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Abstract

We evaluate effectiveness of an existing ap-
proach to cross-lingual adjustment of mBERT
using four typologically different languages
(Spanish, Russian, Vietnamese, and Hindi) and
three NLP tasks (QA, NLI, and NER). The ad-
justment uses a small parallel corpus to make
embeddings of related words across languages
similar to each other. It improves NLI in four
languages and NER in three languages, while
QA performance never improves and some-
times degrades. Analysis of distances between
contextualized embeddings of related and un-
related words across languages showed that
fine-tuning leads to “foregetting” some of the
cross-lingual alignment information, which—
we conjecture—can negatively affect the effec-
tiveness of the zero-shot transfer. Based on
this observation, we further improved perfor-
mance on NLI using continual learning. Our
study contributes to a better understanding of
cross-lingual transfer capabilities of large multi-
lingual language models and of effectiveness of
their cross-lingual adjustment in various NLP
tasks.

1 Introduction

Large language models such as mBERT or XLM-R
are pre-trained on multilingual corpora without par-
allel data annotation and enable zero-shot cross-
lingual transfer (Libovicky et al., 2019; Pires et al.,
2019). Zero-shot transfer works even for languages
not seen at the pre-trainig stage (Ebrahimi et al.,
2021; Muller et al., 2021). Contextualized word
representations produced by the models can be fur-
ther aligned using a modest amount of parallel data,
which was shown to improve zero-shot transfer for
syntactic parsing, natural language inference (NLI),
and NER (Kulshreshtha et al., 2020; Wang et al.,
2019b,a). This approach requires less data and is a
more computationally efficient alternative to train-
ing a machine translation system or a pre-training a

large multilingual model on a large parallel corpus.
The common approach that has been used since ad-
vent of static monolingual word embeddings is to
find a rotation matrix using a bilingual dictionary or
a parallel corpus that brings vector representation
of related words in different languages closer to
each other. Different from post hoc rotation-based
alignment, Cao et al. (2020) employed parallel data
for direct cross-lingual adjustment of the mBERT
model. They showed it to be more effective than
rotation in cross-lingual NLI and parallel sentence
retrieval tasks in five European languages.

However, we are not aware of any systematic
study of the effectiveness of this procedure across
typologically diverse languages and different NLP
tasks. To fill this gap, we first adjust mBERT us-
ing parallel data (English vs. Spanish, Russian,
Vietnamese, and Hindi) with an objective to make
embeddings of semantically similar words (in dif-
ferent languages) to be closer to each other as pro-
posed by Cao et al. (2020). Then, we fine-tune
cross-lingually adjusted mBERT models for three
NLP tasks (NLI, NER, and QA) using English data
in the regular and continual-learning mode (Rat-
cliff, 1990; Robins, 1995; Parisi et al., 2019) by
using an auxiliary cross-lingual adjustment loss
during fine-tuning (Caruana, 1996). Finally, we
apply the trained models to the test data in four tar-
get languages in a zero-shot fashion (i.e., without
fine-tuning in the target language).

We perform each experiment with five seeds and
assess statistical significance of the difference from
a baseline. In our study we ask the following re-
search questions:

R1 How does cross-lingually adjusted mBERT
fine-tuned on English data and zero-shot trans-
ferred to a target language perform on various
NLP tasks and target languages?

R2 How does the size of the parallel corpora used
for adjustment affect outcomes?
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Figure 1: Histograms of L, distances between pairs of mBERT last-layer representations for randomly sampled
related (i.e., aligned) and unrelated word pairs from WikiMatrix (Hi-En): (a) original, (b) after cross-lingual
adjustment, (c) after fine-tuning on English NLI data, (d) after cross-lingual adjustment and subsequent fine-tuning
on English NLI data, (e) after cross-lingual adjustment and subsequent continual fine-tuning on English NLI data.

R3

R4

How does adjustment of mBERT on parallel
data and fine-tuning for a specific task affect
similarity of contextualized embeddings of se-
mantically related and unrelated words across
languages?

Inspired by our observation (see Fig. 1c-1d)
that fine-tuning draws embeddings of both re-
lated and unrelated words closer to each other,
which may negatively affect the cross-lingual
transfer, we wonder if continual learning—
with an auxiliary cross-lingual adjustment
loss—can improve effectiveness of the zero-
shot transfer.

Our experiments demonstrated the following:

The cross-lingual adjustment of mBERT im-
proves NLI in four languages and NER in
three languages. Yet, there is no statistically
significant improvement for QA and a statisti-
cally significant deterioration on three out of
eight QA datasets. Experiments with Hindi
and extended BERT (Wang et al., 2020) indi-
cate this could be due to insufficient vocab-
ulary representation for some languages in
mBERT.

As the amount of parallel data increases, this
benefits both NLI and NER, whereas QA per-
formance peaks at roughly 5K parallel sen-
tences and further decreases as the number of
parallel sentences increases.

When comparing Ly distances between
contextualized-embeddings of words across
languages (Fig. 1b), we see that the cross-
lingual adjustment of mBERT decreases the
L5 distance between related words while keep-

ing unrelated words apart, which is in line
with prior work (Zhao et al., 2021).

* However, we have found no prior work that in-
spected histograms obtained after fine-tuning.
Quite surprisingly, we observe that fine-tuning
of mBERT for a specific task draws embed-
dings of both related and unrelated words
much closer to each other (Fig. 1c and Fig. 1d).
Thus, fine-tuning causes the model to “forget”
some of the cross-lingual information learned
during adjustment.

* In that, continual learning allows the model
to learn a target task while maintaining the
separation of related and unrelated words
(Fig. 1e). Continual learning consistently im-
proves performance on NLI data, but we ob-
tain no improvement on either QA or NER.
In fact, we observe that improving separa-
tion between the related and unrelated words
across languages—which is the object of the
cross-lingual adjustment that is optionally re-
inforced with continual learning—does not
help cross-lingual transfer among all tasks and
training regimes.

In summary, our study contributes to a better
understanding of (1) cross-lingual transfer capabil-
ities of large multilingual language models and of
(2) effectiveness of their cross-lingual adjustment
in various NLP tasks. Inspired by our histogram
analysis, we were able to improve performance on
NLI data using continual learning, which is a novel
finding in the context of zero-shot transfer with
cross-lingual adjustment using the approach of Cao
et al. (2020).



2 Related Work

2.1 Cross-Lingual Zero-Shot Transfer with
Multilingual Models

The success of mBERT in cross-language zero-
shot regime on various tasks has inspired many
papers that attempted to explain its cross-lingual
abilities and limitations (Wu and Dredze, 2019;
Conneau et al., 2020; K et al., 2020; Libovicky
et al., 2019; Dufter and Schiitze, 2020; Chi et al.,
2020; Pires et al., 2019; Artetxe et al., 2020; Chi
et al., 2020). These studies showed that the multi-
lingual models learn high-level abstractions com-
mon to all languages, which make transfer possible
even when languages share no vocabulary. How-
ever, the gap between performance on English and
a target language is smaller if the languages are
cognate, i.e. share a substantial portion of model’s
vocabulary, have similar syntactic structures, and
are from the same language family (Wu and Dredze,
2019; Lauscher et al., 2020). Moreover, the size of
target language data used for pre-training and the
size of the model vocabulary allocated to the lan-
guage also positively impacts cross-lingual learn-
ing performance (Lauscher et al., 2020; Artetxe
et al., 2020).

Zero-shot transfer of mBERT or other multilin-
gual transformer-based models from English to a
different language was applied inter alia to POS
tagging, cross-lingual information retrieval, de-
pendency parsing, NER, NLI, and QA (Wu and
Dredze, 2019; Wang et al., 2019b; Pires et al.,
2019; Hsu et al., 2019; Litschko et al., 2021).
XTREME data suite (Hu et al., 2020) and its succes-
sor XTREME-R (Ruder et al., 2021) are dedicated
collections of tasks and corresponding datasets for
evaluation of zero-shot transfer capabilities of large
multilingual models from English to tens of lan-
guages. XTREME includes NLI, NER, and QA
datsets used in the current study. Although transfer
from English is not always an optimal choice (Lin
et al., 2019; Turc et al., 2021), English still re-
mains the most popular source language. Further-
more, despite there have been developed quite a
few new models that differ in architectures, sup-
ported languages, and training data (Doddapaneni
et al., 2021), mBERT remains the most popular
cross-lingual model.

2.2 Cross-lingual Alignment of Embeddings

Mikolov et al. (2013) demonstrated that vector
spaces can encode semantic relationships between

words and that there are similarities in the geom-
etry of these vectors spaces across languages. A
variety of approaches have been proposed for align-
ing monolingual representations based on bilin-
gual dictionaries and parallel sentences. The most
widely used approach—which requires only a bilin-
gual dictionary—consists in finding a rotation ma-
trix that aligns vectors of two monolingual mod-
els (Mikolov et al., 2013). Lample et al. (2018)
proposed an alignment method based on adversar-
ial training, which does not require parallel data.
A comprehensive overview of alignment methods
for pre-Transformer models can be found in (Ruder
et al., 2019).

Schuster et al. (2019) applied rotation to align
contextualized ELMo embeddings (Peters et al.,
2018) using “anchors” (averaged vectors of tokens
in different contexts) and bilingual dictionaries.
They showed improved results of cross-lingual de-
pendency parsing using English as source and sev-
eral European languages as target languages. Wang
et al. (2019a) aligned English BERT and mBERT
representations using rotation method and Europarl
parallel data (Koehn, 2005). They employed the re-
sulting embeddings in a cross-lingual dependency
parsing model. The parser with aligned embed-
dings consistently outperformed zero-shot mBERT
on 15 out of 17 target languages. Instead of align-
ing on a word level, Aldarmaki and Diab (2019)
performed a sentence-level alignment of ELMo
embeddings and evaluated this approach on the
parallel sentence retrieval task.

Cao et al. (2020) proposed to directly modify the
mBERT model by bringing the vectors of semanti-
cally related words in different languages closer to
each other. This was motivated by the observation
that embedding spaces of different languages are
not always isometric (Sggaard et al., 2018) and,
hence, are not always amenable to alignment via
rotation. The authors showed that mBERT simulta-
neously adjusted on five European languages con-
sistently outperformed other alignment approaches
on XNLI data. In the current study, we implement
the approach with some modifications.

Liu et al. (2021) showed that combining contin-
ual learning with fine-tuning improved zero-shot
transfer performance for NER and POS tagging. In
that, they used a cross-lingual sentence retrieval
(XSR) and/or masked-language model (MLM) task
as additional tasks. Although XSR can be seen
as an alternative to the cross-lingual adjustment of



Cao et al. (2020), the authors did not evaluate the
effectiveness of zero-shot transfer after adjusting
the model with XSR. In contrast, we evaluate the
marginal effectiveness of continual learning with
respect to already cross-lingually adjusted mBERT.

Kulshreshtha et al. (2020) compared different
alignment methods (rotation vs. adjustment) on
NER and slot filling tasks. According to their re-
sults, rotation-based alignment performs better on
the NER task, while model adjustment performs
better on slot filling. Zhao et al. (2021) contin-
ued this line of research and proposed several im-
provements of the model adjustment method: 1) z-
normalization of vectors and 2) text normalization
to make the input more structurally ‘similar’ to En-
glish training data. Experiments on XNLI dataset
and translated sentence retrieval showed that vector
normalization leads to more consistent improve-
ments over zero-shot baseline compared to text
normalization. Faisal and Anastasopoulos (2021)
applied cross-lingually adjusted mBERT and XIL.M-
R to cross-lingual open-domain QA and obtained
improvements both on paragraph and span selec-
tion subtasks. However, they trained their models
on machine-translated data, which is different from
our zero-shot settings.

3 Methods

In this study, we use a multilingual BERT (mBERT)
as the main model (Devlin et al., 2019). mBERT
is a case-sensitive “base” 12-layer Transformer
model (Vaswani et al., 2017) with 178M param-
eters.! It was trained with a masked language
model objective on 104 languages with a shared
WordPiece (Wu et al., 2016) vocabulary (using
104 Wikipedias). To balance the distribution of
languages, high-resource languages were under-
sampled and low-resource languages were over-
sampled.”> For a number of NLP tasks, cross-
lingual transfer of mBERT can be competitive with
training a monolingual model using the training
data in the target language.

We align cross-lingual embeddings by directly
modifying/adjusting the language model itself, fol-
lowing the approach by Cao et al. (2020). The

"https://huggingface.co/
bert-base-multilingual-cased

https://github.com/google-research/
bert/blob/master/multilingual .md

3 Along with original mBERT we also experimented with
mBERT variants with expanded vocabulary for Hindi (Wang
et al., 2020), see Appendix A.

approach—which differs from finding a rotation
matrix—proved to be effective in the XNLI task.
However, there are some differences in our imple-
mentation. In all cases, we work with one pair of
languages at a time while Cao et al. (2020) adjusted
mBERT for five languages at once. Our approach
allows us to carry out a parameter-sensitivity anal-
ysis individually for each of the target languages.

BERT uses WordPiece tokenization (Wu et al.,
2016), which splits sufficiently long words into
subword tokens. We first word-align parallel data
with fast_align (Dyer et al., 2013) and then average
all subword tokens’ vectors.*

Based on alignments in parallel data, we ob-
tain a collection of word pairs (s;,t;): s; from the
source language, ¢; from the target one. From these
alignments we can obtain their mBERT vector rep-
resentations f(s;) and f(¢;). Then, we adjust the
mBERT model on aligned pairs’ vectors using the
following loss function:

L= [[f(si)—£(t) 5+ 1f(s))—£0(s;)]13,
(sisti) 55
(1)

where the first term “pulls” the embeddings in the
source and target language together, while the sec-
ond (regularization) term prevents source (English)
representations from deviating far from their ini-
tial values in the ‘original’ mBERT f°. Finally,
the cross-lingually adjusted mBERT model is fine-
tuned for a specific task.

Training neural networks via empirical loss min-
imization is known to suffer from the “catastrophic
forgetting” (McCloskey and Cohen, 1989). From
inspecting the histogram of Lo distances between
embeddings of related and unrelated words in pairs
of languages (see Fig. 1 and the discussion in
§ 5.4), we learn that this is, indeed, the case. Specif-
ically, fine-tuning on a target task—in contrast to
the cross-lingual adjustment objective—reduces
the separation between related and unrelated words.
To counter this effect, we ran an additional exper-
iment in a continual-learning mode (Riabi et al.,
2021), which relies on experience replay (Ratcliff,
1990; Robins, 1995).

Technically, this entails a multi-task training
(Caruana, 1996) with a combined loss function:

*We also experimented with other options reported in the
literature — fist/last tokens’ vectors, as well as aligning sub-
word tokens produced by BERT. Although these choices in-
duced some variations in results, there is no single pattern
across all tasks and languages, see § A.1.
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Lang Family Script Word  Number of
order Wiki pages

en IE/Germanic Latin SVO 6.3M

es IE/Romance Latin SVO 1.7M

ru IE/Slavic Cyrillic SVO 1.7M

vi Austroasiatic ~ Latin SVO 1.3M

hi IE/Indo-Aryan Devanagari SOV 150K

IE : Indo-European; Prevalent word order: SVO — subject-
verb-object, SOV — subject-object-verb;

Table 1: Language information.

L= Ltarget + aLaligna (2)

where Ly get 18 the loss-function for the target task,
e.g., NLIL, Lyjgn is a cross-lingual loss function
given by Eq. 1, and o > 0 is a small weight. During
training, we iterate over the complete (reshuffled)
dataset for the target task: After computing Ly get
for a current batch we randomly sample a small
batch of aligned pairs of words {(s;,t;)} from the
parallel corpus and compute L g,

4 Tasks and Data

4.1 Languages and Parallel Data

In our experiments we transfer models trained on
English to four languages: Spanish, Russian, Viet-
namese, and Hindi. This set represents four dif-
ferent families (including one non-Indo-European
language), three scripts, and two different prevalent
word orders (see Table 1). All the languages are
among languages that were used to train mBERT.”

We use a parallel corpus (i.e., a bitext) WikiMa-
trix (Schwenk et al., 2021) to align embeddings.
WikiMatrix is a large collection of aligned sen-
tences in 1,620 different language pairs mined from
Wikipedia. The dataset is distributed under CC-BY-
SA license.

4.2 Natural Language Inference

Natural language inference (NLI) is a task of deter-
mining the relation between two ordered sentences
(hypothesis and premise) and classifying them into:
entailment, contradiction, or “no relation”. English
MultiNLI collection consists of 433K multi-genre
sentence pairs (Williams et al., 2018). The XNLI
dataset—distributed under the CC BY-NC license—
complements the MultiNLI training set with newly
collected 2.5K development and 5K test English

SHowever, Hindi Wikipedia is an order of magnitude
smaller compared to other Wikipedias, which may have led to
somewhat inferior contextualized embeddings.

examples (Conneau et al., 2018). They were pro-
fessionally translated into 15 languages, including
all four target languages of the current study. Ad-
ditionally, for each of the target language test set,
we created a new mixed-language XNLI set by
randomly picking either a hypothesis or a premise
and replacing it with the original English sentence.
Performance on XNLI datasets is evaluated using
classification accuracy.

4.3 Named Entity Recognition

Named entity recognition (NER) is a task of locat-
ing named entities in unstructured text and clas-
sifying them into predefined categories such as
persons, organizations, locations, etc. In our ex-
periments, we employ the Wikiann NER corpus
(Rahimi et al., 2019) that is derived from a larger
“silver-standard” collection that was created fully
automatically (Pan et al., 2017). Wikiann NER has
data for 41 language, including all languages in
the current study. The dataset is distributed under
the Apache-2.0 license. The named entity types
include location (LOC), person (PER), and orga-
nization (ORG). The English training set contains
20K sentences. Test sets for Spanish, Vietnamese,
and Russian have 10K sentences each; for Hindi —
1K sentences. Performance is evaluated using the
token-level micro-averaged F1.

4.4 Question Answering

Machine reading comprehension (MRC) is a vari-
ant of QA task. Given a question and a text para-
graph, the system needs to return a continuous span
of paragraph tokens as an answer. The first large-
scale MRC dataset is the English Wikipedia-based
dataset SQuAD (Rajpurkar et al., 2016), which
contains about 100K paragraph-question-answer
triples. SQuUAD has become a de facto standard
and inspired creation of analogous resources in
other languages (Rogers et al., 2021). SQuAD is
available under the CC BY-SA license. We use
SQuAD as the source dataset to train MRC models.
To test the models, we use XQuAD, MLQA, and
TyDi QA datasets. XQuAD (Artetxe et al., 2020)
is a professional translation of 240 SQuAD para-
graphs and 1,190 questions-answer pairs into 10
languages (including four languages of our study).
MLQA (Lewis et al., 2020) data is available for
six languages including Spanish, Vietnamese, and
Hindi (but it does not have Russian). There are
about 5K questions for each of our languages. TyDi
QA (Clark et al., 2020) includes 11 typologically



diverse languages of which we use only Russian
(812 test items). SQuAD, XQuAD, and MLQA are
distributed under the CC BY-SA license; TyDi QA —
under the Apache-2.0 license.

In addition to monolingual test data, we exper-
imented with two parallel/cross-lingual datasets:
MLQA and XQuAD and explored two directions:
(1) question is in a target language, but paragraph
is in English; (2) a question is in English, but a
paragraph is in a target language.

QA performance is evaluated using token-level
F1-score.

5 Experimental Results and Analysis

5.1 Setup

All experiments were conducted on a single Tesla
V100 16GB. For cross-lingual model adjustment
we use the Adam optimizer and hyper-parameters
provided by Cao et al. (2020). To obtain reliable
results we run five iterations (using different seeds)
of model adjustment (for each configuration) fol-
lowed by fine-tuning on downstream tasks. For
each run we sample a required number of sentences
from a set of 250K parallel (WikiMatrix) sentences
word-aligned with fast_align.> One run of model
adjustment on 30K parallel sentences takes about
15 minutes.

The code to fine-tune mBERT on XNLI, SQuAD,
and Wikiann is based on HuggingFace sample
scripts,” which were modified to support contin-
ual learning. These scripts use a basic architecture
consisting of a BERT model and a task-specific
linear layer. We also reuse parameters provided by
HuggingFace, except for the weight o« = 0.01
in the multi-task loss (Eq. 2), which was tuned on
a validation set. Also note that batch sizes are 32
(for the main target loss) and 16 (for the auxiliary
cross-lingual adjustment loss in the case of con-
tinual learning). Fine-tuning on XNLI, SQuAD
and Wikiann takes about 100, 60, and 3 minutes,
respectively. With continual learning it takes 240,
90, and 15 minutes, respectively. Including all
preliminary and exploratory experiments the to-
tal computational budget was approximately 500
hours.

®We ran the main body of experiments with 30K paral-
lel sentences. In addition, we conducted experiments with
5K/10K/30k/100K/250K Ru-En sentence pairs, see § A.1.

"https://github.com/huggingface/
transformers/tree/master/examples/
pytorch

mBERT es ru vi hi

Original XNLI
Original 7420 6795 69.58 59.03
Adjusted 74.82% 69.45% 70.88* 61.54*

75.89%% T71.26%* 72.79%* 63.90%*
Mixed-language NLI

70.93 6424 6272 5353

72.06% 66.56*% 66.50* 57.31*

73.50%% 69.09%* 69.14** 61.09%*

Statistically significant differences from an original and ad-
justed mBERT are marked with * and **, respectively (p-value
threshold 0.05).

Adjust.+continual

Original
Adjusted
Adjust.+continual

Table 2: Performance on original and mixed-language
NLI datasets (accuracy).

mBERT es ru vi hi
Original 73.40 63.43 71.02 65.24
Adjusted 73.28 65.49*%  71.99%  68.22%

66.27%% 71.35%*% 66.07**

Statistically significant differences from an original and ad-
justed mBERT are marked with * and **, respectively (p-
value threshold 0.05).

Adjust.+continual  72.71%*

Table 3: Performance on NER tasks (token-level F1).

All reported results are averages over five runs
with different seeds. We further assess significance
of differences between results for the original and
adjusted mBERT using paired statistical tests. For
QA and XNLI we first average metric values for
each example over different runs and then carry
out a paired t-test using averaged values. For NER
we concatenate example-specific predictions for all
seeds and run 1,000 iterations of a permutation test
for concatenated sequences (Pitman, 1937; Efron
and Tibshirani, 1993).

5.2 Main Results

Results for NLI, NER, and QA tasks are summa-
rized in Tables 2, 3, and 4, respectively. We can
observe consistent and statistically significant im-
provements (up to 2.5 accuracy point) of aligned
models over zero-shot transfer on XNLI for all lan-
guages. This is in line with Cao et al. (2020) even
though we used a set of more diverse languages,
presumably noisier parallel data, and a slightly dif-
ferent learning scheme. Employing continual learn-
ing leads to additional substantial gains (up to 2.4
accuracy points). We also evaluated models on
the (bilingual) mixed-language XNLI test data (see
§ 4.2). According to the bottom part of Table 2,
compared to the original XNLI, we observe bigger
gains for all four languages, especially when we
employ continual learning. For Hindi, we obtain
a 7.5 point gain by using both the adjustment and
continual learning.
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mBERT Spanish Russian Vietnamese Hindi
MLQA XQuAD | TyDi QA XQuAD | MLQA XQuAD | MLQA XQuAD
Original 64.96 75.59 67.05 70.72 59.95 69.18 48.73 57.56
Adjusted 63.11* 73.99% 67.03 70.58 58.46* 68.63 48.47 57.81
Adjust+continual | 62.76**  73.44 67.63 70.51 57.71%%  68.64 48.02**  57.83
Question in target language, paragraph in English
Original 67.34 75.74 - 71.54 56.08 65.00 42.48 47.83
Adjusted 66.93* 75.65 - 71.68 56.74* 66.75* 44.91* 50.45%
Adjust+continual | 66.31%*%  74.88%** - 70.99 54.51%%  64.63*%* | 43.88**  50.13
Question in English, paragraph in target language
Original 67.36 76.71 - 67.31 64.43 68.12 55.32 58.62
Adjusted 66.96* 76.42 - 68.25% 65.01* 68.99 55.63 58.93
Adjust+continual | 66.68%*  76.21 - 68.06 64.36%*  68.54 54.74%* 5822

Statistically significant differences from an original and adjusted mBERT are marked with * and **, respectively

(p-value threshold 0.05).

Table 4: Effectiveness of QA systems (F1-score).

NER results are somewhat mixed: We observe
statistically significant gains (up to 3 points for
Hindi) on all languages except Spanish. In that,
continual learning is beneficial only for Russian.

When we fine-tune a cross-lingually adjusted
mBERT on QA tasks, there are no statistically sig-
nificant gains. In that, there is a statistically sig-
nificant decrease for all Spanish datasets and Viet-
namese MLQA. Use of continual learning leads to
further degradation in nearly all cases. Note that
models are noticeably more accurate on XQuAD
compared to MLQA, which can be due to XQuAD
being a translation of SQuUAD, which is, in turn, is
used to train our QA models.

Muttenthaler et al. (2020) and van Aken et al.
(2019) showed that QA models essentially clus-
tered answer token vectors and separated them
from the rest of the paragraph token vectors using
a vector representation of the question. Thus, to
solve the QA task, the model learns to rely on mu-
tual similarities among question and answer tokens
(on English QA data) rather than on their actual
vector representations. As a consequence, there
is no need to make representations in the target
language to be similar to English-language repre-
sentations. which, in turn, may partially explain
why the cross-lingual adjustment is unsuccessful
for QA.

We further hypothesizes that such an alignment
is more crucial for cross-lingual tasks, which we
can be partially corroborated using experiments
with two parallel datasets: MLQA and XQuAD.
We explored two directions: (1) question is in a
target language, but paragraph is in English; (2) a
question is in English, but a paragraph is in a target
language. According to results in the lower part of
Table 4, there are, indeed, several cases when the

adjustment is beneficial. Note that cross-lingual
adjustment is also more useful for the mixed, i.e.,
cross-lingual XNLI data, than for original one (Ta-
ble 2). We observe improvements for Vietnamese
and Hindi, which is in line with cross-lingual QA
results by Faisal and Anastasopoulos (2021), but
there are no gains for Spanish and Russian.

5.3 Diagnostic Experiments

The lackluster performance of the cross-lingual ad-
justment of Cao et al. (2020) on QA data motivated
us to carry out additional “diagnostic” experiments:
We hope to discover potential issues with our setup
or derive additional insights about the problem and
data. None of these tests, however, uncovered any
anomalies or issues.

First we conjectured that the adjustment some-
how harms mono-lingual capabilities of mBERT.
Comparing original and adjusted mBERT fine-
tuned on original and/or translated SQuAD and
tested on SQUAD and MLQA data did not support
this conjecture, see § A.2.

Second, we hypothesized that our parallel cor-
pora lacked in either quality or quantity, which we
tested on Russian data. The quality was checked
by aligning Yandex ru-en corpus,® which did not
lead to better results compared to WikiMatrix. In
§ A.1, we showed that as the amount of parallel
data increases, this clearly improved both NLI and
NER. In that, QA performance peaked at roughly
5K parallel sentences and further decreased as the
number of parallel sentences increases.

Third, we ran experiments with an extended ver-
sion of m-BERT (see § A.3), to ensure that rela-
tive (original vs adjusted mBERT) performance on
Hindi is not negatively affected by the low qual-

$https://translate.yandex.ru/corpus
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ity of mBERT token inventory for Hindi. These
experiments show that the adjustment can, indeed,
improve Hindi QA models.

K et al. (2020) showed that the quality of cross-
lingual transfer was higher in the case of languages
with similar word order. Hsu et al. (2019) and
Zhao et al. (2021) experimented with word re-
arrangements for cross-lingual QA and NLI, re-
spectively, and obtained some improvements. We
trained a QA model using an English-Hindi ad-
justed mBERT on the SQuAD-SOV dataset re-
leased by Hsu et al. (2019), where sentences were
re-arranged to Subject-Object-Verb order. This
combination led to a degraded quality.’

5.4 Analysis of the Adjusted mBERT

We calculate Lo distances between contextualized
embeddings in English and other languages.'® The
embeddings are taken from the last layer output
(i.e., no prediction heads are used). To this end we
sampled semantically related words from parallel
sentences (matched via fast_align) and unrelated
words from unpaired sentences (nearly always un-
related). For each pair of languages and each NLP
task, the sampling processed is carried out for: (1)
the original mBERT, (2) an adjusted mBERT, (3)
the original mBERT fine-tuned for the target NLP
task, (4) the adjusted mBERT fine-tuned for the tar-
get NLP task, (5) the adjusted mBERT fine-tuned
for the target task using continual learning (full set
of histograms can be found in Appendix B).
Timkey and van Schijndel (2021), among others,
report that in a monolingual setting there are a few
(single digit) “rogue” dimensions that dominate
computation of the cosine similarity. Yet, these
dimensions do not explain model behavior, which
makes such distance analysis pointless. This is
less problematic on our data with Lo distance: For
example for all XNLI models, 10 and 100 most
“influential” dimensions account only for about 5%
and 25% of the overall distance, respectively.
From Fig. 1 we can see that the cross-lingual
adjustment makes embeddings of semantically sim-
ilar words from different languages closer to each
other while keeping unrelated words apart, which

“Manual inspection of the data revealed that all SQuAD
data is lowercased, which may negatively impact QA train-
ing. Moreover, the quality of rearrangements is rather low,
most obvious problem is incorrect processing of passive voice
constructions.

10 Although most prior work uses the cosine similarity in-
stead of Lo (Rudman et al., 2022), it does not distinguish
between vectors with the same direction, but different lengths.

is in line with Zhao et al. (2021). However, prior
work did not inspect histograms obtained after fine-
tuning. Yet, quite surprisingly, fine-tuning of both
the original and adjusted mBERT on the English
NLI data (Fig. 1c and 1d) makes distributions of
related and unrelated words almost fully overlap,
i.e. all embeddings become close to each other.
Compared to the original mBERT, fine-tuning of
the adjusted mBERT (Fig. 1d) does result in a bet-
ter separation of related and unrelated words, but
the effect is quite modest. We believe this is an
example of “catastrophic forgetting* (McCloskey
and Cohen, 1989), where fine-tuning the model on
a target task causes the model to forget some of
the knowledge obtained during cross-lingual ad-
justment.

Continual learning (Fig. 1e) permits fine-tuning
for the target task while maintaining a separation
between related and related words, which also con-
sistently improves performance for the NLI task. It
is crucial to note that we see no direct relationship
between the degree of separation and the success of
cross-lingual transfer among all tasks and training
regimes. In the case of NER, the biggest separation
is achieved for Spanish (see Fig. 2 in Appendix B),
but fine-tuning of the adjusted mBERT results in a
lower accuracy. More generally, fine-tuning with
continual learning always leads to better separation
of related and unrelated words, but this is beneficial
only for the NLI task.

6 Conclusion

We evaluate effectiveness of an existing approach
to cross-lingual adjustment of mBERT (Cao et al.,
2020) using four typologically different languages
(Spanish, Russian, Vietnamese, and Hindi) and
three NLP tasks (QA, NLI, and NER). The original
mBERT is being compared to mBERT “adjusted”
with a help of a small parallel corpus. The cross-
lingual adjustment of mBERT improves NLI in four
languages and NER in three languages. However,
in the case of QA performance never improves and
sometimes degrades. For Hindi data, this happens
due to a lower quality of mBERT on Hindi data.
Inspired by the analysis of histograms of distances,
we obtain additional improvement on NLI using
continual learning. Our study contributes to a better
understanding of cross-lingual transfer capabilities
of large multilingual language models. It also iden-
tifies limitations of their cross-lingual adjustment
in various NLP tasks.
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A Additional Experiments

A.1 Hyper-Parameter Tuning

An objective of this section analysis is to assess
the impact of most important hyper-parameters,
which might have substantially affected outcomes.
We focus on the size of the parallel corpus, on the
approach to aggregating subword embedding, and
a choice of aligned tokens (is using [CLS] and/or
[SEP] beneficial?). In all cases we measure a
performance gain/loss compared to the original,
i.e., unadjusted mBERT.

Size | XNLI NER TyDi QA XQuAD
5K | +0.62  +2.06 +0.24 +0.75
10K | +0.76  +2.01 +0.62 +0.42
30K | +1.50 +2.07 -0.02 -0.14
100K | +2.24 +2.19 -1.09 -0.11
250K | +2.67 +2.53 -1.98 -2.17

Table 5: Performance gains (compared to the original
mBERT) of models aligned on En-Ru data depending
on the number of sentence pairs.

Size and quality of the parallel corpus. Be-
cause zero-shot transfer is typically more challeng-
ing for languages with non-Latin script: compare
results for Spanish and Vietnamese vs. results for
Russia and Hindi in Tables 2 and 3, we initially con-
sidered experimenting with either Russian or Hindi.
Eventually, we chose Russian, because the Russian
Wikipedia is much larger compared to Hindi. As a
result it has a better alignment quality as indicated
by higher margin scores (Schwenk et al., 2021). In
addition of WikiMatrix, we experimented with the
Yandex ru-en corpus,'! but it did not produce better
results compared to WikiMatrix.

We adjusted mBERT on several parallel corpora
where the number of paired sentences ranged from
5K to 250K. We then fine-tuned the adjusted model
for several target tasks. As in all other experiments,
we train the models with five seeds and report av-
eraged results. Table 5 shows that XNLI and NER
accuracy improves nearly monotonically as the size
of the parallel corpus increases.

QA models benefit from adjustment using only
a small amount of parallel data (and even slightly
outperform the original mBERT baseline when ad-
justed using 5K sentence pairs). QA performance
peaks at roughly 5K parallel sentences and further
decreases as the number of parallel sentences in-
creases. This seems to be some form of overfitting,

Uhttps://translate.yandex.ru/corpus

but the reasons are unclear: We tried to carry out
a cross-lingual adjustment with the learning rates
inversely proportional to the parallel corpus size,
but the improvements were small and inconsistent.

Mode XNLI NER MLQA XQuAD
start +2.36 +3.08 -0.16 +0.01
end +2.39  +259  -1.12 -0.44
avg +2.51 +298 -0.25 +0.24
subword alignment | +2.37 +0.99  -5.01 —4.42

Table 6: Impact of subword aggregation approach
(Hindi): Performance gains compared to the original
mBERT.

Adjustmentby | XNLI NER MLQA XQuAD
[CLS] +1.15  +1.61 -0.12 +0.5
[CLS] [SEP] +1.25 +1.83 -0.50 +0.2
words +248 +3.03 -0.26 -0.03
all +2.51 +298 -0.25 +0.24

Table 7: Impact of special and word tokens (Hindi):
Performance gains compared to the original mBERT.

Subword embedding aggregation. In our main
experiments, we align words by using their aver-
aged (avg) subword embeddings, which performed
best in preliminary QA experiments. However,
as Table 6 shows this is not an optimal approach
across all tasks and languages. For example, in the
case of Hindi, we get better results using the first
token (start) on NER task (though differences are
small).

Interestingly, when we apply fast_align to orig-
inal WordPiece tokens (subword alignment), we
obtain much worse results on all tasks except NLI.
We hypothesize that a lower quality of the subword
alignment approach is likely due to a small mBERT
vocabulary allocated for Hindi. This leads to exces-
sive word splitting and, consequently, to a worse
alignment. We confirm this conjecture in § A.3.

A choice of aligned tokens. In our main experi-
ments, the mBERT adjustment procedure uses both
regular word and special-word tokens [CLS] and
[SEP]. In Table 7 we show ablation experiments
where we exclude some of the tokens from the
alignment procedure. We conjectured that in the
NLI task the model relies more on the sentence-
level representation through a [CLS] token. How-
ever, a more then one-point gain is achieved by
aligning only words, which is slightly improves
when the alignment additionally uses [CLS]. The
same is true for the NER task. In the case of QA,
aligning only the [CLS] token is suboptimal, but


https://translate.yandex.ru/corpus

mBERT SQuAD MLQA

es ru vi hi es vi hi
Original 89.26 66.63 66.15 60.64
Adjusted | 89.0 88.99 88.95 89.0| 66.52 66.06 60.77

Table 8: Comparison of original mBERT and
aligned mBERT on mono-lingual QA data (F1-
score). First row after the caption shows languages
used in cross-lingual alignment (and the language
of the dataset for MLQA). Models tested on MLQA
are trained on the translated SQuAD.

EmBERT XNLI NER MLQA XQuAD

Original 63.76  65.12 5347 64.11
Adjusted by 30K | 65.70 66.79  54.94 64.11
Adjusted by 100K | 66.69 66.29  54.66 65.10

Table 9: Extended mBERT for Hindi.

combining regular words with special tokens is
beneficial.

A.2  Assessing Mono-lingual Capabilities of
Adjusted mBERT

The main objective of this section is to assess if
the mono-lingual capabilities of mBERT were neg-
atively affected by the cross-lingual adjustment.
To this end, we fine-tune adjusted and the origi-
nal mBERT on monolingual QA data, which in-
cludes the original SQuAD dataset as well as its
machine translations into three languages: Spanish,
Vietnamese, and Hindi released along the MLQA
dataset.'?

The results are shown in Table 8, where the first
row after the caption shows languages used in cross-
lingual alignment. In the case of translated SQuAD
a language used in in the adjustment coincides with
the evaluation language. For SQuAD evaluation is
done in English. According to Table 8, there are
only marginal (at most 0.3%) differences between
the F1-scores of original and adjusted mBERT.

Pnttps://github.com/facebookresearch/
MLOQA
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A.3 Evaluating Extended mBERT for Hindi

We were concerned that results on Hindi were af-
fected by the poor quality of the token inventory,
which—compared to English—leads to a substan-
tial word segmentation. Thus, we carried out ad-
ditional experiment using an “extended” mBERT
version, which has a much better token inventory
for Hindi (Wang et al., 2020).!> Comparing Ta-
bles 9 and Tables 2, 3, 4, we can see that using
the extended mBERT allows us to achieve better
results. Moreover, applying the cross-lingual ad-
justment produces at least one point gain for all
tasks including both MLQA and XQuAD. We, thus
conclude that poor performance of the adjustment
procedure on Hindi data can be attributed to a lower
quality of mBERT on Hindi data.

Bhttps://github.com/ZihanWangKi/
extend_bert
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Figure 2: Histograms of L, distances between pairs of contextualized representations (produced by mBERT)
for randomly sampled related (i.e., aligned) and unrelated word pairs from WikiMatrix. Columns correspond to
language pairs. Rows depict histograms of the original mBERT model, its cross-lingual adjustments, as well as their
variants fine-tuned on QA, NER, and NLI tasks using a regular as well as a continual mode.
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