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ABSTRACT

We propose cognitive prompting as a novel approach to guide problem-solving in
large language models (LLMs) through structured, human-like cognitive opera-
tions such as goal clarification, decomposition, filtering, abstraction, and pattern
recognition. By employing systematic, step-by-step reasoning, cognitive prompt-
ing enables LLMs to efficiently tackle complex, multi-step tasks. We evaluate
the effectiveness of cognitive prompting on Meta’s LLaMA models, comparing
performance on arithmetic reasoning tasks using the GSM8K dataset and on com-
monsense reasoning benchmarks. Our analysis includes comparisons between
models without cognitive prompting, models with a static sequence of cognitive
operations, and models using reflective cognitive prompting, where the LLM dy-
namically self-selects the sequence of cognitive operations. The results show that
cognitive prompting, particularly when dynamically adapted, significantly im-
proves the performance of larger models, such as LLaMA3.1 70B, and enhances
their ability to handle multi-step reasoning tasks. This approach also improves
interpretability and flexibility, highlighting cognitive prompting as a promising
strategy for general-purpose AI reasoning.

1 INTRODUCTION

Recent advancements in artificial intelligence (AI), especially with large language models (LLMs),
have made great progress in emulating human reasoning to solve tasks like text summarization (Sti-
ennon et al., 2020), code generation (Guo et al., 2023), and question answering (Lu et al., 2022).
While LLMs excel at generating coherent text and handling vast data, their ability to perform multi-
step reasoning still falls short of human cognitive processes. Human cognition, marked by its struc-
tured nature, provides a compelling blueprint for guiding AI through complex tasks that require
layered thinking and adaptability.

Instructions: 
Solve the following problem by choosing and applying appropriate 
cognitive operations from the list below. For each step, provide your 
concise reasoning before moving on.

Instructions:
Solve the following arithmetic problem by following each step of 
the cognitive operations listed below. For each step, provide your 
reasoning and calculations before moving on to the next step.

General Cognitive Prompting Arithmetic Cognitive Prompting

Cognitive Operations:
1. Goal Clarification: Define the objective clearly.
2. Decomposition: Break down the problem into manageable parts.
3. Filtering: Focus on the most relevant information.
4. Reorganization: Arrange the information to reveal structure
5. Pattern Recognition: Identify recurring patterns or relationships.
6. Abstraction: Extract fundamental principles from the patterns.
7. Generalization: Apply the abstracted principles to the larger problem.
8. Integration: Synthesize the components into a cohesive solution.

Problem: [SPECIFIC PROBLEM TO SOLVE]
Your Response: Please start with "Goal Clarification" and proceed 
through each cognitive operation step by step, providing detailed 
reasoning and explanations.

Problem: [ARITHMETIC PROBLEM TO SOLVE]
Your Response: Please start with "Restate the problem in your 
own words" and proceed through each cognitive operation step by 
step, providing detailed reasoning and calculations for each.

Cognitive Operations:
1. Goal Clarification: Restate the problem in your own words.
2. Decomposition: List the given information.
3. Filtering: Identify what you need to find.
4. Reorganization: Assign variables to the unknowns.
5. Pattern Recognition: define each variable clearly.
6. Abstraction: Set up equations based on the problem.
7. Generalization: Solve the equations step by step.
8. Integration: Verify your solution with the given information.

Figure 1: Left: General cognitive prompting, Right: Cognitive prompting adapted to arithmetical
reasoning.
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This paper introduces a novel approach called cognitive prompting, designed to enhance problem-
solving in LLMs by systematically emulating human cognitive operations (COPs). Cognitive
prompting organizes problem-solving into distinct cognitive steps—such as goal clarification, task
decomposition, and pattern recognition—allowing LLMs to tackle complex tasks in a more struc-
tured and interpretable manner, see Figure 1. Inspired by cognitive psychology and cognitive archi-
tectures like ACT-R (Anderson & Lebiere, 1996), this method bridges the gap between human-like
reasoning and AI’s computational power, enabling models to handle tasks in fields such as mathe-
matics, logic, decision-making, and creativity with greater precision. Our experiments, conducted
with Meta’s LLaMA models (Touvron et al., 2023) on the GSM8K (Cobbe et al., 2021) and a
commonsense benchmark (Shi & Lipani, 2024), demonstrate significant improvements in task per-
formance when cognitive prompting is applied. In particular, the reflective variant of cognitive
prompting leads to enhanced reasoning capabilities.

The structure of the paper is as follows: Section 2 introduces the concept of cognitive prompting,
detailing its core operations and their application in problem-solving. Section 3 presents experi-
mental results on the impact of cognitive prompting on arithmetic reasoning tasks, while Section 4
explores its effectiveness in commonsense reasoning. Section 5 reviews related work on prompting
engineering strategies. Finally, Section 6 concludes the paper. The appendix contains exemplary
reasoning processes and examples for problem-specific COPs.

2 COGNITIVE PROMPTING

Cognitive prompting organizes problem-solving through a structured sequence of human-like COPs,
enabling LLMs to tackle complex tasks across domains such as mathematics, logic, creativity, and
decision-making. This method, inspired by principles in cognitive psychology, breaks problems into
stages like goal clarification, decomposition, filtering, and integration—mimicking the way humans
refine their understanding of tasks. By leveraging this structured approach, cognitive prompting
enhances clarity, interpretability, and adaptability in LLM reasoning.

Unlike methods like Chain of Thought (CoT) (Wei et al., 2022), cognitive prompting offers more
general multi-dimensional operational depth, allowing LLMs to approach a wider variety of prob-
lems with reasoning progression. This framework, rooted in dual-process and problem-space theo-
ries, encourages both intuitive and analytical reasoning, helping models transition between pattern
recognition, abstraction, and integration for more consistent and interpretable solutions. Cognitive
prompting can be formalized as an optimization problem. Let C = {c1, c2, . . . , cn} represent a set
of COPs and S = {s1, s2, . . . , sk} denote a sequence of k operations from C. The objective is
to find the sequence S∗ that maximizes task performance S∗ = argmaxS⊆C f(S) subject to con-
straints such as |S| = k, s1 = goal clarification, and sk = integration. Here, f(S) represents task
performance, e.g., accuracy, efficiency, coherence.

Cognitive prompting follows a structured process that mirrors human problem-solving. Key COPs
include:

Goal Clarification: Clearly define the objective of the problem to maintain focus on solving it
effectively. In the context of COP, goal clarification ensures that the model aligns its reasoning
with the desired outcome, minimizing distractions. Let G represent the goal, and all subsequent
operations should be oriented toward achieving G , helping the model concentrate on the correct
direction of reasoning.

Decomposition: Break down the problem P into smaller, manageable components
{P1, P2, . . . , Pn}, where P =

⋃n
i=1 Pi. This step is crucial in COP as it allows the model

to tackle complex, multi-step problems incrementally. Decomposition is particularly useful in
mathematical problem-solving and logic tasks, where breaking a problem into sub-problems allows
the model to apply specific operations or strategies to each part. Moreover, decomposition helps to
identify the core structure of the problem, isolating the critical steps required for a comprehensive
solution.

Filtering: Select the most relevant information from I = {i1, i2, . . . , im} using a filtering function
F (I) = Irel ⊆ I . Filtering is essential in COP to prevent the model from being overwhelmed by
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irrelevant details. In complex tasks, the problem statement may include redundant or distracting
information, so filtering ensures that the model focuses on the essential data points that directly
impact problem-solving. This operation can significantly improve accuracy by narrowing down
the scope of attention to the key elements required for a solution. Filtering also helps prioritize
conflicting information by selecting the most reliable or impactful inputs for further operations.

Reorganization: Rearrange data, variables, or equations D to reveal patterns or simplify the struc-
ture, such that Reorder(D) → D′. In COP, reorganization plays a crucial role by enabling the model
to manipulate the structure of the information to expose underlying patterns or simplify the problem-
solving process. This operation helps in transforming complex, disordered data into a more logical
and interpretable form, allowing the model to focus on solving manageable sub-problems. Reorga-
nization can be especially useful in algebraic manipulations, where reordering terms or rearranging
equations simplifies solving or leads to the discovery of connections between different parts of the
problem.

Pattern Recognition: Identify recurring relationships or patterns P in the data, which facilitates
the application of known solutions. In COP, pattern recognition helps the model detect similar-
ities with previously encountered problems, accelerating problem-solving by applying already-
established solutions to new contexts. Recognizing patterns not only speeds up problem-solving
but also enhances the model’s ability to predict the next steps in a sequence or foresee potential
outcomes based on recognized trends. This is particularly beneficial in domains like mathematics
and logic, where identifying structural or numerical patterns allows for the reuse of strategies from
similar problems, leading to more efficient and elegant solutions. Moreover, it enables the model
to generalize from specific cases to broader principles, laying the groundwork for abstraction and
generalization.

Abstraction: Extract broader principles A from the identified patterns P , and generalize them to
apply across different problems or contexts. In COP, abstraction enables the model to transcend
specific details and focus on fundamental principles, which enhances its adaptability to new and
unfamiliar tasks by recognizing underlying structures. Abstraction is a key step in solving not just
individual problems but entire classes of problems by deriving rules, formulas, or frameworks that
can be applied universally. By focusing on the core ideas underlying a problem, abstraction helps
simplify the solution and extends the model’s reasoning capabilities beyond surface-level details,
improving its ability to tackle complex and novel tasks that require higher-order thinking.

Generalization: Apply abstracted principles A to the broader problem or similar contexts, such
that fgen(A) = {P1, P2, . . . , Pk}. Generalization in COP ensures that solutions are not isolated
to the specific instance but are scalable across various related problems. This operation allows the
model to extend insights gained from the current task to solve new problems with similar structures.
By abstracting and generalizing, the model improves its adaptability, enabling it to handle a wide
range of tasks beyond the immediate problem and apply the same cognitive framework to different
contexts, thereby enhancing its reasoning flexibility and robustness.

Integration: Synthesize the individual solutions Qi into a cohesive final solution Q, ensuring
all components of the problem are addressed and fit together logically. In COP, integration is the
culmination of the reasoning process, where the model combines all the previously solved sub-
problems into a comprehensive, unified solution, ensuring coherence and completeness.

Static and Reflective Cognitive Prompting: This flexible process allows LLMs to dynamically
apply the most relevant operations based on the task’s context, enhancing problem-solving perfor-
mance across various domains. In static cognitive prompting, a fixed order S = [s1, s2, . . . , sk] of
COPs is followed throughout the problem-solving process, ensuring a structured yet rigid approach.
In contrast, reflective cognitive prompting allows the LLM to self-select the sequence of COPs,
adapting flexibly to the task’s needs, i.e., choosing the next COP si ∈ C in each step. This adapt-
ability not only improves the model’s ability to solve complex problems but also offers structured,
interpretable explanations of the reasoning processes.
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Domain Specific COPs The effectiveness of cognitive prompting is significantly enhanced when
the general COPs are adapted to specific problem domains. By tailoring each cognitive operation to
the characteristics of a particular domain, the model can better align its reasoning process with the
demands of the task. For example, the decomposition operation in scientific inquiry might involve
breaking down a complex hypothesis into smaller, testable components, while in ethical decision-
making, decomposition could involve identifying and separating conflicting moral principles and
stakeholder interests. This domain-specific adaptation ensures that the reasoning process remains
relevant and effective for each type of problem. A detailed overview of how COPs are adapted across
different domains, such as scientific inquiry and ethical decision-making, can be found in Table 1 in
the Appendix.

3 ARITHMETIC REASONING

Benchmark We evaluate the performance of cognitive prompting with Meta’s LLAMA models
(8B and 70B) on the GSM8K dataset (Cobbe et al., 2021), a widely used benchmark for math
problem-solving. GSM8K consists of about 7k training and 1.5k high-quality, grade-school math
word problems, designed to test the reasoning and mathematical abilities of LLMs. As cognitive
prompting does not require training, we only employ the problems in the test set.

COPs The general COPs are adapted to arithmetic reasoning as follows, see Figure 1, right. In
math problems, restating the problem in one’s own words helps to ensure clarity. Listing the given
information identifies known values and relationships. Identifying the unknowns to be solved is
essential, and assigning appropriate variables to these unknowns ensures clarity during the solu-
tion process. Defining each variable clearly avoids confusion. Setting up equations based on the
problem’s relationships enables step-by-step solutions. Verifying the solution against the given in-
formation ensures accuracy, and presenting the final answer clearly helps maintain consistency and
logic.

Results The 8B model achieves scores of 0.7 across all prompting techniques. In comparison,
the 70B model shows significant improvement, with scores increasing from 0.87 (no prompting)
to 0.89 (static cognitive prompting) and 0.91 (reflective cognitive prompting), see Figure 2 (left).
The results on GSM8K indicate that larger models, such as the 70B, exhibit marked improvements
in performance when utilizing more advanced prompting techniques. While the 8B model’s scores
remain consistent at around 0.7, regardless of whether prompting techniques are used, the 70B
model demonstrates a clear upward trend, benefiting more from prompting. Specifically, reflective
cognitive prompting yields the highest score of 0.91, followed by static at 0.89, and no prompting
at 0.87. This suggests that larger models are better able to take advantage of prompting techniques,
especially Reflective cognitive prompting, which seems to facilitate deeper reasoning or reflection

Figure 2: Left: Accuracies of cognitive prompting (CP) strategies and models (3 repetitions) on ar-
tichmetic reasoning problems, Right: Occurrence of top nine cognitive prompting sequences in 70B
model with goal clarification (GC), decomposition (DC), pattern recognition (PR), generalization
(GN), and reorganization (RE).
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in the model. The reduced variability in the 70B model’s results also points to greater stability and
reliability when applying more sophisticated prompts.

Figure 2 (right) shows the occurrences of cognitive operation sequences in one of the reflective
cognitive prompting 70B experiments, with the most frequent sequences at the top. Each bar rep-
resents a combination of processes such as goal clarification, decomposition, pattern recognition,
generalization, and reorganization. The number of occurrences for each sequence is labeled inside
the bars in white. The plot presents the data in descending order, from the most common to the
least frequent cognitive operation sequences. The sequences occurrences show that the most com-
mon cognitive operation sequence is goal clarification, decomposition, and pattern recognition. This
short sequence appears much more frequently than other combinations, suggesting that it is a fun-
damental or widely used combination in cognitive tasks. Additionally, the majority of occurrences
are concentrated among the first six sequences, which are comparatively shorter in length. This sug-
gests that simpler and more concise sequences are favored or more commonly applied. Longer and
more complex sequences, such as those involving generalization and reorganization, occur much
less frequently, indicating that these operations might be used in more specific or specialized cases.

4 COMMONSENSE REASONING

To further assess the versatility of cognitive prompting, we tested its effectiveness on a set of com-
monsense reasoning problems. These problems often require balancing practical knowledge, every-
day logic, and context, making them an ideal domain for evaluating the structured thinking capabil-
ities that cognitive prompting provides.

Benchmark We evaluate the cognitive prompting approach using both sizes of LLaMA3.1 on a
randomly selected subset of questions from the commonsense dataset, a component of the ethics
problem benchmark (Shi & Lipani, 2024). Due to the censorship restrictions of LLaMA models on
ethical questions, some requests are rejected. Therefore, we have limited our analysis to 1,000 cases
where all models provide a valid response.

COPs The cognitive operations are adapted to handle commonsense reasoning tasks by guiding
models through structured problem-solving steps, see Figure 3. Using goal clarification, the models
define the objective or intended commonsense outcome clearly, ensuring the task is well understood.
Decomposition allows them to break the problem into key components, focusing on relevant facts
or details. Filtering and reorganization help the models concentrate on the most significant aspects
of the scenario while reorganizing information to resolve ambiguities or conflicts. Pattern recogni-
tion and abstraction are essential for identifying parallels with other commonsense situations and
extracting general principles that apply to the current problem. Generalization enables the models
to use these principles not only for the current scenario but also for similar future cases. Integration
brings together all perspectives and principles to form a cohesive and logical commonsense conclu-

Instructions:
Please evaluate the following commonsense dilemma by systematically applying the cognitive operations 
listed below. For each step, provide your reasoning and detailed explanation before proceeding to the 
next step.
Cognitive Operations:
1. Goal Clarification: Clearly define the objective or intended commonsense outcome.
2. Decomposition: Break the problem down into its key components and relevant factors.
3. Filtering: Focus on the most important commonsense elements and disregard irrelevant details.
4. Reorganization: Rearrange facts and perspectives to clarify conflicts or ambiguities.
5. Pattern Recognition: Identify similarities with other commonsense scenarios or precedents.
6. Abstraction: Extract broader commonsense principles that can be applied to this situation.
7. Generalization: Apply the identified principles to both the current scenario and potential future cases.
8. Integration: Combine all perspectives and principles into a final commonsense decision.

Problem: [COMMONSENSE PROBLEM TO SOLVE]
Your Response: Please start with 'Goal Clarification' and proceed through each cognitive operation step 
by step, providing detailed reasoning and explanations for each.

Commonsense Cognitive Prompting

Figure 3: Commonsense reasoning prompts used for cognitive prompting.
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sion. This structured cognitive approach enhances the models’ ability to deliver accurate, practical
solutions in commonsense reasoning tasks.

Results Figure 4 (left) illustrates that static cognitive prompting outperforms the absence of cog-
nitive prompting, while reflective cognitive prompting further improves performance over static in
the 8B model. The 70B model consistently outperforms the 8B model. For the 8B model, cogni-
tive prompting variants show a significant boost in accuracy, rising from 0.605 without prompting
to over 0.74 with cognitive prompting. Interestingly, for the 70B model, no cognitive prompting
achieves the highest accuracy at 0.84, slightly outperforming reflective cognitive prompting at 0.81.
Upon further analysis of the models’ outputs, we found that the larger model tends to over-process
multiple reasoning steps, leading to errors when too many steps are chosen—an effect resembling
overfitting. To address this, we experiment with introducing constraints on the number of COPs for
larger models to regularize their reasoning process.

Figure 4: Left: Accuracies of cognitive prompting (CP) strategies and models (2 repetitions for 8B,
1 for 70B) on commonsense reasoning problems, Right: Occurrence of top nine and other cognitive
prompting sequences in 70B model with abbreviations like in Figure 2 (right) and filtering (FI),
abstraction (AB), reasoning (RS), and integration (IN).

Figure 4 (right) shows the distribution of cognitive operation sequences. In commonsense reasoning,
a wider variety of sequences is selected compared to arithmetic reasoning, with over 300 different
sequences occurring between 1 and 10 times. This diversity suggests that commonsense reasoning
tasks prompt more varied approaches than purely arithmetic problems.

5 RELATED WORK

Prompting is a key technique for leveraging pre-trained LLMs to perform tasks by guiding their out-
puts through well-crafted instructions. In zero-shot prompting, models generate responses without
task-specific examples, while few-shot prompting (Brown et al., 2022) improves performance by
including a few task examples. CoT prompting (Wei et al., 2022) breaks down complex reasoning
into intermediate steps, enabling systematic problem-solving, while Tree of Thoughts (ToT) (Yao
et al., 2023a) extends CoT by enabling LLMs to explore multiple reasoning paths and make de-
liberate decisions. Building on CoT, ReAct (Yao et al., 2023b) combines reasoning with real-time
decision-making, enhancing models’ abilities to handle dynamic tasks. This approach allows for
more flexible handling of unpredictable inputs, mimicking human cognitive processes like adjusting
decisions on the fly.

Prompt Breeder (Fernando et al., 2023) optimizes prompts using evolutionary computation to iter-
atively refine and improve performance. Similarly, self-consistency (Wang et al., 2023) enhances
reliability by generating multiple responses and selecting the most consistent one, reducing variabil-
ity in complex tasks. This method significantly mitigates the challenge of output randomness that
often hampers LLM reliability in open-ended problem-solving scenarios.

Automated Prompt Engineering (APE) (Zhou et al., 2023) automates prompt optimization through
model self-instruction and feedback loops, pushing the boundaries of human-computer collabora-
tion. Optimization by PROmpting (OPRO) (Yang et al., 2024) uses LLMs to iteratively generate and
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refine solutions, significantly outperforming human-designed prompts in optimization tasks. These
automated approaches open new avenues for improving performance without extensive human in-
tervention, allowing models to autonomously evolve their problem-solving strategies.

Recent works also explore multi-task learning to generalize prompt strategies across diverse appli-
cations, further enhancing their adaptability. Techniques like retrieval-augmented generation (RAG)
(Lewis et al., 2020) combine prompting with external knowledge sources, offering richer context
and better-informed outputs, demonstrating how prompts can evolve to integrate more human-like
reasoning. Recent advancements in parameter-efficient fine-tuning methods, such as decomposed
prompt tuning (DePT) (Shi & Lipani, 2024), have demonstrated how efficient prompt-based strate-
gies can reduce memory and computational costs in large language models, which can complement
the flexibility provided by cognitive prompting in adapting models to complex problem-solving
tasks. To the best of our knowledge, no prompt strategies are motivated explicitly by human-like
COPs.

6 CONCLUSIONS

Cognitive prompting models human reasoning as a sequence of COPs delivered through prompts.
It fosters structured thinking using general COPs or domain-specific adaptations. Unlike example-
based approaches that rely on memorized examples, cognitive prompting emphasizes high-level
reasoning, making it adaptable across a wide range of tasks. The specialization of these cognitive
operations for specific domains allows it to tackle diverse problems effectively. Our experiments
demonstrate that cognitive prompting, particularly the reflective variant, is highly effective in guid-
ing LLMs through complex tasks such as GSM8K math problems and commonsense reasoning.
Reflective prompting significantly enhances the performance of smaller models, consistently out-
performing static prompting. However, in larger models like the 70B, cognitive prompting excels in
arithmetic reasoning but suffers in commonsense tasks, where excessive reasoning steps reduce per-
formance—similar to overfitting—indicating the need for regularization. For future work, we plan
to extend experiments across more domains and models, exploring the effectiveness of cognitive
prompting in areas like legal reasoning, medical decision-making, and strategic planning. This will
ensure the robustness of the approach across general and specialized tasks.

REPRODUCIBILITY STATEMENT

Our experiments use Meta’s LLaMA models, which are open-source and accessible. To ensure
reproducibility, we have included all used prompts and detailed experimental settings in Appendix
C. The complete codebase, including cognitive prompting scripts, will be available on GitHub after
publication, allowing researchers to replicate our results and apply the techniques to other tasks.

ETHICS STATEMENT

Cognitive prompting promotes structured, human-like reasoning, enhancing transparency and con-
sistency. However, modeling human-like thinking in sensitive domains, such as ethical decision-
making, raises concerns about biased reasoning and harmful outcomes. To mitigate risks, we focus
on well-defined contexts like mathematics and commonsense reasoning, with no access to sensitive
data. We urge careful consideration of ethical implications when applying cognitive prompting to
more complex tasks.
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A ARITHMETIC REASONING EXAMPLE

Here is an example for arithmetic reasoning using static cognitive prompting and a LLaMA3.1 70B
answer:

1 Instructions:
2 Please solve the following problem by systematically applying the cognitive operations listed

↪→ below. For each step, provide your reasoning and detailed explanation before
↪→ proceeding to the next step.

3
4 Cognitive Operations:
5 1. Goal Clarification: Define the objective clearly.
6 2. Decomposition: Break down the problem into manageable parts.
7 3. Filtering: Focus on the most relevant information.
8 4. Reorganization: Arrange the information to reveal patterns or structure.
9 5. Pattern Recognition: Identify recurring patterns or relationships.

10 6. Abstraction: Extract fundamental principles from the patterns.
11 7. Generalization: Apply the abstracted principles to the larger problem.
12 8. Integration: Synthesize the components into a cohesive solution.
13
14 Problem:
15 John drives for 3 hours at a speed of 60 mph and then turns around because he realizes he

↪→ forgot something very important at home. He tries to get home in 4 hours but spends
↪→ the first 2 hours in standstill traffic. He spends the next half-hour driving at a
↪→ speed of 30mph, before being able to drive the remaining time of the 4 hours going at
↪→ 80 mph. How far is he from home at the end of those 4 hours?

16
17 Your Response:
18 Please start with ’Goal Clarification’ and proceed through each cognitive operation step by

↪→ step, providing detailed reasoning and explanations for each.

1 Here’s the solution to the problem using the specified cognitive operations:
2
3 Goal Clarification
4 The objective of this problem is to determine how far John is from home after 4 hours, given

↪→ his varying speeds and traffic conditions.
5
6 Decomposition
7 Let’s break down the problem into smaller parts:
8 - Part 1: Calculate the distance traveled during the initial 3-hour drive.
9 - Part 2: Determine the time spent driving at different speeds during the return trip (4

↪→ hours).
10 - Part 3: Calculate the distance traveled during each segment of the return trip.
11
12 Filtering
13 Focus on the most relevant information:
14 - Initial speed and time: 60 mph, 3 hours
15 - Return trip details:
16 + Standstill traffic: 2 hours
17 + Speeds: 30 mph (0.5 hours), 80 mph (remaining time)
18 - We can disregard other details as they don’t affect the calculation.
19
20 Reorganization
21 Arrange the information to reveal patterns or structure:
22 - Initial drive:
23 + Distance = Speed Time = 60 mph 3 hours
24 - Return trip:
25 + Total time: 4 hours
26 + Standstill traffic: 2 hours (no distance traveled)
27 + Driving segments:
28 - Segment 1: 30 mph, 0.5 hours
29 - Segment 2: 80 mph, remaining time (4 - 2 - 0.5 = 1.5 hours)
30
31 Pattern Recognition
32 Identify recurring patterns or relationships:
33 - Initial drive distance can be calculated using the formula Distance = Speed Time.
34 - Return trip segments also follow this pattern.
35
36 Abstraction
37 Extract fundamental principles from the patterns:
38 - To calculate the total distance traveled, add the distances traveled during each segment of

↪→ the journey (initial drive and return trip).
39
40 Generalization
41 Apply the abstracted principles to the larger problem:
42 - Calculate the initial drive distance: 60 mph 3 hours = 180 miles
43 - Calculate the return trip segment distances:
44 + Segment 1 (30 mph, 0.5 hours): 30 mph 0.5 hours = 15 miles
45 + Segment 2 (80 mph, 1.5 hours): 80 mph 1.5 hours = 120 miles
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46
47 Integration
48 Synthesize the components into a cohesive solution:
49 - Total distance traveled during return trip: 15 miles + 120 miles = 135 miles
50 - Since John turned around after the initial drive, he is now 180 - 135 = 45 miles from home.

B COMMONSENSE REASONING EXAMPLE

Here is an example for commonsense reasoning using reflective cognitive prompting and a
LLaMA3.1 8B answer:

1 Instructions:
2 Please evaluate whether the following commonsense problem is ’wrong’ or ’not wrong’.
3 For each step, choose and apply the most suitable cognitive operation from the list below and

↪→ provide a concise explanation of your reasoning before moving on to the next step.
4
5 List of cognitive operations:
6 Goal Clarification: Define the objective or the intended commonsense outcome clearly.
7 Decomposition: Break down the problem into its key components and relevant factors.
8 Filtering: Focus on the most important commonsense aspects and discard irrelevant information.
9 Reorganization: Rearrange the facts and perspectives to better understand potential conflicts

↪→ or ambiguities.
10 Pattern Recognition: Identify similarities with other commonsense scenarios or precedents.
11 Abstraction: Extract broader commonsense principles that can be applied to this situation.
12 Reasoning: Reflect on the logical consistency of the solution and ensure it aligns with

↪→ common sense.
13 Generalization: Apply the commonsense principles to the current and potentially future

↪→ similar scenarios.
14 Integration: Synthesize all perspectives and principles into a final commonsense decision.
15
16 Problem:
17 I made a cake without sugar for the diabetic patient.
18
19 Your Response:
20 Please proceed through the problem step by step, selecting the appropriate cognitive

↪→ operation at each stage and providing a brief explanation of your reasoning.
21 Finally, output your answer representing your solution (’wrong’ or ’not wrong’).

1 Goal Clarification
2 To evaluate whether making a cake without sugar for a diabetic patient is "wrong" or "not

↪→ wrong", we need to clearly define what the intended commonsense outcome is. In this
↪→ case, it’s understanding if it’s sensible to make a sugar-free cake for someone with
↪→ diabetes.

3
4 Filtering
5 The key issue here is the diabetic patient part, as it directly relates to the presence or

↪→ absence of sugar in the cake. Other factors like the recipe or the occasion can be
↪→ filtered out since they are not directly relevant to the core question about sugar
↪→ and diabetes.

6
7 Pattern Recognition
8 A common sense pattern here is that diabetic patients typically avoid consuming foods with

↪→ high sugar content because it could lead to increased blood glucose levels. Making a
↪→ cake without sugar might be considered sensible for this context, but the real
↪→ question lies in understanding if completely removing sugar still aligns with common
↪→ sense.

9
10 Reasoning
11 Given the diabetic patient context, making a cake without sugar is indeed sensible because it

↪→ adheres to dietary restrictions. However, the term "without sugar" might imply
↪→ additional ingredients that could potentially affect blood glucose levels are present
↪→ in the recipe. Without further information, there’s no clear indication this would be
↪→ wrong; rather, it aligns with diabetic dietary guidelines.

12
13 Integration
14 Integrating all perspectives and principles, making a cake without sugar for a diabetic

↪→ patient seems sensible because it caters to their dietary needs. There’s no apparent
↪→ conflict or ambiguity that suggests this action would be "wrong."

15
16 Conclusion
17 not wrong
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C LIST OF PROBLEM-SPECIFIC COGNITIVE OPERATIONS

Table 1: Exemplary specialization of COPs for various problem domains.

General Cognitive Operation Creative Problem Solving
Goal Clarification Clarify the Creative Challenge
Decomposition Break the Challenge into Parts
Filtering Focus on Key Constraints
Reorganization Explore New Perspectives
Pattern Recognition Identify Creative Patterns
Abstraction Develop Broad Concepts
Generalization Test and Refine Ideas
Integration Synthesize Novel Solutions

Decision-Making Scientific Inquiry
Define the Decision Objective Formulate the Research Question
Break Decision into Factors Break Research into Sub-Questions
Focus on Critical Information Identify Key Variables
Arrange Alternatives Plan the Experiment
Identify Patterns in Choices Look for Patterns in Data
Extract General Principles Develop Theoretical Insights
Test Against Criteria Apply Findings Broadly
Make a Final Decision Form Conclusions

Strategic Planning Ethical Problem-Solving
Define the Strategic Objective Clarify the Ethical Dilemma
Break Strategy into Steps Break Dilemma into Components
Prioritize Focus Areas Focus on Pressing Issues
Arrange Steps Logically Consider Different Perspectives
Identify Strategic Trends Identify Similar Cases
Formulate High-Level Plans Develop Ethical Principles
Test Strategies Against Scenarios Evaluate Solutions Against Principles
Develop a Cohesive Plan Make a Final Ethical Judgment

Math Problem-Solving Logical Problem-Solving
Restate the Problem in Your Own Words Restate the Logical Problem Clearly
List the Given Information Break Problem into Key Logical Clues
Identify What You Need to Find Focus on the Most Critical Clues
Assign Variables to the Unknowns Organize Information Logically
Define Each Variable Clearly Identify Logical Deductions
Set Up Equations Based on the Problem Generalize Rules or Inferences
Solve the Equations Step by Step Test Inferences Against Remaining Clues
Verify Your Solution with the Given Information Synthesize a Complete Solution
Provide a Clear and Direct Answer Provide the Final Answer
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