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ABSTRACT

In this paper, we provide sufficient conditions of benign overfitting of fixed width
leaky ReLU two-layer neural network classifiers trained on mixture data via gradi-
ent descent. Our results are derived by establishing directional convergence of the
network parameters and classification error bound of the convergent direction. Our
classification error bound also lead to the discovery of a newly identified phase
transition. Previously, directional convergence in (leaky) ReLU neural networks
was established only for gradient flow. Due to the lack of directional convergence,
previous results on benign overfitting were limited to those trained on nearly orthog-
onal data. All of our results hold on mixture data, which is a broader data setting
than the nearly orthogonal data setting in prior work. We demonstrate our findings
by showing that benign overfitting occurs with high probability in a much wider
range of scenarios than previously known. Our results also allow us to characterize
cases when benign overfitting provably fails even if directional convergence occurs.
Our work thus provides a more complete picture of benign overfitting in leaky
ReLU two-layer neural networks.

1 INTRODUCTION

The practical success of deep learning has revealed surprising theoretical phenomena. One such
phenomenon, which has inspired intense theoretical research, is benign overfitting, where over-
parametrized neural network models can achieve arbitrarily small test errors while perfectly interpo-
lating training data—even in the presence of label noise (Zhang et al. (2017); Belkin et al. (2019)).
Benign overfitting has attracted broad attention since it seems to conflict with the classical statistical
understanding that there should be a trade-off between fitting the training data and generalization
on the test data. This led to intense theoretical research which has revealed that benign overfitting
also occurs in several classical statistical models, such as linear regression (Bartlett et al. (2020),
Muthukumar et al. (2020), Mei and Montanari (2022), Hastie et al. (2022)), ridge regression (Tsigler
and Bartlett (2024)), binary linear classification (Chatterji and Long (2021); Wang and Thrampoulidis
(2022); Cao et al. (2021); Hashimoto et al. (2025)), and kernel-based estimators (Liang and Rakhlin
(2020), Liang et al. (2020)), to name a few. However, our understanding of the phenomenon for
neural networks remains limited.

It is widely believed that the implicit bias, which results from implicit regularization of gradient based
optimization, is the key to understand generalization performance in the over-parametrized regime. In
fact, for binary linear classification, it is known that linear classifiers trained under gradient descent
with a loss function with a tight exponential tail, e.g. the exponential loss and logistic loss, converge
in direction to the maximum margin classifier (Soudry et al. (2018)). Benign overfitting in binary
linear classification has been studied thoroughly by analyzing the convergent direction (Wang and
Thrampoulidis (2022); Cao et al. (2021); Hashimoto et al. (2025)).

In this work, we investigate benign overfitting in two-layer leaky ReLU neural networks with fixed
width for binary classification whose network parameters are trained on mixture data by gradient
descent with exponential loss. We show that benign overfitting occurs in a much wider scenarios than
previously known.
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Our results are derived by establishing directional convergence of the network parameters with precise
characterization of the convergent direction and by obtaining a classification error bound of that
direction. Due to the difficulty in establishing directional convergence of gradient descent for ReLU
type networks, prior work for leaky ReLU networks were limited to either gradient flow (Frei et al.
(2023a)), smoothed approximation of leaky ReLU (Frei et al. (2022)), or nearly orthogonal data regime
(Xu and Gu (2023)), i.e. the predictors {xi}i=1,...,n ⊂ Rp satisfy ∥xi∥2 ≫ maxi ̸=k |⟨xi,xk⟩|.
The precise characterization of convergent direction not only allows us to prove benign overfitting
beyond nearly orthogonal data regime but also leads to a novel lower bound of the classification
error in the case of Gaussian mixture. The lower bound shows our bound is tight and allows us to
characterize cases when benign overfitting provably fails even if directional convergence occurs.

Moreover, sufficient conditions of directional convergence and classification error bound are obtained
in a deterministic manner, which allows us to show that benign overfitting occurs with high probability
on polynomially tailed mixture models while the prior results are limited to sub-Gaussian mixture.

2 RELATED WORK

Benign overfitting in neural networks for binary classification. As noted earlier, benign overfit-
ting in neural networks remains poorly understood. In fact, very few theoretical results are established
beyond the so called neural tangent kernel (NTK) regime. Cao et al. (2022) studied benign overfitting
for two-layer convolutional neural networks with polynomial ReLU activation (ReLUq, q > 2). Their
results were strengthened by Kou et al. (2023a) by relaxing the polynomial ReLU assumption. Both
Cao et al. (2022) and Kou et al. (2023a) are not applicable to our setting since our work considers
fully connected neural networks.

More closely related work is Frei et al. (2022), which studied benign overfitting in smoothed leaky
ReLU two-layer neural networks on mixture data. Their work was extended by Xu and Gu (2023) to
non-smooth leaky ReLU like activation. While Xu and Gu (2023)’s work is not limited to (leaky)
ReLU, their work is limited to the nearly orthogonal data regime and only holds for isotropic mixture
with bounded log-Sobolev constant, which is a stronger assumption than sub-Gaussian mixture. Our
work establishes benign overfitting beyond the nearly orthogonal data regime and can be applied to a
wider class of mixtures than the prior work such as polynomially tailed mixture. Moreover, we also
establish a novel lower bound of the classification error in the case of Gaussian mixture, which shows
tightness of our result and helps characterize cases when benign overfitting provably fails. Even with
gradient flow, benign overfitting in leaky ReLU neural networks is limited to nearly orthogonal data
setting and sub-Gaussian mixture model (Frei et al. (2023a)).

Lastly, our result is shown for fixed width two-layer neural networks, which relaxes Xu and Gu (2023)
who required m to grow as n, and thus is also beyond the NTK regime or the lazy training regime
(Jacot et al. (2018); Arora et al. (2019)).

Implicit bias in neural networks for binary classification. Here, we focus on works on leaky
ReLU homogeneous neural networks which are closely related to ours. We refer readers to Vardi
(2022) for a comprehensive survey on implicit bias in neural networks.

Most prior work on the implicit bias of (leaky) ReLU neural networks for binary classification has
considered gradient flow. For gradient flow, Lyu and Li (2020) showed that any limit point of the
network parameter of homogeneous neural networks trained with exponential type loss is a KKT
point of a constrained optimization problem and that margin maximization occurs. Ji and Telgarsky
(2020) further established directional convergence of the parameter of homogeneous neural networks
trained with the exponential type loss. Taking advantage of the directional convergence of gradient
flow, Lyu et al. (2021); Bui Thi Mai and Lampert (2021); Sarussi et al. (2021); Frei et al. (2023b);
Min et al. (2024) obtained detailed characterizations of the convergent direction of the parameters of
(leaky) ReLU two-layer neural networks under further assumptions on the training data.

In contrast to gradient flow, directional convergence of network parameters for ReLU type neural net-
works was not proven for gradient descent with exponential type loss, even under strong assumptions.
As a result, only weaker forms of implicit bias have been obtained for gradient descent. Lyu and Li
(2020) showed that margin maximization also occurs for the network parameters of a homogeneous
network trained by gradient descent, but their assumptions include smoothness of the network, and
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hence rule out (leaky) ReLU networks. Frei et al. (2023b) showed that the stable rank of network
parameters stays bounded by a constant for two-layer neural networks, but their result is limited to
the smoothed approximation of leaky ReLU. Kou et al. (2023b) proved similar results for (leaky)
ReLU two-layer neural networks assuming that the number of positive and negative neurons are equal.
Moreover, Frei et al. (2023b); Kou et al. (2023b) are limited to the rather specialized scenario of
nearly orthogonal data regime. Cai et al. (2025) showed directional convergence of gradient descent,
but their result is not applicable to ReLU type neural networks since their result requires networks to
be twice differentiable with respect to the parameters. Schechtman and Schreuder (2025) extended
Lyu and Li (2020) by removing twice differentiability but their result does not guarantee directional
convergence and assumes that training is already in the late-stage.

To the best of our knowledge, our work is the first to show directional convergence of gradient descent
in ReLU type neural networks with precise characterization of the convergent direction.

A concise summary of related prior work is given in Table 1.

Table 1: Summary of Existing Studies of leaky ReLU two-layer neural networks

Directional Convergence Benign Overfitting
Nearly Orthogonal Data Other regime Nearly Orthogonal Data Other regime

Gradient Flow Ji and Telgarsky (2020) Frei et al. (2023a) NA
Gradient Descent NA* Frei et al. (2022)**, NA

Xu and Gu (2023)
* Cai et al. (2025) showed directional convergence assuming twice differentiability
** Frei et al. (2022) studied smoothed approximation of leaky ReLU instead.

3 PRELIMINARIES

We consider two-layer neural networks

f(x;W ) =

m∑
j=1

ajϕ(⟨x,wj⟩), (1)

where x ∈ Rp, wj ∈ Rp, W = (w1,w2, . . . ,wm) ∈ Rp×m, |aj | = ± 1√
m

and ϕ is γ−leaky ReLU
activation, i.e. ϕ(x) = max{x, γx} for γ ∈ (0, 1). Letting ζ(x) = 1 if x ≥ 0 and ζ(x) = γ if x < 0,
we may conveniently write ϕ(x) = ζ(x)x.

Letting J = {1, 2, . . . ,m}, J+ = {j ∈ J : aj = 1√
m
}, and J− = J \ J+, we can rewrite the

network (1) as

f(x;W ) =
∑
j∈J+

1√
m
ϕ(⟨x,wj⟩)−

∑
j∈J−

1√
m
ϕ(⟨x,wj⟩).

We consider the exponential loss ℓ(u) = exp(−u) and define the empirical loss of the dataset
{(xi, yi)}i∈I , where I := {1, 2, . . . , n}, by

L(W ) =

n∑
i=1

ℓ(yif(xi;W )) =

n∑
i=1

exp(−yif(xi;W )).

We train the first layer weights wj by gradient descent initialized at W (0), i.e.

W (t+1) = W (t) − α∇WL(W (t)), t = 0, 1, 2, . . . , (2)
where α > 0 is a fixed constant and we assume ϕ′(0) is any number in [γ, 1]. The second layer
weights aj are fixed throughout the training. Fixing the second layer weights aj ∈ {±1/

√
m} and

only optimizing the first layer weights wj is standard in the existing literature, see e.g. Arora et al.
(2019); Cao et al. (2022); Frei et al. (2022); Xu and Gu (2023); Kou et al. (2023b). We do not consider
random initialization of W (0) since only the magnitude of W (0) plays a role in our analysis.

Assume that we observe i.i.d. copies {(xi, yi)}i=1,...,n from a mixture distribution on Rp × {±1}
which is defined as follows
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(M) The observations consist of n i.i.d copies (xi, yi), i = 1, . . . , n of the pair (x, y). Here for
a random variable y ∈ {−1, 1} satisfying P (y = 1) = P (y = −1) = 1/2, a random vector
z ∈ Rp independent of y, and a deterministic µ ∈ Rp, we have

x = yµ+ z. (3)

The sub-Gaussian norm of a random variable X , say ∥X∥ψ2
, is defined as

∥X∥ψ2
:= inf{t > 0 : E exp(X2/t2) ≤ 2}.

The sub-Gaussian norm of a random vector X ∈ Rp is denoted by ∥X∥ψ2 and defined as

∥X∥ψ2 := sup
v∈Sp−1

∥⟨v,X⟩∥ψ2 .

As special case of the model (M), we consider sub-Gaussian mixture model (sG) and polynomially
tailed mixture model (PM):

(sG) Suppose in model (M) z = Σ
1
2 ξ, where ξ ∈ Rp has independent entries ξj that have mean

zero, unit variance, and satisfy ∥ξj∥ψ2
≤ L for all j = 1, . . . , p for L < ∞,

(PM) Suppose in model (M) z = Σ
1
2 ξ, where ξ ∈ Rp has independent entries ξj that have mean

zero, unit variance, and satisfy E|ξj |r ≤ K for all j = 1, . . . , p for r ∈ (2, 4] and K < ∞.

The mixture model (sG) have been studied for linear classifiers by Chatterji and Long (2021); Wang
and Thrampoulidis (2022); Hashimoto et al. (2025) and for two-layer neural networks with Σ = Ip
by Frei et al. (2022); Xu and Gu (2023). The model (PM) has been studied for linear classifiers by
Hashimoto et al. (2025).

We denote by ∥A∥ and ∥A∥F the spectral norm and the Frobenius norm of a matrix A, respectively.

4 DIRECTIONAL CONVERGENCE OF GRADIENT DESCENT

We start from our main result on directional convergence of gradient descent in leaky ReLU two-
layer neural networks trained on mixture data. Our result provides precise characterization of the
convergent direction, which is a key for our analysis on benign overfitting.

In the following, we let Rmax(z) := maxi ∥zi∥ and Rmin(z) := mini ∥zi∥, and define an event
that capture deterministic conditions the training data need to satisfy for the directional convergence:

E(θ1, θ2) =
{
max
i ̸=k

|⟨ zi
∥zi∥ ,

zk
∥zk∥ ⟩| ≤ θ1 and max

i
|⟨ zi

∥zi∥ ,
µ

∥µ∥ ⟩| ≤ θ2

}
, (4)

for some θ1, θ2 ∈ [0, 1] (take θ1 = 0 if µ = 0 or Rmax(z) = 0 and take θ2 = 0 if
µ = 0 or Rmax(z) = 0). Event E allows us to control ∥xi∥ and ⟨xi,xk⟩, i ̸= k in terms of
∥µ∥, Rmin(z), Rmax(z), θ1, and θ2.

In addition, we denote by σ := maxj ∥wj∥ the size of initialization. It is also convenient to let
ρ := σ

√
m(1 + θ2){∥µ∥2 +R2

max(z)} to keep the assumptions of our main result concise.

We present sufficient conditions of directional convergence for the following two cases:

Case 1: This is the case when ⟨yixi, ykxk⟩ ≥ 0 is guaranteed for any i ̸= k. In this case, we make
the following assumptions:

Assumption 4.1 (Positive Correlation).

∥µ∥2 ≥ 2θ2∥µ∥Rmax(z) + θ1R
2
max(z).

Assumption 4.2 (Small Initialization).

α >
ρ exp(ρ)

γ(1− θ2){∥µ∥2 +R2
min(z)}

4
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Assumption 4.3 (Small Step Size).

α(n∥µ∥2 +Rmax(z)
2) < 1.

The intuition behind these assumptions is as follows: It can be shown that Assumption 4.1 ensures
⟨yixi, ykxk⟩ ≥ 0 for any i ̸= k. Assumption 4.2 ensures the step size sufficiently larger than
initialization so that neuron activation occurs immediately after one step of (2). Assumption 4.3
ensures the step size is small enough for directional convergence to hold.

Case 2: This is when ⟨ykxk, yixi⟩, k ̸= i could be negative. The assumptions we make are:

Assumption 4.4 (Near Orthogonality).

2θ2∥µ∥Rmax(z) + θ1R
2
max(z) ≤

ε1γ(1− θ2)R
2
min(z)

n exp(2ρ)
for some ε1 ∈ [0, 1].

Assumption 4.5 (Small Initialization).

α ≥ ρ exp(ρ)

ε2γ(1− θ2)R2
min(z)

for some ε2 ∈ (0, 1].

Assumption 4.6 (Weak Signal).

n∥µ∥2 ≤ ε3R
2
min(z) for some ε3 ∈ [0, 1).

Assumption 4.7 (Small Step Size).

6αR2
max(z) exp(ρ) < 1.

Assumption 4.4 and 4.6 allow us to carefully control ⟨ykxk, yixi⟩. Small ε1, ε3 ensure that the
training data are nearly orthogonal. By taking µ = 0, this case includes the nearly orthogonal data
regime studied in the prior work (Frei et al. (2023b); Kou et al. (2023b)). The other assumptions are
analogous to Case 1.

We are now ready to state our main result on directional convergence, which not only establishes
directional convergence but also provides detailed characterization of the convergent direction:

Theorem 4.8 (Directional Convergence on Mixture Data). Suppose event E holds under one of the
following conditions:

(i) Assumptions 4.1, 4.2 and 4.3 with θ2 < 1,

(ii) Assumption 4.4, 4.5, 4.6, and 4.7 with ε1 + ε2 + ε3 < 1, Cwεi ≤ 1
2 , i = 1, 3, and θ2 ≤ 1

2 ,
where Cw := 24 exp(1)γ−2R2

max(z)R
−2
min(z).

Then, the gradient descent iterate (2) keeps all the neurons activated for t ≥ 1, satisfies L(W (t)) =
O(t−1), and converges in direction.

Furthermore, the convergent direction {ŵj}j∈J can also be given by ŵj = w+ for j ∈ J+ and
ŵj = w− for j ∈ J−, which are the solution to the following optimization problem:

Minimize |J+|∥w+∥2 + |J−|∥w−∥2

s.t.
|J+|√
m

⟨xi,w+⟩ −
γ|J−|√

m
⟨xi,w−⟩ ≥ 1,∀i ∈ I+,

|J−|√
m

⟨xi,w−⟩ −
γ|J+|√

m
⟨xi,w+⟩ ≥ 1,∀i ∈ I−.

(5)

Lastly, the resulting network f(·; Ŵ ) has the linear decision boundary defined by w̄ := |J+|√
m
w+ −

|J−|√
m
w−, i.e. sign(f(x : Ŵ )) = sign(⟨x, w̄⟩) for any x ∈ Rp.

5
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We note that condition (i) goes beyond nearly orthogonal data regime studied in the existing literature
since there is no upper bound to the magnitude of the signal µ, while condition (ii) contains the nearly
orthogonal data regime studied in Frei et al. (2023b); Kou et al. (2023b). As discussed in Introduction,
directional convergence of gradient descent in ReLU type neural networks was not established in
the existing literature even under nearly orthogonal data regime. In addition, the characterizations
of the convergent direction in Theorem 4.8 were obtained only for gradient flow trained on nearly
orthogonal data by Frei et al. (2023b).

We show in Section 6 that these deterministic conditions on training data can be achieved with high
probability under sufficient over-parametrization not only by (sG) but also by (PM).

The proof of Theorem 4.8 is given in Appendix B.

5 CLASSIFICATION ERROR OF THE CONVERGENT DIRECTION

In this section, we discuss the classification performance of the convergent direction Ŵ .

Near orthogonality of zi’s to each other and to µ is again the key to obtain the closed form expression
and to establish an error bound. Letting Z = (z1, . . . ,zn)

⊤ ∈ Rn×p, n+ = |{i ∈ I : yi = 1}|, and
n− = n−n+, the near orthogonality condition is characterized by the parameters from the following
events which are defined for R ≥ 0, ε̃1 ≥ 0, ε̃2 ≥ 0, and ε̃3 ∈ [0, 1]:

Ẽ1(ε̃1, R) :=
{
∥ZZ⊤ −RIn∥ ≤ ε̃1

3 R
}
, (6)

Ẽ2(ε̃2, R) :=
{
∥Zµ∥ ≤ ε̃2

3 R
}
, (7)

Ẽ3(ε̃3) :=
{
|n+ − n

2 | ≤ ε̃3
n
2

}
. (8)

Event Ẽ1 captures near orthogonality of zi’s to each other and uniformity of their norms, and event
Ẽ2 captures near orthogonality of zi’s to µ. Although we could use the same parameters as in the
analysis of directional convergence, these events Ẽ1, Ẽ2 makes the analysis of Ŵ simpler.

With ε̃ := max{ε̃1,
√
nε̃2}, q+ = |J+|/m, q− = |J−|/m , and qγ = min{q+ + γ2q−, q− + γ2q+},

we can now present our main result on the classification performance of Ŵ :

Theorem 5.1 (Classification Error Bounds). Suppose event
⋂
i=1,2,3 Ẽi holds with ε̃ ≤ qγ

2 , ε̃3 ≤ 1
2 ,

and further assume one of the following condition holds for a constant C = C(γ, q+):

(i) Cn∥µ∥2 ≤ R, Cε̃ ≤ n− 1
2 , and Cε̃2 ≤

√
n∥µ∥2

R ,

(ii) qγ > γ, n∥µ∥2 ≥ CR, Cε̃ ≤ R

n
3
2 ∥µ∥2

.

Then, there exists constants c,N which depend on γ, q+ such that n ≥ N implies

P(x,y)(yf(x; Ŵ ) < 0) ≤

exp

(
−c n∥µ∥4

∥z∥2
ψ2

{n∥µ∥2+R}

)
for model (sG),

c∥Σ∥
(

1
∥µ∥2 + R

n∥µ∥4

)
for model (PM).

If z ∼ N (0,Σ), then we have instead

κ

{
c−1β

− 1
2

min

(
n∥µ∥4

n∥µ∥2 +R

) 1
2

}
≤ P(x,y)(yf(x; Ŵ ) < 0) ≤ κ

{
cβ

− 1
2

max

(
n∥µ∥4

n∥µ∥2 +R

) 1
2

}
,

where κ(t) = P(|ξ1| ≥ t) and βmin is the smallest eigenvalue of Σ and βmax = ∥Σ∥.

This is a concise version for the purpose of presentation. A detailed version of the theorem and the
proof are given in Theorem C.13, Appendix C.

Theorem 5.1 shows that there is a phase transition between the weak signal regime, i.e. n∥µ∥2 ≲ R
and the strong signal regime, i.e. n∥µ∥2 ≳ R. The weak signal regime corresponds to the nearly

6
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orthogonal data regime studied in prior work under specific distributional settings (Frei et al. (2022);
Xu and Gu (2023)). The lower bound in the case of Gaussian mixture implies that the phase transition
is indeed a feature of the model. Previously, this type of phase transition was not shown even with
gradient flow. Moreover, it was only known to occur for binary linear classification (Cao et al. (2021);
Wang and Thrampoulidis (2022); Hashimoto et al. (2025)).

Moreover, the assumptions of Theorem 5.1 are given in a deterministic manner. We confirm in the
next section that these assumptions are satisfied with high probability under model (sG) and (PM),
and conjecture that they can also be verified in other settings.

Lastly, we note that the condition qγ > γ in (iii) is necessary to ensure the equivalence of ŵ and the
minimum norm least square estimator. We can even prove that the equivalence fails if qγ < γ, which
can be viewed as another form of the phase transition in the behavior of the convergent direction.
Additional details are provided in Appendix C.

6 BENIGN OVERFITTING ON MIXTURE MODELS

We here demonstrate that the results of Theorem 4.8 and 5.1 hold with high probability in model (sG)
and (PM) under sufficient over-parametrization. For (sG) we make the following assumptions:
Assumption 6.1. One of the following conditions holds for a constant C

(a) n ≥ C, α ≤ 1
8tr(Σ) , σ ≤ 0.1γα

√
tr(Σ)
m , ∥µ∥2 ≥ C∥Σ]frac12µ∥,

tr(Σ) ≥ Cmax

{
n∥µ∥2, n∥Σ∥F , n

3
2 ∥Σ∥, n 3

2 ∥Σ 1
2µ∥, n∥Σ

1
2µ∥2

∥µ∥2

}
,

and further suppose one of the following:

(i) ∥µ∥2 ≥ Cmax
{√

n∥Σ 1
2µ∥,

√
n∥Σ∥F , n∥Σ∥

}
,

(ii) tr(Σ) ≥ Cmax
{
n

3
2 ∥Σ 1

2µ∥, n 3
2 ∥Σ∥F , n2∥Σ∥

}
(b) qγ > γ, n ≥ C, α ≤ 1

2.4n∥µ∥2 , σ ≤ 0.2γα
√

∥µ∥2+tr(Σ)
m ,

tr(Σ) ≥ Cmax
{
n∥µ∥∥Σ∥

1
2

F , n
5/4∥µ∥∥Σ∥ 1

2 , n
5
4 ∥µ∥∥Σ 1

2µ∥ 1
2 , n

∥Σ 1
2µ∥2

∥µ∥2
,
√
n∥Σ∥F , n∥Σ∥

}
,

∥µ∥2 ≥ Cmax
{ tr(Σ)

n
,
√
n∥Σ 1

2µ∥,
√
n∥Σ∥F , n∥Σ∥

}
.

We note that condition (a) above corresponds to the weak signal regime and (b) to the strong signal
regime in Theorem 5.1. We are now ready to present our main classification error bound on (sG):
Theorem 6.2. Consider model (sG). Let δ ∈ (0, 1

4 ). Suppose Assumption 6.1 holds for a sufficiently
large constant C which depends only on δ, γ, q+. Then, we have with probably at least 1− 3δ: the
gradient descent iterate (2) keeps all the neurons activated for t ≥ 1, satisfies L(W (t)) = O(t−1),
converges in direction, and the convergent direction Ŵ attains

P(x,y)(yf(x; Ŵ ) < 0) ≤ exp

(
− c

L2

n∥µ∥4

∥Σ∥{n∥µ∥2 + tr(Σ)}

)
,

where c is a constant which depends only on γ and q+.

If z ∼ N (0,Σ), then we have instead

κ

{
c−1β

− 1
2

min

(
n∥µ∥4

n∥µ∥2 + tr(Σ)

) 1
2

}
≤ P(x,y)(yf(x; Ŵ ) < 0) ≤ κ

{
cβ

− 1
2

max

(
n∥µ∥4

n∥µ∥2 + tr(Σ)

) 1
2

}
.

Theorem 6.2 implies that benign overfitting occurs if n∥µ∥4 ≫ ∥Σ∥tr(Σ) under (a) or ∥µ∥2 ≫ ∥Σ∥
under (b) is satisfied. For Gaussian mixture model, we see that benign overfitting provably fails even
though directional convergence occurs if n∥µ∥4 ≲ βmintr(Σ) under (a) or ∥µ∥2 ≲ βmin under (b).
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We note that Theorem 6.2 under Assumption 6.1 (a) (i) and (b) are novel regimes which were not
identified in the existing literature (Frei et al. (2022); Xu and Gu (2023)). Only the result under
Assumption 6.1 (a) (ii) with Σ = Ip was previously studied. A more detailed comparison with the
prior work is given in Appendix A.

Moreover, Theorem 4.8 and 5.1 allow us to extend the above result to a heavier tailed model (PM).
This is a significant distributional relaxation from the existing results which assumed z is sub-
Gaussian and strongly log-concave (Frei et al. (2022)) or z has a bounded log-Sobolev constant (Xu
and Gu (2023)). For brevity, we only present a result for Σ = Ip:
Theorem 6.3. Consider model (PM) with Σ = Ip. Then, for sufficiently large n, benign overfitting
occurs with the convergent direction Ŵ with high probability if either one of the following holds:

(i) ∥µ∥ ≳
√
n and max{n∥µ∥2, n

r+4
2r−4 , n

8
r+1} ≲ p ≲ min

{
∥µ∥4

n
8
r
, ∥µ∥r

n

}
,

(ii) ∥µ∥ ≳
√
n and

max{n 5
4 ∥µ∥ 3

2 , n
8
3r+1∥µ∥ 4

3 , n
3r+4
3r−4 ∥µ∥

4r
3r−4 } ≲ p ≲ min

{
n∥µ∥2, ∥µ∥4

n
8
r
, ∥µ∥r

n

}
,

(iii) max{n∥µ∥2, n
r+4
2r−4 , n

8
r+2} ≲ p ≪ n∥µ∥4.

Detailed versions of the theorems and the proofs are given in Appendix D.

7 PROOF SKETCH

In this section, we provide the proof sketch of our main theorems. The key to establish the classi-
fication error bound in Theorem 5.1 is the precise characterization of the convergent direction in
Theorem 4.8. The precise characterization allows us to obtain both upper and lower bounds of the
key quantity ∥w̄∥

⟨w̄,µ⟩ in classification error bounds (98), which results in the novel lower bound in
the case of Gaussian mixture. We also note that the conditions in Theorem 4.8 and 5.1 are given in
a deterministic manner. The separation of deterministic and distributional arguments allows us to
substantially relax distributional assumptions made in prior work. In fact, Theorem 6.2 and 6.3 are
proved by showing that all the conditions in Theorem 4.8 and 5.1 are achieved with high probability
under (sG) and (PM) with sufficient overparametrization.

Proof sketch of Theorem 4.8 The key to show directional convergence of the gradient descent is
activation of neurons. We say that j-th neuron ϕ(⟨·,wj⟩) is activated if ajyiϕ(⟨xi,wj⟩) > 0 holds
for any i ∈ I , which can be equivalently written as ajyi⟨xi,wj⟩ > 0 for any i ∈ I .

The next lemma shows that if all the neurons stay activated after some step of gradient descent (2),
directional convergence occurs towards the maximum margin vector ŵ := vec(Ŵ ) in a transformed
sample space, i.e. Ŵ is the solution to the following optimization problem:

Minimize ∥w∥2 s.t. ⟨yix̃i,w⟩ ≥ 1 for all i ∈ I , where w = vec(W ), (9)

where x̃⊤
i = (x̃⊤

i,1, x̃
⊤
i,2, . . . , x̃

⊤
i,m) ∈ R1×mp with x̃i,j = ajζ(ajyi)xi. Letting σmax(X̃) be the

maximum singular value of X̃ ∈ Rn×mp whose rows consist of x̃⊤
i ’s, we have

Lemma 7.1. Suppose all the neurons are activated for t ≥ T and ασ2
max(X̃) <2. Then, the gradient

descent iterate (2) satisfies L(W (t)) = O(t−1) and W (t) converges in the direction characterized by
Theorem 4.8.

The proof is done by reducing the argument to that of binary linear classification, i.e. classifiers of
the form ŷ = sgn(⟨x,w⟩). In fact, if all the neurons are activated for all (xi, yi), i = 1, . . . , n at
step t, then we have

yif(xi;W
(t)) = ⟨yix̃i,w(t)⟩,

where w(t) = vec(W (t)). Therefore, if all the neurons stay activated after t ≥ T , gradient descent
iterate (2) becomes that of linear classifier in a transformed space, and the directional convergence
follows from Theorem 3, Soudry et al. (2018).
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To establish sufficient conditions for the neuron activation, observe that, for any i, j, we have

aj⟨yixi,w(t+1)
j −w

(t)
j ⟩

=
α

m

[
ζ(⟨xi,w(t)

j ⟩)∥xi∥2 exp(−yif(xi;W
(t)))+

+
∑
k ̸=i

ζ(⟨xk,w(t)
j ⟩)⟨ykxk, yixi⟩ exp(−ykf(xk;W

(t)))
]
.

(10)

The only source of negativity in (10) are ⟨yixi, ykxk⟩, i ̸= k. We note that event E implies∣∣⟨yixi, ykxk⟩ − ∥µ∥2
∣∣ ≤ 2θ2∥µ∥Rmax(z) + θ1R

2
max(z),∀i ̸= k. (11)

So, by keeping 2θ2∥µ∥Rmax(z) + θ1R
2
max(z) small (Assumption 4.1 and 4.4), the update (10)

should stay positive. Then, it should suffice to make all the neurons activated at step t = 1, which can
be done by taking initialization σ sufficiently smaller than the step size α (Assumption 4.2 and 4.5).

Proof sketch of Theorem 5.1. The detailed characterizations of the convergent direction given
by Theorem 4.8 allows us to establish the desired classification error bound. This is done by
obtaining a closed form expression of ŵ = vec(Ŵ ), which is ŵ = X̃⊤(X̃X̃⊤)−1y, where y =

(y1, . . . , yn)
⊤ ∈ Rn. To establish ŵ = X̃⊤(X̃X̃⊤)−1y, it is necessary to understand the behavior

of y⊤(X̃X̃⊤)−1. Letting X = (x⊤
1 ,x

⊤
2 , . . . ,x

⊤
n )

⊤ ∈ Rn×p and recalling x̃ij = ajζ(yiaj)xi, we
can write

X̃ = (a1B1X a2B2X · · · amBmX) , (12)
where Bj ∈ Rn×n is the diagonal matrix whose diagonal entry (Bj)kk = ζ(ajyk). Then we have

X̃X̃⊤ =
∑
j∈J

a2jBjXX⊤Bj . (13)

Notice that Bj’s are the same among j ∈ J+ and j ∈ J−, respectively. So, we can write B+ =
Bj , j ∈ J+ and B− = Bj , j ∈ J−. With a2j =

1
m , we have

X̃X̃⊤ =
|J+|
m

B+XX⊤B+ +
|J−|
m

B−XX⊤B−. (14)

The analysis of y(X̃X̃⊤)−1 will be done through XX⊤ = ∥µ∥2yy⊤+y(Zµ)⊤+Zµy⊤+ZZ⊤ ≈
∥µ∥2yy⊤ +RIn under sufficient near orthogonality of zi’s to each other and to µ (events Ẽ1, Ẽ2).

The rest of the argument is split into the strong signal regime and the weak signal regime. The latter
is easier since we have XX⊤ ≈ RIn, which further implies X̃X̃⊤ ≈ R(q+B

2
+ + q−B

2
−), which

is a diagonal matrix. The strong signal case is more difficult to analyze, and relies on a careful
characterization of the eigenvectors of ∥µ∥2(q+B+yy

⊤B++ q−B−yy
⊤B−)+R(q+B

2
++ q−B

2
−).

8 DISCUSSION

In this paper, we have established sufficient conditions of benign overfitting of gradient descent in
leaky ReLU two-layer neural networks. Here we discuss directions for future research other than the
obvious direction of extending to deep neural networks:

Not only showing directional convergence in more generality but also obtaining detailed characteri-
zation of the convergent direction remains an important open question. Even for two-layer neural
networks we studied, our setting is rather restricted considering a more general result obtained by Ji
and Telgarsky (2020) for gradient flow.

In this study, we did not introduce noise to the label y as was done in some prior work on binary
classification (Chatterji and Long (2021); Wang and Thrampoulidis (2022); Frei et al. (2022); Xu
and Gu (2023); Hashimoto et al. (2025)). We conjecture that introducing noise will not change
the result for the weak signal regime since in this regime the signal µ is negligible. However, the
situation is likely to change substantially in the strong signal regime with noisy data as was observed
in Hashimoto et al. (2025) for binary linear classification.
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A COMPARISON WITH THE EXISTING RESULTS

In this section, we provide more detailed comparison of our main results with the existing results (Frei
et al. (2022); Xu and Gu (2023)). Since Frei et al. (2022) only considers smoothed approximation of
leaky ReLU, our comparison is mostly with Xu and Gu (2023).

Since only isotropic sub-Gaussian mixture was studied in the existing literature, we present here
sufficient conditions of benign overfitting derived from Theorem 6.2 in the case of Σ = IP for the
purpose of direct comparison:

Corollary A.1. Consider model (sG) with Σ = Ip. Then, for sufficiently large n, benign overfitting
occurs with the convergent direction Ŵ with high probability if either one of the following holds:

(i) ∥µ∥ ≳
√
n and n∥µ∥2 ≲ p ≲ ∥µ∥4

n ,

(ii) ∥µ∥ ≳
√
n and n

5
4 ∥µ∥ 3

2 ≲ p ≲ min{n∥µ∥2, ∥µ∥4

n },

(iii) max{n∥µ∥2, n3} ≲ p ≪ n∥µ∥4.

We first note that conditions (i) and (ii) are newly identified regimes on which benign overfitting
occurs, and only condition (iii) is directly comparable to the results studied in the prior work (Frei
et al. (2022); Xu and Gu (2023)). As shown in Theorem 6.3, we have further extended the result in
the case of (PM).

Data Regime: Our work considers both weak and strong signal regimes and identified the surprising
phase transition in classification error occurring at n∥µ∥2 ≈ tr(Σ). Frei et al. (2022); Xu and Gu
(2023) only studied nearly orthogonal data regime, which corresponds to the weak signal regime in
this paper, and thus did not identify the phase transition. Even in the weak signal regime, condition
(i) in Corollary A.1 was not studied.

Distributional setting: Our results significantly relax distributional conditions in prior work by
extending to anisotropic polynomially tailed mixture (PM). Both Frei et al. (2022); Xu and Gu (2023)
considered mixtures even stronger than (sG). Specifically, Frei et al. (2022) assumed z is not only
sub-Gaussian but also strongly log-concave. Xu and Gu (2023) assumed z has a bounded log-Sobolev
constant, which is also stronger than just assuming z is sub-Gaussian. Moreover, both work only
considered isotropic mixture.

Comparing condition (iii) with that of Xu and Gu (2023), we have a better upper bound on p (Xu
and Gu (2023) requires p log(mp) ≲ n∥µ∥4). We allow the width m to be arbitrary while Xu and
Gu (2023) requires m ≳ log n. We note that Xu and Gu (2023)’s result holds for non-smooth leaky
ReLU like activation, which is not limited to (leaky) ReLU. We also note that our lower bound on p
is slightly stronger than theirs which requires p ≳ max{n∥µ∥2, n2 log n}.

B PROOF OF DIRECTIONAL CONVERGENCE

B.1 PROOF OF LEMMA 7.1

Lemma B.1. Consider (M). If all the neurons are activated at step t, i.e. aj⟨w(t)
j , yixi⟩ > 0 holds

for all i ∈ I and j ∈ J , then

w
(t+1)
j −w

(t)
j = α

∑
i∈I

exp(−yif(xi;W
(t)))ajζ(ajyi)yixi.

13
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Proof. By (2), we have

w
(t+1)
j −w

(t)
j = −α

∑
i

exp(−yif(xi;W
(t)))(−yi)∇wj

{∑
k

akϕ(⟨wk,xi⟩)

}
W=W (t)

= α
∑
i

exp(−yif(xi;W
(t)))yiaj∇wjϕ(⟨wj ,xi⟩)wj=w

(t)
j

= α
∑
i

exp(−yif(xi;W
(t)))ajζ(ajyi)yixi,

where the last equality is due to the assumption ajyi⟨w(t)
j ,xi⟩ > 0 which implies sgn(⟨w(t)

j ,xi⟩) =
sgn(ajyi).

Remark. Lemma B.1 implies that the gradient descent update is same within j ∈ J+ and j ∈ J−,
respectively.

Lemma B.2. Suppose W = (w1, . . . ,wm) has wj = w+ if j ∈ J+ and wj = w− if j ∈ J−. Then,
f(x;W ) has the linear decision boundary defined by w̄ := |J+|√

m
w+− |J−|√

m
w−, i.e. sign(f(x;W )) =

sign(⟨x, w̄⟩).

Proof. We consider several cases separately:

Case ⟨x,w+⟩ ≥ 0 and ⟨x,w−⟩ ≥ 0: we have

f(x; Ŵ ) =
|J+|√
m

⟨x,w+⟩ −
|J−|√
m

⟨x,w−⟩ = ⟨x, w̄⟩.

Case ⟨x,w+⟩ ≥ 0 and ⟨x,w−⟩ < 0: we have

f(x; Ŵ ) =
|J+|√
m

⟨x,w+⟩ −
γ|J−|√

m
⟨x,w−⟩ ≥

|J+|√
m

⟨x,w+⟩ −
|J−|√
m

⟨x,w−⟩ = ⟨x, w̄⟩ ≥ 0.

Case ⟨x,w+⟩ < 0 and ⟨x,w−⟩ ≥ 0: we have

0 > ⟨x, w̄⟩ = |J+|√
m

⟨x,w+⟩ −
|J−|√
m

⟨x,w−⟩ ≥
γ|J+|√

m
⟨x,w+⟩ −

|J−|√
m

⟨x,w−⟩ = f(x; Ŵ ).

Case ⟨x,w+⟩ < 0 and ⟨x,w−⟩ < 0: we have

f(x; Ŵ ) = γ

(
|J+|√
m

⟨x,w+⟩ −
|J−|√
m

⟨x,w−⟩
)

= γ⟨x, w̄⟩.

Therefore, we have confirmed sign(f(x : Ŵ )) = sign(⟨x, w̄⟩) holds for all the cases above.

Proof of Lemma 7.1. By the assumption that all the neurons stay activated after t ≥ T , the directional
convergence follows from Corollary 8 of Soudry et al. (2018).

For completeness and to show the remaining claims, we provide the complete proof of the directional
convergence here.
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First note that ajϕ(⟨xi,w(t)
j )⟩ = ajζ(ajyi)⟨xi,w(t)

j ⟩ holds for all i ∈ I, j ∈ J, t ≥ T by the
assumption that all the neurons are activated after t ≥ T . Then, we have for t ≥ T ,

yif(xi;W
(t)) =

∑
j

ajyiϕ(⟨xi,w(t)
j ⟩)

=
∑
j

ajyiζ(ajyi)⟨xi,w(t)
j ⟩

=
∑
j

⟨ajζ(ajyi)yixi,w(t)
j ⟩

=
∑
j

⟨yix̃ij ,w(t)
j ⟩

= ⟨yix̃i,w(t)⟩,
where the fourth equality follows from the definition of x̃i and w(t) = vec(W (t)).

With this, the gradient descent updates in Lemma B.1 can be rewritten as

w
(t+1)
j −w

(t)
j = α

∑
i

exp
(
−⟨yix̃i,w(t)⟩

)
ajζ(ajyi)yixi.

Therefore, we have
w(t+1) −w(t) = α

∑
i∈I

exp(−⟨yix̃i,w(t)⟩)yix̃i, (15)

which can be viewed as the gradient descent iterates of binary linear classifier of the dataset
{(x̃i, yi)}i∈I ⊂ Rmp × {±1}.

Therefore, gradient descent iterates w(t) converges in direction if the dataset {(x̃i, yi)}i∈I is linearly
separable and α is sufficiently small due to Theorem 3 of Soudry et al. (2018). We now provide
additional details verifying that this result is applicable in our setting.

It is easy to see linear separability of {(x̃i, yi)}i∈I by expanding the following inner product

⟨yix̃i,w(t)⟩ =
∑
j∈J

⟨yiajζ(ajyi)xi,w(t)
j ⟩ =

∑
j∈J

ζ(ajyi)aj⟨yixi,w(t)
j ⟩. (16)

Now it is clear that the inner product is positive by the assumption that all the neurons are activated at
time t ≥ T .

In addition, u 7→ e−u is 1-Lipschitz on (0,∞) and (16) implies that ⟨yix̃i,w(t)⟩ stays in this region.
Therefore, Theorem 3 of Soudry et al. (2018) can be used with β = 1.

Since {(x̃i, yi)}i∈I is linearly separable and satisfies ασ2
max(X̃) < 2, limt→∞ ∥w(t)∥ = ∞ follows

from Lemma 1 of Soudry et al. (2018), L(W (t)) = O(t−1) follows from Theorem 5 of Soudry et al.
(2018), and the directional convergence follows from Theorem 3 of Soudry et al. (2018), respectively.

Now we turn to the characterization of the convergent direction. First, we show that not only ∥w(t)∥
but also ∥w(t)

j ∥ diverges to infinity for all j ∈ J . To see this, note that by Lemma B.1, we have for
t ≥ T

w
(t)
j −w

(T )
j = α

∑
i

(
t−1∑
s=T

exp(−yif(xi;W
(s)))

)
ζ(ajyi)ajyixi. (17)

Since ∥w(t)∥ is diverging to infinity, we must have ∥w(t)
j ∥ diverging to infinity for some j, and hence∑t−1

s=T exp(−yif(xi;W
(s))) → ∞ as t → ∞ for some i. Denote such i as i∗.

Again by Lemma B.1, we have for any j,

⟨w(t)
j −w

(T )
j ,w

(T )
j ⟩ = α

∑
i

(
t−1∑
s=T

exp(−yif(xi;W
(s)))

)
ζ(ajyi)aj⟨yixi,w(T )

j ⟩

≥ α

t−1∑
s=T

exp(−yi∗f(xi∗ ;W
(s)))ζ(ajyi∗)aj⟨yi∗xi∗ ,w

(T )
j ⟩ → ∞,

(18)
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where the inequality is due to the assumption that all the neurons are activated at s ≥ T and the
divergence is due to

∑t−1
s=T exp(−yi∗f(xi∗ ;W

(s))) → ∞ and the fact that all neurons are activated
at time T , implying ⟨yi∗xi∗ ,w

(T )
j ⟩ ≠ 0. Since this holds for any j, we must have ∥wj∥ diverging to

infinity for all j ∈ J .

By Theorem 3 of Soudry et al. (2018), the convergent direction is equal to that of the solution to the
following optimization problem:

Minimize ∥w∥2 s.t. ⟨yix̃i,w⟩ ≥ 1,∀i ∈ I, (19)
which is equivalently written as

Minimize
∑
j∈J

∥wj∥2 s.t.
∑
j∈J

⟨ajyiζ(ajyi)xi,wj⟩ ≥ 1,∀i ∈ I. (20)

Recalling that the gradient descent updates are same within j ∈ J+ and j ∈ J−, respectively, and
that ∥w(t)

j ∥ diverges to infinity for all j ∈ J , the direction that w(t)
j converges to must be the same

for all j ∈ J+ and the same for all j ∈ J−. Thus the solution to the optimization problem (20) must
have wj = w+ for all j ∈ J+ and wj = w− for all j ∈ J−. With this, (20) can be further rewritten
as the desired optimization problem (5).

Finally, the claim about the linear decision boundary follows from Lemma B.2

Before proceeding to the subsequent subsections where we prove Theorem 4.8, we introduce some
ancillary results:

We first note that event E implies (11) and the following inequality:
(1− θ2){∥µ∥2 +R2

min(z)} ≤ ∥yixi∥2 ≤ (1 + θ2){∥µ∥2 +R2
max(z)},∀i. (21)

We also note that the definition of ρ implies
max
i

|f(xi;W (0))| ≤ ρ. (22)

By (11) and (21), we obtain the following lemma, which is going to be useful to establish sufficient
conditions for ασ2

max(X̃) < 2:
Lemma B.3.
σ2
max(X̃) ≤ (1 + θ2){∥µ∥2 +R2

max(z)}+ (n− 1)
[
∥µ∥2 + {2θ2∥µ∥Rmax(z) + θ1R

2
max(z)}

]
Proof. Note that

|⟨x̃i, x̃k⟩| =

∣∣∣∣∣∣
∑
j

a2jζ(ajyi)ζ(ajyk)⟨xi,xk⟩

∣∣∣∣∣∣
≤
∑
j

ζ(ajyi)ζ(ajyk)

m
|⟨xi,xk⟩|

≤ |⟨xi,xk⟩| ,

(23)

where the last inequality is due to γ2 ≤ ζ(ajyi)ζ(ajyk) ≤ 1.

With this, (11), and (21), for any v ∈ Sn−1, we have

∥X̃⊤v∥2 =
∑
i

v2i ∥x̃i∥2 +
∑

i,k:i̸=k

vivk⟨x̃i, x̃k⟩

≤ (1 + θ2){∥µ∥2 +R2
max(z)}

∑
i

v2i

+
[
∥µ∥2 + {2θ2∥µ∥Rmax(z) + θ1R

2
max(z)}

] ∑
i,k:i ̸=k

|vivk|

≤ (1 + θ2){∥µ∥2 +R2
max(z)}

+ (n− 1)
[
∥µ∥2 + {2θ2∥µ∥Rmax(z) + θ1R

2
max(z)}

]
,
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where in the last inequality we used
∑
i,k:i ̸=k |vivk| ≤ n − 1, which follows from the Cauchy-

Schwartz inequality.

B.2 PROOF OF THEOREM 4.8 UNDER CONDITION (I)

Lemma B.4. Suppose event E holds with ∥µ∥2 ≥ 2θ2∥µ∥Rmax(z) + θ1R
2
max(z) and Assump-

tion 4.2. Then, all the neurons stay activated for t ≥ 1.

Proof of Lemma B.4. Under ∥µ∥2 ≥ 2θ2∥µ∥Rmax(z) + θ1R
2
max(z), the gradient descent updates

(10) stays positive. Therefore, it is enough to confirm all the neurons are activated at t = 1.

Again by (10), (21), (22), ∥µ∥2 ≥ 2θ2∥µ∥Rmax(z) + θ1R
2
max(z),

aj⟨yixi,w(1)
j ⟩

≥ 1

m

[
αγ(1− θ2){∥µ∥2 +R2

min(z)}

× exp{−
√
mσmax

i
∥xi∥} −

√
mσmax

i
∥xi∥

]
≥ 1

m

[
αγ(1− θ2){∥µ∥2 +R2

min(z)} exp(−ρ)− ρ
]
> 0.

(24)

Proof of Theorem 4.8 under condition (i). By Lemma B.4, all the neurons stay activated after t ≥ 1.

By Assumption 4.3, it suffices to show σ2
max(X̃) ≤ 2(n∥µ∥2+R2

max(z)) to ensure ασ2
max(X̃) < 2.

By Lemma B.3 and ∥µ∥2 ≥ 2θ2∥µ∥Rmax(z) + θ1R
2
max(z) we have

σ2
max(X̃) ≤ (1 + θ2)(∥µ∥2 +R2

max(z)) + 2(n− 1)∥µ∥2

≤ 2(∥µ∥2 +R2
max(z)) + 2(n− 1)∥µ∥2

≤ 2(n∥µ∥2 +R2
max(z)).

(25)

Therefore, the directional convergence follows by Lemma 7.1.

B.3 PROOF OF THEOREM 4.8 UNDER CONDITION (II)

First, it is useful to recognize the following inequality which follows from (10), (11), and (21):

α

m

[
γ(1− θ2){∥µ∥2 +R2

min(z)} exp(−yif(xi;W
(t)))

+
∑
k:k ̸=i

ζ(⟨xk,w(t)
j ⟩){∥µ∥2 − 2θ2∥µ∥Rmax(z)− θ1R

2
max(z)} exp(−ykf(xk;W

(t)))
]

≤ aj⟨yixi,w(t+1)
j −w

(t)
j ⟩

≤ α

m

[
(1 + θ2){∥µ∥2 +R2

max(z)} exp(−yif(xi;W
(t)))

+
∑
k:k ̸=i

{∥µ∥2 + 2θ2∥µ∥Rmax(z) + θ1R
2
max(z)} exp(−ykf(xk;W

(t)))
]
.

(26)

We start from establishing neuron activation at t = 1.

Lemma B.5. Suppose event E, Assumption 4.4 and 4.5 with ε1 + ε2 < 1. Then, we have for any i, j,

aj⟨yixi,w(1)
j ⟩ > 0,

and hence all the neurons are activated at t = 1.
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Proof. By (22), (26), and the assumptions, we have

aj⟨yixi,w(1)
j ⟩ ≥ 1

m

[
α
{
γ(1− θ2)R

2
min(z) exp(−ρ)

− n{2θ2∥µ∥Rmax(z) + θ1R
2
max(z)} exp(ρ)

}
− ρ
]

≥ 1

m

[
(1− ε1)αγ(1− θ2)R

2
min(z) exp(−ρ)− ρ

]
≥ 1

m
(1− ε1 − ε2)αγ(1− θ2)R

2
min(z) exp(−ρ) > 0.

Thus, all the neurons are activated at t = 1 if ε1 + ε2 < 1.

Lemma B.6. Suppose event E, Assumption 4.4, 4.5, 4.6, and 4.7 with ε1 + ε2 + ε3 < 1. Then we
have

max
k ̸=i

exp(−yif(xi;W
(1)))

exp(−ykf(xk;W (1)))
≤ exp(1) and ασ2

max(X̃) < 2.

Proof. By (22), (26), and the assumptions, we have

aj⟨yixi,w(1)
j ⟩ ≤ 1

m

[
α
{
(1 + θ2){n∥µ∥2 +R2

max(z)} exp(ρ)

+ n{2θ2∥µ∥Rmax(z) + θ1R
2
max(z)} exp(ρ)

}
+ ρ
]

≤ 1

m

[
α
{
(1 + θ2)(1 + ε3)R

2
max(z) + ε1R

2
max(z)

}
exp(ρ) + ρ

]
≤ α

m
(1 + θ2)(1 + ε1 + ε2 + ε3)R

2
max(z) exp(ρ)

≤ 4αR2
max(z) exp(ρ)

m

≤ 1

m
,

where the second inequality is due to Assumption 4.4 and 4.6, the third is due to Assumption 4.5, the
fourth is due to ε1 + ε2 < 1, and the last inequality is due to Assumption 4.7.

Therefore, with Lemma B.5, we have 0 < yif(xi;W
(1)) ≤ 1, and hence

max
k ̸=i

exp(−yif(xi;W
(1)))

exp(−ykf(xk;W (1)))
≤ max

k
exp(ykf(xk;W

(1))) ≤ exp(1).

We now show ασ2
max(X̃) < 2. By Lemma B.3, we have

ασ2
max(X̃) ≤ α

{
(1 + θ2){n∥µ∥2 +R2

max(z)}+ ε1(1 + θ2)R
2
max(z)

}
≤ α(1 + θ2)(1 + ε1 + ε3)R

2
max(z)

≤ 4αR2
max(z) < 2,

where the first inequality is due to Assumption 4.4, the second inequality is due to Assumption 4.6,
and the last line is due to ε1 + ε3 < 1 and Assumption 4.7.

Finally, we prove that all the neurons stay activated after t ≥ 1.
Lemma B.7. Suppose event E, Assumption 4.4, 4.5, 4.6, and 4.7 with ε1 + ε2 + ε3 < 1, Cwεi <
1
2 , i = 1, 3, and θ2 ≤ 1

2 . Then we have for any i, j

aj⟨yixi,w(t)
j ⟩ > 0

and

max
k ̸=i

exp(−yif(xi;W
(t)))

exp(−ykf(xk;W (t)))
≤ Cw. (27)
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Proof. We prove both claims simultaneously by induction. By Lemma B.5 and B.6, both claims hold
at step t = 1. Suppose both claims hold for t ≥ 1.

We first show the first claim also holds for t + 1. By (26), Assumption 4.4, and the induction
hypothesis, we have

aj⟨yixi,w(t+1)
j −w

(t)
j ⟩ ≥ α

m
exp(−yif(xi;W

(t)))

×
{
γ(1− θ2)R

2
min(z)− Cwε1γ(1− θ2)R

2
min(z)

}
=

1

m
γ(1− Cwε1)(1− θ2)αR

2
min(z) exp(−yif(xi;W

(t)))

≥ 1

4m
γαR2

min(z) exp(−yif(xi;W
(t))) > 0.

(28)

where the last line is due to Cwε1 ≤ 1
2 and θ2 ≤ 1

2 . Therefore, all the neurons are active at step t+ 1.

Next, we prove (27). By (26), the assumptions, and the induction hypothesis, we have

aj⟨yixi,w(t+1)
j −w

(t)
j ⟩

≤ α

m
exp(−yif(xi;W

(t)))

×
[
(1 + θ2)

(
1 +

ε3
n

)
R2
max(z) + Cwε3R

2
max(z) + Cwε1(1 + θ2)R

2
max(z)

]
≤ 1

m

{
1 +

ε3
n

+ Cwε3 + Cwε1

}
(1 + θ2)αR

2
max(z) exp(−yif(xi;W

(t)))

≤ 1

m
6αR2

max(z) exp(−yif(xi;W
(t))),

(29)

where the first inequality is due to Assumption 4.4 and 4.6, the last is due to the assumptions on εi.

Since all the neurons are activated at both t and t+ 1, we have

ajyiϕ(⟨xi,w(t+1)
j ⟩)− ajyiϕ(⟨xi,w(t)

j ⟩) = ζ(ajyi)aj⟨yixi,w(t+1)
j −w

(t)
j ⟩.

With this, (28) and (29), we have
γ2

4
αR2

min(z) exp(−yif(xi;W
(t)))

≤ yif(xi;W
(t+1))− yif(xi;W

(t))

≤ 6αR2
max(z) exp(−yif(xi;W

(t))).

(30)

Now we fix i ̸= k and let At =
exp(−yif(xi;W (t)))
exp(−ykf(xk;W (t)))

. By induction hypothesis, we have At ≤ Cw. By
(30), we have

At+1 ≤ At exp
[
− γ2

4
αR2

min(z) exp(−yif(xi;W
(t)))

+ 6αR2
max(z) exp(−ykf(xk;W

(t)))
]

(31)

= At exp
[
− γ2

4
αR2

min(z) exp(−ykf(xk;W
(t)))

{
At −

24R2
max(z)

γ2R2
min(z)

}]
. (32)

If At ≥ 24R2
max(z)

γ2R2
min(z)

, then At+1 ≤ At immediately follows from (32).

If At <
24R2

max(z)

γ2R2
min(z)

, then (31) and the fact that all neurons are activated at time t, yielding

yif(xi;W
(t)) > 0 for all i, implies

At+1 ≤ 24R2
max(z)

γ2R2
min(z)

exp
[
6αR2

max(z)
]

≤ 24R2
max(z)

γ2R2
min(z)

exp(1) ≤ Cw,
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where the last line holds from Assumption 4.7. This concludes the induction argument proving the
desired claims.

Proof of Theorem 4.8 under condition (ii). The conclusion now follows immediately from
Lemma B.6, B.7, and Lemma 7.1.

C PROOF OF THEOREM 5.1

The proof of Theorem 5.1 is done by first establishing the equivalence of the maximum margin vector
and the minimum norm least square estimator,i.e. ŵ = X̃⊤(X̃X̃⊤)−1y, and carefully analyzing the
behavior.

To prove ŵ = X̃⊤(X̃X̃⊤)−1y, we rely on the "proliferation of support vector" phenomenon due to
Lemma 1, Hsu et al. (2021).
Lemma C.1. If y⊤(X̃X̃⊤)−1yiei > 0 for all i, then

ŵ = X̃⊤(X̃X̃⊤)−1y.

Proof. By Lemma 1, Hsu et al. (2021), the assumption implies all (x̃i, yi), i = 1, 2, . . . , n are support
vectors. Under this condition, the optimization problem defining ŵ is equivalent to

ŵ = argmin ∥w∥2, subject to ⟨w, yix̃i⟩ = 1,

and is also equivalent to the optimization problem defining the least square estimator.

As noted in Section 7, the analysis is done by establishing X̃X̃⊤ ≈ ∥µ∥2(q+B+yy
⊤B+ +

q−B−yy
⊤B−) +R(q+B

2
+ + q−B

2
−).

Lemma C.2. If event Ẽ1 ∩ Ẽ2 holds, then the following inequality holds∥∥XX⊤ −
(
∥µ∥2yy⊤ +RIn

)∥∥ ≤ ε̃R,

where ε̃ := max{ε̃1,
√
nε̃2}.

Proof. Noting event Ẽ2 implies ∥y(Zµ)⊤∥ ≤ ε̃2
3 R and XX⊤ = ∥µ∥2yy⊤+y(Zµ)⊤+(Zµ)y⊤+

ZZ⊤, we have∥∥XX⊤ −
(
∥µ∥2yy⊤ +RIn

)∥∥ ≤ ∥y(Zµ)⊤∥+ ∥(Zµ)y⊤∥+ ∥ZZ⊤ −RIn∥
≤ ε̃

3R+ ε̃
3R+ ε̃

3R = ε̃R.

With (14), this establishes X̃X̃⊤ ≈ ∥µ∥2(q+B+yy
⊤B+ + q−B−yy

⊤B−) +R(q+B
2
+ + q−B

2
−).

It is convenient to introduce B2 = q+B
2
+ + q−B

2
− where B ∈ Rn×n is a diagonal matrix with

Bii =

{√
q+ + γ2q− if i ∈ I+√
q− + γ2q+ if i ∈ I−.

Lemma C.3. If event Ẽ1 ∩ Ẽ2 holds, then we have∥∥∥B−1X̃X̃⊤B−1 −A
∥∥∥ ≤ ε̃q−1

γ R

where
A := ∥µ∥2B−1(q+B+yy

⊤B+ + q−B−yy
⊤B−)B

−1 +RIn.

To obtain approximation of (X̃X̃⊤)−1 from Lemma C.3, we need the following ancillary lemma:
Lemma C.4. If ∥U − V ∥ ≤ sL and V ⪰ LIn for some L > 0 and s ∈ [0, 1

2 ], then

∥U−1 − V −1∥ ≤ 2sL−1.
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Proof. Since V ⪰ LIn for L > 0, V is invertible and ∥V −1∥ ≤ L−1.

Then we have
∥In − V −1U∥ ≤ ∥V −1∥∥U − V ∥ ≤ s.

Letting S = In − V −1U , we have ∥S∥ ≤ s ≤ 1
2 . So, U is invertible and

∥(V −1U)−1 − In∥ ≤ ∥S∥+ ∥S∥2 + · · · ≤ s

1− s
≤ 2s.

Combining with ∥V −1∥ ≤ L−1, we conclude

∥U−1 − V −1∥ ≤ ∥V −1∥∥(V −1U)−1 − In∥ ≤ 2sL−1.

Now we are ready to obtain the following approximation of (X̃X̃⊤)−1, which our remaining
arguments heavily relies on:

Lemma C.5. If event Ẽ1 ∩ Ẽ2 holds with ε̃ ≤ qγ
2 , then we have

∥B(X̃X̃⊤)−1B −A−1∥ ≤
2q−1
γ ε̃

R
.

Proof. Note that the additional assumption implies ε̃q−1
γ ≤ 1

2 . Then, the desired conclusion follows
from Lemma C.3 and C.4 by taking U = B−1X̃X̃⊤B−1, V = A, s = ε̃q−1

γ , and L = R.

By Lemma C.1 and C.5, the rest of our arguments is reduced to the analysis of (B−1y)⊤A−1. Here,
we present technical results regarding this quantity which are used frequently later.
Lemma C.6. Let y = 1+ − 1−, where (1+)i = 1 if i ∈ I+ and (1+)i = 0 if i ∈ I− and (1−)i = 1
if i ∈ I− and (1−)i = 0 if i ∈ I+. We have the following equalities:

1. if q+ = 1, q− = 0,

(B−1y)⊤A−1 =R−1

{(
1− n∥µ∥2

n∥µ∥2 +R

n+ + γ−1n−

n

)
1+

−
(
γ−1 − n∥µ∥2

n∥µ∥2 +R

n+ + γ−1n−

n

)
1−

}⊤

,

(33)

2. if q+ = 0, q− = 1,

(B−1y)⊤A−1 =R−1

{(
γ−1 − n∥µ∥2

n∥µ∥2 +R

γ−1n+ + n−

n

)
1+

−
(
1− n∥µ∥2

n∥µ∥2 +R

γ−1n+ + n−

n

)
1−

}⊤

,

(34)

3. if q+q− ̸= 0,

(B−1y)⊤A−1

={d(q+ + γ2q−)(q− + γ2q+)}−1

×
[√

q+ + γ2q−
{
(q− + γ2q+ − γ)n−∥µ∥2 + (q− + γ2q+)R

}
1+

−
√
q− + γ2q+

{
(q+ + γ2q− − γ)n+∥µ∥2 + (q+ + γ2q−)R

}
1−

]⊤
,

(35)

where

d(q+ + γ2q−)(q− + γ2q+)

= (1− γ2)2q+q−n+n−∥µ∥4 + (q+ + γ2q−)(q− + γ2q+){n∥µ∥2 +R}R.
(36)
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Proof. Let A =
∑n
i=1 siuiu

⊤
i be the singular value decomposition of A with s1 ≥ s2 ≥ . . . ≥ sn.

We split in cases.

We first consider the case either q+ or q− = 0, i.e. either |J+| or |J−| = 0. Then we have B = B+

if q− = 0 and B = B− if q+ = 0, and hence A = ∥µ∥2yy⊤ + RIn either way. Then, we have
s1 = n∥µ∥2 +R, si = R, i ≥ 2, and can take u1 = y√

n
. Thus,

A−1 = [n∥µ∥2 +R]−1 y√
n

y⊤
√
n
+R−1

∑
i≥2

uiu
⊤
i

= R−1
n∑
i=1

uiu
⊤
i − n∥µ∥2

[n∥µ∥2 +R]R

y√
n

y⊤
√
n

= R−1

(
In − n∥µ∥2

n∥µ∥2 +R

y√
n

y⊤
√
n

)
.

(37)

Case q+ = 1, q− = 0: In this case, we have B = B+ as noted earlier. Since y = 1+ − 1− and
B−1

+ y = 1+ − γ−11−, we have that

(B−1
+ y)⊤A−1

=R−1

{
B−1

+ y − n∥µ∥2

n∥µ∥2 +R

⟨B−1
+ y,y⟩
n

y

}⊤

=R−1

{(
1− n∥µ∥2

n∥µ∥2 +R

n+ + γ−1n−

n

)
1+

−
(
γ−1 − n∥µ∥2

n∥µ∥2 +R

n+ + γ−1n−

n

)
1−

}⊤

.

Case q+ = 0, q− = 1: In this case, we have B = B− as noted earlier. Since y = 1+ − 1− and
B−1

− y = γ−11+ − 1−, we have that

(B−1
− y)⊤A−1

=R−1

{
B−1

− y − n∥µ∥2

n∥µ∥2 +R

⟨B−1
− y,y⟩
n

y

}⊤

=R−1

{(
γ−1 − n∥µ∥2

n∥µ∥2 +R

γ−1n+ + n−

n

)
1+

−
(
1− n∥µ∥2

n∥µ∥2 +R

γ−1n+ + n−

n

)
1−

}⊤

.

Case q+q− ̸= 0: In this case, we have the span of {B−1B+y, B
−1B−y} equal to the span of

{u1,u2}, and si = R for i ≥ 3.

To determine
∑
i=1,2 s

−1
i uiu

⊤
i , it is convenient to use isomorphism between the span of

{B−1B+y, B
−1B−y} and R2 by 1+ ↔ √

n+e1 and 1− ↔ √
n−e2. Under this isomorphism,

we have

B−1B+y =
1√

q+ + γ2q−
1+ − γ√

q− + γ2q+
1− ↔

√
n+√

q+ + γ2q−
e1 −

γ
√
n−√

q− + γ2q+
e2,

B−1B−y =
γ√

q+ + γ2q−
1+ − 1√

q− + γ2q+
1− ↔

γ
√
n+√

q+ + γ2q−
e1 −

√
n−√

q− + γ2q+
e2.

(38)

Thus,
∑
i=1,2 siuiu

⊤
i is regarded as a 2× 2 matrix

n+∥µ∥2 +R −
γ
√
n+n−∥µ∥2√

(q+ + γ2q−)(q− + γ2q+)

−
γ
√
n+n−∥µ∥2√

(q+ + γ2q−)(q− + γ2q+)
n−∥µ∥2 +R

 . (39)
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Thus,
∑
i=1,2 s

−1
i uiu

⊤
i is regarded as


n+∥µ∥2 +R −

γ
√
n+n−∥µ∥2√

(q+ + γ2q−)(q− + γ2q+)

−
γ
√
n+n−∥µ∥2√

(q+ + γ2q−)(q− + γ2q+)
n−∥µ∥2 +R


−1

=d−1


n−∥µ∥2 +R

γ
√
n+n−∥µ∥2√

(q+ + γ2q−)(q− + γ2q+)
γ
√
n+n−∥µ∥2√

(q+ + γ2q−)(q− + γ2q+)
n+∥µ∥2 +R

 ,

(40)

where

d = {n+∥µ∥2 +R}{n−∥µ∥2 +R} − γ2n+n−∥µ∥4

(q+ + γ2q−)(q− + γ2q+)
.

Since B−1y ↔
√
n+√

q++γ2q−
e1 −

√
n−√

q−+γ2q+
e2 and B−1y ⊥ ui for all i ≥ 3, we have

(B−1y)⊤A−1

=d−1

[{
n−∥µ∥2 +R√
q+ + γ2q−

− γn−∥µ∥2√
q+ + γ2q−(q− + γ2q+)

}
1+

−

{
n+∥µ∥2 +R√
q− + γ2q+

− γn+∥µ∥2√
q− + γ2q+(q+ + γ2q−)

}
1−

]⊤
={d(q+ + γ2q−)(q− + γ2q+)}−1

×
[√

q+ + γ2q−
{
(q− + γ2q+ − γ)n−∥µ∥2 + (q− + γ2q+)R

}
1+

−
√
q− + γ2q+

{
(q+ + γ2q− − γ)n+∥µ∥2 + (q+ + γ2q−)R

}
1−

]⊤
.

(41)

Before proceeding to the next lemma, we note that the following inequality holds under Ẽ3:

(1− ε̃23)
n2

4
≤ n+n− ≤ n2

4
. (42)

The next lemma establishes useful bounds on d.
Lemma C.7. We have

d(q+ + γ2q−)(q− + γ2q+) ≤
{
γ2 +

5(1− γ2)2

4
q+q−

}(
n∥µ∥2 +R

)2
≤ 5qγ

4

(
n∥µ∥2 +R

)2
.

(43)

If additionally Ẽ3(ε̃3) holds for some ε̃3 ∈ [0, 1], then we also have

d(q+ + γ2q−)(q− + γ2q+) ≥
(1− ε̃23)(1− γ2)2q+q−

8

(
n∥µ∥2 +R

)2
+ γ2R2. (44)

Proof. We first note that

qγ ≥ (q+ + γ2q−)(q− + γ2q+) = (1 + γ4)q+q− + γ2(q2+ + q2−) = γ2 + (1− γ2)2q+q−. (45)

With (45) and also noting that n+n− ≤ n2

4 , it is easy to see (43) follows from (36).
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By (36), (45), and (42), we have

d(q+ + γ2q−)(q− + γ2q+)

≥ (1− ε̃23)(1− γ2)2

4
q+q−

(
n∥µ∥2

)2
+
{
γ2 + (1− γ2)2q+q−

}
R2

≥ (1− ε̃23)(1− γ2)2

4
q+q−

{(
n∥µ∥2

)2
+R2

}
+ γ2R2

≥ (1− ε̃23)(1− γ2)2

8
q+q−

(
n∥µ∥2 +R

)2
+ γ2R2,

where the last inequality is due to a2 + b2 ≥ (a+b)2

2 .

Now we are ready to establish sufficient conditions of ŵ = X̃(X̃X̃⊤)−1y.

Lemma C.8. Suppose event
⋂
i=1,2,3 Ẽi holds with ε̃ ≤ qγ

2 and further assume one of the following
conditions holds:

(i) q+q− = 0, n∥µ∥2 < γ
1+(1+γ)ε̃3

R, and
√
nε̃ ≤ γ3

4 ,

(ii) q+q− ̸= 0, n∥µ∥2 ≤ λR, and
√
nε̃ ≤ q2γ

5(1+λ)2 for some λ ≤ qγ
2γ(1−γ) ,

(iii) qγ > γ, n∥µ∥2 ≥ λR, and
√
nε̃ ≤ C̃(γ, q+, ε̃3, λ)

R
n∥µ∥2 for some λ > 0, where

C̃(γ, q+, ε̃3, λ) :=
(1− ε̃3)q

2
γ(qγ − γ)

5(1 + λ−1)2
.

Then, we have
ŵ = X̃(X̃X̃⊤)−1y.

Proof. By Lemma C.1, it suffices to show y⊤(X̃X̃⊤)−1yiei > 0 for all i.

By Lemma C.5, we have

y⊤(X̃X̃⊤)−1yiei

=(B−1y)⊤B(X̃X̃⊤)−1BB−1yiei

≥(B−1y)⊤A−1B−1yiei − ∥B−1y∥B−1
ii 2ε̃q−1

γ R−1

≥B−1
ii (B−1y)⊤A−1yiei − 2B−1

ii q−1
γ ε̃R−1

√
n+

q+ + γ2q−
+

n−

q− + γ2q+

≥B−1
ii

{
(B−1y)⊤A−1yiei − 2q−3/2

γ ε̃R−1
√
n
}
,

(46)

where the last inequality follows from the definition of qγ and n++n− = n. The rest of the argument
is split in cases.

Case q+ = 1, q− = 0: By (33), we have

(B−1
+ y)⊤A−1B−1

+ yiei

=

R−1
(
1− n∥µ∥2

n∥µ∥2+R
n++γ−1n−

n

)
, if i ∈ I+,

γ−1R−1
(
γ−1 − n∥µ∥2

n∥µ∥2+R
n++γ−1n−

n

)
, if i ∈ I−.

(47)

Therefore, by the definition of Ẽ3, (46) and (47), we have

y⊤(X̃X̃⊤)−1yiei

≥

R−1
(
1− n∥µ∥2

n∥µ∥2+R
(1+γ−1)(1+ε̃3)

2 − 2γ−3
√
nε̃
)
, if i ∈ I+,

γ−1R−1
(
γ−1 − n∥µ∥2

n∥µ∥2+R
(1+γ−1)(1+ε̃3)

2 − 2γ−3
√
nε̃
)
, if i ∈ I−.

(48)
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Case q+ = 0, q− = 1: By (34), we have

(B−1
− y)⊤A−1B−1

− yiei

=

γ−1R−1
(
γ−1 − n∥µ∥2

n∥µ∥2+R
γ−1n++n−

n

)
, if i ∈ I+

R−1
(
1− n∥µ∥2

n∥µ∥2+R
γ−1n++n−

n

)
, if i ∈ I−.

(49)

Therefore, by the definition of Ẽ3, (46) and (49), we have

y⊤(X̃X̃⊤)−1yiei

≥

γ−1R−1
(
γ−1 − n∥µ∥2

n∥µ∥2+R
(1+γ−1)(1+ε̃3)

2 − 2γ−3
√
nε̃
)
, if i ∈ I+,

R−1
(
1− n∥µ∥2

n∥µ∥2+R
(1+γ−1)(1+ε̃3)

2 − 2γ−3
√
nε̃
)
, if i ∈ I−.

(50)

Therefore, for both the cases above, it suffices to have

n∥µ∥2

n∥µ∥2 +R

(1 + γ−1)(1 + ε̃3)

2
<

1

2
, and 2γ−3

√
nε̃ ≤ 1

2
,

which follows from the condition (i).

Case q+q− ̸= 0: By (41) and (46), we have for i ∈ I+

y⊤(X̃X̃⊤)−1yiei

≥B−1
ii

[
{d(q+ + γ2q−)(q− + γ2q+)}−1

×
{√

q+ + γ2q−
{
(q− + γ2q+ − γ)n−∥µ∥2 + (q− + γ2q+)R

}
− 2q−3/2

γ R−1
√
nε̃
]
,

(51)

and for i ∈ I−

y⊤(X̃X̃⊤)−1yiei

≥B−1
ii

[
{d(q+ + γ2q−)(q− + γ2q+)}−1

×
{√

q− + γ2q+
{
(q+ + γ2q− − γ)n+∥µ∥2 + (q+ + γ2q−)R

}
− 2q−3/2

γ R−1
√
nε̃
]
.

(52)

Under regime (ii), (43) implies

d(q+ + γ2q−)(q− + γ2q+) ≤
5qγ
4

(1 + λ)2R2. (53)

By qγ > γ2, we have

(q− + γ2q+ − γ)n−∥µ∥2 + (q− + γ2q+)R > qγR− γ(1− γ)n−∥µ∥2

≥ qγR− γ(1− γ)n∥µ∥2

≥ qγ
2
R,

(54)

where the last inequality is due to the assumption on λ.

Similarly, we have

(q+ + γ2q− − γ)n+∥µ∥2 + (q+ + γ2q−)R >
qγ
2
R. (55)
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Therefore, for i ∈ I+, (51), (53), and (54) imply

y⊤(X̃X̃⊤)−1yiei > B−1
ii R−1

[
2q

1
2
γ

5(1 + λ)2
− 2q

− 3
2

γ

√
nε̃

]
≥ 0, (56)

where the last inequality is due to the assumption on
√
nε̃.

The same conclusion analogously holds for i ∈ I− as well by (52), (53), and (54).

Under regime (iii), by (43), we have that

d(q+ + γ2q−)(q− + γ2q+) ≤
5qγ
4

(1 + λ−1)2
(
n∥µ∥2

)2
. (57)

With (51) and (57), we have for i ∈ I+

y⊤(X̃X̃⊤)−1yiei

>B−1
ii

[
q

1
2
γ {(qγ − γ)(1− ε̃3)

n
2 ∥µ∥

2}
5qγ
4 (1 + λ−1)2(n∥µ∥2)2

− 2q
− 3

2
γ

√
nε̃R−1

]

=(Biin∥µ∥2)−1q
− 3

2
γ

[
q2γ(qγ − γ)(1− ε̃3)

5(1 + λ−1)2
− 2

√
nε̃

n∥µ∥2

R

]
≥ 0.

(58)

Similarly, the same lower bound holds for i ∈ I− from (52).

Remark. By similar argument we can show under (iii), an upper bound of the similar form as (58)
for i ∈ I+ whose dominant term is (q− + γ2q+ − γ)n∥µ∥2. Similarly, for i ∈ I−, we have an
upper bound whose dominant term is (q+ + γ2q− − γ)n∥µ∥2. If we have qγ < γ, exactly one
of q− + γ2q+ − γ and q+ + γ2q− − γ becomes negative and the other stays positive. Suppose
q− + γ2q+ − γ < 0, then we have y⊤(X̃X̃⊤)−1yiei < 0 for all i ∈ I+ when n∥µ∥2 is sufficiently
larger than R, which means the equivalence of ŵ = X̃⊤(X̃X̃⊤)−1y provably fails in such case. The
same applies with the case q+ + γ2q− − γ < 0.

With ŵ = X̃⊤(X̃X̃⊤)−1y, by defining

w+ =
1√
m
X⊤B+(X̃X̃⊤)−1y

=
1√
m
X⊤B+

(
q+B+XX⊤B+ + q−B−XX⊤B−

)−1
y,

w− = − 1√
m
X⊤B−(X̃X̃⊤)−1y

= − 1√
m
X⊤B−

(
q+B+XX⊤B+ + q−B−XX⊤B−

)−1
y,

(59)

we have ŵj = w+ if j ∈ J+ and ŵj = w− if j ∈ J−.

By Lemma B.2, the network f(x; Ŵ ) has the linear decision boundary defined by

w̄ = |J+|√
m
w+ − |J−|√

m
w−. (60)

By (59) and (60), we have

w̄ = X⊤ (q+B+ + q−B−) (X̃X̃⊤)−1y.

This implies

∥w̄∥2 = y⊤(X̃X̃⊤)−1 (q+B+ + q−B−)XX⊤ (q+B+ + q−B−) (X̃X̃⊤)−1y, (61)

⟨w̄,µ⟩ = y⊤(X̃X̃⊤)−1 (q+B+ + q−B−)Xµ

= y⊤(X̃X̃⊤)−1 (q+B+ + q−B−) (∥µ∥2y + Zµ). (62)
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We need to obtain bounds of ∥w̄∥2 and ⟨w̄,µ⟩, respectively, in order to later establish a classification
error bound of w̄.

To obtain bounds of ∥w̄∥2, the following inequality is useful.

Lemma C.9. Suppose that the conclusions of Lemma C.2, C.5, and C.8 hold. Then, we have∣∣∥w̄∥2 − (∥µ∥2K1 +RK2)
∣∣ ≤ ε̃RK2,

and ∣∣∣⟨w̄,µ⟩ − ∥µ∥2
√

K1

∣∣∣ ≤ q
− 1

2
γ

3
ε̃2∥(B−1y)⊤A−1∥R+

2q−2
γ

3
ε̃ ·

√
nε̃2,

where

K1 :=
{
y⊤(X̃X̃⊤)−1(q+B+ + q−B−)y

}2

=
{
(B−1y)⊤B(X̃X̃⊤)−1B ·B−1(q+B+ + q−B−)y

}2

and (63)

K2 :=
∥∥∥(q+B+ + q−B−)(X̃X̃⊤)−1y

∥∥∥2
=
∥∥∥(q+B+ + q−B−)B

−1 ·B(X̃X̃⊤)−1B ·B−1y
∥∥∥2 . (64)

Proof. Letting v = (q+B+ + q−B−) (X̃X̃⊤)−1y, we have ∥w̄∥2 = v⊤XX⊤v.

Then, by (61) and the conclusion of Lemma C.2, we have∣∣∥w̄∥2 −
(
∥µ∥2⟨v,y⟩2 +R∥v∥2

)∣∣ ≤ ε̃R∥v∥2.

The first desired inequality now follows by noting ⟨v,y⟩2 = K1 and ∥v∥2 = K2.

To show the second desired inequality, we note that (62) implies

⟨w̄,µ⟩ = ∥µ∥2
√

K1 + (B−1y)⊤A−1B−1(q+B+ + q−B−)Zµ

+ (B−1y)⊤
[
B(X̃X̃⊤)−1 −A−1

]
B−1(q+B+ + q−B−)Zµ.

(65)

By Lemma C.5 and (65), we have∣∣∣⟨w̄,µ⟩ − ∥µ∥2
√
K1

∣∣∣ ≤ ∥(B−1y)⊤A−1∥∥B−1∥∥q+B+ + q−B−∥∥Zµ∥

+ ∥B−1∥∥y∥
2q−1
γ ε̃

R
∥B−1∥∥q+B+ + q−B−∥∥∥Zµ∥

≤ q
− 1

2
γ

3
ε̃2∥(B−1y)⊤A−1∥R+

2q−2
γ

3
ε̃ ·

√
nε̃2,

where the second inequality follows from the definition of ε̃2, ∥B−1∥ ≤ q
− 1

2
γ , and ∥q+B+ +

q−B−∥ ≤ 1.

Lemma C.10. Suppose that all the assumptions of Lemma C.8 hold with ε̃3 ≤ 1
2 in (ii) and (iii).

Then there exists constant c̃1 which depends only on γ and q+ such that

∥w̄∥2 ≤ c̃1
n

n∥µ∥2 +R
.

Furthermore, there exist constants ĉ1 and N which only depends on γ, q+ (and λ under (ii) and (iii))
such that n ≥ N implies

∥w̄∥2 ≥ ĉ1
n

n∥µ∥2 +R
.
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Proof. By Lemma C.9, the proof is reduced to bounding Ki, i = 1, 2.

By Lemma C.5, we have∣∣∣(B−1y)⊤B(X̃X̃⊤)−1B ·B−1(q+B+ + q−B−)y − (B−1y)⊤A−1B−1(q+B+ + q−B−)y
∣∣∣

≤
2q−1
γ ε̃

R
∥B−1y∥∥B−1(q+B+ + q−B−)y∥

≤
2q−1
γ ε̃

R

∥∥∥∥∥ 1√
q+ + γ2q−

1+ − 1√
q− + γ2q+

1−

∥∥∥∥∥ ·
∥∥∥∥∥ q+ + γq−√

q+ + γ2q−
1+ − q− + γq+√

q− + γ2q+
1−

∥∥∥∥∥
≤
2q−1
γ ε̃

R

√
1

q+ + γ2q−
n+ +

1

q− + γ2q+
n− ·

√
(q+ + γq−)2

q+ + γ2q−
n+ +

(q− + γq+)2

q− + γ2q+
n−

≤
2q−1
γ ε̃

R

√
n

qγ
·
√

n

qγ

≤
2q−2
γ nε̃

R
.

(66)

Similarly, we have∣∣∣∥(q+B+ + q−B−)B
−1 ·B(X̃X̃⊤)−1B ·B−1y∥ − ∥(q+B+ + q−B−)B

−1 ·A−1 ·B−1y∥
∣∣∣

≤
2q−1
γ ε̃

R
∥(q+B+ + q−B−)B

−1∥ · ∥B−1y∥

≤
2q−1
γ ε̃

R
max

{
q+ + γq−√
q+ + γ2q−

,
q− + γq+√
q− + γ2q+

}
·
√

n

qγ

≤
2q−1
γ ε̃

R

1
√
qγ

·
√

n

qγ

≤
2q−2
γ

√
nε̃

R
.

(67)

We split in cases.

Regime (i): We first note that n∥µ∥2 < γ
1+(1+γ)ε̃3

R ≤ γR implies

R−1 ≤ (1 + γ)(n∥µ∥2 +R)−1. (68)

We first consider the case when q+ = 1, q− = 0. By (33), we have

(B−1y)⊤A−1B−1(q+B+ + q−B−)y

=(B−1
+ y)⊤A−1(B−1

+ y)

=R−1

{(
1− n∥µ∥2

n∥µ∥2 +R

n+ + γ−1n−

n

)
n+

+γ−1

(
γ−1 − n∥µ∥2

n∥µ∥2 +R

n+ + γ−1n−

n

)
n−

}
≤n+ + γ−2n−

R

≤(1 + γ)γ−2 n

n∥µ∥2 +R
,

(69)

where the last line is due to (68).
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We also have

(B−1y)⊤A−1B−1(q+B+ + q−B−)y

≥R−1

{(
1− n∥µ∥2

n∥µ∥2 +R

(1 + ε̃3)(1 + γ−1)

2

)
n+

+γ−1

(
γ−1 − n∥µ∥2

n∥µ∥2 +R

(1 + ε̃3)(1 + γ−1)

2

)
n−

}
≥R−1

{(
1− 1

2

)
n+ + γ−1

(
γ−1 − 1

2

)
n−

}
≥{2(1 + γ)}−1 n

n∥µ∥2 +R
,

(70)

where the first inequality is due to Ẽ3, the second inequality is due to the assumption n∥µ∥2 <
γ

1+(1+γ)ε̃3
R, and the last inequality is due to γ ∈ (0, 1).

Analogously, we have the same results for q+ = 0, q− = 1.

With these, (66) with (68), and noting that qγ = γ2 when q+q− = 0, we have under the regime (i){
3

8(1 + γ)

}2
n2

(n∥µ∥2 +R)2
≤
(

1

2(1 + γ)
− 2(1 + γ)γ−4ε̃

)2
n2

(n∥µ∥2 +R)2

≤ K1 ≤ (1 + γ)2
(
γ−2 + 2γ−4ε̃

)2 n2

(n∥µ∥2 +R)2

(71)

for sufficiently large n.

Similarly, (33) implies∥∥(q+B+ + q−B−)B
−1 ·A−1 ·B−1y∥

∣∣
=
∥∥A−1 ·B−1

+ y∥
∣∣

=R−1

{(
1− n∥µ∥2

n∥µ∥2 +R

n+ + γ−1n−

n

)2

n+

+γ−2

(
γ−1 − n∥µ∥2

n∥µ∥2 +R

n+ + γ−1n−

n

)2

n−

} 1
2

,

(72)

and so under the regime (i), we have

1

2(1 + γ)

√
n

n∥µ∥2 +R
≤
∥∥(q+B+ + q−B−)B

−1 ·A−1 ·B−1y∥
∣∣ ≤ (1 + γ)γ−2

√
n

n∥µ∥2 +R
.

(73)

With (67), we have{
3

8(1 + γ)

}2
n

(n∥µ∥2 +R)2
≤
(

1

2(1 + γ)
− 2(1 + γ)γ−4ε̃

)2
n

R2

≤ K2 ≤ (1 + γ)2
(
γ−2 + 2γ−4ε̃

)2 n

(n∥µ∥2 +R)2

(74)

for sufficiently large n.

Thus, by Lemma C.9, (71), and (74), we have[{
3

8(1 + γ)

}2

− (1 + γ)2
(
γ−2 + 2γ−4ε̃

)2
ε̃

]
n

n∥µ∥2 +R

≤ ∥w̄∥2 ≤ (1 + ε̃)(1 + γ)2
(
γ−2 + 2γ−4ε̃

)2 n

n∥µ∥2 +R
,
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with the left hand side being positive for sufficiently large n.

Case q+q− ̸= 0: By (35), we have

(B−1y)⊤A−1B−1(q+B+ + q−B−)y

={d(q+ + γ2q−)(q− + γ2q+)}−1

×
[
(q+ + γq−)

{
(q− + γ2q+ − γ)n−∥µ∥2 + (q− + γ2q+)R

}
n+

+ (q− + γq+)
{
(q+ + γ2q− − γ)n+∥µ∥2 + (q+ + γ2q−)R

}
n−

]
.

(75)

Thus, we have with Lemma C.7

(B−1y)⊤A−1B−1(q+B+ + q−B−)y ≤ {d(q+ + γ2q−)(q− + γ2q+)}−1n(n∥µ∥2 +R)

≤ 8

(1− ε̃23)(1− γ2)2q+q−

n

n∥µ∥2 +R
.

(76)

Similarly, (35) implies∥∥(q+B+ + q−B−)B
−1 ·A−1 ·B−1y∥

∣∣
={d(q+ + γ2q−)(q− + γ2q+)}−1

×
[
(q+ + γq−)

2
{
(q− + γ2q+ − γ)n−∥µ∥2 + (q− + γ2q+)R

}2
n+

+ (q− + γq+)
2
{
(q+ + γ2q− − γ)n+∥µ∥2 + (q+ + γ2q−)R

}2
n−

] 1
2

(77)

Thus, we have with Lemma C.7∥∥(q+B+ + q−B−)B
−1 ·A−1 ·B−1y∥

∣∣ ≤ {d(q+ + γ2q−)(q− + γ2q+)}−1
√
n(n∥µ∥2 +R2)

≤ 8

(1− ε̃23)(1− γ2)2q+q−

√
n

n∥µ∥2 +R
.

(78)

We now consider regime (ii) and (iii) separately.

Regime (ii): By (66) and (76), we have

K1 ≤
{

8

(1− ε̃23)(1− γ2)2q+q−
+ 2(1 + λ)q−2

γ ε̃

}2
n2

(n∥µ∥2 +R)2
. (79)

Similarly, (67) and (78) imply

K2 ≤
{

8

(1− ε̃23)(1− γ2)2q+q−
+ 2(1 + λ)q−2

γ ε̃

}2
n

(n∥µ∥2 +R)2
. (80)

(54) and (75) imply

(B−1y)⊤A−1B−1(q+B+ + q−B−)y

≥{d(q+ + γ2q−)(q− + γ2q+)}−1 qγ
2
Rn

≥{d(q+ + γ2q−)(q− + γ2q+)}−1
q2γ

2(1 + λ)
n(n∥µ∥2 +R).

(81)

By Lemma C.7, (66), (81), and the assumption on ε̃, we have for sufficiently large n

K1 ≥
{

2qγ
5(1 + λ)

− 2(1 + λ)q−2
γ ε̃

}2
n2

(n∥µ∥2 +R)2
≥
{

qγ
5(1 + λ)

}2
n2

(n∥µ∥2 +R)2
. (82)
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Similarly, (54) and (77) imply∥∥(q+B+ + q−B−)B
−1 ·A−1 ·B−1y∥

∣∣
≥{d(q+ + γ2q−)(q− + γ2q+)}−1

[
q2γ

{qγ
2
R
}2

n

] 1
2

={d(q+ + γ2q−)(q− + γ2q+)}−1
q2γ
2

√
nR

≥{d(q+ + γ2q−)(q− + γ2q+)}−1
q2γ

2(1 + λ)

√
n(n∥µ∥2 +R).

(83)

By Lemma C.7, (67), (83), and the assumption on ε̃, we have for sufficiently large n

K2 ≥
{

2qγ
5(1 + λ)

− 2(1 + λ)q−2
γ ε̃

}2
n

(n∥µ∥2 +R)2
≥
{

qγ
5(1 + λ)

}2
n2

(n∥µ∥2 +R)2
. (84)

By Lemma C.9, (79), (80), (82), and (84), we have[{
qγ

5(1 + λ)

}2

−
{

8

(1− ε̃23)(1− γ2)2q+q−
+ 2q−2

γ ε̃

}2

ε̃

]
n

n∥µ∥2 +R

≤ ∥w̄∥2 ≤ (1 + ε̃)

{
8

(1− ε̃23)(1− γ2)2q+q−
+ 2q−2

γ ε̃

}2
n

n∥µ∥2 +R
,

(85)

where the left hand side is positive for sufficiently large n due to the assumption on ε̃.

Regime (iii): By n∥µ∥2 ≥ λR,
√
nε̃ ≤ C̃ R

n∥µ∥2 ≤ C̃
λ , (66), and (76), we have

K1 ≤
{

8

(1− ε̃23)(1− γ2)2q+q−
+ 2q−2

γ

(
1 +

n∥µ∥2

R

)
ε̃

}2
n2

(n∥µ∥2 +R)2

≤
{

8

(1− ε̃23)(1− γ2)2q+q−
+ 2q−2

γ C̃
λ−1 + 1√

n

}2
n2

(n∥µ∥2 +R)2
.

(86)

Similarly, n∥µ∥2 ≥ λR,
√
nε̃ ≤ C̃ R

n∥µ∥2 ≤ C̃
λ , (67), and (78) imply

K2 ≤
{

8

(1− ε̃23)(1− γ2)2q+q−
+

(
1 +

n∥µ∥2

R

)
ε̃

}2
n

(n∥µ∥2 +R)2

≤
{

8

(1− ε̃23)(1− γ2)2q+q−
+ 2q−2

γ C̃
λ−1 + 1√

n

}2
n

(n∥µ∥2 +R)2
.

(87)

By (42) and (75), we have

(B−1y)⊤A−1B−1(q+B+ + q−B−)y

≥{d(q+ + γ2q−)(q− + γ2q+)}−1qγ(qγ − γ)
1− ε̃3

2
n(n+ + n−)∥µ∥2

≥{d(q+ + γ2q−)(q− + γ2q+)}−1 (1− ε̃3)qγ(qγ − γ)

2
n2∥µ∥2.

(88)

By Lemma C.7, (66), and (88), we have for sufficiently large n

K1 ≥
{
2(1− ε̃3)(qγ − γ)

5

n2∥µ∥2

(n∥µ∥2 +R)2
− 2q−2

γ

(
1 +

n∥µ∥2

R

)
ε̃

n

n∥µ∥2 +R

}2

≥
{
2(1− ε̃3)(qγ − γ)

5(1 + λ−1)
− 2q−2

γ C̃
λ−1 + 1√

n

}2
n2

(n∥µ∥2 +R)2

≥
{
(1− ε̃3)(qγ − γ)

5(1 + λ−1)

}2
n2

(n∥µ∥2 +R)2
.

(89)
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Similarly, (42) and (77) imply∥∥(q+B+ + q−B−)B
−1 ·A−1 ·B−1y∥

∣∣
≥{d(q+ + γ2q−)(q− + γ2q+)}−1

[
q2γ(qγ − γ)2n+n−(n+ + n−)∥µ∥4

] 1
2

≥{d(q+ + γ2q−)(q− + γ2q+)}−1qγ(qγ − γ)

√
(1− ε̃23)

4
n3∥µ∥2

≥{d(q+ + γ2q−)(q− + γ2q+)}−1qγ(qγ − γ)
(1− ε̃3)

2
n

3
2 ∥µ∥2

(90)

By Lemma C.7, (66), and (90), we have for sufficiently large n

K2 ≥

{
2(1− ε̃3)(qγ − γ)

5

n
3
2 ∥µ∥2

(n∥µ∥2 +R)2
− 2q−2

γ

(
1 +

n∥µ∥2

R

)
ε̃

√
n

n∥µ∥2 +R

}2

≥
{
2(1− ε̃3)(qγ − γ)

5(1 + λ−1)

√
n

n∥µ∥2 +R)
− 2q−2

γ C̃
λ−1 + 1√

n

√
n

n∥µ∥2 +R

}2

=

{
2(1− ε̃3)(qγ − γ)

5(1 + λ−1)
− 2q−2

γ C̃
λ−1 + 1√

n

}2
n

(n∥µ∥2 +R)2

≥
{
(1− ε̃3)(qγ − γ)

5(1 + λ−1)

}2
n

(n∥µ∥2 +R)2
.

(91)

By Lemma C.9, (79), (80), (89), and (91), we have

[{
(1− ε̃3)(qγ − γ)

5(1 + λ−1)

}2

−
{

8

(1− ε̃23)(1− γ2)2q+q−
+ 2q−2

γ C̃
λ−1 + 1√

n

}2

ε̃

]
n

n∥µ∥2 +R

≤ ∥w̄∥2 ≤ (1 + ε̃)

{
8

(1− ε̃23)(1− γ2)2q+q−
+ 2q−2

γ C̃
λ−1 + 1√

n

}2
n

n∥µ∥2 +R
,

(92)

where the left hand side is positive for sufficiently large n.

We now turn to obtain bounds of ⟨w̄,µ⟩.
Lemma C.11. Suppose that all the assumptions of Lemma C.8 hold with ε̃3 ≤ 1

2 in regime (ii) and

(iii). Further suppose ε̃2 ≤ D̃
√
n∥µ∥2

R in (i) and (ii), where D̃ is a constant which depends only on γ,
q+ (and λ under regime (ii)). Then, there exist constants ĉ2, c̃2, N which depend only on γ, q+ (and
λ under regime (ii) and (iii)) such that n ≥ N imply

ĉ2
n∥µ∥2

n∥µ∥2 +R
≤ ⟨w̄,µ⟩ ≤ c̃2

n∥µ∥2

n∥µ∥2 +R
.

Proof. By Lemma C.6 and C.7, we have

∥(B−1y)⊤A−1∥ ≤


γ−1

√
n

R
, if q+q− = 0,

8q
1
2
γ

(1− ε̃23)(1− γ2)2q+q−

√
n

n∥µ∥2 +R
, if q+q− ̸= 0.

(93)

The remaining argument is split in cases.

Regime (i):
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We first note (71) and n∥µ∥2 ≤ γR imply

9

64(1 + γ)3
n∥µ∥2

R
≤ ∥µ∥2

√
K1 ≤ (1 + γ)2

(
γ−2 + 2γ−4ε̃

) n∥µ∥2
R

. (94)

Furthermore, Lemma C.9 and (93) imply

∣∣∣⟨w̄,µ⟩ − ∥µ∥2
√

K1

∣∣∣ ≤ γ−1q
− 1

2
γ

3

√
nε̃2 +

2q−2
γ

3
ε̃ ·

√
nε̃2

=
γ−1q

− 1
2

γ + 2q−2
γ ε̃

3

√
nε̃2

=
γ−2 + 2γ−4ε̃

3

√
nε̃2

≤ γ−2 + 2γ−4ε̃

3
D̃
n∥µ∥2

R
,

(95)

where the last line is due to the assumption on ε̃2.

By (94) and (95), it suffices to choose D̃ so that

γ−2 + 2γ−4ε̃

3
D̃ ≤ 1

8(1 + γ)3
.

Then, we have

1

64(1 + γ)3
n∥µ∥2

n∥µ∥2 +R
≤ 1

64(1 + γ)3
n∥µ∥2

R
≤ ⟨w̄,µ⟩

≤
{
γ−2 + 2γ−4ε̃+

1

8(1 + γ)3

}
n∥µ∥2

R
≤ (1 + γ)

{
γ−2 + 2γ−4ε̃+

1

8(1 + γ)3

}
n∥µ∥2

n∥µ∥2 +R
.

Regime (ii): We note that under regime (ii), we have ∥µ∥2
√
K1 ≈ n∥µ∥2

n∥µ∥2+R by (79) and (82). On
the other hand, Lemma C.9 and (93) imply∣∣∣⟨w̄,µ⟩ − ∥µ∥2

√
K1

∣∣∣ ≤ 8

3(1− ε̃23)(1− γ2)2q+q−
ε̃2

√
nR

n∥µ∥2 +R
+

2q−2
γ

3
ε̃ ·

√
nε̃2

=
8

3(1− ε̃23)(1− γ2)2q+q−

ε̃2R√
n∥µ∥2

n∥µ∥2

n∥µ∥2 +R
+

2q−2
γ

3
ε̃ ·

√
nε̃2

≤ 8D̃

3(1− ε̃23)(1− γ2)2q+q−

n∥µ∥2

n∥µ∥2 +R
++

2q−2
γ

3
ε̃D̃

n∥µ∥2

n∥µ∥2 +R

=

{
8

3(1− ε̃23)(1− γ2)2q+q−
+

2q−2
γ

3
ε̃

}
D̃

n∥µ∥2

n∥µ∥2 +R
.

(96)

Therefore, choosing an appropriate D̃ suffices to establish the desired bounds.

Specifically, under regime (ii), we have by (82)

∥µ∥2
√
K1 ≥ qγ

5(1 + λ)

n∥µ∥2

n∥µ∥2 +R
,

and hence it suffices to choose D̃ so that{
8

3(1− ε̃23)(1− γ2)2q+q−
+

2q−2
γ

3
ε̃

}
D̃ ≤ qγ

10(1 + λ)
.
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Regime (iii): Similarly, we note that under regime (iii), we have ∥µ∥2
√
K1 ≈ n∥µ∥2

n∥µ∥2+R ≈ 1 by (86)
and (89). On the other hand, Lemma C.9 and (93) imply∣∣∣⟨w̄,µ⟩ − ∥µ∥2

√
K1

∣∣∣
≤ 8

3(1− ε̃23)(1− γ2)2q+q−
ε̃2

√
nR

n∥µ∥2 +R
+

2q−2
γ

3
ε̃ ·

√
nε̃2

=
8

3(1− ε̃23)(1− γ2)2q+q−

ε̃2R√
n∥µ∥2

n∥µ∥2

n∥µ∥2 +R
+

2q−2
γ

3
ε̃ ·

√
nε̃2

≤ 8

3(1− ε̃23)(1− γ2)2q+q−

ε̃R

n∥µ∥2
n∥µ∥2

n∥µ∥2 +R
+

2q−2
γ

3
ε̃2

≤ 8

3(1− ε̃23)(1− γ2)2q+q−
λ−1ε̃

n∥µ∥2

n∥µ∥2 +R
+

2q−2
γ

3
ε̃2(1 + λ−1)−1 n∥µ∥2

n∥µ∥2 +R

=

{
8

3(1− ε̃23)(1− γ2)2q+q−
λ−1 +

2q−2
γ

3
ε̃(1 + λ−1)−1

}
ε̃

n∥µ∥2

n∥µ∥2 +R
.

(97)

By (86), (89), and (97), we have the desired bound for sufficiently large n.

Lemma C.12. Consider model (M). If w ∈ Rp is such that ⟨w,µ⟩ > 0, Then, we have

P(⟨w, yx⟩ ≤ 0) ≤ exp

{
−c

(
⟨w,µ⟩

∥w∥∥z∥ψ2

)2
}
,

where c is a universal constant and ∥z∥ψ2 is the sub-Gaussian norm of z.

If z = Σ
1
2 ξ with ξ ∼ N (0, Ip), then we further have

κ

(
β
− 1

2
min

⟨w,µ⟩
∥w∥

)
≤ P(⟨w, yx⟩ ≤ 0) = κ

(
⟨w,µ⟩
∥Σ 1

2w∥

)
≤ κ

(
β
− 1

2
max

⟨w,µ⟩
∥w∥

)
, (98)

where κ(t) = P(|ξ1| ≥ t) and βmin is the smallest eigenvalue of Σ and βmax = ∥Σ∥.

Proof. Since yx = µ+ yz, we have

P(⟨w, yx⟩ ≤ 0) = P(y⟨w, z⟩ ≤ −⟨w,µ⟩)

=
1

2
P(⟨w, z⟩ ≤ −⟨w,µ⟩) + 1

2
P(−⟨w, z⟩ ≤ −⟨w,µ⟩)

= P(|⟨w, z⟩| > ⟨w,µ⟩).

Then the desired conclusion follows from the basic property of sub-Gaussian distributions (see
Proposition 2.5.2, Vershynin (2018)).

The second result follows since ⟨w, z⟩ = ⟨w,Σ
1
2 ξ⟩ = ⟨Σ 1

2w, ξ⟩ ∼ N (0,w⊤Σw) if ξ ∼ N (0,Σ).

Theorem C.13 (Detailed version of Theorem 5.1). Suppose event
⋂
i=1,2,3 Ẽi holds with one of the

following conditions:

(i) q+q− = 0, n∥µ∥2 < γ
1+(1+γ)ε̃3

R, and
√
nε̃ ≤ γ3

4 ,

(ii) q+q− ̸= 0, n∥µ∥2 ≤ qγ
2γ(1−γ)R,

√
nε̃ ≤ q2γ

20 , and ε̃3 ≤ 1
2 ,

(iii) qγ > γ, n∥µ∥2 ≥ qγ
2γ(1−γ)R, ε̃3 ≤ 1

2 ,and
√
nε̃ ≤ q2γ(qγ−γ)

40
R

n∥µ∥2
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Further suppose ε̃2 ≤ D̃
√
n∥µ∥2

R in (i) and (ii), where D̃ is a constant which depends only on γ, q+.

Then, there exist constants c and N , which depend on γ and q+, such that n ≥ N imply

P(x,y)(yf(x; Ŵ ) < 0) ≤ exp

(
−c

n∥µ∥4

∥z∥2ψ2
{n∥µ∥2 +R}

)
.

If z = Σ
1
2 ξ with ξ ∼ N (0, Ip), then we have instead

κ

{
c−1β

− 1
2

min

(
n∥µ∥4

n∥µ∥2 +R

) 1
2

}
≤ P(x,y)(yf(x; Ŵ ) < 0) ≤ κ

{
cβ

− 1
2

max

(
n∥µ∥4

n∥µ∥2 +R

) 1
2

}
,

where κ(t) = P(|ξ1| ≥ t) and βmin is the smallest eigenvalue of Σ and βmax = ∥Σ∥.

Proof. Since we assume
√
nε̃ ≲ 1 in all the regimes, we have ε̃ ≤ qγ

2 for sufficiently large n.

By Lemma C.10 and C.11 with λ =
qγ

2γ(1−γ) , we have

ĉ22
c̃1

n∥µ∥4

n∥µ∥2 +R
≤
(
⟨w̄,µ⟩
∥w̄∥

)2

≤ c̃22
ĉ1

n∥µ∥4

n∥µ∥2 +R
.

Then, the desired conclusion holds from Lemma C.12.

D PROOF OF THEOREM 6.2 AND THEOREM 6.3

First we establish connection between events E(θ1, θ2) and Ẽ1(ε̃1, R), Ẽ2(ε2, R).

Lemma D.1. Suppose Ẽ1(ε̃1, R) ∩ Ẽ2(ε2, R) hold with ε̃1 ≤ 1
2 , then event E(θ1, θ2) holds with

θ1 =
ε̃1
2

and θ2 =
ε̃2
√
R

2∥µ∥
.

Proof. By Ẽ1(ε̃1, R), we have |∥zi∥2 − R| ≤ ε̃1
3 R and |⟨zi, zk⟩| ≤ ε̃1

3 R for any i ̸= k. Then, we
have ∣∣∣〈 zi

∥zi∥
,

zk
∥zk∥

〉∣∣∣ ≤ ε̃1
3 R

(1− ε̃1
3 )R

≤ ε̃1
2
,

where the last line follows from the assumption ε̃1 ≤ 1
2 .

Similarly, by Ẽ1(ε̃1, R) ∩ Ẽ2(ε2, R) , we have∣∣∣〈 zi
∥zi∥

,
µ

∥µ∥

〉∣∣∣ ≤ ε̃2
3 R√

(1− ε̃1
3 )R∥µ∥

≤ ε̃2
√
R

2∥µ∥
,

where the last inequality is due to ε̃1 ≤ 1
2 .

D.1 PROOF OR THEOREM 6.2

For model (sG), we have
Lemma D.2 (Lemma S4.1, S4.2, Hashimoto et al. (2025)). Consider model (sG). There exist
universal constants Ci, i = 1, 2 such that for any δ ∈ (0, 1

2 ), event Ẽ1 ∩ Ẽ2 holds with probability at
least 1− 2δ, where

R = tr(Σ),

ε̃1 := C1 max

{√
n log

(
1
δ

)
∥Σ∥F , n log

(
1
δ

)
∥Σ∥

}
/tr(Σ)

ε̃2 := C2

√
n log

(
1
δ

)
∥Σ 1

2µ∥/tr(Σ).
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Lemma D.3. There exists a universal constant C3 such that we have with probability at least 1− δ

|n+ − n−| ≤ C3

√
n log( 1δ ).

Proof. By independence of yi and yi ∈ {±1}, Hoeffding’s inequality implies that∣∣∣∣∣∑
i

yi

∣∣∣∣∣ ≤ C3

√
n log( 1δ )

holds with probability at least 1− δ, where C3 is a universal constant.

The desired result follows by noting that
∑
i yi = n+ − n−.

Corollary D.4. Event Ẽ3 holds with ε̃3 := C3

√
log( 1

δ )

n with probability at least 1− δ.

With these, we can rewrite assumptions of our main theorems, namely Theorem 4.8 and C.13, using
parameters defining the model (sG).

From Theorem 4.8, we have the following result on (sG).

Theorem D.5. Consider model (sG). Suppose

tr(Σ) ≥ max

{
2C1

√
n log( 1δ )∥Σ∥F , 2C1n log( 1δ )∥Σ∥, C

2
2n log( 1δ )

∥Σ 1
2µ∥2

∥µ∥2

}
, (99)

and further suppose one of the following conditions:

(i) ∥µ∥2 ≥ 2.18max
{
C1

√
n log( 1δ )∥Σ∥F , C1n log( 1δ )∥Σ∥, C2

√
n log( 1δ )∥Σ

1
2µ∥

}
,

α ≤
[
1.2{n∥µ∥2 + tr(Σ)}

]−1
, and σ ≤ 0.2γα

√
∥µ∥2+tr(Σ)

m ,

(ii) tr(Σ) ≥ 67.2e

γ2
n∥µ∥2,

tr(Σ) ≥ 453e

γ3
nmax

{
C1

√
n log( 1δ )∥Σ∥F , C1n log( 1δ )∥Σ∥, C2

√
n log( 1δ )∥Σ

1
2µ∥

}
,

α ≤ {8tr(Σ)}−1, and σ ≤ 0.1γα
√

tr(Σ)
m .

Then, we have with probability at least 1− 2δ, the gradient descent iterate (2) keeps all the neurons
activated for t ≥ 1, satisfies L(W (t)) = O(t−1), and converges in the direction given in Theorem 4.8.

Proof. By Lemma D.1, D.2, and the assumption (99), all the conclusions of Lemma D.1 and D.2
hold with probability at least 1− 2δ with

R = tr(Σ),

θ1 =
ε̃1
2

=
C1 max

{√
n log( 1δ )∥Σ∥F , n log( 1δ )∥Σ∥

}
2tr(Σ)

≤ 1

4
,

θ2 =
ε̃2
√
R

2∥µ∥
=

C2

√
n log( 1δ )∥Σ

1
2µ∥

2
√

tr(Σ)∥µ∥
≤ 1

2
.

Then, we have 0.91
√
tr(Σ) ≤ Rmin(z) ≤ Rmax(z) ≤ 1.09

√
tr(Σ).
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From these, we have

2θ2∥µ∥Rmax(z) + θ1R
2
max(z)

≤1.09C2

√
n log( 1δ )∥Σ

1
2µ∥

+ 0.6C1 max

{√
n log( 1δ )∥Σ∥F , n log( 1δ )∥Σ∥

}
≤2.18max{C1

√
n log( 1δ )∥Σ∥F , C1n log( 1δ )∥Σ∥, C2

√
n log( 1δ )∥Σ

1
2µ∥}.

(100)

We first show the desired conclusions under condition (i).

First, it is immediate from (100) to see ∥µ∥2 ≥ 2θ2∥µ∥Rmax(z)+θ1R
2
max(z) holds under condition

(i).

Furthermore, condition (i) also implies that Assumption 4.3 is satisfied since

α{n∥µ∥2 +R2
max(z)} < 1.2α{n∥µ∥2 + tr(Σ)} ≤ 1.

We note that exp(ρ) < 1.26 holds under condition (i) since

ρ ≤ σ

√
m · 3

2
· 1.2{∥µ∥2 + tr(Σ)}

≤ 1.35σ
√

m{∥µ∥2 + tr(Σ)}
≤ 0.27γα{∥µ∥2 + tr(Σ)}

≤ 0.27

1.2
γ ≤ 0.225.

where the first inequality follows from the definition of ρ and θ2 ≤ 1
2 and Rmax(z) ≤ 1.2

√
tr(Σ),

the remaining inequalities follow from condition (i).

Noting exp(ρ) < 1.26 and ρ ≤ 0.27γα{∥µ∥2 + tr(Σ)}, we also see that Assumption 4.2 is satisfied
since

ρ exp(ρ) < 1.26ρ

≤ 1.26 · 0.27γα{∥µ∥2 + tr(Σ)}

≤ 1.26 · 0.27
0.8

γα{∥µ∥2 +R2
min(z)}

≤ γ(1− θ2)α{∥µ∥2 +R2
min(z)}.

Since all the assumptions of (i) of Theorem 4.8 are satisfied, the desired conclusions hold with
probability at least 1− 2δ under condition (i).

Next we show the desired conclusions under condition (ii). To see this, first note that ε̃1 ≤ 1
2 implies

that R2
max(z)

R2
min(z)

≤ 1+
ε̃1
3

1− ε̃1
3

≤ 7
5 . So, we have Cw in Theorem 4.8 with Cw ≤ 168e

5γ2 . So, by setting

εi =
5γ2

368e , i = 1, 3, Cwεi ≤ 1
2 is ensured. Moreover, by setting ε2 = 1

2 , ε1 + ε2 + ε3 < 1 is ensured.

We note that exp(ρ) < 10
9 holds under condition (ii) since

ρ ≤ 1.35σ
√
m{∥µ∥2 + tr(Σ)}

≤ 1.35σ
√
m(1.0055)tr(Σ)

≤ 1.36σ
√
mtr(Σ)

≤ 1.36 · 0.1γαtr(Σ)

≤ 1.36 · 0.1
8

γ ≤ 0.017 < log( 109 ).
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By noting ρ ≤ 0.136γαtr(Σ) and exp(ρ) < 10
9 , condition (ii) implies that Assumption 4.5 is satisfied

since

ρ exp(ρ) ≤ 10
9 · 0.136γαtr(Σ)

≤ 10
9 · 0.136 · 0.8−1γαR2

min(z)

≤ 0.19γαR2
min(z)

≤ ε2γ(1− θ2)αR
2
min(z).

Similarly, by noting exp(ρ) < 10
9 , condition (ii) also implies that Assumption 4.7 is satisfied since

6αR2
min(z) exp(ρ) < 7.2 · 10

9 αR2
min(z)

= 8αtr(Σ) ≤ 1.

By (100), condition (ii) implies that Assumption 4.4 is satisfied since

2θ2∥µ∥Rmax(z) + θ1R
2
max(z)

≤2.18max{C1

√
n log( 1δ )∥Σ∥F , C1n log( 1δ )∥Σ∥, C2

√
n log( 1δ )∥Σ

1
2µ∥}

≤γ3tr(Σ)

453en

≤
5γ2

336e ·
1
2 · 0.8γtr(Σ)

n(10/9)2

≤ε1γ(1− θ2)R
2
min(z)

n exp(2ρ)
.

Since all the assumptions of (ii) of Theorem 4.8 are satisfied, the desired conclusions hold with with
probability at least 1− 2δ under condition (ii).

Application of Theorem C.13 on the model (sG) is given below:

Theorem D.6. Consider model (sG). Suppose n ≥ max
{
4C2

3 log(
1
δ ), N(γ, q+)

}
and one of the

following holds:

(i) q+q− = 0, n∥µ∥2 < γ
1+(1+γ)/2 tr(Σ),

tr(Σ) ≥ 4γ−3n
√
log( 1δ )max

{
C1∥Σ∥F , C1∥Σ∥

√
n log( 1δ ), C2

√
n∥Σ 1

2µ∥
}
, and

∥µ∥2 ≥ D̃−1C2∥Σ
1
2µ∥

√
log( 1δ ),

(ii) q+q− ̸= 0, n∥µ∥2 ≤ qγ
2γ(1−γ) tr(Σ),

tr(Σ) ≥ 20q−2
γ n

√
log( 1δ )max

{
C1∥Σ∥F , C1∥Σ∥

√
n log( 1δ ), C2

√
n∥Σ 1

2µ∥
}
, and

∥µ∥2 ≥ D̃−1C2∥Σ
1
2µ∥

√
log( 1δ ),

(iii) qγ > γ, n∥µ∥2 ≥ qγ
2γ(1−γ) tr(Σ),

tr(Σ) ≥ 2
√
10

qγ
√
qγ − γ

n∥µ∥{log( 1δ )}
1/4

×

√
max

{
C1∥Σ∥F , C1∥Σ∥

√
n log( 1δ ), C2

√
n∥Σ 1

2µ∥
}
.
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Then, we have with probability at least 1− 3δ

P(x,y)(yf(x; Ŵ ) < 0) ≤ exp

(
−c

n∥µ∥4

L2∥Σ∥{n∥µ∥2 + tr(Σ)}

)
,

where c is a constant which depends only on γ and q+.

Proof. By Lemma D.2 and Corollary D.4, event
⋂
i=1,2,3 Ẽi holds with probability at least 1− 3δ

with

R = tr(Σ),

ε̃1 = C1 max

{√
n log

(
1
δ

)
∥Σ∥F , n log

(
1
δ

)
∥Σ∥

}
/tr(Σ)

ε̃2 = C2

√
n log

(
1
δ

)
∥Σ 1

2µ∥/tr(Σ),

ε̃3 = C3

√
log( 1δ )

n
.

Note that the assumption n ≥ 4C2
3 log(

1
δ ) implies ε̃3 ≤ 1

2 .

Then, the desired conclusion follows by simply rewriting assumptions of Theorem C.13.

We can now see that Theorem 6.2 follow from Theorem D.5 and D.6 by ensuring both assumptions
are satisfied. Specifically, Theorem D.5 under condition (i) and Theorem D.6 under condition (i) and
(ii) imply Theorem 6.2 under (a)-(i). Similarly, Theorem D.5 under condition (ii) and Theorem D.6
under condition (i) and (ii) imply Theorem 6.2 under condition (a)-(ii). Lastly, Theorem D.5 under
condition (i) and Theorem D.6 under condition (iii) imply Theorem 6.2 under condition (b).

D.2 PROOF OF THEOREM 6.3

For model (PM), we have instead of Lemma D.2
Lemma D.7 (Lemma S3.4, S3.5, Hashimoto et al. (2025)). Consider model (PM). There exist a
constant C(r,K) such that for any δ ∈ (0, 1

2 ), event Ẽ1 ∩ Ẽ2 holds with probability at least 1− 2δ,
where

R = tr(Σ),

ε̃1 := C(r,K)δ−
2
r max

{
n

2
r p

2
r−

1
2 , n

4
r

} ∥Σ∥F
tr(Σ)

,

ε̃2 :=

√
n

δ

∥Σ 1
2µ∥

tr(Σ)
.

Similar arguments using D.7 instead of D.2 allows us to establish results analogous to Theorem D.5
and D.6.
Theorem D.8. Consider model (PM). Let δ ∈ (0, 1

2 ). Suppose, for sufficiently large constant C
which depends on δ, γ, q+, r,K,

tr(Σ) ≥ Cmax

{
n

2
r p

2
r−

1
2 ∥Σ∥F , n

4
r ∥Σ∥F , n

∥Σ 1
2µ∥2

∥µ∥2

}
(101)

and further suppose one of the following conditions:

(i) ∥µ∥2 ≥ Cmax
{
n

2
r p

2
r−

1
2 ∥Σ∥F , n

4
r ∥Σ∥F ,

√
n∥Σ 1

2µ∥
}

,

α ≤
[
1.2{n∥µ∥2 + tr(Σ)}

]−1
, and σ ≤ 0.2γα

√
∥µ∥2+tr(Σ)

m ,

(ii) tr(Σ) ≥ Cmax
{
n∥µ∥2, n 2

r+1p
2
r−

1
2 ∥Σ∥F , n

4
r+1∥Σ∥F , n

3
2 ∥Σ 1

2µ∥
}

,

α ≤ {8tr(Σ)}−1, and σ ≤ 0.1γα
√

tr(Σ)
m .
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Then, we have with probability at least 1− 2δ, the gradient descent iterate (2) keeps all the neurons
activated for t ≥ 1, satisfies L(W (t)) = O(t−1), and converges in the direction given in Theorem 4.8.

Proof. The theorem follows from Theorem 4.8, Lemma D.1, and Lemma D.7 by repeating the same
argument from the proof of Theorem D.5 by replacing Lemma D.2 with Lemma D.7.

Similarly, we obtain a result analogous to Theorem D.6.
Theorem D.9. Consider model (PM). Let δ ∈ (0, 1

3 ). Suppose n ≥ max
{
4C2

3 log(
1
δ ), N(γ, q+)

}
and one of the following holds for sufficiently large constant C which depends on δ, γ, q+, r,K:

(i) tr(Σ) ≥ Cmax{n∥µ∥2, n 2
r+

1
2 p

2
r−

1
2 ∥Σ∥F , n

4
r+

1
2 ∥Σ∥F , n

3
2 ∥Σ 1

2µ∥} and

∥µ∥2 ≥ C∥Σ 1
2µ∥,

(ii) qγ > γ, n∥µ∥2 ≥ qγ
2γ(1−γ) tr(Σ), and

tr(Σ) ≥ C∥µ∥max
{
n

1
r+

3
4 p

1
r−

1
4 ∥Σ∥

1
2

F , n
2
r+

3
4 ∥Σ∥

1
2

F , n
5
4 ∥Σ 1

2µ∥ 1
2

}
.

Then, we have with probability at least 1− 3δ

P(x,y)(yf(x; Ŵ ) < 0) ≤ exp

(
−c

n∥µ∥4

L2∥Σ∥{n∥µ∥2 + tr(Σ)}

)
,

where c is a constant which depends only on γ and q+.

Proof. The theorem follows from Theorem C.13, Lemma D.1, Lemma D.7, and Lemma D.4 by repeat-
ing the same argument from the proof of Theorem D.6 by replacing Lemma D.2 with Lemma D.7.

Putting these together with Σ = Ip, we obtain Theorem 6.3. Specifically, Theorem 6.3 under
condition (i) follows from Theorem D.8 under (i) and Theorem D.9 under (i), Theorem 6.3 under
condition (ii) follows from Theorem D.8 under (i) and Theorem D.9 under (ii), and Theorem 6.3
under condition (iii) follows from Theorem D.8 under (ii) and Theorem D.9 under (i).
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