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Abstract

Despite the success of emerging text-to-music models based on deep generative
approaches in generating music clips for general audiences, they face significant
limitations when applied to professional music production.
This paper introduces a one-shot Text-aligned Virtual Instrument Generation model
using a Diffusion Transformer (TaVIG). The model integrates textual descriptions
with the timbre information of audio clips to generate musical performances, utiliz-
ing additional musical structure features such as pitch, onset, duration, offset, and
velocity. TaVIG comprises a CLAP-based text-aligned timbre extractor-encoder,
a musical structure encoder for extracting MIDI information, and a disentangled
representation learning module to ensure effective timbre and structure extraction.
The audio synthesis process is based on a Diffusion Transformer conditioned with
AdaLN. Additionally, we propose a mathematical framework to analyze timbre
and structure disentanglement in MIDI-to-audio tasks.

1 Introduction

Deep learning-based music generation has garnered growing interest in the machine learning commu-
nity, particularly with the advent of advanced music generation systems [1][2]. However, professional
musicians often find such models impractical due to their lack of control over the intermediate
generation process. Musicians frequently use virtual instruments, but these tools often come with
financial constraints, long tuning periods, and limited natural performance details.
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Recent research focuses on MIDI-to-audio models for neural audio synthesis, which can be catego-
rized into synthesizer-based sound matching models, DDSP-based models [11], and spectrogram
generation models. Section 2 will elaborate on related work.

Synthesizer sound matching models depend on pre-existing synthesizers, limiting the variety of
timbres and struggling to emulate acoustic sounds. DDSP is promising but confines outputs to
specific models like the Sinusoidal plus Noise model.

However, existing models face several challenges:

• Structure Misalignment: Polyphonic models may generate extra tracks or misalign instru-
ments with the original MIDI (e.g., [31], [28]).

• Poor Sound Quality: Some models produce blurry or artifact-ridden sounds, such as violin
audio in [28].

• Inconsistent Timbre: Instruments like guitars sometimes sound like other instruments, as
seen in [21].

• Limited Instrument Variety: Models are often restricted to instruments they’ve been
trained on.

• Single Note Synthesis: Some models fail to capture the complexity of full performances
and only synthesize single notes [36, 35].

Our work introduces TaVIG (Text-aligned Virtual Instrument Generative model), which synthesizes
musical performances from timbre and structure inputs using a Diffusion Transformer (DiT). By
utilizing disentangled representation learning, TaVIG separates timbre and structure to ensure accurate
note generation. Our approach allows for one-shot multi-note synthesis, with timbre controlled via
audio or text prompts, ensuring flexibility and user intent fidelity.

2 Related Work

Synthesizer sound matching estimates parameters to replicate a target sound. Typically, a similar
sound is provided, and the system adjusts parameters to match it. Sound2Synth [6] enhances this
process by converting sounds into four representations, each processed by dedicated backbones.
DDX7 [3] and DiffMoog [39] are based on Yamaha DX7 and Moog synthesizers, while Masuda and
Saito [33] integrate sound matching with DDSP for subtractive synthesis.

RNNs have been applied to map MIDI to pitch and loudness via DDSP parameter estimation
[15, 4, 19]. DDSP-Piano [38] utilizes Multi-Resolution Spectral Loss and DDSP for piano synthesis,
and MIDI-DDSP [41] translates expressive MIDI attributes, such as articulation, into synthesis
controls.

For spectrogram generation, GAN-based models like GANsynth [10], GANstrument [34], and
HyperGANstrument [43] use adversarial training to match data distributions, with GANstrument and
HyperGANstrument enabling timbre interpolation.

Auto-regressive models include LSTM-based mel-to-mel conversion conditioned on instrument
embeddings [22] and Deep Performer [9], a Transformer leveraging performer and tempo embeddings.
Nercessian et al. [36, 35] employed CLAP [40] to align text and timbre embeddings, integrating
them into a timbre-generation framework.

Recent advancements in diffusion models have significantly enhanced MIDI-to-audio generation.
Hawthorne et al. [13] integrated a Transformer with a diffusion model, which was further developed
by Maman et al. [31] and Kim et al. [21], focusing on performance conditioning and guitar generation,
respectively. Liu et al. [28] introduced a diffusion-based MIDI-to-audio system, while Demerle et
al. [8] employed adversarial training to capture timbre and structure, leveraging diffusion as the
generative backbone.

3 Method

In Figure , we present the envisioned four-phase framework for the MIDI-to-Audio model, comprising
the following components:
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1. a text-aligned timbre extractor-encoder
2. a musical structure encoder
3. a disentangled representation learning module
4. an audio synthesis model
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Figure 1: The overall architecture of our model. During training, either text or audio is randomly
selected as the timbre prompt corresponding to the MIDI input. The timbre information uti is
obtained through the pretrained CLAP encoder and Timbre encoder, which serves as the global
condition for the DiT model. The MIDI’s pianoroll is passed through the Structure encoder to obtain
the structural information usi, which is used as the prepend condition for the DiT model. The DiT
predicts the VAE latent z from noise, which is then decoded to generate audio that simultaneously
contains both the timbre uti and the structure usi. A classifier is used to predict uti from the structure
usi, ensuring the disentanglement between the two. The black lines show the predictor optimization
process while the orange lines show the diffusion training process. BP stands for BackPropogation.

3.1 Notations

Let (Ωt, Ft, Pt) and (Ωs, Fs, Ps) are the probability spaces of timbre and structure random variables.
Denote Ut and Us random matrices defined in these two probability spaces that containing the
timbre and structure information of the same audio clip respectively, and uti, usi represent related
realization samples. We denote the random matrices defined in the probability space (Ωw, Fw, Pw)

representing audio clips in the form of waveform as Wi and its realization as wi. z ∈ RC×T
c ×F

c is
the latent that encoded by the VAE[24], where C, c, T and F represent the number of channels of
the compressed latents, compression rate, length of time and frequency. TE(·) and SE(·) represent
timbre encoder and structure encoder respectively. B stands for B.

3.2 Text-aligned Timbre Extractor-Encoder

We leverage the CLAP model [40] to generate a standardized 512-dimensional representation for
paired audio and text inputs. Pretrained on musical signals with a contrastive loss function, this model
aligns audio and text embeddings, enabling either modality to serve interchangeably as input to our
system. The audio encoder, Ea, uses the HTS-AT architecture [5], while the text encoder, Et, is
based on RoBERTa [29]. We further finetune this model on a custom dataset of timbre-related texts
paired with descriptive audio clips.

This approach allows us to work exclusively with audio data during language model training, avoiding
the need for extensive text annotations in the audio dataset. Given the high computational demand
of training CLAP from scratch, we instead employ a pretrained CLAP model as a cross-modality
encoder, which we finetune on our timbre text dataset. The resulting 512-dimensional vector is
subsequently fed, after a linear projection, into a timbre structure following the method in [8].
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3.3 Musical Structure Encoder

We use music files in MIDI format, which is a symbolic representation of music, similar to a musical
score. A MIDI file consists of multiple tracks, each of which is assigned to a specific instrument. We
regard the MIDI sequence S of a single track as structural information. We utilize the pretty_midi
library to read MIDI files and extract the discrete piano roll sequence s ∈ [0, 1]128×T , where 128
represents the standard MIDI pitch range from 0 to 127 (corresponding to MIDI note numbers), and
T is the length of the discretized MIDI sequence.

We selected the same encoder network as in previous work[8], which is composed of multiple
convolutional blocks. Each convolutional block processes the input through BatchNorm1d, SiLU
activation, Conv1d layers, Dropout, and skip connections, progressively extracting temporal features.
The number of channels begins at 128, corresponding to the MIDI pitch, and gradually increases
through the convolutional layers until the output is a feature with ut channels.

3.4 Audio Synthesis with Latent Diffusion Transformer

In traditional Latent Diffusion Model used in audio synthesis task, the original waveform x ∈ RT is
converted into a mel-spectrogram X ∈ RT×F using short time Fourier transformation (STFT) and
mel filter bank. Then the mel-spectrogram is sent into a variational autoencoder (VAE) to obtain a
latent representation z ∈ RC×T

c ×F
c , which can also be recognized as z0 in the language of diffusion

models.

In the forward process of diffusion models [17], which is the training phase, the model gradually add
noise to the ground truth z0 by sampling from the following distributions:

q (zn | zn−1) = N
(
zn;

√
1− βnzn−1, βnI

)
q (zn | z0) = N

(
zn;

√
ᾱnz0, (1− ᾱn)ε

)
where αi and βi, i ∈ {1, . . . , n} are parameter related to the assumption of the diffusion models,
N (v;µ,Σ) represent the probability density function of the random variable v which follows the
distribution of N (µ,Σ). ε ∼ N (0, I) and the final step of the representation zn ∼ N (0, I). In the
training phase, a denoising neural network εθ is trained to predict z0 from the noised latent zn on the
following diffusion loss:

LDiT = Ez0,ε,n ∥ε− εθ (zn, n,g,p)∥22 (1)

where g and p stand for global condition and prepend condition in DiT respectively.

Compared to other diffusion models, DiTs shows its edge on effectively capturing data dependencies
and producing high-quality results. Recent studies highlight DiTs’ impressive image generation capa-
bilities, especially through techniques like Stable Diffusion 3, and their success in video generation,
demonstrated by the Sora framework [30]. As [27] had shown, Diffusion Transformer (DiT) shows
great capacity of preserving the quality of the generated audio.

The technical details about encoder, decoder and the DiT block is coverd in A.2.

3.5 Disentangled Representation Learning Module

We assume that Ut and Us are not correlated, i.e. cov(Ut,Us) = 0. This assumption is reasonable
since correct timbre shift in music performing would not change the the pitch of each note, and vice
versa. Therefore, the audio clip Wi can be formulated into a function of two uncorrelated random
matrices:

Wi = f(Ut,Us) (2)

where f : (Ωt, Ft, Pt)× (Ωs, Fs, Ps) 7→ (Ωw, Fw, Pw).

Ideally , we wish our text-aligned timbre extractor-encoder and structure encoder can serve as the
following two functions:

gt(Wi) = gt(f(Ut,Us)) = Ut, (3)
gs(Wi) = gs(f(Ut,Us)) = Us (4)
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If TE = gt and SE = gs, then the information of timbre and musical structure is completely
disentangled. Our timbre encoder TE and structure encoder SE should serve an under-optimized gt
and gs:

TE(wi) = TE(f(uti,usi)) = uti, (5)
SE(wi) = SE(f(uti,usi)) = usi (6)

Therefore, our goal in this disentangled representation learning module is to minimize the correlation
of embedding provided by TE and SE. Inspired by [8], we optimize a predictor function h(·) trying
to recover samples of uti only using the information in usi, i ∈ {1, . . . ,B} and use it as an negative
guidance, i.e. preventing h(·) to correctly predict uti from usi:

Lpred = −EUt,Us
[∥Ut − h(Us)∥] (7)

= −ΣB
i=1 [∥uti − h(usi)∥] /B (8)

Overall Architecture In odd number training steps, we fix the TE and SE to optimize the predictor
as well as training the DiT. On the contrary, we fix the predictor instead and train TE, SE and the
DiT in even number training steps.

L = LDiT + λLpred (9)

where λ is a hyper parameter controlling learning emphasis on the disentangled representation
learning.

4 Experiments

4.1 Datasets

We adopt two synthetic dataset: Slakh2100 and Nysnth for evaluation. For details about the datasets,
see A.1.

4.2 Results

Specific training settings are given in A.3. For the VAE, we adopted the architecture and training
parameters from Stable Audio Open[12], using a sampling rate of 44,100 Hz but converting from
stereo to mono. We trained the model for 50k steps to ensure that the VAE can faithfully reconstruct
the instrument sounds.

Condition Dataset FADVggish ↓ FADEncodec ↓ Transcription F1 ↑ Clap Score ↑
Clapaudio Slakh 0.51 2.23 0.47 0.090
Claptext Slakh 0.25 2.28 0.53 0.135
Clapaudio Nsynth 0.52 2.34 0.48 0.150
Claptext Nsynth 0.29 1.78 0.54 0.152
Ground Truth - 0.00 1.00 1.00 -

Table 1: Experimental results on audio quality and pitch accuracy. Metrics are computed separately
for each evaluation dataset.

5 Conclusions

In this paper, we introduced TaVIG, a one-shot Text-aligned Virtual Instrument Generation model
using a Diffusion Transformer. We evaluated TaVIG on both the Slakh and NSynth datasets, using
transcription F1 scores to assess the alignment of generated music with the provided MIDI, and FAD
scores to measure audio quality.

This work provides a step forward in bridging the need of music production industry and machine
learning technology. Future work will focus on refining the disentanglement of centain timbres
and structures, improving the diversity of generated timbres but maintaining the loyalty to the text
prompts, and extending the model’s ability to handle polyphonic and complex instrumentations in
real-world scenarios.
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A Appendix

A.1 Dataset

To ensure the model encounters a wide variety of timbres, our approach to dataset selection focuses on including
as many timbres as possible, each with detailed text descriptions.

Synthetic Data To ensure the variety of timbre, synthesized data are needed.

• Slakh2100_flac_redux: The Synthesized Lakh Dataset (SLAKH) [32] is a multi-track audio and
MIDI dataset for music source separation and multi-instrument transcription. Created from the Lakh
MIDI Dataset v0.1 using high-quality virtual instruments, it features 2100 tracks with aligned MIDI,
synthesized from 187 patches across 34 instrument classes. For this study, we focus on 400 hours of
non-percussive instrument stems.

• The NSynth dataset is a large, structured collection of 300,000 isolated musical notes from 1,000
diverse instruments, with detailed labels for pitch, velocity, instrument type, and acoustic qualities.

Real Data To capture natural performance nuances, we focus on datasets with real audio recordings:

• Maestro [14]: A dataset of approximately 200 hours of paired MIDI-audio piano recordings from
classical piano competitions, annotated with composer and piece information.

• Guitarset [42]: A 6-hour collection of live guitar performances, featuring both solos and accompani-
ment across various genres and playing styles.

• URMP [26]: A dataset of pieces performed by various classical instruments, including brass, wood-
winds, and strings. We use approximately 4 hours of monophonic instrumental recordings.

We construct timbre descriptions using the template: A {INSTRUMENT SOURCE} {INSTRUMENT FAMILY}
WITH {SOUND QUALITY} PLAYING IN {STYLE}. For example:

• Instrument Source: electric, acoustic, synthesized, etc.

• Instrument Family: piano, guitar, bass, etc.

• Sound Quality: decay, delay, reverb, etc.

• Style: Jazz, Flamenco, Blues, etc.

If specific information is unavailable, the corresponding description is omitted.

A.2 Technical Details

The encoder and decoder in our VAE follow the same architecture as DAC[25]. DAC is a neural codec that
offers high compression and high fidelity; however, we modify its bottleneck by replacing RVQ with VAE..
Before the conditional embeddings g and p are fed into the DiT block, Patchify is conducted to convert the 2D
latent representations encoded by the VQ-VAE into an one-dimensional representation. The denoising network
εθ is formulated as a DiT block with adaLN-Zero conditoning mechanism. The adaLN-Zero mechanism can be
decomposed into two main parts, Adaptive Layer Normalization (AdaLN) and the adaZero-Block. The core
idea of AdaLN is to use g and p to learn two normalization parameters β and γ (not sure), which is obtained
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by adding up time slice features t and conditional features β. In addition, DiT also has a regression scaling
parameter after each residual connection α. While adaZero-Block initialize some training parameters as zeros to
accelerate the training process.

A.3 Training Settings

For the DiT model, we configured a 12-layer transformer with a latent dimension of 768 and trained it for 50k
steps using a learning rate of 1e-5. We evaluated the model’s performance under different CLAP conditions
and across different validation datasets. Since the text descriptions in Nsynth are more detailed and the timbre
information is more complete, we also compared the results with those from the synthetic dataset Slakh. For
audio quality evaluation, we use the Frechet Audio Distance (FAD) [20] to measure how well the generated
audio aligns with the dataset distribution for both reconstruction and transfer tasks. We compute FAD using
embeddings from VGGish [16] and Encodec [7].To assess whether the generated audio aligns with the structural
information provided by the MIDI, we use CREPE [23] to extract pitch and compute the Onset F1 score using
mir_eval[37].We employed CLAP score to evaluate the similarity[40] [18]between the generated audio and its
corresponding audio or text prompt. A higher CLAP score indicates stronger alignment of the generated audio
with the specified prompt.
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