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Abstract

Similarity space (or S-space) employs an encoder function, fed by labeled original
pairwise data, to find a latent pairwise space with markers (prototypical) vector. It
divides the space into regions where pairs of objects are either similar or dissimilar.
This paper enhances S-space, equipping variational inference from personalized
federated learning. The S-space representation aligns local representation spaces
across clients, while variational inference improves generalization and reduces
overfitting caused by data scarcity and client heterogeneity. Our theoretical analysis
improved upper bounds on KL divergence between optimal local and optimal global
variational models compared to traditional distributed Bayesian neural networks.

1 Introduction

Federated Learning (FL) has emerged as a methodology that enables learning from decentralized
datasets without compromising data privacy [1]. Real-world FL applications often involve non-IID
data, which decrease individual client performance due to heterogeneous local data distributions [1, 2].
Personalized Federated Learning (PFL) addresses this by tailoring models to better align with local
data characteristics [3]. Various methods have been proposed to enhance PFL, including global model
personalization [4, 5], federated meta-learning [6, 7], and parameter decoupling [3, 8].

Traditional Neural Networks (NN) are typically used in PFL, although they usually show poor calibra-
tion and overconfidence in predictions, particularly when faced with varying data distributions [9–11].
In contrast, Bayesian Neural Networks (BNNs) is a probabilistic approach that has been used in
other contexts for modeling uncertainty and enabling models to learn continually by capturing past
information [12], suggesting its potential use for PFL.

This paper proposes a novel framework for PFL with BNNs to address challenges in model overfitting
due to limited local data (FL privacy constraints). Our approach leverages variational inference
(VI) within an auxiliary representation space to enhance PFL model performance by quantifying
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weight uncertainty in NNs at client and server models. To achieve personalization, each client
updates its local VI parameters by reusing the global distribution from the server and balancing
the KL divergence between the local posterior distribution and the server variational parameters.
This strategy improves the upper bounds on this KL divergence compared to traditional distributed
BNNs [13, 14]. Finally, our experiments show promising results in five datasets in the literature.

2 Methodology

Federated Learning: Consider a client ui wishing to train a machine learning model with their
respective datasets Xi. Traditional (centralized) machine learning training methods group all the data
in the set X = X1 ∪ · · · ∪ XN . In contrast, a FL system enables clients to collaboratively train a
model with the same architecture across all clients without sharing their local datasets Xi with one
another. However, FL introduces challenges due to the heterogeneity of local datasets.

(Neural Network-induced) Similarity Space: Let X be the set of xi ∈ X elements in an
m-dimensional feature space, each associated with a label yi ∈ Y and the function ℓ : X → Y , which
maps the data into their respective labels. The original feature space X is transformed into a latent
feature space Z by a representation function fΘ : X −→ Z , where zi = fΘ(xi) ∈ Rd and Θ is the
set of weights of a given NN.

We estimate an auxiliary space, referred to as S-Space [15], to refine the latent feature space with a
mapping function fS : X × X → S, where if ℓ(xi) = ℓ(xj), then (xi, xj) is a similar pair. On the
other hand, we consider (xi, xj) to be a dissimilar pair if ℓ(xi) ̸= ℓ(xj). Given a pair of elements
(xi,xj) from the original feature space, fS computes a similarity vector sij using the absolute
element-wise difference between their latent space representations

sij = fS(xi,xj)

= |fΘ(xi)− fΘ(xj)|
= |zi − zj |
= (|zi,1 − zj,1|, . . . , |zi,d − zj,d|),

where sij ∈ Rd has the same dimension as zi, zn,k is the k-th feature of the n-th sample in the latent
space representation Z , and the absolute operation ensures symmetry sij = sji.

We define two disjoint sets in the S-Space to quantify the similarity between input pairs: similarity
markers (M+) and dissimilarity markers (M−). Their union M = M+ ∪M− is the set of all
markers (or prototypes) and M+ ∩M− = ∅. The (dis)similarity between input pairs is determined
by the distance of the vector sij to the markers me ∈ M. We use a Cauchy kernel [16] to measure
the similarity qeij between the point sij and the marker me as

qeij =

(
1 + ∥sij −me∥22

)−1∑
me′∈M (1 + ∥sij −me′∥22)

−1 .

Consider the pair (xi,xj), we define the probability of sij vector being “similar” as q+ij =
∑

p q
p
ij

for all mp ∈ M+. Analogously, the probability of sij vector being “dissimilar” is q−ij =
∑

n q
n
ij for

all mn ∈ M−. Notice that q+ij + q−ij = 1 because the sets M+ and M− are disjoint.

The binary pair cross-entropy loss function J(·) is

J(X ) = −
∑
i∈X

∑
J∈X

[
uij log q

+
ij + (1− uij) log q

−
ij

]
, (1)

where uij = 1[ℓ(xi) = ℓ(xj)] is the indicator function, i.e., 1[·] = 1 if [·] is true and 0 otherwise;
We note that similar definitions exist for this auxiliary space [15]. However, as demonstrated in the
following section, this is the first instance of applying VI within FL settings.

Variational inference: We exploit the S-Space by introducing VI techniques to estimate the
markers m. Our challenge is to make statistical inferences from the posterior distribution pΘ(M |
X1, . . . ,XN ) based on the NN parameters Θ without compromising data privacy. To tackle this, each
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client minimizes the Kullback-Leibler (KL) divergence between each client’s variational distribution
qϕk

and the true posterior, formulated as

argmin
qϕk

(M)∈Q

{
KL
(
qϕk

(M) ∥ pΘ(M | X1, . . . ,XN )
)}

, (2)

where Q is a variational family of distributions.

We assume that each client’s marker distribution (variational parameters) in the S-Space follows
a Gaussian distribution (N (µ, σ2) ∈ Q), representing the variational distribution qϕk

associated
with the client k as a product of normal distributions (mean-field approximation) [13, 17, 18]. The
likelihood function pθ(Xk | M) ∝ exp(−J(Xk)/α) is defined using an exponential loss function
(Boltzmann distribution) [19], where J(·) is the S-Space loss function (or energy function – Eq. 1)
and α > 0 is a (temperature) scaling parameter [20, 21].

Denote as X\k = {X1, . . . ,Xk−1,Xk+1, . . . ,XN} the local datasets excluding the data from client
uk. Note that client uk does not have access to X\k due to FL privacy constraints. We approximate the
posterior distribution using Bayes’ theorem and a server variational model as pΘ(M | X\k) ≈ s(M).
The KL divergence (Eq. 2) can be approximated as1

KL
(
qϕk

(M)
∥∥∥ s(M)

pθ(Xk | M)

Zk

)
= KL

(
qϕk

(M) ∥ s(M)
)
+ logZk +

1

α
Eqϕk

[J(Xk)] ,

where Zk is a normalization constant.

Following [23], we have adjusted the scale α to enhance numerical stability. We omit the normaliza-
tion constant logZk from the optimization problem (Evidence Lower Bound) [13]. Our approach
captures model performance on specific tasks and ensures regularization by minimizing divergence
from the server model; cf. Appendix B for details. Our VI approach in FL is a dual optimization
framework that enhances client-level personalization:

Client: argmin
qϕk

(M)∈Q

{
Fk(s(M)) = Eqϕk

(M) [J(Xk)] + αKL
(
qϕk

(M) ∥ s(M)
)}

, (3)

Server: argmin
s(M)

{
1

N

N∑
k=1

Fk(s(M))

}
. (4)

Theoretical Analysis: In this section, we present a theoretical discussion about the S-space.
Moreover, we state the necessary Assumptions 1, 2, 3 and analyze equal-width BNNs as in [24, 25].
Definition 2.1. (Optimal Variational Latent Space – OVLS) Consider all xi,xj ∈ X and a latent
representation function fΘ : X → Z . The transformation fΘ generates an OVLS Z if (i) ∥sij∥2 ∼
δ(0) ⇒ ℓ(xi) = ℓ(xj), and if (ii) ℓ(xi) ̸= ℓ(xj) ⇒ E[∥sij∥2] > 0, where δ(.) is the Dirac delta
function, and ℓ : X → Y maps an unlabeled example xi into its true label yi.

Definition 2.1 emphasizes the relationship between geometric proximity in the latent space Z and
label identity. Unlike traditional deep metric learning methods [26, 27], our approach estimates
a more flexible representation and captures more sophisticated data patterns (see Appendix A).
Furthermore, a 1-nearest neighbor classifier in OVLS is optimal, emphasizing its capacity for perfect
classification in theoretical applications.

Our algorithm induces a representation space as Definition 2.1. The loss function (Eq. 1) clusters
samples by minimizing intra-group local distances (∥sij∥2 ∼ δ(0)) and aligns a positive marker
m+ ∈ M+ near the origin (∥m+∥2 ∼ δ(0)), see Appendix D.2.
Corollary 1. (based on Lemma C.1) Let fi,Θ be a latent representation function that generates an
OVLS, and q⋆ϕi

(M) denote the optimal variational distribution for the i-th user, estimated by a NN
with weights Θ. If the markers are permuted based on the norm, i.e., the variational parameters
(µ⋆

i,j ,σ
⋆
i,j) ∼ q⋆ϕi

(M) are organized into an ordered set according to the norm ∥µ⋆
i,j∥2, then the

optimal server variational distribution s⋆(M) admits the existence of an i such that ∥µ⋆,s
i ∥2 ∼ δ(0).

1The prior distribution is replaced with the global (server) distribution because the prior (for each client) is
difficult to characterize in practice [13]. This approach avoids making assumptions about the prior distribution,
leading to a better fit with the collected data. The global (server) distribution is also updated/recycled for each
FL epoch [22].
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Based on Corollary 1 (see Appendix C), we adapt the aggregation function proposed in [13] by
ordering the set M using the norm ∥·∥2 before transmitting the weights to the server. This permutation
optimizes the aggregation function’s performance, ensuring alignment with the criteria for OVLS.
Theorem 1. If Assumptions 1, 2, 3 are true, then the following inequality holds

KL
(
q⋆ϕk

(M) ∥ s⋆(M)
)
≤ D − 1

D
(C ′nrn) < C ′(n− 1)rn,

where D is the number of markers in M, rn and C ′ are constants.

Theorem 1 provides an upper limit for the KL divergence between the local (client) optimal variational
solution q⋆ϕk

and the global (server) optimal variational solution s⋆. Our approach, thus, improves this
FL theoretical results by using the variational S-space to estimate an optimal global VI distribution,
with a tighter upper bound on divergence compared to traditional BNN approaches (KL(q⋆ϕk

(M) ∥
s⋆(M)) ≤ C ′nrn), as documented in [13, 14]. We present the proof in Appendix C.2.

3 Experimentation

FL settings: We performed our experiments using the Flower framework [28] in a FL setting
characterized by non-IID clients (quantity-based label imbalance) [29, 30]. For each dataset, we
sorted the data by labels and divided it into N clients. Each client was assigned #S random
non-overlapping subsets (shard), each containing an equal number of samples [29, 30].

Thus, we used a server and 100/200 clients in our experiment to evaluate our model, and we trained
our method with two NVIDIA RTX 6000 Ada Generation (48GB) for 1000 FL epochs. For each
training round, the server selects 5% of clients to train for five local epochs of the user model. We
use the F1-Score commonly used in classification tasks, which can be directly computed from the
confusion matrix.

Dataset description: We use five datasets for our evaluation: The MNIST/FMNIST datasets
consist of 28x28 pixel grayscale images, with 60,000 training and 10,000 testing examples. The
Malimg dataset comprises 9,339 samples from 25 malware families, with sample counts ranging
from 80 to 2,949 per family. MaleVis features byte images of 25 malware types and one goodware
class, totaling 14,226 images. CIFAR-10 includes 60,000 color images across ten different classes.
Each malware binary code is visualized as a 64x64 grayscale image.

Results: We compared our proposal to six PFL techniques from the literature [3, 5, 13, 17, 31, 32],
as well as the standard FedAvg (Global Model – GM) and Local model without client communication
(baseline). The results, summarized in Table 1, show that our approach outperformed FedAvg
across all five datasets. For example, on the CIFAR10 dataset, our method achieved an F1-score
improvement of 27.43% with four shards per client.

Our method also shows improvements across other datasets. For instance, on CIFAR10, our approach
achieved the highest F1 scores of 0.7015 and 0.7202 with four and five shards per client, respectively.
On the Malimg dataset, it scored 0.9324 with five shards per client, surpassing FedRep, which
achieved the second-best result of 0.9250. However, on the MNIST dataset, our proposal achieved
the third-best results for both shard values.

Figure 1 compares the F1-scores between our proposal and the best methods from the literature across
five datasets with four shards per client over 1000 FL epochs. In summary, our approach achieved the
best performance in six out of ten FL settings and the second-best in two additional settings. These
findings are consistent with results obtained using 200 clients, as detailed in Table 2 (Appendix D.3).

4 Conclusion

In this work, we introduced the variational auxiliary similarity space within an FL environment,
designed to enhance latent feature representation. The variational S-Space adapts to the unique
data distributions of individual clients, mitigating the effects of data heterogeneity. Our evaluations,
conducted across five datasets and ten different FL settings, demonstrate that our approach outper-
forms existing PFL methods. In addition, we have provided theoretical results showing that our
approach achieves improved upper bounds compared to traditional distributed BNNs by applying
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Table 1: F1-Score of various PFL approaches across five datasets with 100 clients. The best results
for each dataset are highlighted in bold, and the second-best results are underlined.

Proposal
Datasets

MNIST FMNIST MaleViz Malimg CIFAR10
#S = 4 #S = 5 #S = 4 #S = 5 #S = 4 #S = 5 #S = 4 #S = 5 #S = 4 #S = 5

Local 0.9113 0.9025 0.8238 0.8047 0.8562 0.8254 0.8191 0.8086 0.4048 0.3768

FedAvg. (GM) 0.8275 0.8934 0.7026 0.7338 0.7009 0.7182 0.8497 0.8509 0.4224 0.4459

FedRep [31] 0.9598 0.9627 0.8351 0.8616 0.8439 0.8318 0.8874 0.9250 0.6891 0.7007
FedPer [3] 0.9553 0.9664 0.8296 0.8458 0.8988 0.9015 0.8974 0.9112 0.6599 0.6726
FedPop [17] 0.9180 0.9302 0.7734 0.8013 0.9124 0.9243 0.9033 0.9191 0.6211 0.6657
pFedSim [32] 0.8973 0.9406 0.7270 0.7670 0.9093 0.9135 0.8899 0.9017 0.6643 0.6975
pFedBayes [13] 0.8864 0.9143 0.8327 0.8452 0.8771 0.9025 0.9194 0.9236 0.6927 0.7098
DITTO [5] 0.9041 0.9392 0.8035 0.8243 0.8498 0.8826 0.8978 0.9128 0.6247 0.6536

Our proposal 0.9386 0.9525 0.8476 0.8564 0.9005 0.9324 0.9275 0.9369 0.7015 0.7202
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Figure 1: F1-Score results of our proposed method against the best approaches from the literature.

an aggregation function projected onto BNNs within an FL framework. A particularly promising
direction is designing a specialized aggregation function optimized for the variational S-space.
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[25] N. G. Polson and V. Ročková, “Posterior concentration for sparse deep learning,” Advances in
Neural Information Processing Systems, vol. 31, 2018.

[26] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant
mapping,” in Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2. USA:
IEEE, 2006, pp. 1735–1742.

[27] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-similarity loss with general pair
weighting for deep metric learning,” in Conference on Computer Vision and Pattern Recognition,
2019, pp. 5022–5030.

[28] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, and N. D. Lane, “Flower: A friendly
federated learning research framework,” arXiv preprint arXiv:2007.14390, 2020.

[29] Z. He, Y. Li, D. Seo, and Z. Cai, “Fedcpd: Addressing label distribution skew in federated
learning with class proxy decoupling and proxy regularization,” Information Fusion, vol. 110, p.
102481, 2024.

[30] J. Zhang, Z. Li, B. Li, J. Xu, S. Wu, S. Ding, and C. Wu, “Federated learning with label
distribution skew via logits calibration,” in International Conference on Machine Learning
ICML, vol. 162, 17–23 Jul 2022, pp. 26 311–26 329.

[31] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting shared representations for
personalized federated learning,” in International conference on machine learning. PMLR,
2021, pp. 2089–2099.

[32] J. Tan, Y. Zhou, G. Liu, J. H. Wang, and S. Yu, “pfedsim: Similarity-aware model aggregation
towards personalized federated learning,” arXiv preprint arXiv:2305.15706, 2023.

[33] J. Zhu, X. Ma, and M. B. Blaschko, “Confidence-aware personalized federated learning via vari-
ational expectation maximization,” in Conference on Computer Vision and Pattern Recognition
(CVPR), June 2023, pp. 24 542–24 551.

[34] X. Liu, Y. Li, C. Wu, and C.-J. Hsieh, “Adv-BNN: Improved adversarial defense through robust
bayesian neural network,” in International Conference on Learning Representations, 2019.
[Online]. Available: https://openreview.net/forum?id=rk4Qso0cKm

[35] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate
inference in deep generative models,” in International Conference on Machine Learning (ICML),
vol. 32, no. 2, Bejing, China, 22–24 Jun 2014, pp. 1278–1286.

7

https://openreview.net/forum?id=rk4Qso0cKm


[36] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

[37] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun, “Hands-on bayesian neural
networks—a tutorial for deep learning users,” IEEE Computational Intelligence Magazine,
vol. 17, no. 2, pp. 29–48, 2022.

[38] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural
networks,” in International Conference on Machine Learning, 2015, p. 1613–1622.

8



A Revisiting Contrastive Loss

As introduced by [26], contrastive loss is a precursor approach for estimating latent representation
based on pairs of items (zi, zj), facilitating the discernment of their class relationships. Specifically,
it is formulated as

Lij
c = yij∥zi − zj∥22 + (1− yij)

[
max(0, ξ − ∥zi − zj∥2)2

]
,

where yij = 1[ℓ′(zi) = ℓ′(zj)] is the indicator function, i.e., 1[·] = 1 if [·] is true and 0 otherwise
and the function ℓ′ : Z → Y , which maps the latent data zi = fΘ(xi) into their respective labels.
This method minimizes the loss function Lij

c (also known as energy) by clustering similar points
(same class) and separates points from different classes by at least a predefined margin ξ.

In contrast to this approach, we introduce the OVLS (Definition 2.1), a latent space representation
projected for 1-nearest neighbor (1-NN) classification, achieving a classification accuracy of 100%.
In an OVLS, similar pairs are collapsed, i.e., the distance between any two points within the same
cluster is effectively zero (∥zi − zj∥2 = 0), while ensuring that clusters of different classes maintain
a minimum separation distance of ξ > 0.

Figure 2 is a toy representation of the OVLS, highlighting the distinct clustering of 4k points (k
points per clustering) from two hypothetical classes, represented by red and green colors, with
k = 5. The expected distance between pairs of elements (zi, zj) from different classes (yij = 0) is
E[∥zi − zj∥2] = ξ, leading to a contrastive loss of Lij

c = 0 because max(0, ξ − ∥zi − zj∥2)2 = 0.
However, the expected distance between elements from the same class is E[∥zi − zj∥2] = ξ

√
2/2

because we have two different clustering for each class, resulting in a non-zero contrastive loss that
could potentially disrupt the latent space.

٤
٤

٤
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with k-
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Feature1
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Class 2

Legend

Latent Feature Space

٤ Distance

Figure 2: Illustration of the 1-NN optimal latent space for binary classification, derived from the
encoder: distinct clusters for two classes (red and green points). Each class consists of 10 points. All
points in the same cluster are collapsed to a single position (based [15]).

Our method advances the conventional contrastive loss framework by preserving the structural
integrity of the OVLS. For the settings in Figure 2, if we introduce four 2D markers (in S-space)
at positions M+ = {(0, 0), (ξ, ξ)} and M− = {(ξ, 0), (0, ξ)}, we achieve a loss function equal to
zero. This approach maintains the structured separation between classes within the OVLS, offering
an alternative to the traditional contrastive loss model.

B Experimental Details

B.1 Parameters initialization and network architecture

The NN architecture used for all FL approaches, including our proposed method, is identical.
Following [13, 33], the network dimensions are m-100-n for the MNIST and FMNIST datasets,
where m represents the number of input features and d denotes the latent space representation
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dimension. Additionally, for other datasets, we utilized a LeNet-5 architecture with the same latent
space dimension (d = 64). We employed SGD with a learning rate of 0.01 for all experiments. All
baseline models were configured using the hyperparameters recommended in their respective original
publications.

B.2 Implementation details

This section describes the practical implementation of our proposed FL framework, emphasizing the
optimization of similarity markers. Each client estimates a market set M, where M+ represents
similarity markers and M− represents dissimilarity markers.

We hypothesize that the marker values for each client in the S-Space follow a Gaussian distribution.
Therefore, the joint probability density function qϕ(M) is modeled as a product of normal densities:

qϕ(M) =
∏

mk∈M
N
(
µk,Σk = Diag(σ2

k)
)
,

where µk,σk ∈ Rd, Diag(.) denotes the diagonal matrix function, and mean µ and covariance
matrix Σ = LLT are the variational parameters. In addition, L is a diagonal matrix representing a
mean-field parameterization. The variational parameters µk and σk are initialized by sampling from
the uniform distribution µprior ∼ U(−d−1/2, d−1/2), where d is the latent feature dimension, and
the constant σprior = 0.05, as referenced in [34].

Furthermore, the variance parameters σk are reparameterized as σk = exp(pk) to enable the
application of gradient-based optimization techniques directly, resolving issues with the non-negativity
constraint on standard deviations [35].

For sampling marker instances mi, we follow the methodology in [36], introducing a noise component
ϵ ∈ Rd sampled from a standard normal distribution N (0, 1): we sample mi ∼ qϕk

(M) as

mi = µk + exp(pk)⊙ ϵ,

where ⊙ denotes element-wise multiplication. This formulation makes mi differentiable, enabling
the gradient backpropagation through the randomness introduced by ϵ.

We employ Monte Carlo sampling [37, 36] to approximate the objective function for client k (Eq. 3):

DB
k = −nk

nb

1

K

b∑
j=1

K∑
i=1

[
J(Bj) + αKL(qϕk

(M) ∥ s(M))
]
,

where B ⊂ Xk represents a minibatch of size nb, nk denotes the total number of data points in
dataset Xk, and K = 10 is the number of samples used in the Monte Carlo estimation [17, 38].

Finally, via the backpropagation algorithm, we update the variational model parameters using
minibatch gradient descent, denoted by ∆DB

k .

C Theoretical Analysis

C.1 External results

Assumption 1. (Ref. [13, 24]) The activation function is 1-Lipschitz continuous.

Assumption 2. (Ref. [13, 24]) Consider a NN with T parameters, I hidden layers, n samples in the
FL environment, an input dimension d, and M neurons per hidden layer. The parameters d, n,M, I
are large enough such that

σ2
n =

T

8n
A ≤ B2, (5)

where H = BM and

A = log−1(3dM)(2H)−2(I+1)

[(
d+ 1 +

1

H − 1

)2

+
1

(2H)2 − 1
+

2

(2H − 1)2

]−1

, (6)
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As discussed in [13, 24], the parameter σn is constructed to facilitate the proof of Theorem 1,
particularly in inequality 12. Given that the neural network parameters are bounded by B,
their variance should be upper bounded by B2.

Lemma C.1. (Ref. [13]) Let s⋆(M) be the optimal server variational distribution based on the
following FL optimization problem

s⋆(M) = argmin
s(M)

1

N

N∑
i=1

KL
[
q⋆ϕi

(M) ∥ s(M)
]
,

where q⋆ϕi
(M) is the local optimal variational model for user ui, the server variational distribution

parameters of s⋆(M) for marker mj are (µ⋆,s
j ,σ⋆,s

j ). We denote µ⋆,s
j |n ∈ R and σ⋆,s

j |n ∈ R as the
n-th components of the vectors µ⋆,s

j ∈ Rd and σ⋆,s
j ∈ Rd, respectively.

Therefore, we have

µ⋆,s
a |n =

1

N

N∑
i=1

µi,a|n,

and

(σ⋆,s
a |n)2 =

1

N

N∑
i=1

[
(σi,a|n)2 + (µi,a|n)2 − (µ⋆,s

a |n)2
]
, (7)

where the variational distribution parameters of q⋆ϕi
(M) for the j-th marker are (µ⋆

i,j ,σ
⋆
i,j). Futher-

more, µi,j |a ∈ R and σi,j |a ∈ R as the a-th components of the vectors µ⋆
i,j ∈ Rd and σ⋆

i,j ∈ Rd,
respectively.

C.2 Theoretical results

Assumption 3. Let the number of positive markers be #M+, and the number of negative markers
be #M− in the S-space. We assume #M+ = #M− and #M+ < n/2, where n represents the
number of samples in the FL environment.

Corollary 1. Let fi,Θ be a latent representation function that generates an OVLS, and q⋆ϕi
(M)

denote the optimal variational distribution for the i-th user, estimated by a NN with weights Θ. If
the markers are permuted based on the norm, i.e., the variational parameters (µ⋆

i,j ,σ
⋆
i,j) ∼ q⋆ϕi

(M)
are organized into an ordered set according to the norm ∥µ⋆

i,j∥2, then the optimal server variational
distribution s⋆(M) admits the existence of an i such that ∥µ⋆,s

i ∥2 ∼ δ(0).

Proof. Consider a FL system comprising N clients, each utilizing an OVLS solution (see Defini-
tion 2.1). These parameters are organized into an ordered set based on the norm ∥µ⋆

i,j∥2. Conse-
quently, for expected positive markers with indices 1 ≤ j ≤ #M+−1, we have ∥µ⋆

i,j∥2 ≤ ∥µ⋆
i,j+1∥2

for all clients in the FL environment.

From Definition 2.1 and the ordering, we conclude that for all client i, (µ⋆
i,1, σ

⋆
i,1) ∼ δ(0). According

to Lemma C.1, the server aggregated model’s mean µ⋆,s
1 and variance σ⋆,s

1 are given by

µ⋆,s
1 |a =

1

N

N∑
i=1

µ⋆
i,1|a, and (σ⋆,s

1 |a)2 =
1

N

N∑
i=1

[
(σi,1|a)2 + (µi,1|a)2 − (µ⋆,s

1 |a)2
]
.

Therefore, we conclude than (µ⋆
s,1, σ

⋆
s,1) ∼ δ(0).

Theorem 1. Suppose that the assumptions are true, then the following inequality holds

KL
(
q⋆ϕi

(M) ∥ s⋆(M)
)
≤ D − 1

D
(C ′nrn) < C ′(n− 1)rn,

where D = (#M+) + (#M−) is the number of marker in M and C ′ and rn are constants.
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Proof. Considering the mean-field decomposition for µ⋆
i,m,µ⋆,s

m ∈ Rd, we have

q⋆ϕi
(M) =

D∏
m=1

N (µ⋆
i,m, (σ⋆

n)
2), and s⋆(M) =

D∏
m=1

N (µ⋆,s
m , (σ⋆,s

m )2)·

Thus, the KL divergence between q⋆ϕi
(M) and s⋆(M) can be decomposed as

KL(q⋆ϕi
(M) ∥ s⋆(M)) = KL

( D∏
m=1

N (µ⋆
i,m, (σ⋆

n)
2)
∥∥∥ D∏

m=1

N (µ⋆,s
m , (σ⋆,s

m )2)

)

=

D∑
m=1

KL
(
N (µ⋆

i,m, (σ⋆
n)

2) ∥ N (µ⋆,s
m , (σ⋆,s

m )2
)
.

For each marker mm, the KL divergence between two Gaussian distributions is

KL
(
N (µ⋆

i,m, (σ⋆
i,m)2) ∥ N (µ⋆,s

m , (σ⋆,s
m )2)

)
=

1

2

d∑
a=1

[
log

(
(σ⋆,s

m |a)2

(σ⋆
i,m|a)2

)
+

(σ⋆
i,m|a)2 + (µ⋆

i,m|a − µ⋆,s
m |a)2

(σ⋆,s
m |a)2

− 1

]
. (8)

By Corollary 1, we know that for variational parameters(µ⋆
i,1, σ

⋆
i,1) ∼ δ(0) and (µ⋆,s

1 , σ⋆,s
1 ) ∼ δ(0),

i.e., for any client i with optimal variational latent space, the variation parameters for the first marker
m1 (marker with lowest ∥ · ∥2 norm) is equal to the optimal server defined by optimization problem
in Lemma C.1. Therefore, the KL divergence between those lowest norm markers resulted in zero
(equal distribution). For the remaining markers m ≥ 2, we have

KL(q⋆ϕi
∥ s⋆) =

D∑
m=2

KL
(
N (µ⋆

i,m, (σ⋆
n)

2) ∥ N (µ⋆,s
m , (σ⋆,s

m )2)
)

=
1

2

d∑
a=1

D∑
m=2

[
log

(
(σ⋆,s

m )2

(σ⋆
n)

2

)
+

(σ⋆
n)

2 + (µ⋆
i,m − µ⋆,s

m )2

(σ⋆,s
m )2

− 1

]

=
1

2

d∑
a=1

D∑
m=2

[
log

(
(σ⋆,s

m )2

(σ⋆
n)

2

)]
(9)

≤ 1

2

d∑
a=1

D∑
m=2

[
log

(
(σ⋆

n)
2 +B2

(σ⋆
n)

2

)]
, (10)

where we applied in Eq. (9) the bellow equality (based Lemma C.1 – Eq.A.14 in [13]) ensuring that

(σ⋆
n)

2 + (µ⋆
i,m − µ⋆,s

m )2

(σ⋆,s
m )2

= 1,

and the inequality applies Assumption 2 and Eq. (7) (as can see in) that

(σ⋆,s
m )2 = (σ∗

n)
2 − (µ⋆

s,m)2 +
1

N

N∑
i=1

(µ⋆
i,m)2 ≤ (σ∗

n)
2 +B2.

By bounding the variance term using Assumption 2, we obtain

KL(q⋆ϕi
(M) ∥ s⋆(M)) ≤ d(D − 1)

2
log

(
2B2

(σ⋆
n)

2

)
. (11)

By Assumption 2, incorporating into Eq. (10) and following similar steps in Eq. A.19 from [13], we
get

log

(
2B2

(σ⋆
n)

2

)
≤ 2

dD
(C ′nrn), (12)

12



32 64 128 256 512 1024 2048 4096
Batch sample size

0.60

0.62

0.64

0.66

0.68

0.70

F1
-S

co
re

(a) The effect of the number of pairs used in local
training.

0.1 1 10 100 1000 10000

0.4

0.5

0.6

0.7

F1
-S

co
re

3
4
2
1

(b) The impact of the α parameter for different numbers
of (dis)similar markers.

Figure 3: Performance of our proposed method across different hyperparameter settings on CIFAR10
datasets on the F1-Score.

which, combined with Eqs. (11) and (12), results in

KL(q⋆ϕi
(M) ∥ s⋆(M)) ≤ d(D − 1)

2
log

(
2B2

(σ⋆
n)

2

)
≤ D − 1

D
(C ′nrn).

Therefore, by Assumption 3, we get
D − 1

D
<

n− 1

n
,

and
KL
(
q⋆ϕi

(M) ∥ s⋆(M)
)
< C ′(n− 1)rn.

D Additional experiments

D.1 Experimental Hyperparameter Settings

In this experiment, we evaluate the impact of various hyperparameter settings on the performance
of our approach. The results of these experiments are summarized in Figure 3 with the CIFAR10
dataset.

Figure 3a shows the impact of the number of pairs used in the local training. As we increase the
number of pairs, we gain more confidence about the pair distribution, improving model performance.
However, this also increases the training time. Although the performance suggests that using a larger
number of pairs can improve model performance, the F1-Score exhibits marginal improvements
beyond 2048 pairs. For this short paper, we adopted 2048 pairs per epoch in the training step to
balance performance and training efficiency.

Figure 3b presents the effect of the α parameter, which controls the influence of KL divergence
regularization between the local and global variational parameters (Eq. (3)). We also evaluate
our approach with a different number of similar/dissimilar markers. As expected, our experiment
indicates that the F1-Score is sensitive to α. For lower values of alpha (0.1 ≤ α ≤ 10), our model is
stable. Furthermore, the number of markers affects our model’s results, with more markers capturing
the similarity structure more effectively. Therefore, our model achieves optimal performance with
α = 100 and three similar/dissimilar markers (six markers in total).

D.2 Markers analysis

This section analyzes the norms of the positive and negative expected markers, denoted as ∥µ+∥2
and ∥µ−∥2, respectively, across five datasets. Figure 4 shows the positive expected markers norm
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Figure 4: Comparison of Positive and Negative Marker Norms across five datasets.

∥µ+∥2 (Figure 4a) and the negative expected markers norm ∥µ−∥2 (Figure 4b). For simplicity, each
dataset utilizes one positive marker and one negative marker.

Definition 2.1 highlights a key feature of our algorithm: positive expected markers ∥µ+∥2 have a
smaller norm than their negative marker ∥µ−∥2. Our loss function, aimed at clustering samples into
groups with similar characteristics (∥sij∥2 ∼ δ(0)), induces the model to align a positive marker
µ+ ∈ M+ to the origin (∥µ+∥2 ∼ δ(0)), as confirmed by our observations in Figure 4a. For example,
in the MNIST dataset, we observe ∥µ+∥2 = 0.071 in contrast to ∥µ−∥2 = 7.68 with an expected
ratio (∥µ+∥2/∥µ−∥2) equal to 0.92%. We observed similar behavior for the Malimg and Maleviz
datasets, with expected ratios of 2.37% and 2.54%, respectively.

Additionally, we found a relation between positive expected markers norm ∥µ+∥2 and F1-Score. As
seen in Table 1, a lower ∥µ+∥2 value correlates with a higher F1-Score. For instance, our model
achieves F1-Scores of 0.9525, 0.8564, and 0.7202 corresponding to ∥µ+∥2 values of 0.071, 0.401,
and 0.519 for the MNIST, FMNIST, and CIFAR10 datasets respectively. Therefore, this experiment
found evidence that the positive norm position can be a proxy for the model’s performance.

D.3 Quantitative results

We present additional experiments as discussed in Section 3. Specifically, we conducted an experiment
with 200 clients to evaluate the impact of our proposed framework, as shown in Table 2. We compare
the F1-Scores of various PFL approaches across five datasets described in Section 3. Similar to
Table 1, our proposed method outperforms the other approaches in six FL settings (out of ten).

Table 2: F1-Score of various PFL approaches across five datasets with 200 clients. The best results
for each dataset are highlighted in bold, and the second-best results are underlined.

Proposal
Datasets

MNIST FMNIST MaleViz Malimg CIFAR10
#S = 4 #S = 5 #S = 4 #S = 5 #S = 4 #S = 5 #S = 4 #S = 5 #S = 4 #S = 5

Local 0.8983 0.8821 0.7911 0.7803 0.8154 0.7714 0.8050 0.7807 0.3840 0.3615

FedAvg. (GM) 0.8131 0.8425 0.6951 0.7166 0.6682 0.6790 0.8069 0.8307 0.4275 0.4393

FedRep 0.9456 0.9601 0.8090 0.8271 0.7918 0.8112 0.8507 0.8638 0.5588 0.6213
FedPer 0.9461 0.9692 0.8039 0.8197 0.8315 0.8686 0.8816 0.9181 0.6301 0.6601
FedPop 0.9072 0.9323 0.7593 0.7824 0.8624 0.8733 0.8677 0.8993 0.5839 0.6420
pFedSim 0.8901 0.9115 0.7168 0.7492 0.8333 0.8537 0.8575 0.8947 0.6290 0.6437
pFedBayes 0.8715 0.9092 0.8195 0.8385 0.8253 0.8496 0.9036 0.9121 0.6496 0.6678
DITTO 0.8893 0.9288 0.7941 0.8065 0.7926 0.8341 0.8689 0.8767 0.6133 0.6366

Our proposal 0.9254 0.9448 0.8247 0.8513 0.8570 0.8777 0.9013 0.9206 0.6561 0.6824
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