011846 0.084238
Final Value of Random Action Probability 0.038869 0.120751
Polynomial Degree) 2

Table 15: DQN Hyperparameter Setting found for Random Fourier Features.

Hyperparameter CartPole-v1 MountainCar-vQ
Number of Neurons per Hidden Layer 256.0 256
Number of Hidden Layers 1.0 1
Batch Size 512 100
Replay Buffer Size 1000000 1000000
Discount Factor 0.9990000000000001 0.98
Learning Rate 1.40e — 02 1.67e — 05
Target Update Frequency 1 300
Gradient Steps 32 128
Train Frequency 128 256
Exploration Fraction 0.025779 0.345071
Final Value of Random Action Probability 0.138125 0.193399
Number of RFF 256 512

Table 16: DQN Hyperparameter Setting found for Tile Coding Features.

Hyperparameter CartPole-vl MountainCar-v0
Number of Neurons per Hidden Layer 256.0 256.0
Number of Hidden Layers 1.0 1.0
Batch Size 64 256
Replay Buffer Size 10000 1000000
Discount Factor 0.995 0.98
Learning Rate 8.96e — 05 7.95e — 05
Target Update Frequency 300 200
Gradient Steps 4 256
Train Frequency 4 256
Exploration Fraction 0.246283 0.316252
Final Value of Random Action Probability ~ 0.000285 0.069128
Number of Tilings 8.0 8.0
Number of Tiles per Tiling 4.0 4.0

30

Under review as a conference paper at ICLR 2022

Table 17: DQN Hyperparameter Setting of Acrobot-v1 used in Appendix@ (Raffinl 2020)

Hyperparameter DQN FLF-DQN
Number of Neurons per Hidden Layer 256 256.0
Number of Hidden Layers 3 3.0
Batch Size 256 256
Replay Buffer Size 100000 100000
Discount Factor 0.999 0.999
Learning Rate 8.09e — 04 9.95e¢ — 04
Target Update Frequency 200 200
Gradient Steps 1 1
Train Frequency 1 1
Exploration Fraction 0.296189 0.296189
Final Value of Random Action Probability ~ 0.000437 0.000437
Fourier Order - 3

Table 18: DQN Hyperparameter Setting of CartPole-v1 used in Appendix (Raffin} 2020)

Hyperparameter DQN FLF-DQN
Number of Neurons per Hidden Layer 256.0 256.0
Number of Hidden Layers 2.0 2.0
Batch Size 64 64
Replay Buffer Size 100000 100000
Discount Factor 0.99 0.99
Learning Rate 2.30e — 03 1.34e—05
Target Update Frequency 10 10
Gradient Steps 128 128
Train Frequency 256 256
Exploration Fraction 0.16 0.16
Final Value of Random Action Probability 0.04 0.04
Fourier Order — 10

Table 19: DQN Hyperparameter Setting of MountainCar-v0 used in Appendix E] (Raffin, 2020)

Hyperparameter DQON FLF-DQN
Number of Neurons per Hidden Layer 256 256
Number of Hidden Layers 2 2
Batch Size 128 128
Replay Buffer Size 10000 10000
Discount Factor 0.98 0.98
Learning Rate 4.00e — 03 5.04e — 04
Target Update Frequency 600 600
Gradient Steps 8 8
Train Frequency 16 16
Exploration Fraction 0.2 0.2
Final Value of Random Action Probability 0.07 0.07
Fourier Order — 4

31

	Introduction
	Applying Fourier Features to Reinforcement Learning with Neural Networks
	Observed Effects on Training Neural Networks
	Sparsity of Learned Representations
	Expressiveness of Learned Representations
	Learning Interference
	Smoothness of Neural Network

	Comparison with Other Input Preprocessings
	Conclusion
	Fourier Features and Fourier Light Features in Deeper Architectures
	Learning Curve of DQN on Catcher-v1
	Further results on hyperparameter variations for DQN
	Experimental Setup for Observing the Effects on Training Neural Networks
	Sparsity Learning Curves for DQN on Discrete Control Tasks
	Normalized Effective Rank Curves for DQN on Discrete Control Tasks
	Interference Learning Curves for DQN on Discrete Control Tasks
	Smoothness of Neural Networks for DQN on Discrete Control Tasks
	Other Input Preprocessings
	Reproducing Experiments

