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ABSTRACT

The rapid advancements in Vision-Language Models (VLMs) have shown great
potential in tackling mathematical reasoning tasks that involve visual context. Un-
like humans who can reliably apply solution steps to similar problems with minor
modifications, we found that state-of-the-art VLMs like GPT-4o can consistently
fail in these scenarios, revealing limitations in their mathematical reasoning ca-
pabilities. In this paper, we investigate the mathematical reasoning robustness
in VLMs and evaluate how well these models perform under different variants
of the same question, such as changes in visual numerical values or function
graphs. While several vision-based math benchmarks have been developed to
assess VLMs’ problem-solving capabilities, these benchmarks contain only static
sets of problems and cannot easily evaluate mathematical reasoning robustness.
To fill this gap, we introduce DYNAMATH, a dynamic visual math benchmark de-
signed for in-depth assessment of VLMs. DYNAMATH includes 501 high-quality,
multi-topic seed questions, each represented as a Python program. Those pro-
grams are carefully designed and annotated to enable the automatic generation
of a much larger set of concrete questions, including many different types of vi-
sual and textual variations. DYNAMATH allows us to evaluate the generalization
ability of VLMs, by assessing their performance under varying input conditions
of a seed question. We evaluated 14 state-of-the-art VLMs with 5,010 generated
concrete questions (10 per seed question). Our results show that the worst-case
model accuracy, defined as the percentage of correctly answered seed questions in
all 10 variants, is significantly lower than the average-case accuracy. In addition,
many models show high consistency in answering these questions – the incorrect-
ness of a certain variant of a seed question is not only due to inherent randomness.
Our analysis emphasizes the need to study the robustness of VLMs’ reasoning
abilities, and DYNAMATH provides valuable insights to guide the development of
more reliable models for mathematical reasoning.

1 INTRODUCTION
Leveraging pretraining on vast Internet-scale datasets, Large Language Models (LLMs) (Brown,
2020; Ouyang et al., 2022; Touvron et al., 2023; Achiam et al., 2023) and Multi-modal Large Lan-
guage Models (MLLMs) (Team et al., 2023; Bai et al., 2023; Liu et al., 2024c;a) have achieved
remarkable performance across a wide range of tasks. Among them, Vision-Language Models
(VLMs) (Zhu et al., 2023; Zhang et al., 2024b) stand out, showing exceptional promise as versatile
assistants capable of integrating vision and language for problem-solving.

Among their visual comprehension abilities across different domains, mathematical reasoning
(Lightman et al., 2023; Zhang et al., 2024e) stands out as a crucial measure of human-like intelli-
gence, requiring both math knowledge and logical thinking. Recent work has proposed many bench-
marks for evaluating the mathematical reasoning ability of VLMs. MATHVISTA (Lu et al., 2023)
was the first benchmark specifically designed to evaluate visual mathematical reasoning. Recent
closed-source models, such as Claude 3.5 Sonnet and GPT-4o, along with open-source models like
LLaVA-OneVision (Li et al., 2024), have demonstrated average performance surpassing that of hu-
mans. Benchmarks such as MATH-V (Wang et al., 2024a) and MATHVERSE (Zhang et al., 2024d)
demonstrate the current limitations of VLMs in handling challenging mathematical problems and
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The graph shown is of the absolute value function, y = 
|x|, which forms a 'V' shape. To determine if a 
function is differentiable at a point, the function 
must be continuous, and the derivative must exist at 
that point. 

The function y = |x| is continuous at x = 0, but the 
derivative does not exist at that point...

Therefore, the correct choice is:

(B) No

Response from GPT-4o:

Seed Question 78, Variant 7
Is the function differentiable at 
x = 0?
Choice: (A) Yes  (B) No

(a) Wrong Answer and Explanation to Q78 (b) Correct Answer and Explanation to Q78

The graph you've provided seems to depict a V-shaped 
function, which is indicative of an absolute value 
function or a similar type. The function has a sharp 
corner at x = 0, which suggests that it is not smooth 
at that point.

...

Since the graph shows a sharp corner at x = 0, the 
correct answer is:

(B) No, the function is not differentiable at x = 0.

Response from GPT-4o:

Seed Question 78, Variant 9
Is the function differentiable at 
x = 0?
Choice: (A) Yes  (B) No

Figure 1: An example of consistent failures in GPT-4o. Seed question 78 in our DYNAMATH
benchmark generates a graph of a shifted absolute value function. GPT-4o consistently provides
incorrect answers for variant 9 (left) with 90% repetition consistency, while it can successfully
answer variant 7 (right) with 100% repetition consistency. We tested for other 8 variants involving
non-zero shifts of the absolute value function, GPT-4o insists that the “sharp corner” is at x = 0 and
produces an incorrect answer for 7 variants. More failure examples are in Appendix F.

understanding mathematical diagrams. Following typical evaluation pipelines, these benchmarks
contain a static set of testing questions on which a VLM will be scored.

Our work is inspired by recent studies (Nezhurina et al., 2024; Zheng et al., 2023; Zong et al., 2023;
Mirzadeh et al., 2024), which found that even powerful LLMs struggle to reliably solve simple text
reasoning problems under different input values or conditions. We found that this issue is even more
pronounced in VLMs due to the added complexity of visual context. In the setting of math problems,
we identified consistent failure cases on variations of simple questions. As illustrated in Figure 1,
we identify a simple question asking whether a shifted absolute value function f(x) = |x − a| is
differentiable at x = 0. Despite the shift, this question is still quite simple and poses no challenges
to humans. While GPT-4o can give correct answers for some values of a, it consistently gives a
wrong answer for many different values of a ̸= 0. Drawing inspiration from human reasoning,
where the same steps can be applied to solve similar problems with varying conditions, a robust rea-
soning model should exhibit the same ability. This raises important questions about the robustness
of VLMs’ reasoning abilities: are the reasoning procedures in VLMs robust to problem variations
that pose no challenge to humans?

To address this question, we comprehensively study the robustness of mathematical reasoning in
VLMs by introducing a new benchmark, DYNAMATH. DYNAMATH is a dynamic visual math
benchmark designed for an in-depth assessment of VLMs’ reasoning robustness. Unlike existing
benchmarks, which contain a static dataset of benchmarking questions, DYNAMATH contains 501
high-quality seed questions covering multiple mathematical topics: Plane Geometry, Solid Geom-
etry, Analytic Geometry, Algebra, Puzzle Tests, Graph Theory, Statistics, Scientific Figures, and
Arithmetic. Each seed question is represented as a carefully designed Python program; upon run-
ning, a program generates diverse concrete instances of one seed question with random variations
in its conditions. The program is individually written for each seed question and considers multiple
possible types of variations in each question, such as variations of numerical values, function types,
graph structure, geometry, mathematical operations, etc. The questions also span varying difficulty
levels, from elementary school to high school and undergraduate, with the latter two dominating.
The process of dynamic benchmark generation and evaluation is presented in Figure 2. During eval-
uation, many concrete questions are created from a single seed question, and thus the actual number
of questions evaluated can be much greater (e.g., 10× more) than the number of seed questions.

We conducted extensive experiments on DYNAMATH to evaluate the reasoning robustness of cur-
rent state-of-the-art (SOTA) closed-source models, including GPT-4o, Gemini Pro, and Claude-3.5
Sonnet, as well as open-source VLMs such as the InternVL2 series (Chen et al., 2024), LLaVA-
v1.6 series (Liu et al., 2024b), Qwen2-VL (Wang et al., 2024b), DeepSeek-VL (Lu et al., 2024),
and Llama 3.2 (Dubey et al., 2024). For each seed problem, we randomly generated 10 variants,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Seed Question 169
The purple and orange curves are f(x) and g(x). 
Is f(x)g(x) even or odd? 
Choice: (A) odd (B) even (C) neither

Code for Question Variant Generation 

Concrete Questions & Answers

Variant 5, 6, 7...

Answer for Variant 1:

A

B

B

B

Vision-Language Models

Answer for Variant 2:

Answer for Variant 3: Answer for Variant 4:

Answer Matching

Variant 1

Variant 2

Variant 3

Variant 4

（B）even

（A）odd

（B）even

（A）odd
...

Figure 2: The dynamic benchmark generation procedure in DYNAMATH. A seed question is repre-
sented as a program that can generate many concrete questions with different variations. The plots
for concrete questions are randomly generated along with the corresponding ground-truth answers.
During evaluation, all concrete variants of the seed questions are considered, allowing us to evaluate
the worst-case model performance and robustness.

resulting in an evaluation dataset of 5,010 concrete problems. On these problems, we evaluate both
average-case accuracy and worst-case accuracy. The worst-case accuracy is defined as the percent-
age of correctly answered seed problems in all 10 variants. We observe that all considered VLMs
have a worst-case accuracy that is close to or less than 50% of the average-case accuracy, signify-
ing their unreliability in handling question variations. In addition, we also evaluate the repetition
consistency on these VLMs, which characterizes the model randomness to ensure that a low worst-
case accuracy is not solely caused by occasional random errors but also consistent errors on certain
variants of a seed problem. Our main contributions and findings can be summarized as:
• We are the first to study the mathematical reasoning robustness of VLMs and identified a new
weakness in VLMs: they may consistently fail on certain variants of simple math questions that
pose no challenges to humans. Such a weakness is prevalent in many state-of-the-art VLMs.
• We introduce DYNAMATH, a dynamic benchmark comprising 501 individually designed pro-
grams capable of generating a large number of question variants across different types. Our work is
the first dynamically generated benchmark for evaluating the math capability of VLMs.
• Based on 5,010 concrete questions generated by DYNAMATH, we conduct an extensive evaluation
of both SOTA closed-source and open-source VLMs. We find a noticeable gap between the average-
case accuracy and worst-case accuracy among all models, indicating that many VLMs do not have
robust reasoning capabilities even on relatively simple mathematical questions.

2 RELATED WORK
Mathematical Reasoning Benchmarks. Reasoning ability is a key indicator of intelligence,
prompting researchers to develop various benchmark datasets to assess the mathematical reason-
ing capabilities of LLMs and VLMs. Numerous benchmarks have been proposed for evaluating this
ability in the text-only domain, including (Amini et al., 2019; Hendrycks et al., 2020; 2021; Cobbe
et al., 2021; Mishra et al., 2022; Frieder et al., 2024; Yu et al., 2023; Zhang et al., 2024a). Addi-
tionally, recent research has begun to shift its focus towards the evaluation of robustness and the
creation of dynamic benchmarks for language models. Several studies (Stolfo et al., 2022; Wu et al.,
2023; Srivastava et al., 2024; Nezhurina et al., 2024; Qian et al., 2024; Kurtic et al., 2024; Mirzadeh
et al., 2024) assess the language models’ robustness to the changing of item names or value con-
ditions in the text-based question. However, many real-world problems, such as those involving
statistical charts and geometry, rely on visual context. To assess visual mathematical reasoning, sev-
eral benchmarks have been designed around geometry tasks (Lu et al., 2021; Chen et al., 2021) or
multiple-choice questions (Liu et al., 2023; Yue et al., 2024). Among these, Liu et al. (2023) studied
the robustness of VLMs when faced with changes in the order of multiple-choice questions. Recent
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efforts have expanded these benchmarks to cover a broader array of topics and question formats,
such as MATHVISTA (Lu et al., 2023), MATHVERSE (Zhang et al., 2024d), and MATH-V (Wang
et al., 2024a). Despite the diverse range of questions and visual contexts in these benchmarks, they
share a common limitation: both the visual components and text remain static. This allows mod-
els to potentially achieve high scores by memorizing patterns from the training data, rather than
applying true reasoning skills. In contrast, this paper introduces DYNAMATH, a dynamic visual
math benchmark that provides a more rigorous assessment of VLMs’ reasoning capabilities through
dynamically generating math questions with visual content.

Vision-Language Models (VLMs) With the success of LLMs, numerous closed-source VLMs,
such as GPT-4o, Gemini, and Claude 3.5, have excelled across a variety of visual-based under-
standing and conversational tasks, highlighting the potential of multimodal AI assistants. In the
open-source domain, several efforts are actively advancing the field. Approaches like LLaMA-
Adapter (Zhang et al., 2024c; Gao et al., 2023) and MiniGPT-4 (Zhu et al., 2023) leverage frozen
language models with a limited number of trainable parameters, demonstrating promising results.
Furthermore, a range of VLMs trained on larger multimodal datasets has been open-sourced, push-
ing the frontier of visual comprehension and generalization ability. Notable examples include the
InternVL1.5 and InternVL2 series (Chen et al., 2024), InternLM-XComposer (Zhang et al., 2023;
Dong et al., 2024), LLaVA-v1.6 series (Liu et al., 2024b), LLaVA-OneVision (Li et al., 2024),
Qwen-VL (Bai et al., 2023; Wang et al., 2024b), and DeepSeek-VL (Lu et al., 2024). These models
contribute significantly to advancing the capabilities of VLMs in prior visual benchmarks.

3 BENCHMARK DESIGN
We present DYNAMATH, a curated evaluation dataset aimed at assessing the robustness of visual
language models (VLMs) in multimodal mathematical reasoning across a wide variety of mathe-
matical tasks with dynamic visual and textual contexts.
3.1 DATASET COLLECTION

Our benchmark collection comprises two phases: seed question collection and program-based ques-
tion generation. In the initial phase, we selectively curate a set of high-quality mathematics problems
that necessitate reasoning based on visual information. The subsequent phase involves transform-
ing each seed question into code-based prototypes, allowing for the generation of diverse concrete
questions under randomly sampled conditions.

Seed question Collection. The seed questions are sourced from existing visual math datasets and
publicly available online resources. We identify 107 questions from MathVista (Lu et al., 2023),
covering fundamental concepts in analytic geometry, planar geometry, and statistics. Additionally,
we source 27 questions from MATH-V (Wang et al., 2024a), which serve as prototypes for topics
related to arithmetic, puzzle tests, and solid geometry. To augment the dataset’s breadth and depth,
we included 45 questions based on scientific figures and 48 undergraduate-level questions focused on
graph theory, drawn from the MMMU dataset (Yue et al., 2024) and various accessible educational
materials. Furthermore, we incorporated 236 questions requiring advanced reasoning on topics such
as functions, geometry, and statistics, all gathered from publicly available resources on the internet.
To diversify the question types represented in our collection, we also developed 38 new problems
by ourselves covering linear algebra, set theory, and algorithmic flow.

Following the collection of seed questions, we conducted a comprehensive review to eliminate any
questions that included excessively complex images, as these would pose challenges for program-
matic generation. Ultimately, as shown in Figure 4(b), our benchmark consists of 501 seed ques-
tions, with 227 (45.3%) sourced from established visual math datasets, while 274 (54.7%) are newly
collected or developed from public resources.

Note that our goal is not to create the most challenging, competition-level benchmark as in (Wang
et al., 2024a), but rather to provide relatively easy benchmarks with diverse variants to evaluate
robustness. Nonetheless, we ensure that the difficulty of our questions is comparable to the levels of
datasets such as MATHVERSE (Zhang et al., 2024d) and MATHVISTA (Lu et al., 2023).

Program-based Question Generation. After establishing our seed questions, we recruited a
group of college STEM students to annotate each question with the common strategies they em-
ployed in solving them. These annotations served as prototypes for developing corresponding pro-
grams tailored to each question. As illustrated in Figure 2, each question is represented as a carefully
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(b) Geometric Transformations(a) Numerical Value Variants (c) Graph Structure Variants (d) Function Type Variants

Figure 3: Examples of variation types in DYNAMATH. More examples are listed in Appendix B and
D.

crafted Python program, which encompasses a defined range of conditions for sampling and algo-
rithmic calculations to derive the solution. Additionally, we implemented a drawing function in each
program, utilizing libraries such as Matplotlib and Pyglet to generate corresponding images based
on varying conditions. Specifically, 470 of the question programs incorporate a plotting function
that leverages the randomly sampled conditions to create the visual context of the question, while
the remaining 31 question programs utilize fixed images, randomizing only the textual elements.
This programmatic approach allows the generation of a large number of concrete benchmark ques-
tions by executing the generation program multiple times, facilitating the efficient creation of new
problems and enabling the evaluation of the reasoning robustness of VLMs.

As shown in Figure 3, we integrate various types of variants to enrich the diversity of question
generation for DYNAMATH:
1. Numerical Value Variants: Modifying numerical quantities to evaluate the VLM’s proficiency
in handling different numerical values and performing arithmetic operations.
2. Geometric Transformations: Altering shapes, angles, dimensions, and relative positions to ex-
amine the spatial and geometric understanding of VLMs.
3. Function Type Variants: Varying different types of mathematical functions (e.g., linear,
quadratic) to evaluate how well models generalize across functional representations.
4. Color Variants: Changing object or curve colors randomly to test the model’s recognition of
visual patterns and its robustness to superficial alterations.
5. Symbolic Substitutions: Modifying symbolic elements such as mathematical operations to de-
termine the model’s adaptability to various symbolic representations.
6. Graph Structure Variants: Modifying graph layouts, networks, or other structural representa-
tions to assess the model’s comprehension of relationships and topological features.
7. Real-life Contexts Variants: Adjusting the contents of real-world scenarios (e.g., calendars,
time-related problems, or poker-like questions) to test the model’s contextual understanding and
application to practical situations.
Each variant category targets a specific facet of mathematical reasoning, making DYNAMATH a
comprehensive benchmark for evaluating the flexibility, robustness, and accuracy of VLMs in solv-
ing mathematical problems. Detailed diagrams of each variation are provided in Appendix B.

3.2 DATASET STATISTICS

Detailed statistics on the data composition of DYNAMATH are presented in Table 1. DYNAMATH
encompasses nine mathematical topics: Solid Geometry (SG, 3.0%), Puzzle Tests (PT, 3.4%), Arith-
metic (AR, 5.2%), Scientific Figures (SF, 9.0%), Graph Theory (GT, 9.6%), Algebra (AL, 10.2%),
Plane Geometry (PG, 15.4%), Analytic Geometry (AG, 19.4%), and Statistics (ST, 25.0%). Exam-
ples for each topic are provided in Appendix D. Each topic necessitates a nuanced understanding
of image context, foundational mathematical knowledge, practical reasoning abilities, and logical
deduction skills. Importantly, the dataset is designed to cater to varying levels of difficulty, rang-
ing from elementary to undergraduate education, with a notable focus on high school (55.3%) and
undergraduate (32.1%) levels. In terms of question types, the dataset consists of 59.1% numerical
questions, 34.7% multiple-choice questions, and 6.2% free-form questions. While VLMs might
occasionally answer multiple-choice questions correctly by chance, free-form questions provide a
more precise evaluation of the model’s capabilities. Consequently, our dataset emphasizes free-form
questions, distinguishing it from previous visual math benchmarks such as MATHVISTA (Lu et al.,
2023), MATHVERSE (Zhang et al., 2024d), and MATH-V (Wang et al., 2024a), which predomi-
nantly include more than 50% multiple-choice questions.

In Figure 4(a), we illustrate the distribution of variant numbers among the 501 seed questions. No-
tably, approximately 30.5% of the seed questions have a possible variant number ranging from 10
to 102. Nearly 93% of the seed questions contain more than 10 variants, and 17.4% of the seed
questions have more than 106 potential variants, demonstrating the diversity of variations in our
dataset.
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Statistic Number
Total seed questions (programs) 501
- Created from existing dataset 227 (45.3%)
- Newly designed questions 274 (54.7%)
Topics
- Solid geometry (SG) 15 (3.0%)
- Puzzle test (PT) 17 (3.4%)
- Arithmetic (AR) 26 (5.2%)
- Scientific figure (SF) 45 (9.0%)
- Graph theory (GT) 48 (9.6%)
- Algebra (AL) 51 (10.2%)
- Plane geometry (PG) 77 (15.4%)
- Analytic geometry (AG) 97 (19.4%)
- Statistics (ST) 125 (25.0%)
Levels
- Elementary school (EL) 63 (12.6%)
- High school (HI) 277 (55.3%)
- Undergraduate (UN) 161 (32.1%)
Question Types
- Numerical questions 296 (59.1%)
- Multiple-choice questions 174 (34.7%)
- Free-form questions 31 (6.2%)

Table 1: Statistics of DYNAMATH.
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Figure 4: (a) Variant number distribution and
(b) source composition of DYNAMATH.

3.3 EVALUATION PROTOCOLS

Our evaluation process consists of two stages: answer extraction and score calculation. Follow-
ing the methodology of prior work (Lu et al., 2022), we utilize prompt engineering and template
matching to extract answers. Prompts guide the model to generate responses in both full and short
answer formats. After generation, the short answer is extracted for comparison with the ground
truth. Detailed prompts used in our experiments can be found in Appendix C.

Our dataset contains N = 501 seed questions in total. For each seed question in the dataset, we
generate M = 10 variants, resulting in a total of 5, 010 concrete questions. We evaluate two met-
rics: average-case accuracy (Aavg) and worst-case accuracy (Awst) over these variants. The two
metrics are different from prior benchmarks that evaluate only a single instance of a question. The
metrics are defined as follows:

Aavg =
1

N

N∑
i=1

1

M

M∑
j=1

I[Ans(i, j) = GT(i, j)], Awst =
1

N

N∑
i=1

min
j∈[1,M ]

I[Ans(i, j) = GT(i, j)],

(1)
where Ans(i, j) and GT(i, j) represent the generated answer and the ground truth answer for variant
j of question i. We also define Reasoning Robustness (RR) as the ratio between the average-case
performance and the worst-case performance:

RR =
Awst

Aavg
, (2)

The model’s response uncertainty reflects both the impact of input changes and inherent uncertainty,
the latter of which can be represented by the concept of repetition consistency (RC), similar to
self-consistency (Wang et al., 2022). We define repetition consistency as:

RC(i, j) =
1

K

K∑
k=1

I[Ansk(i, j) = Ans(i, j)], (3)

where K is number of repetitions and Ansk(i, j) is the k-th repetition for j-th variant of i-th seed
question. The repetition consistency represents the model’s confidence in the answer Ans(i, j).
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Table 2: Average-case accuracy Aavg on DYNAMATH with 5,010 generated questions. “ALL”
represents overall accuracy. Question topics and difficulty levels (PG, EL, etc) are defined in Table 1.

Model ALL PG SG AG AL PT GT ST SF AR EL HI UN

Closed-sourced Large Multimodal Models (LMMs)

Zero-shot GPT-4o 63.7 56.8 52.0 61.0 76.9 51.8 58.1 69.3 62.4 61.5 68.6 61.8 36.8
Zero-shot Claude-3.5 64.8 49.9 49.3 55.3 81.0 44.1 69.4 78.2 62.2 61.2 66.7 62.6 33.3
Zero-shot Gemini Pro 1.5 60.5 52.7 42.7 61.6 70.8 20.6 65.2 69.8 50.2 54.2 62.9 59.2 37.1

3-shot CoT GPT-4o 64.9 58.1 59.3 57.7 84.1 51.2 61.9 71.0 60.9 57.7 66.2 62.5 34.8
3-shot CoT Claude-3.5 62.5 49.1 48.0 50.6 80.2 37.1 58.1 78.2 64.9 55.0 63.0 61.5 30.5
3-shot CoT Gemini Pro 1.5 58.7 52.6 45.3 56.7 72.9 21.8 57.9 66.0 54.9 48.1 59.0 58.3 34.2

Open-source Vision Language Models (VLMs)

Qwen2-VL-72B 55.1 48.1 48.7 50.9 57.6 28.2 45.0 68.9 56.4 54.2 61.3 57.4 30.7
Qwen2-VL-72B (3-shot CoT) 52.4 45.1 44.7 47.5 59.4 19.4 44.2 67.1 52.9 53.1 61.0 53.6 28.6
Qwen2-VL-7B 42.1 40.3 38.7 39.9 37.1 8.2 44.8 52.1 41.1 39.2 47.6 42.2 24.4
InternVL2-76B 54.0 44.5 34.7 43.8 67.6 35.3 51.0 66.7 55.1 51.5 60.3 52.9 26.4
InternVL2-40B 41.8 31.3 21.3 38.8 42.9 15.3 38.3 58.1 43.1 38.1 51.0 41.5 23.4
InternVL2-26B 41.0 35.8 26.0 37.3 38.8 13.5 46.9 51.9 39.6 40.4 52.1 38.5 22.5
InternVL2-8B 39.7 33.9 37.3 32.5 46.9 15.9 42.1 47.8 39.1 37.3 51.1 37.4 19.6
Llama-3.2-90B 44.0 47.5 37.3 36.8 46.5 12.4 44.8 56.8 39.8 30.0 45.4 43.8 22.2
Deepseek-VL-7B-chat 21.5 16.0 13.3 26.5 12.9 4.7 32.7 24.3 24.2 15.0 28.3 19.0 16.0
Llava-v1.6-34B 27.1 21.4 25.3 27.6 14.9 7.6 32.7 36.8 27.8 23.1 35.9 23.8 16.6
Llava-v1.6-vicuna-13B 19.8 14.7 10.0 23.4 8.2 10.0 21.5 28.2 19.6 10.0 27.1 16.5 14.1
Llava-v1.5-7B 16.6 10.5 7.3 19.5 6.5 8.2 32.3 17.5 20.2 10.8 18.9 13.3 11.7

Human

Human performance 77.3 79.9 66.7 80.4 77.5 73.5 69.8 78.0 78.9 75.0 78.6 79.8 72.7

4 EXPERIMENT

In this section, we conduct thorough experiments to assess the performance and reasoning robustness
of various closed-source and open-source models on the DYNAMATH dataset. Subsequently, we
present detailed quantitative results and qualitative analyses in Sections 4.2 and 4.3, respectively.
4.1 EXPERIMENTAL SETUPS

We evaluate the performance of two sets of models on the DYNAMATH benchmark, which involves
10 variations for each seed question, resulting in a total of 5010 questions. The first group com-
prised SOTA closed-source VLMs, such as GPT-4o, Gemini Pro 1.5, and Claude-3.5 Sonnet, with
zero-shot and 3-shots with Chain-of-Thought (CoT) configurations. The second group consisted
of SOTA open-source VLMs, including Qwen2-VL (7B, 72B) (Wang et al., 2024b), InternVL2
(8B, 26B, 40B, 76B) (Chen et al., 2024), Llava-v1.5 (7B) (Liu et al., 2024a), Llava-v1.6 (13B,
34B) (Liu et al., 2024b), Deepseek-VL (7B) (Lu et al., 2024), and Llama 3.2 (90B) (Dubey et al.,
2024). We specifically explored open-source models with varying parameter sizes to analyze the
impact of model size on reasoning robustness. The deployment of open-source models relied on the
lmdeploy package (Contributors, 2023). We set the temperature to 0.0 for all models to reduce
inherent randomness. Details regarding the prompts and hyperparameters used in this experiment
are outlined in Appendix C.

To assess human performance, we generated a new variant dataset consisting of 1002 concrete ques-
tions (2 variants per seed question). These questions were divided into 20 questionnaires, each
containing 50 to 51 questions. We then recruited 20 undergraduates or graduates from STEM to
help establish the baseline for human performance based on their average scores.

For the few-shot setup, we follow the standard approach by including three demonstration examples,
each accompanied by the associated visual elements. Given the diverse range of topics covered in
DYNAMATH, we provide topic-specific demonstration examples to ensure its relevance for each
problem in DYNAMATH. Specifically, we curated five demonstration examples from MathVista (Lu
et al., 2023) and MathVision (Wang et al., 2024a) for each topic, and then randomly select three
examples when evaluating DYNAMATH problems within the corresponding topic. In addition, we
incorporate detailed reasoning steps in the demonstration examples, following a typical Chain-of-
Thought (CoT) setup (Wei et al., 2022). Detailed demonstrations and prompts in Appendix C.3.
4.2 EXPERIMENTAL RESULTS

In this section, we present a detailed comparison of the top-performing VLMs on DYNAMATH, as
shown in Table 2 and Table 3.
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Table 3: Worst-case accuracy Awst on DYNAMATH with 5,010 generated questions. “ALL” repre-
sents overall accuracy. Question topics and difficulty levels (PG, EL, etc) are defined in Table 1.

Model ALL PG SG AG AL PT GT ST SF AR EL HI UN

Closed-sourced Large Multimodal Models (LMMs)

Zero-shot GPT-4o 34.7 37.7 33.3 25.8 54.9 11.8 18.8 38.4 35.6 46.2 46.0 34.3 31.1
Zero-shot Claude-3.5 35.3 22.1 26.7 18.6 62.7 23.5 27.1 53.6 24.4 42.3 49.2 33.2 33.5
Zero-shot Gemini Pro 1.5 26.9 28.6 20.0 19.6 39.2 5.9 22.9 35.2 15.6 30.8 41.3 26.7 21.7

3-shot CoT GPT-4o 32.3 31.2 40.0 21.6 54.9 17.6 20.8 36.8 26.7 46.2 47.6 30.7 29.2
3-shot CoT Claude-3.5 32.1 27.3 26.7 11.3 54.9 0.0 10.4 56.0 31.1 30.8 39.7 32.9 28.0
3-shot CoT Gemini Pro 1.5 23.6 27.3 26.7 14.4 39.2 5.9 18.8 27.2 17.8 26.9 33.3 23.1 20.5

Open-sourced Vision Language Models (VLMs)

Qwen2-VL-72B 28.3 27.3 33.3 15.5 31.4 0.0 16.7 43.2 26.7 42.3 41.3 30.3 19.9
Qwen2-VL-72B (3-shot COT) 22.8 24.7 26.7 8.2 35.3 0.0 8.3 32.8 22.2 38.5 41.3 23.5 14.3
Qwen2-VL-7B 13.8 22.1 6.7 7.2 13.7 0.0 12.5 16.8 11.1 19.2 25.4 12.3 11.8
InternVL2-76B 24.6 24.7 20.0 15.5 37.3 5.9 12.5 32.8 20.0 38.5 39.7 23.1 21.1
InternVL2-40B 14.2 14.3 6.7 9.3 13.7 0.0 10.4 21.6 13.3 19.2 28.6 14.1 8.7
InternVL2-26B 14.4 19.5 0.0 6.2 9.8 0.0 18.8 20.0 11.1 26.9 34.9 12.3 9.9
InternVL2-8B 10.4 13.0 20.0 5.2 15.7 0.0 10.4 9.6 11.1 15.4 23.8 9.4 6.8
Llama-3.2-90B 13.0 22.1 20.0 7.2 7.8 0.0 12.5 16.8 13.3 3.8 15.9 14.1 9.9
Deepseek-VL-7B-chat 4.2 7.8 0.0 3.1 0.0 0.0 10.4 4.0 2.2 3.8 7.9 2.9 5.0
Llava-v1.6-34B 6.0 10.4 13.3 4.1 2.0 0.0 4.2 6.4 6.7 7.7 15.9 5.1 3.7
Llava-v1.6-vicuna-13B 2.8 7.8 0.0 4.1 0.0 0.0 2.1 2.4 0.0 0.0 6.3 2.9 1.2
Llava-v1.5-7B 1.8 3.9 0.0 2.1 0.0 0.0 4.2 0.8 0.0 3.8 3.2 1.8 1.2

Overall Results on Average Accuracy. Table 2 illustrates the average-case performance of a vari-
ety of closed-source and open-source models. Within the closed-source category, GPT-4o, Claude-
3.5, and Gemini Pro 1.5 exhibit average accuracies higher than 60%, with Claude-3.5 achieving
the highest zero-shot average accuracy at 64.8%. However, there remains an 12.5% disparity when
compared to human performance, which stands at 77.3%. This highlights the need for further de-
velopment in the reasoning ability of VLMs. Regarding the 3-shot CoT performance, it is intriguing
to note that there is no consistent improvement across different closed-sourced models, confirm-
ing findings from previous research (Wang et al., 2024a). For instance, while 3-shot CoT GPT-4o
manages to enhance zero-shot performance from 63.7% to 64.9%, both 3-shot CoT Claude-3.5 and
3-shot CoT Gemini Pro 1.5 experience a decline in performance (64.8% → 62.5% and 60.5% →
58.7% respectively). Moving on to the open-sourced models, although they generally underperform
when compared to closed-sourced models, the gap has been narrowed by recent models such as
Qwen2 and InternVL2, which have more than 70B parameters. This noteworthy progress is evi-
dent when comparing them to previous benchmark results like MATHVISTA (Amini et al., 2019),
MATHVERSE (Zhang et al., 2024d), and MATH-V (Wang et al., 2024a). It highlights the promis-
ing potential of open-source models in the visual math reasoning domain. Moreover, there is a
clear scaling trend observed in open-source models, indicating higher performance as model sizes
increase. For example, Qwen2-VL boosts its score from 42.1% to 55.1% when scaling its parameter
size from 7B to 72B, while InternVL2 sees an increase from 39.7% to 54.0%.

Overall Results on Worst-case Accuracy. Table 3 presents the worst-case accuracy of different
models across 10 problem variants, revealing a significant decline in scores for all models. Notably,
the highest-performing model, Claude-3.5, achieves a zero-shot score of only 35.3%, indicating
current VLMs are not sufficiently robust to handle variations in context and images. The situa-
tion is even more concerning for open-source models: the best-performing model, Qwen2-VL-72B,
achieves a score of 28.3%, while smaller models like Llava-v1.6-vicuna-13B score only 2.8%. Our
evaluation results highlight the limited reasoning robustness of both open-source and closed-source
models, underscoring the necessity for the community to address these limitations in future research.

Fine-grained Results. In Table 2 and Table 3, we present detailed results categorized by different
question topics and difficulty levels. From a topical perspective, we observe that the Puzzle Test (PT)
topic challenges both open-source and closed-source models. The top-performing closed-source
model, GPT-4o, and the leading open-source model, InternVL2-76B, achieve average-case accura-
cies of 51.8% and 35.3%, respectively, while humans score 73.5%. Notably, all open-source models
demonstrate poor performance (0.0%) on the worst-case accuracy metric, except InternVL2-76B
(5.9%). Despite this gap, Table 2 shows that closed-source models such as Claude-3.5 can surpass
human scores on specific topics like Algebra (AL) and Statistics (ST), which is promising. When
considering difficulty levels, all models demonstrate a trend of decreasing average accuracy as the
difficulty increases, as illustrated in Table 2. In contrast, human performance remains consistent
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Figure 5: Comparing reasoning robustness across different (a) models and (b) topics.

Model name GPT-4o Gemini Qwen2-VL-72B InternVL2-76B
Repetition Consistency (%) 94.1 92.5 98.9 99.0

Table 4: The Repetition Consistency (RC) for different models over 5 repetitions.

across difficulty levels, indicating that current VLMs are still not adept at handling more difficult
visual math problems compared with human capabilities.

Reasoning Robustness. We use the reasoning robustness (RR) metric, defined in Eq 2, to measure
the robustness of VLMs by evaluating the relative performance consistency across question variants.
We defer the detailed reasoning robustness results in Appendix H.3. Figure 5 (a) compares the
RR of all VLMs used in our experiments. Notably, Claude-3.5 and GPT-4o achieve the highest
robustness among all tested models. Moreover, consistent with previous findings, closed-source
models demonstrate greater robustness than open-source models, with reasoning robustness scaling
with model size. However, Qwen2-72B and InternVL2-76B outperform Gemini, highlighting
the robustness limitations of even large models like Gemini. In Figure 5 (b), we compare the
reasoning robustness across different question topics for GPT-4o and Qwen2-VL-72B. The results
show that the two VLMs are particularly robust in Arithmetic and Algebra question types, indicating
their strong arithmetic calculation abilities, which are less affected by changes in visual conditions.
However, GPT-4o still exhibits weaknesses in the Puzzle Test. Similarly, Qwen2-VL-72B shows
shortcomings in both Puzzle Test and Analytic Geometry topics, achieving nearly 0% RR and 30%
RR, respectively. These weaknesses suggest directions for future improvement of these models.

Repetition Consistency. To ensure a robust analysis and account for the inherent randomness in
model outputs, we calculate repetition consistency (RC) as defined in Eq 3. This metric evaluates
the model’s output confidence across multiple generations for the same question. Specifically, we
produce five responses for 501 questions and then compute their consistency relative to the first
response. The results, detailed in Table 4, reveal the consistent outputs of four closed-source and
open-source models, with RC values ranging from 92% to 99%. Compared with the low reason-
ing robustness scores, VLMs have much smaller consistency on different question variants. These
findings reinforce our arguments that VLMs lack robustness in varying question conditions.

Consistent Failure Cases. An interesting phenomenon we observed is that some seed questions
are solvable in certain variants but result in consistent failures in others (repetition consistency
RC = 1 for 5 or 10 repetitions). The example in Figure 1 is a representative case: the question
is easily solvable when the absolute value function at origin, but any shifts tend to lead to con-
sistent failures on GPT-4o. We extensively examined our dataset and counted the number of such
instances. Specifically, GPT-4o, Gemini Pro 1.5, Qwen2-VL-72B, and InternVL2-76B exhibited
21.8%, 18.4%, 29.9%, and 28.3% of these types of questions, respectively, out of our 501 seed
questions. These examples highlight the unreliability of VLMs on mathematical reasoning tasks.
4.3 QUALITY STUDY

Qualitative Examples of GPT-4o. In this section and Appendix G, we provide a few qualitative
examples of leading VLMs’ answers. Our analysis reveals that current VLMs can consistently pro-
duce incorrect responses to specific question variants while generating accurate answers to others.
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Seed Question 12: What is the period of this function? Answer the question with a floating-point number.

Answer: 6.283 

Variant 1

Answer: 6.283

Variant 2

Answer: 6.283

Variant 3

Answer: 6.283

Variant 4

Answer: 6.283

Variant 5

Figure 7: Example of the Memorization Phenomenon: the generated variants of seed Question 12
and the corresponding responses from Claude 3.5 Sonnet. The model’s response remains 2π with
high probability, regardless of changes in the conditions depicted in the diagram.

As illustrated in Figure 1, GPT-4o demonstrates the ability to provide correct responses in variant 7,
showcasing accurate perception, question understanding, and reasoning ability. However, in variant
9, where the underlying required capabilities remain the same with only a slight shift in the image,
GPT-4o fails to accurately interpret the function’s position with a high degree of confidence and
consistency. This discrepancy raises concerns about the reasoning robustness of current VLMs. For
additional examples of GPT-4o and other models, please refer to the Appendix G.

Memorization Phenomenon. In our experiments, we observe a phenomenon where current
VLMs tend to provide the same answer regardless of changing conditions, indicating memorization
rather than reasoning based on generalized underlying principles. When we test variant questions
that have the same structure but different parameters and images, the model frequently offers the
same answer with high probability, ignoring the specific variations we introduced. Among the 171
questions incorrectly answered by Claude 3.5 Sonnet, this issue accounts for 4.1% of instances. A
representative case is illustrated in Figure 7, where altering the period of a sinusoidal function (e.g.,
from 2π to π or 4π) does not affect the model’s response, which consistently remains 2π. The exis-
tence of this phenomenon highlights the models’ lack of comprehensive problem analysis and their
limited ability to generalize across different scenarios.

17.8%

33.1%

18.9%

3.6%
26.6%

hallucination
error

figure-reading
error

reasoning
error

calculation
error

knowledge error

Figure 6: Error Analysis of
Claude-3.5 Sonnet.

Error Analysis. We conducted an error analysis on Claude 3.5
Sonnet to identify potential failure modes on DYNAMATH. Specif-
ically, we analyzed the 169 questions where Claude 3.5 Sonnet
failed, examining the reasoning paths and final answers in detail.
The statistical distribution of various error types is presented in Fig-
ure 6. We considered five types of errors: figure reading errors,
reasoning errors, knowledge errors, calculation errors, and halluci-
nation errors. Figure reading errors account for 33.1% of the to-
tal errors, despite Claude 3.5 Sonnet having specially reinforced
perception capabilities. This indicates that there is still a consid-
erable way to go for VLMs to accurately read and interpret data
from images. Reasoning errors account for 26.6%, making them
the second-largest cause of errors. This suggests that the model’s
reasoning processes are still delicate and can be easily disrupted by minor changes in conditions
and image input. Calculation errors, which constitute 18.9% of the errors, likely result from the sig-
nificant computational challenge imposed by our randomly generated conditions without specially
designed parameters, as opposed to simpler questions in prior work that are easier to compute. In ad-
dition, Hallucination errors make up 17.8%, showing that the model tends to fabricate non-existent
information. More failure examples can be found in Appendix F.

5 CONCLUSION

In this work, we introduce DYNAMATH, a dynamic visual math benchmark designed to system-
atically analyze the robustness of mathematical reasoning capabilities in current leading vision-
language models (VLMs). By employing program-based problem generation, we can create diverse
variants by altering visual conditions in the seed problems. Our evaluation reveals that leading
closed-source and open-source VLMs are sensitive to condition changes in question variants, de-
spite their required underlying capabilities remaining the same. This raises significant concerns
within the VLM community on mathematical reasoning tasks. Our detailed results and analysis not
only identify the weak points of current VLMs but also shed light on the causes of their errors,
thereby facilitating the development and evaluation of more robust VLMs in the future.
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Reproducibility Statement. We have implemented several measures to ensure the repro-
ducibility of our results. This includes providing detailed examples from our dataset, com-
prehensive descriptions of the prompts, and the hyperparameters used in our experiments.
Additionally, our dataset is available through an anonymized link for reproducibility check:
https://anonymous.4open.science/r/DynaMATH-3D13/. We will also open-source all our code for
public use upon paper acceptance.
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A LIMITATIONS
Although our benchmark matches the difficulty levels of MATHVERSE and MATHVISTA, one
limitation of our work is that the difficulty level is relatively limited compared to MATH-V (Wang
et al., 2024a), due to the dynamic nature of the questions. Adapting very challenging questions into
our program structures requires substantial human effort, which currently prevents us from curating
a large number of complex visual math reasoning questions. In the future, we hope to leverage
strong foundational models to aid in designing an automatic pipeline for dynamic math question
design and generation.

Furthermore, the selection of seed questions can introduce unintended bias in DYNAMATH dataset.
For instance, the most challenging question topic for VLMs, the Puzzle test, only dominates 3.4% of
the whole dataset. It remains an open problem to study the bias in open-source datasets and requires
further efforts. Regarding the variation generation process, we have identified a limitation: we cur-
rently consider only individual types of variants, such as Numerical Value Variants or Function Type
Variants, for each seed question. However, in many cases, it is possible to combine different types
of variants, such as Color Variants and Numerical Value Variants. We will explore the integration of
different variant types to further investigate the reasoning robustness of VLMs.

Scalability of DYNAMATH The current design of DYNAMATH relies heavily on the human effort
to curate high-quality seed questions. However, it is important to scale up the design process of
DynaMATH for constructing more comprehensive and challenging benchmarks. Below, we outline
the primary challenges and discuss potential solutions:

A key challenge in scaling DYNAMATH is incorporating dynamic visual elements for each question.
Unlike text-only benchmarks, our dataset includes an image for every problem with different variants
(e.g., graphs, geometric shapes, function plots, real-life content). This requires careful design of the
drawing program, adding significant manual effort, especially in quality control and verification,
which complicates full automation.

A promising solution is to leverage LLMs to automate the generation of dynamic benchmarks.
LLMs have shown proficiency in generating text-based problems and writing code (?). It is possible
to break down benchmark topics and subtopics, prompting the LLM to generate diverse problem
sets and corresponding Python programs for visual elements. However, the generated problems
should be dynamic, with parameterizable Python code to produce multiple image variants. To this
end, DYNAMATH is a valuable benchmark since our seed questions can serve as high-quality human
demonstrations to guide the LLMs for this task. This LLM-assisted approach could significantly re-
duce manual effort. However, some human intervention will still be necessary to ensure the selection
of correct and high-quality samples from LLMs.

While we have to leave the LLM-assisted dynamic benchmark generation as a future work, DYNA-
MATH can serve as a good baseline which is completely crafted by human beings, and future work
on automated dynamic benchmark generation may compare to DYNAMATH in terms of diversity
and quality.

B VARIATION TYPES OF DYNAMATH
DYNAMATH introduces several types of variations based on the seed questions. In Figure 8, we
illustrate six distinct types of variations. This diversity allows our dataset to effectively evaluate the
visual robustness of VLMs.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(d) Symbolic Substitution

(b) Geometric Transformations(a) Numerical Value Variants

(c) Function Type Variants

(f) Graph Structure Variants(e) Real-life Contexts Variants

Figure 8: Variantion types considered in our DYNAMATH benchmark

C DETAILED EXPERIMENT SETUP

In this section, we provide more details about our experiment designs.

C.1 PROMPTS FOR RESPONSE GENERATION

In our experiments, we prompt the VLMs to generate responses to different types of questions, such
as multiple choice, float, and text types. The prompts used for these question types are shown in
Table 5.

C.2 PROMPTS FOR ANSWER EXTRACTION

To simplify the answer extraction process, we use the following prompts to extract the answer and
reload it in JSON format, which can be easily used for template matching with ground truth answers:
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Answer type prompt
multiple choice If the problem is a multiple choice problem, just provide the correspon-

ing choice option, such as ’A’, ’B’, ’C’, or ’D’.

float If the answer is a numerical value, format it as a three-digit floating-
point number.

text Please answer the question in the following form: (specific requirement
in question).

Table 5: The prompt for different questions and answer types in answer generation.

Response Instruction

Please provide an answer to the question outlined above. Your response should adhere to
the following JSON format, which includes two keys: ’solution’ and ’short answer’. The
’solution’ key can contain reasoning steps needed to solve the question. The ’short answer’
key should only provide a concise response.
Example of expected JSON response format:

{
"solution": "[Detailed step-by-step explanation]",
"short answer": "[Concise Answer]"

}

Closed-source models can consistently extract answers and regenerate them in JSON format. In con-
trast, some open-source models, particularly those with relatively low parameter sizes, struggle to
output JSON format reliably. We have identified patterns in their inconsistent responses, which de-
viate from the expected code scripts. By supplementing these scripts, we efficiently check, annotate,
and extract informal answers.

C.3 PROMPTS FOR FEW-SHOT CHAIN OF THOUGHT

Below we provide the few-shot CoT prompt for plane geometry topic. More demonstration examples
for each topic can be found in Appendix E
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Few-shot CoT Prompt

Please answer the question based on the last image. To clearly explain the task, we provide
the following example:

For image 1: Please answer the question and provide the correct option letter, e.g., A, B,
C, D, at the end. Question: As shown in the figure, AB is the diameter of the semicircle,
point O is the center of the circle, point C is a point on the extended line of AB, and CD is
tangent to the semicircle at point D. If AB = 6.0, CD = 4.0, then the value of sin(∠C) is ()

Choices: (A)
3

4
(B)

3

5
(C)

4

5
(D)

2

3

Answer: (B)

Let’s think this step by step:

To solve this problem, we can make use of the properties of the circle and the tangent line.
Here’s a step-by-step breakdown of the approach:

1. Recognize the Geometry: - AB is the diameter of the semicircle, so the length of AB
is 6. This makes the radius of the circle AO = BO = 3. - CD is tangent to the semicircle
at point D. Tangents to a circle are perpendicular to the radius at the point of tangency,
meaning OD ⊥ CD.

2. Set Up the Triangle: - We are asked to find sin(∠C). The triangle we should focus on
is triangle ODC. - By the properties of a tangent, ∠ODC = 90◦.

3. Apply Pythagoras’ Theorem: - In the right triangle ODC, we have the lengths OD = 3
(since it’s the radius of the circle), and CD = 4 (given). - To find OC, use the Pythagorean
theorem:

OC2 = OD2 + CD2

OC2 = 32 + 42 = 9 + 16 = 25

OC = 5

4. Find sin(∠C): - From triangle ODC, sin(∠C) = OD
OC .

sin(∠C) =
3

5

Thus, the correct option is B.

For image 2: ...

For image 3: ...

Now please answer the following question based on the last image: Find the perimeter of
the orange triangle. Please answer in a floating-point number.
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C.4 MODEL HYPERPARAMETERS

We set all parameters except temperature to their default values. We set temperature = 0 for closed-
source models and open-source models to reduce the randomness in the model generation. Table 6
displays the parameters we used for generation in VLMs.

Table 6: Hyperparameters for various VLMs.

Model Hyperparameters
GPT-4o model = gpt-4o-0806, temperature = 0.0, max tokens = 4096

Claude-3.5 model = claude-3-5-sonnet-20240620, temperature = 0.0, max tokens = 1024

Gemini Pro 1.5 model = gemini-1.5-pro, temperature = 0.0, max tokens = 8192

Qwen2-VL-72B model = Qwen/Qwen2-VL-72B-Instruct, temperature = 0.0, max tokens = 2048

QWen2-VL-7B model = Qwen/Qwen2-VL-7B-Instruct, temperature = 0.0, max tokens = 2048

InternVL2-76B model = OpenGVLab/InternVL2-Llama3-76B, temperature = 0.0, max tokens = 1024

InternVL2-40B model = OpenGVLab/InternVL2-40B, temperature = 0.0, max tokens = 1024

InternVL2-26B model = OpenGVLab/InternVL2-26B, temperature = 0.0, max tokens = 1024

InternVL2-8B model = OpenGVLab/InternVL2-8B, temperature = 0.0, max tokens = 1024

Deepseek-VL-7B-chat model = deepseek-ai/deepseek-vl-7b-chat, temperature = 0.0, max tokens = 1024

Llama-3.2-90B model = meta-llama/Llama-3.2-90B-Vision-Instruct, temperature = 0.0, max tokens = 1024

Llava-v1.6-34B model = liuhaotian/llava-v1.6-34b, temperature = 0.0, max tokens = 1024

Llava-v1.6-vicuna-13B model = liuhaotian/llava-v1.6-vicuna-13b, temperature = 0.0, max tokens = 1024

Llava-v1.5-7B model = liuhaotian/llava-v1.5-7b, temperature = 0.0, max tokens = 1024
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D VARIANT EXAMPLES FOR DIFFERENT TOPICS IN DYNAMATH
In this section, we show sample problems in DYNAMATH for different topics including multiple
variants, including Solid Geometry (SG), Puzzle Tests (PT), Arithmetic (AR), Scientific Figures
(SF), Graph Theory (GT), Algebra (AL), Plane Geometry (PG), Analytic Geometry (AG), and
Statistics (ST).

Topic: Solid Geometry (SG)

Q129 from DYNAMATH: What is the volume of this azure right square pyramid?

Q129

Variant 1 Variant 2 Variant 3

Q188 from DYNAMATH: Are two planes parallel? choice: (A) Yes (B) No

Q188

Variant 1 Variant 2 Variant 3

Q320 from DYNAMATH: Which line is longer, the pink or the red line? choice: (A) pink
(B) red (C) Their lengths are the same.

Q320

Variant 1 Variant 2 Variant 3
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Topic: Puzzle test (PT)

Q115 from DYNAMATH: The sum of the three numbers on each of the two lines of the
cross is 76. Find the number in the center.

Q115

Variant 1 Variant 2 Variant 3

Q282 from DYNAMATH: Fill in the white spaces to make the equations work. choice: (A)
13, 25, 5, and 12 (B) 25, 5, 12, and 12 (C) 13, 4, 25, 13.

Q282

Variant 1 Variant 2 Variant 3

Q284 from DYNAMATH: Find the missing value.Q284

Variant 1 Variant 2 Variant 3
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Topic: Arithmetic (AR)

Q7 from DYNAMATH: In the addition sum to the right, three digits have been replaced
with star. What is the value of star?

Q7

Variant 1 Variant 2 Variant 3

Q25 from DYNAMATH: What is the missing computed symbol? Choices: (A) + (B) - (C)
* (D) /

Q25

Variant 1 Variant 2 Variant 3

Q316 from DYNAMATH: According to the boarding pass, how long is the flight time of
this airplane? Answer the question using the total number of minutes.

Q316

Variant 1

Variant 2

Variant 3

Variant 2
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Topic: Scientific figure (SF)

Q323 from DYNAMATH: Two containers of the same gas (ideal) have these masses and
temperatures Which box has atoms with the largest average thermal energy? choice: (A) A
(B) B (C) Their average thermal energy is the same.

Q323

Variant 1 Variant 2 Variant 3

Q325 from DYNAMATH: Three equally spaced identical long straight wires carry different
currents. In which direction will the middle wire try to move when the currents are switched
on? choice: (A) to the left (B) to the right (C) stay the same

Q325

Variant 1 Variant 2

Variant 3

Variant 3

Q331 from DYNAMATH: The graph shows the force on an object of mass M as a function
of time. For the time interval 0 to 10 s, what is the total change in the momentum of the
object?
Q331

Variant 1 Variant 2 Variant 3
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Topic: Graph theory (GT)

Q42 from DYNAMATH: Is the graph shown connected? choice: (A) Yes (B) No

Q42

Variant 1 Variant 2 Variant 3

Q137 from DYNAMATH: What is the first edge added to the MST when running Kruskal’s
Algorithm? In the case of a tie, choose the edge which comes first in alphabetical order i.e.
if you had to choose between AS and AE, then you would choose AE first.

Q136

Variant 1 Variant 2 Variant 3

Q259 from DYNAMATH: The tree shown in image reserves an expression. Calculate this
expression and output the result.

Q259

Variant 1 Variant 2 Variant 3
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Topic: Algebra (AL)

Q305 from DYNAMATH: The store has 4 combinations of candies. Each candy type has
the same price. Find the price of the fourth combination.

Q305

Variant 1 Variant 2 Variant 3

Q351 from DYNAMATH: Which function has the highest order or growth? choice: (A) f1
(B) f2 (C) f3 (D) f4

Q351

Variant 1 Variant 2 Variant 3

Q465 from DYNAMATH: 210 customers were surveyed about their product preferences.
The results are displayed in the Venn diagram below. How many more customers prefer
only Non-Organic products than only Organic ones?

Q465

Variant 1 Variant 2 Variant 3
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Topic: Plane geometry (PG)

Q28 from DYNAMATH: The two rectangles shown in the picture have the same area. what
is the ratio x : y.

Q28

Variant 1 Variant 2 Variant 3

Q43 from DYNAMATH: What fraction of the shape is azure?

Q43

Variant 1 Variant 2 Variant 3

Q53 from DYNAMATH: What is the area of blue ring?

Q53

Variant 1 Variant 2 Variant 3
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Topic: Analytic geometry (AG)

Q68 from DYNAMATH: What is the green curve? choice: (A) a parabola (B) a line (C) a
logarithmic function (D) a trigonometric function.

Q68

Variant 1 Variant 2 Variant 3

Q87 from DYNAMATH: What is the limit of the function as x approaches 1 from the left
side?

Q87

Variant 1 Variant 2 Variant 3

Q111 from DYNAMATH: The image shows the derivative of f(x). Where is the local max
of f(x) at?

Q111

Variant 1 Variant 2 Variant 3
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Topic: Statistics (ST)

Q72 from DYNAMATH: According to the markov chain shown in the image, what is the
probability of the event ’A to B’?

Q72

Variant 1 Variant 2 Variant 3

Q161 from DYNAMATH: On which number is the spinner more likely to land?

Q161

Variant 1 Variant 2 Variant 3

Q447 from DYNAMATH: The Gantt chart below represents different tasks. Which task
starts the earliest? Choices: (A) Task A (B) Task B (C) Task C (D) Task D (E) Task E

Q447

Variant 1 Variant 2 Variant 3

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

E MORE DEMONSTRATION EXAMPLES FOR FEW-SHOT EXPERIMENT

Demonstration Examples for Topic Algebra

The two markers with a question mark have the same number. Which number do you have
to put instead of the question mark so that the calculation is correct?

Answer: 3

Let’s think this step by step: To solve the problem: The equation is: 10+?+? + 2 = 18
Where both question marks represent the same number. Let’s denote the number as x. The
equation becomes: 10 + x+ x+ 2 = 18
Combine like terms: 12 + 2x = 18.
Now, solve for x: 2x = 18− 12, hence 2x = 6, and therefore x = 3.
So, each question mark should be replaced with 3 to satisfy the equation.

Demonstration Examples for Topic Arithmetic

How many plums (see the picture) weigh as much as an apple?

Answer: 3

Let’s think this step by step:
Since the scale is balanced, the total weight on the left side equals the total weight on the
right side. 1. Let the weight of one apple be A, and the weight of one plum be P .
2. The total weight on the left side of the scale: 3A+ 2P.
3. The total weight on the right side of the scale: A+ 8P.
Since the scale is balanced, we can set the two expressions equal to each other: 3A+ 2P =
A+ 8P.
### Solving for A in terms of P :
1. Subtract A from both sides: 2A+ 2P = 8P.
2. Subtract 2P from both sides: 2A = 6P.
3. Divide both sides by 2: A = 3P.
### Final Answer: One apple weighs as much as 3 plums.
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Demonstration Examples for Scientific Figure

If the population of the red squirrels increased, what would happen to the amount of pine
available?
(A) The amount of pine available would remain the same.
(B) The amount of pine available would decrease.
(C) The amount of pine available would double.
(D) The amount of pine available would increase.

Answer: (B)

Let’s think this step by step: In the food web of Isle Royale National Park, the red squirrels
are primary consumers that feed on pine, which is a primary producer.
If the population of red squirrels increases, the consumption of pine would increase because
more squirrels would be feeding on it. As a result, the amount of pine available would
decrease.
Conclusion: If the population of red squirrels increased, the amount of pine available would
decrease. Thus, the correct option is B.
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Demonstration Examples for Topic Puzzle Test

Please determine the total weight in the fourth image.

Answer: 27

To solve the puzzle and determine the total weight in the fourth image, let’s break it down
based on the given weights:

1. First image: A frog and a sheep together weigh 10 kg.
2. Second image: A horse and a frog together weigh 20 kg.
3.Third image: A horse and a sheep together weigh 24 kg.

We can now set up three equations to represent these situations:
- Frog + Sheep = 10 kg (Equation 1)
- Horse + Frog = 20 kg (Equation 2)
- Horse + Sheep = 24 kg (Equation 3)

Solving the system of equations:
1. From Equation 2, we can express the weight of the horse:
- Horse = 20 kg - Frog (from Equation 2).
2. Substitute Horse in Equation 3:
- (20 kg - Frog) + Sheep = 24 kg.
- 20 kg - Frog + Sheep = 24 kg.
- Sheep - Frog = 4 kg (Equation 4).
3. Now use Equation 1 (Frog + Sheep = 10 kg) and Equation 4 (Sheep - Frog = 4 kg):
- Adding these two equations: (Frog + Sheep) + (Sheep - Frog) = 10 kg + 4 kg, gives:
2 × Sheep = 14 kg, so Sheep = 7 kg.
4. Substitute the value of Sheep (7 kg) into Equation 1:
- Frog + 7 kg = 10 kg, so Frog = 3 kg.
5. Finally, substitute the value of Frog (3 kg) into Equation 2:
- Horse + 3 kg = 20 kg, so Horse = 17 kg.
Total weight in the fourth image:
- The fourth image has the horse, the sheep, and the frog together.
- The total weight is:
Horse (17 kg) + Sheep (7 kg) + Frog (3 kg) = 27 kg.

Thus, the total weight in the fourth image is 27 kg.

F ERROR TYPE EXAMPLES

In this section, we present various examples of error types encountered in Claude 3.5, including
figure reading error, calculation error, reasoning error, hallucination error, and knowledge error.
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Figure Reading Error

Q96 from DYNAMATH: What is the distance between the x-intercept and y-intercept of
blue line?

Claude-3.5 Answer:
1. Identify the x-intercept and y-intercept: The x-intercept is where the line crosses the
x-axis (y = 0). From the graph, this appears to be at (3, 0). The y-intercept is where the
line crosses the y-axis (x = 0). From the graph, this appears to be at (0, 4).
2. Calculate the distance using the distance formula: distance =

√
(x2 − x1)2 + (y2 − y1)2

where (x1, y1) is (3, 0) and (x2, y2) is (0, 4).
3. distance =

√
(0− 3)2 + (4− 0)2 = 5. Therefore, the distance between the x-intercept

and y-intercept is 5 units.

Ground Truth: Distance =
√
4 ≈ 2.828.

Error Analysis: The model misreading the coordinate of the points and gives the wrong
answer.

Figure Reading Error 2

Q185 from DYNAMATH: Based on the measurement results shown in the diagram, this
blue angle is ( ).

Claude-3.5 Answer: To determine the angle represented by the blue lines in the protractor
image:
1. Observe that the protractor is a 180-degree semicircle.
2. Note that one blue line is at the 0-degree mark.
3. Locate where the other blue line intersects the protractor scale.
4. This intersection occurs at approximately 25 degrees.
5. Since the protractor measures angles from 0 to 180 degrees, the angle formed by the blue
lines is directly read as 25 degrees.
Therefore, the measurement of the blue angle is approximately 25 degrees.

Ground Truth: 150 degrees.

Error Analysis: The model fail to distinguish between two set of the numbers for degree
reading. In addition, even for outer degree numbers, the model gives an inaccurate number
reading.
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Calculation Error

Q108 from DYNAMATH: The function f(x) is a cubic function. What is the value of f(x)
when x = 4?

Claude-3.5 Answer:
1. First, let’s recognize that for a cubic function f(x) = ax3 + bx2 + cx + d, we need to
find the values of a, b, c, and d.
2. We can use the given points to set up a system of equations: f(0) = d = 3,
f(1) = a+ b+ c+ 3 = 19,
f(2) = 8a+ 4b+ 2c+ 3 = 63,
f(3) = 27a+ 9b+ 3c+ 3 = 159.
3. From the first equation, we know d = 3.
4. Subtracting equations:
f(1)− f(0) : a+ b+ c = 16
f(2)− f(1) : 7a+ 3b+ c = 44
f(3)− f(2) : 19a+ 5b+ c = 96
5. Solving this system, we get: a = 4, b = 7, c = 5, d = 3
6. So, our function is f(x) = 4x3 + 7x2 + 5x+ 3
7. Now, we can calculate f(4): f(4) = 4(43)+7(42)+5(4)+3 = 256+112+20+3 = 391
Therefore, f(4) = 391.

Ground Truth: Let f(x) = ax3 + bx2 + cx + d, using the number given in the table, one
can get: a = 4, b = 2, c = 10, d = 3. So, our function is f(x) = 4x3 + 2x2 + 10x+ 3 and
f(4) = 331.

Error Analysis: The model fails to solve the system of equations for value b and c.
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Reasoning Error 1

Q146 from DYNAMATH: Find the missing number.

Claude-3.5 Answer:
1. The diagram shows a central number 4 with six numbers radiating from it.
2. The visible numbers are 7, 17, 28, 68, and 71.
3. Let’s check if there’s a consistent mathematical relationship between 4 and these
numbers: 4 x 7 = 28 (one of the given numbers) 4 x 17 = 68 (another given number)
4. This suggests that each number is either a factor or multiple of 4.
5. 71 doesn’t fit this pattern directly, but 71 + 4 = 75, which is 3 x 25.
6. Following this pattern, the missing number should also be related to 4 by multiplication
or addition.
7. A number that fits this pattern and completes the sequence is 13, because: 4 x 13 = 52,
and 52 + 4 = 56, which is 4 x 14.
8. Therefore, the missing number is likely 13.

Ground Truth: 71× 4 = 284.

Error Analysis: The first 4 steps from the model are correct, and the model can observe
that each number is either a factor or multiple of 4 correctly. However, step 5-8 is not correct
and the reasoning to get its final answer 13 is not correct.
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Reasoning Error 2

Q34 from DYNAMATH: What is the area of this parallelogram?

Claude-3.5 Answer: To find the area of a parallelogram, we use the formula: Area = base
× height. In this case:
1. The base is given as 19 ft.
2. The height is the perpendicular distance between the base and the opposite side, which is
8 ft.
Area = 19 ft × 8 ft = 152 sq ft.

Ground Truth: To find the area of a parallelogram, we first need to compute the height
h =

√
82 − 32 ≈ 7.416. Then the area of the parallelogram is 19× 7.416 = 140.904 sq ft.

Error Analysis: The model fail to reason that we need to compute the height using the
given numbers in the plot.

Hallucination Error 1

Q146 from DYNAMATH: Find the area of the shaded part.

Claude-3.5 Answer:
1. The circle has a radius r = 2.
2. The shaded area is a sector of the circle minus a right triangle.
3. The sector angle is 1/8 of the full circle (45◦).
4. Area of the sector = (1/8)πr2 = 1.5708. Area of the triangle = (1/2)r2 = (1/2)22 = 2.
6. Shaded area = Area of sector - Area of triangle = 1.5708− 2 = −0.42927.
5. Taking the absolute value: | − 0.42927| = 0.4292.

Ground Truth: Area of the shaded part = (1/4)πr2 − (1/2)r2 = 1.1416.

Error Analysis: The model hallucinates the sector angle to be 45◦, which should be 90◦. In
addition, instead of realizing that the area should be a positive number, the model take the
absolute value of a negative number and return it as the answer.
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Hallucination Error 2

Q120 from DYNAMATH: Is this graph a cyclic graph? choice: (A) Yes (B) No

Claude-3.5 Answer:
To determine if this graph is cyclic, we need to check if there’s a path that starts and ends at
the same node without repeating any edges. Looking at the graph:
1. It has 5 nodes connected in a star-like pattern.
2. The central node is connected to all other nodes.
3. There are no connections between the outer nodes.
4. To form a cycle, we would need to be able to start at one node, traverse through others,
and return to the starting node without repeating edges.
5. In this graph, any path that tries to return to a starting node would have to go through the
central node twice, which means repeating an edge.
6. Therefore, there is no cycle in this graph.
Since there is no cycle, this graph is not cyclic. The final answer is (B) No.

Ground Truth: Since there is a path that starts and ends at the same node without repeating
any edges, this is a cyclic graph. Hence the correct solution is (A) Yes.

Error Analysis: The model hallucinates the path in the graph and concludes to the wrong
answer.
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Knowledge Error

Q289 from DYNAMATH: The diagram shows Exam score of students. What is the average
score of this exam?

Claude-3.5 Answer:
1. Sum up all the scores: 3 + 3 + 3 + 3 + 0 + 1 + 2 + 2 + 1 + 1 + 3 + 3 + 3 + 4 + 2 + 2 + 6 +
2 + 4 + 4 = 52
2. Count the number of students: There are 9 stem numbers, representing 9 students.
3. Calculate the average: Average = Total Score / Number of Students = 52 / 9 = 5.777777...
4. Round to three decimal places: 5.778.

Ground Truth: 54.6.

Error Analysis: The model fails to read stem-and-leaf plot.

G QUESTION VARIANT EXAMPLES
We present several examples of generated variants of seed questions from our dataset along with
corresponding responses from GPT-4o (Figure 9), Gemini (Figure 10), and Qwen2-VL-72B (Figure
11). These examples illustrate that the leading VLMs exhibit a lack of robustness to variations in
image input, demonstrating unreliable perception and reasoning abilities.
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H ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experiments.

H.1 REASONING ROBUSTNESS ON DIFFERENT VARIATION TYPES

In terms of different variant types in DYNAMATH, as shown in Figure 12, we find that both GPT-4o
and Qwen2-VL-72B are sensitive to variations in graph structure, geometric trans- formation, and
function type. Additionally, Qwen2-VL-72B is vulnerable to symbolic substitution variants. These
weaknesses suggest directions for future improvement of these models.

Figure 12: Comparing reasoning robustness (RR) across different variation types.

H.2 ADDITIONAL FAILURE CASE ANALYSIS

In this section, we present more results on the failure case analysis.

Failure v.s. Difficulty Levels We conducted an in-depth failure analysis based on problem diffi-
culty, categorized into elementary (63 questions), high school (277 questions), and undergraduate
(161 questions) levels. The detailed results are presented in Figure 13.

Figure 13: Failure cases across different difficulty levels.

The results indicate that high school and undergraduate problems account for the majority of failure
cases. Among the error types, knowledge errors are the least frequent, implying that VLMs have a
solid grasp of mathematical concepts and facts. However, reasoning, hallucination, figure reading,
and calculation errors are more prevalent, highlighting that VLMs may struggle with interpreting
visual data and performing accurate calculations and reasoning.

Failure v.s. Problem Topics We performed an in-depth analysis of failure cases based on problem
types. The detailed results can be found in Figure 14.
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Table 7: Reasoning Robustness RR of 14 models on DYNAMATH with 5,010 generated questions,
testing with 0 temperature. “ALL” represents overall accuracy. Question topics (PG, SG, EL, etc)
are defined in Table 1

Model ALL PG SG AG AL PT GT ST SF AR EL HI UN

Closed-sourced Large Multimodal Models (LMMs)

Zero-shot GPT-4o 54.8 66.4 64.1 42.2 71.4 22.7 32.3 55.4 56.9 75.0 67.1 55.5 84.5
Zero-shot Claude-3.5 54.9 44.3 54.1 33.6 77.5 53.3 39.0 68.5 39.3 69.2 73.8 53.1 94.5
Zero-shot Gemini Pro 1.5 44.5 54.2 46.9 31.8 55.4 28.6 35.1 50.5 31.0 56.7 65.7 45.1 58.5

3-shot CoT GPT-4o 49.8 53.7 67.4 37.5 65.3 34.5 33.7 51.9 43.8 80.0 71.9 49.1 83.9
3-shot CoT Claude-3.5 51.7 55.6 55.6 22.4 68.5 0.0 17.9 71.6 47.9 55.9 63.0 53.4 88.7
3-shot CoT Gemini Pro 1.5 40.1 51.9 58.8 25.5 53.8 27.0 32.4 41.2 32.4 56.0 56.5 39.6 60.0

Open-sourced Large Multimodal Models (LMMs)

Qwen2-VL-72B 51.8 56.8 68.5 30.4 54.4 0.0 37.0 62.7 47.2 78.0 67.4 52.8 64.8
Qwen2-VL-72B (3-shot CoT) 43.4 54.8 59.7 17.4 59.4 0.0 18.9 48.9 42.0 72.5 67.7 43.8 49.9
QWen2-VL-7B 32.7 54.8 17.2 18.1 37.0 0.0 27.9 32.3 27.0 49.0 53.3 29.1 49.1
InternVL2-76B 45.8 55.4 57.7 35.3 55.1 16.7 24.5 49.2 36.3 74.6 65.8 43.7 80.0
InternVL2-40B 33.9 45.6 31.3 23.9 32.0 0.0 27.2 37.2 30.9 50.5 56.1 33.9 37.2
InternVL2-26B 35.0 54.3 0.0 16.6 25.3 0.0 40.0 38.5 28.1 66.7 67.1 31.9 44.2
InternVL2-8B 26.1 38.3 53.6 15.9 33.5 0.0 24.8 20.1 28.4 41.2 46.6 25.1 34.9
Llama-3.2-90B 29.5 46.4 53.6 19.6 16.9 0.0 27.9 29.6 33.5 12.8 35.0 32.2 44.8
Deepseek-VL-7B-chat 19.5 48.8 0.0 11.7 0.0 0.0 31.8 16.4 9.2 25.6 28.1 15.2 31.1
Llava-v1.6-34B 22.1 48.5 52.6 14.9 13.2 0.0 12.7 17.4 24.0 33.3 44.2 21.3 22.4
Llava-v1.6-vicuna-13B 14.1 53.1 0.0 17.6 0.0 0.0 9.7 8.5 0.0 0.0 23.4 17.5 8.8
Llava-v1.5-7B 10.8 37.0 0.0 10.6 0.0 0.0 12.9 4.6 0.0 35.7 16.8 13.6 10.6

Figure 14: Failure cases across different problem topics.

From Figure 14, we have the following observations based on the failure reasons and problem types:

• Puzzle test shows a concentration of reasoning errors, with no other error types present,
suggesting that VLMs may struggle with the logical and abstract reasoning required for
puzzles.

• Graph theory, analytic geometry, arithmetic, and statistics problems exhibit more errors
related to figure reading, indicating difficulties in interpreting visual data.

• Solid geometry and algebra problems are prone to calculation errors, highlighting potential
issues with numerical operations on handling such questions.

• Plane geometry has high incidences of hallucination and reasoning errors, suggesting chal-
lenges in both generating relevant information and applying logical reasoning.

H.3 DETAILED REASONING ROBUSTNESS RESULTS OF ZERO TEMPERATURE

As shown in Table 7, we present the full results of reasoning robustness (RR) defined in Eq 2. We
can better understand how the reasoning robustness correlates with question types and difficulty
levels.
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H.4 RESULTS OF DIFFERENT PROMPT TEMPLATE

To investigate other prompt templates, we designed the following prompt aims to improve the rea-
soning and reduce memorization issues for VLMs:

Prompt Template for improving reasoning and reduce memorization

You are solving advanced visual math problems that require logical reasoning and detailed
analysis of the provided image and question. Carefully examine the image and break the
problem into smaller steps to ensure accurate and thoughtful reasoning. Avoid relying
on memorized answers, patterns, or shortcuts. Instead, justify each step of your solution
explicitly based on the information in the image.

Task: Please answer the following question: {new question}, ensuring your explanation
according to the provided image and question. Focus on reasoning rather than recalling.

We evaluated the performance of GPT-4o and Qwen2-VL-72b on 10 variants with temperature 0
using this newly designed prompt, and the average accuracy rate, worst-case accuracy, and reasoning
robustness can be found in Table 8. The results show that both average accuracy and worst-case
accuracy have improved with the use of the designed prompt. This suggests that a carefully crafted
prompt can enhance the performance of VLMs. However, there is no significant improvement in
reasoning robustness, highlighting the ongoing limitations in the robustness of current VLMs.

Table 8: Performance comparison between Zero-shot and Zero-shot with New Prompt for GPT-4o
and Qwen2-VL-72b.

Model Zero-shot Zero-shot w New Prompt
Aavg Awst RR Aavg Awst RR

GPT-4o 63.7% 34.7% 54.8% 65.6% 36.1% 55.0%
Qwen2-VL-72b 55.1% 28.3% 51.8% 57.8% 29.5% 51.0%

H.5 MORE ON MEMORIZATION PHENOMENON

We also tested the newly designed prompt with problems where memorization was evident. Unfor-
tunately, the model still tends to provide the same answers, regardless of changing conditions:

• For seed question 78 in DYNAMATH, GPT-4o consistently argues that a shifted absolute
function is not differentiable at x = 0.

• For seed question 12 in DYNAMATH, Claude-3.5-Sonnet repeatedly reads the period of a
sinusoidal function as 2π, regardless of the actual period shown in the image. We believe a
more systematic study is necessary to effectively address this issue.

A screenshot of the web version of GPT-4o and Claude-3.5 for these two examples can be found in
Figure 15 and Figure 16. More systematic studies are necessary to effectively address this issue.
H.6 EVALUATING THE ROBUSTNESS OF DYNAMATH

An important question to ask is whether dynamic benchmarks are robust enough. In other words,
if we provide synthetic data generated by DYNAMATH, can models perform well on other variants
of DYNAMATH? The best way to investigate this is to perform thorough experiments, including
pre-training and fine-tuning VLMs using DynaMATH. However, due to limited resources, we were
unable to perform full-scale pre-training or fine-tuning of VLMs to thoroughly investigate potential
data leakage involving DYNAMATH. As a proxy investigation, we conducted an in-context learning
experiment.

Specifically, we used variants 1 to 3 of DYNAMATH as few-shot demonstration examples and tested
the VLM’s response on a question from variant 4. As a controlled experiment, we directly used a
question from variant 4 both as a demonstration example and test question (i.e., asking the model
the same question it was shown). This setup provides a preliminary indication of potential data
leakage, as well as the expected performance if the model had memorized the data. We performed
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Table 9: In-context evaluation of DYNAMATH

Model Original Performance Few-shot Controlled Experiment
GPT-4o 64.5% 65.3% 73.1%
Qwen2-72b 53.7% 57.4% 77.0%

Table 10: The Variance of Average Accuracy for different models participating 5 repetitions tests
with 0 temperature

Model name GPT-4o Gemini Qwen2-72B InternVL2-76B
Variance of Average Accuracy (%) 1.86 1.26 0.89 2.12

these experiments on one closed-source model, GPT-4o, and one open-source model, Qwen2-72b.
The results can be found in Table 9.

These results indicate that even with a few variants provided as context, the performance improve-
ment is marginal compared to the original performance and baseline results. Nevertheless, whether
pre-training or fine-tuning can “hack” dynamic benchmarks need more systematic studies, which is
important for future work.
H.7 VARIANCE OF AVERAGE ACCURACY

In our main paper, we have reported repetition consistency as a measure of randomness of model
output. Here, we also calculate the variance of the average accuracy over five repetitions in Table 10.
Specifically, for a set of 501 questions, we conducted five separate evaluations and determined the
variance of their average accuracies. The resulting variance for GPT-4o, Gemini, Qwen2-VL, and
InternVL2 is minimal, ranging from approximately 1 to 2 percentage points. This small variance
enhances the reliability of our results.
H.8 MORE RESULTS ON CIRCULAR CONSISTENCY

In DynaMath, our primary focus is on image-based variants, such as Numerical Value (in the image)
Variants and Geometric Transformations, so we initially did not test for circular consistency. Cir-
cular consistency applies to only multiple choice questions (MCQ) and the contents of the question
are still static; only the order of the choices changed. To address your concern, we evaluated the
circular consistency (Liu et al., 2023) of two representative models, GPT-4o and Qwen2-VL 76B,
specifically using MCQ questions from DynaMath. Interestingly, both models exhibited high repeti-
tion consistency under circular shifts, achieving scores of 90.2% and 92.2%, respectively. In other
words, the model’s output is consistent in most cases regardless of the order of the choices. The
current models seem to be robust to the circular shifts in MCQ problems.
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Question 169
The purple and orange curves are f(x) and g(x). Is f(x)g(x) even or odd? 
Choice: (A) odd (B) even (C) neither

Response from GPT-4o:

Answer type: ” multiple choice”

Subject: ” analytic geometry”

Level: ”high school”

To determine if the product of the functions f(x) and 
g(x) is even or odd, we need to analyze the 
properties of each function.

Check if f(x) is even or odd: A function f(x) is even 
if f(-x) = f(x) for all x. It is odd if f(-x) = -f(x) 
for all x.

• The purple curve seems to be symmetric about the 
origin, suggesting that f(x) is likely odd. 

• Examining the orange curve, it appears to be a line 
that passes through the origin with a consistent 
slope, indicating that g(x) is likely odd.

Variant 1

Determine the product 
f(x)g(x): If both f(x) and 
g(x) are odd, their product 
f(x)g(x) is even, since (odd) 
* (odd) = even. 

Therefore, f(x)g(x) is    

(B) even.

Now, let's consider the 
product f(x)g(x): f(-x)g(-x) = 
f(x)(-g(x)) = -f(x)g(x). 

This shows that f(x)g(x) = -
f(x)g(x), which means the 
product function is odd. 

Thus, f(x)g(x) is 

(A) odd.

To determine if the function f(x)g(x) is even or odd, we 
need to analyze the properties of the functions f(x) and 
g(x).

Even Function: A function h(x) is even if h(-x) = h(x) 
for all x. Odd Function: A function h(x) is odd if h(-x) 
= -h(x) for all x. 

From the graph: The purple curve, f(x), is symmetric 
about the y-axis, indicating that f(x) is even: f(-x) = 
f(x). The orange curve, g(x), is symmetric about the 
origin, indicating that g(x) is odd: g(-x) = -g(x).

Variant 2

To determine if the product of f(x) and g(x) is even 
or odd, we observe each function:

• The orange curve, g(x), is a linear function 
passing through the origin, suggesting it is odd 
because g(-x) = -g(x).

• The purple curve, f(x), is a horizontal line, 
suggesting it is constant. If constant, f(x) is an 
even function because f(-x) = f(x).

The product of an even function and an odd function 
is always odd because f(-x)g(-x) = f(x)(-g(x)) = -
f(x)g(x), which satisfies the 

Variant 3

definition of an odd function.

Therefore, f(x)g(x) is    

(B) even.

The product of an even 
function and an odd 
function is always odd. 
This is because:

f(-x)g(-x) = f(x)(-g(x)) 
= -f(x)g(x).

Therefore, the function 
f(x)g(x) is (A) odd.

To determine whether the product f(x)g(x) is even or odd, 
we need to analyze the nature of the functions f(x) and 
g(x) individually.

A function is even if f(-x) = f(x) for all x in its 
domain. An even function is symmetric about the y-axis. 
From the graph, the purple curve f(x) is symmetric 
around the y-axis, indicating it is an even function.

A function is odd if f(-x) = -f(x) for all x in its 
domain. An odd function is symmetric about the origin. 
The orange curve g(x) appears to have origin symmetry, 
suggesting it is an odd function.

Variant 4

To determine if the product f(x)g(x) is even or odd, 
we need to check whether f(x) and g(x) have specific 
symmetry properties. 

A function is even if f(-x) = f(x) for all x in its 
domain, and it is odd if f(-x) = -f(x). From the graph:
The purple curve representing f(x) appears symmetric 
about the origin, suggesting it could be an odd 
function. The orange curve representing g(x) is 
constant across the y-axis, suggesting it is an even 
function (g(x) = g(-x) since its value doesn't change). 

For the product f(x)g(x) to be even, f(x)g(x)

Variant 5

f(-x)g(-x); for it to be 
odd, f(x)g(x) = -f(-x)g(-x).

Since we have one even 
function (g(x)) and one odd 
function (f(x)), their 
product, f(x)g(x), will be 
odd. Therefore, f(x)g(x) is 

(A) odd.

The product of an even 
function and an odd 
function is always odd.

Therefore, f(x)g(x) is 

(A) odd.

To determine if the product f(x)g(x) is even, odd, or 
neither, we need to analyze the properties of the 
functions f(x) and g(x). 

A function h(x) is even if h(-x) = h(x) and odd if h(-x) 
= -h(x). From the graph, it appears: 

• The purple curve f(x) is symmetric about the origin, 
suggesting it might be an odd function. 

• The orange curve g(x) is symmetric about the y-axis, 
indicating it might be an even function.

Variant 6

Figure 9: Example of the generated variants of Question 169 and the corresponding responses from
GPT-4o.
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Question 75
Are the red line and the blue line parallel? 
Choice: (A) Yes (B) No

Response from Gemini:

Answer type: “multiple choice”

Subject: “analytic geometry”

Level: “high school”

Parallel lines have the 
same slope. The red line 
has a slope of -2 and 
the blue line has a 
slope of approximately -
4. Since the slopes are 
different, the lines are 
not parallel.

Therefore, the answer is

(B) No.

Variant 1

Parallel lines have the same 
slope. The red line passes 
through points (0,-2) and 
(1,1).  Its slope is (1 - (-
2))/(1 - 0) = 3/1 = 3. The 
blue line passes through 
points (1,0) and (2,3). Its 
slope is (3-0)/(2-1) = 3/1 = 
3. Since the slopes are the 
same, the lines are parallel.

Therefore, the answer is

(A) Yes.

Variant 2

Variant 3 Variant 4

Variant 5 Variant 6

Parallel lines have the 
same slope. The red line is 
decreasing, indicating a 
negative slope, while the 
blue line is horizontal, 
meaning it has a slope of 0. 
Since the lines have 
different slopes, they are 
not parallel.

Therefore, the answer is

(B) No.

Parallel lines have the 
same slope. The red line 
has a positive slope and 
the blue line has a 
negative slope. Therefore, 
they are not parallel.

Therefore, the answer is

(B) No.

Parallel lines have the 
same slope. The red line 
is horizontal and has a 
slope of 0. The blue line 
is not horizontal and has 
a nonzero slope. 
Therefore, the red line 
and blue line are not 
parallel.

Therefore, the answer is

(B) No.

Parallel lines have the 
same slope. The red line 
goes down 6 units for 
every 1 unit it moves to 
the right, so its slope 
is -6. The blue line also 
goes down 6 units for 
every 1 unit it moves to 
the right, so it also has 
a slope of -6.  Since 
both lines have the same 
slope, they are parallel.

Therefore, the answer is

(A) Yes.

Figure 10: Example of the generated variants of Question 75 and the corresponding responses from
Gemini.
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Question 346

What is the global minimum of this function?

Response from Qwen2-VL-72B:

Answer type: ” float”

Subject: ” analytic geometry”
Level: ”high school”

The function shown in the 
image is a sinusoidal 
wave. The global minimum 
of a sinusoidal wave is 
the lowest point on the 
wave. From the graph, it 
can be observed that the 
global minimum value of 
the function is 
approximately -2.

Variant 1

The global minimum of the 
function appears to be at 
the point where the 
function reaches its 
lowest value. By examining 
the graph, the lowest 
point seems to be at 
approximately x = - π /2. 
At this point, the 
function value is 
approximately -6.

Variant 2

The function appears to 
be a periodic function 
with a period of 2 π. 
Observing the graph, the 
function reaches its 
minimum value at x = π /2, 
3 π/2, and so on. The 
minimum value of the 
function is approximately 
-7.

Variant 3

The global minimum of 
the function occurs at 
the lowest point on 
the graph. Observing 
the graph, the lowest 
point is at the y-
coordinate of -1.

Variant 4

The function appears 
to be a cosine 
function. The global 
minimum of a cosine 
function is -1. 
However, since this 
graph is vertically 
stretched, the global 
minimum is -6.

Variant 5

The global minimum of the 
function is observed at 
the lowest point of the 
graph. By examining the 
graph, it appears that the 
lowest point is at the 
bottom of the trough, 
which occurs at 
approximately x = 0. The 
value of the function at 
this point is -8.

Variant 6

The global minimum of the 
function can be found by 
observing the graph. The 
function reaches its 
lowest value at the 
points where it dips the 
most. By looking at the 
graph, we can see that 
the function reaches its 
minimum value at 
approximately -5.00.

Variant 7

The global minimum of 
the function appears 
to be at 
approximately -6.5, 
observed at the 
lowest point of the 
graph.

Variant 8

Figure 11: Examples of the generated variants of Question 346 and the corresponding responses
from Qwen2-VL-72B are provided. Notably, variant 3 derives the correct answer but has an erro-
neous perception.
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Figure 15: Memorization phenomenon on GPT-4o with seed question 78 in DYNAMATH.
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Figure 16: Memorization phenomenon on Claude-3.5 with seed question 12 in DYNAMATH.
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