
The Impact of Cross-Lingual Adjustment of Contextual Word
Representations on Zero-Shot Transfer

Anonymous ACL submission

Abstract

We evaluate effectiveness of an existing ap-001
proach to cross-lingual adjustment of mBERT002
using four typologically different languages003
(Spanish, Russian, Vietnamese, and Hindi) and004
three NLP tasks (QA, NLI, and NER). The ad-005
justment uses a small parallel corpus to make006
embeddings of related words across languages007
similar to each other. It improves NLI in four008
languages and NER in three languages, while009
QA performance never improves and some-010
times degrades. Analysis of distances between011
contextualized embeddings of related and un-012
related words across languages showed that013
fine-tuning leads to “foregetting” some of the014
cross-lingual alignment information, which—015
we conjecture—can negatively affect the effec-016
tiveness of the zero-shot transfer. Based on017
this observation, we further improved perfor-018
mance on NLI using continual learning. Our019
study contributes to a better understanding of020
cross-lingual transfer capabilities of large multi-021
lingual language models and of effectiveness of022
their cross-lingual adjustment in various NLP023
tasks.024

1 Introduction025

Large language models such as mBERT or XLM-R026

are pre-trained on multilingual corpora without par-027

allel data annotation and enable zero-shot cross-028

lingual transfer (Libovickỳ et al., 2019; Pires et al.,029

2019). Zero-shot transfer works even for languages030

not seen at the pre-trainig stage (Ebrahimi et al.,031

2021; Muller et al., 2021). Contextualized word032

representations produced by the models can be fur-033

ther aligned using a modest amount of parallel data,034

which was shown to improve zero-shot transfer for035

syntactic parsing, natural language inference (NLI),036

and NER (Kulshreshtha et al., 2020; Wang et al.,037

2019b,a). This approach requires less data and is a038

more computationally efficient alternative to train-039

ing a machine translation system or a pre-training a040

large multilingual model on a large parallel corpus. 041

The common approach that has been used since ad- 042

vent of static monolingual word embeddings is to 043

find a rotation matrix using a bilingual dictionary or 044

a parallel corpus that brings vector representation 045

of related words in different languages closer to 046

each other. Different from post hoc rotation-based 047

alignment, Cao et al. (2020) employed parallel data 048

for direct cross-lingual adjustment of the mBERT 049

model. They showed it to be more effective than 050

rotation in cross-lingual NLI and parallel sentence 051

retrieval tasks in five European languages. 052

However, we are not aware of any systematic 053

study of the effectiveness of this procedure across 054

typologically diverse languages and different NLP 055

tasks. To fill this gap, we first adjust mBERT us- 056

ing parallel data (English vs. Spanish, Russian, 057

Vietnamese, and Hindi) with an objective to make 058

embeddings of semantically similar words (in dif- 059

ferent languages) to be closer to each other as pro- 060

posed by Cao et al. (2020). Then, we fine-tune 061

cross-lingually adjusted mBERT models for three 062

NLP tasks (NLI, NER, and QA) using English data 063

in the regular and continual-learning mode (Rat- 064

cliff, 1990; Robins, 1995; Parisi et al., 2019) by 065

using an auxiliary cross-lingual adjustment loss 066

during fine-tuning (Caruana, 1996). Finally, we 067

apply the trained models to the test data in four tar- 068

get languages in a zero-shot fashion (i.e., without 069

fine-tuning in the target language). 070

We perform each experiment with five seeds and 071

assess statistical significance of the difference from 072

a baseline. In our study we ask the following re- 073

search questions: 074

R1 How does cross-lingually adjusted mBERT 075

fine-tuned on English data and zero-shot trans- 076

ferred to a target language perform on various 077

NLP tasks and target languages? 078

R2 How does the size of the parallel corpora used 079

for adjustment affect outcomes? 080
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Figure 1: Histograms of L2 distances between pairs of mBERT last-layer representations for randomly sampled
related (i.e., aligned) and unrelated word pairs from WikiMatrix (Hi-En): (a) original, (b) after cross-lingual
adjustment, (c) after fine-tuning on English NLI data, (d) after cross-lingual adjustment and subsequent fine-tuning
on English NLI data, (e) after cross-lingual adjustment and subsequent continual fine-tuning on English NLI data.

R3 How does adjustment of mBERT on parallel081

data and fine-tuning for a specific task affect082

similarity of contextualized embeddings of se-083

mantically related and unrelated words across084

languages?085

R4 Inspired by our observation (see Fig. 1c-1d)086

that fine-tuning draws embeddings of both re-087

lated and unrelated words closer to each other,088

which may negatively affect the cross-lingual089

transfer, we wonder if continual learning—090

with an auxiliary cross-lingual adjustment091

loss—can improve effectiveness of the zero-092

shot transfer.093

Our experiments demonstrated the following:094

• The cross-lingual adjustment of mBERT im-095

proves NLI in four languages and NER in096

three languages. Yet, there is no statistically097

significant improvement for QA and a statisti-098

cally significant deterioration on three out of099

eight QA datasets. Experiments with Hindi100

and extended BERT (Wang et al., 2020) indi-101

cate this could be due to insufficient vocab-102

ulary representation for some languages in103

mBERT.104

• As the amount of parallel data increases, this105

benefits both NLI and NER, whereas QA per-106

formance peaks at roughly 5K parallel sen-107

tences and further decreases as the number of108

parallel sentences increases.109

• When comparing L2 distances between110

contextualized-embeddings of words across111

languages (Fig. 1b), we see that the cross-112

lingual adjustment of mBERT decreases the113

L2 distance between related words while keep-114

ing unrelated words apart, which is in line 115

with prior work (Zhao et al., 2021). 116

• However, we have found no prior work that in- 117

spected histograms obtained after fine-tuning. 118

Quite surprisingly, we observe that fine-tuning 119

of mBERT for a specific task draws embed- 120

dings of both related and unrelated words 121

much closer to each other (Fig. 1c and Fig. 1d). 122

Thus, fine-tuning causes the model to “forget” 123

some of the cross-lingual information learned 124

during adjustment. 125

• In that, continual learning allows the model 126

to learn a target task while maintaining the 127

separation of related and unrelated words 128

(Fig. 1e). Continual learning consistently im- 129

proves performance on NLI data, but we ob- 130

tain no improvement on either QA or NER. 131

In fact, we observe that improving separa- 132

tion between the related and unrelated words 133

across languages—which is the object of the 134

cross-lingual adjustment that is optionally re- 135

inforced with continual learning—does not 136

help cross-lingual transfer among all tasks and 137

training regimes. 138

In summary, our study contributes to a better 139

understanding of (1) cross-lingual transfer capabil- 140

ities of large multilingual language models and of 141

(2) effectiveness of their cross-lingual adjustment 142

in various NLP tasks. Inspired by our histogram 143

analysis, we were able to improve performance on 144

NLI data using continual learning, which is a novel 145

finding in the context of zero-shot transfer with 146

cross-lingual adjustment using the approach of Cao 147

et al. (2020). 148
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2 Related Work149

2.1 Cross-Lingual Zero-Shot Transfer with150

Multilingual Models151

The success of mBERT in cross-language zero-152

shot regime on various tasks has inspired many153

papers that attempted to explain its cross-lingual154

abilities and limitations (Wu and Dredze, 2019;155

Conneau et al., 2020; K et al., 2020; Libovickỳ156

et al., 2019; Dufter and Schütze, 2020; Chi et al.,157

2020; Pires et al., 2019; Artetxe et al., 2020; Chi158

et al., 2020). These studies showed that the multi-159

lingual models learn high-level abstractions com-160

mon to all languages, which make transfer possible161

even when languages share no vocabulary. How-162

ever, the gap between performance on English and163

a target language is smaller if the languages are164

cognate, i.e. share a substantial portion of model’s165

vocabulary, have similar syntactic structures, and166

are from the same language family (Wu and Dredze,167

2019; Lauscher et al., 2020). Moreover, the size of168

target language data used for pre-training and the169

size of the model vocabulary allocated to the lan-170

guage also positively impacts cross-lingual learn-171

ing performance (Lauscher et al., 2020; Artetxe172

et al., 2020).173

Zero-shot transfer of mBERT or other multilin-174

gual transformer-based models from English to a175

different language was applied inter alia to POS176

tagging, cross-lingual information retrieval, de-177

pendency parsing, NER, NLI, and QA (Wu and178

Dredze, 2019; Wang et al., 2019b; Pires et al.,179

2019; Hsu et al., 2019; Litschko et al., 2021).180

XTREME data suite (Hu et al., 2020) and its succes-181

sor XTREME-R (Ruder et al., 2021) are dedicated182

collections of tasks and corresponding datasets for183

evaluation of zero-shot transfer capabilities of large184

multilingual models from English to tens of lan-185

guages. XTREME includes NLI, NER, and QA186

datsets used in the current study. Although transfer187

from English is not always an optimal choice (Lin188

et al., 2019; Turc et al., 2021), English still re-189

mains the most popular source language. Further-190

more, despite there have been developed quite a191

few new models that differ in architectures, sup-192

ported languages, and training data (Doddapaneni193

et al., 2021), mBERT remains the most popular194

cross-lingual model.195

2.2 Cross-lingual Alignment of Embeddings196

Mikolov et al. (2013) demonstrated that vector197

spaces can encode semantic relationships between198

words and that there are similarities in the geom- 199

etry of these vectors spaces across languages. A 200

variety of approaches have been proposed for align- 201

ing monolingual representations based on bilin- 202

gual dictionaries and parallel sentences. The most 203

widely used approach—which requires only a bilin- 204

gual dictionary—consists in finding a rotation ma- 205

trix that aligns vectors of two monolingual mod- 206

els (Mikolov et al., 2013). Lample et al. (2018) 207

proposed an alignment method based on adversar- 208

ial training, which does not require parallel data. 209

A comprehensive overview of alignment methods 210

for pre-Transformer models can be found in (Ruder 211

et al., 2019). 212

Schuster et al. (2019) applied rotation to align 213

contextualized ELMo embeddings (Peters et al., 214

2018) using “anchors” (averaged vectors of tokens 215

in different contexts) and bilingual dictionaries. 216

They showed improved results of cross-lingual de- 217

pendency parsing using English as source and sev- 218

eral European languages as target languages. Wang 219

et al. (2019a) aligned English BERT and mBERT 220

representations using rotation method and Europarl 221

parallel data (Koehn, 2005). They employed the re- 222

sulting embeddings in a cross-lingual dependency 223

parsing model. The parser with aligned embed- 224

dings consistently outperformed zero-shot mBERT 225

on 15 out of 17 target languages. Instead of align- 226

ing on a word level, Aldarmaki and Diab (2019) 227

performed a sentence-level alignment of ELMo 228

embeddings and evaluated this approach on the 229

parallel sentence retrieval task. 230

Cao et al. (2020) proposed to directly modify the 231

mBERT model by bringing the vectors of semanti- 232

cally related words in different languages closer to 233

each other. This was motivated by the observation 234

that embedding spaces of different languages are 235

not always isometric (Søgaard et al., 2018) and, 236

hence, are not always amenable to alignment via 237

rotation. The authors showed that mBERT simulta- 238

neously adjusted on five European languages con- 239

sistently outperformed other alignment approaches 240

on XNLI data. In the current study, we implement 241

the approach with some modifications. 242

Liu et al. (2021) showed that combining contin- 243

ual learning with fine-tuning improved zero-shot 244

transfer performance for NER and POS tagging. In 245

that, they used a cross-lingual sentence retrieval 246

(XSR) and/or masked-language model (MLM) task 247

as additional tasks. Although XSR can be seen 248

as an alternative to the cross-lingual adjustment of 249
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Cao et al. (2020), the authors did not evaluate the250

effectiveness of zero-shot transfer after adjusting251

the model with XSR. In contrast, we evaluate the252

marginal effectiveness of continual learning with253

respect to already cross-lingually adjusted mBERT.254

Kulshreshtha et al. (2020) compared different255

alignment methods (rotation vs. adjustment) on256

NER and slot filling tasks. According to their re-257

sults, rotation-based alignment performs better on258

the NER task, while model adjustment performs259

better on slot filling. Zhao et al. (2021) contin-260

ued this line of research and proposed several im-261

provements of the model adjustment method: 1) z-262

normalization of vectors and 2) text normalization263

to make the input more structurally ‘similar’ to En-264

glish training data. Experiments on XNLI dataset265

and translated sentence retrieval showed that vector266

normalization leads to more consistent improve-267

ments over zero-shot baseline compared to text268

normalization. Faisal and Anastasopoulos (2021)269

applied cross-lingually adjusted mBERT and XLM-270

R to cross-lingual open-domain QA and obtained271

improvements both on paragraph and span selec-272

tion subtasks. However, they trained their models273

on machine-translated data, which is different from274

our zero-shot settings.275

3 Methods276

In this study, we use a multilingual BERT (mBERT)277

as the main model (Devlin et al., 2019). mBERT278

is a case-sensitive “base” 12-layer Transformer279

model (Vaswani et al., 2017) with 178M param-280

eters.1 It was trained with a masked language281

model objective on 104 languages with a shared282

WordPiece (Wu et al., 2016) vocabulary (using283

104 Wikipedias). To balance the distribution of284

languages, high-resource languages were under-285

sampled and low-resource languages were over-286

sampled.2 For a number of NLP tasks, cross-287

lingual transfer of mBERT can be competitive with288

training a monolingual model using the training289

data in the target language. 3290

We align cross-lingual embeddings by directly291

modifying/adjusting the language model itself, fol-292

lowing the approach by Cao et al. (2020). The293

1https://huggingface.co/
bert-base-multilingual-cased

2https://github.com/google-research/
bert/blob/master/multilingual.md

3Along with original mBERT we also experimented with
mBERT variants with expanded vocabulary for Hindi (Wang
et al., 2020), see Appendix A.

approach—which differs from finding a rotation 294

matrix—proved to be effective in the XNLI task. 295

However, there are some differences in our imple- 296

mentation. In all cases, we work with one pair of 297

languages at a time while Cao et al. (2020) adjusted 298

mBERT for five languages at once. Our approach 299

allows us to carry out a parameter-sensitivity anal- 300

ysis individually for each of the target languages. 301

BERT uses WordPiece tokenization (Wu et al., 302

2016), which splits sufficiently long words into 303

subword tokens. We first word-align parallel data 304

with fast_align (Dyer et al., 2013) and then average 305

all subword tokens’ vectors.4 306

Based on alignments in parallel data, we ob- 307

tain a collection of word pairs (si, ti): si from the 308

source language, ti from the target one. From these 309

alignments we can obtain their mBERT vector rep- 310

resentations f(si) and f(ti). Then, we adjust the 311

mBERT model on aligned pairs’ vectors using the 312

following loss function: 313

L =
∑
(si,ti)

∥f(si)−f(ti)∥22+
∑
sj

∥f(sj)−f0(sj)∥22,

(1) 314

where the first term “pulls” the embeddings in the 315

source and target language together, while the sec- 316

ond (regularization) term prevents source (English) 317

representations from deviating far from their ini- 318

tial values in the ‘original’ mBERT f0. Finally, 319

the cross-lingually adjusted mBERT model is fine- 320

tuned for a specific task. 321

Training neural networks via empirical loss min- 322

imization is known to suffer from the “catastrophic 323

forgetting” (McCloskey and Cohen, 1989). From 324

inspecting the histogram of L2 distances between 325

embeddings of related and unrelated words in pairs 326

of languages (see Fig. 1 and the discussion in 327

§ 5.4), we learn that this is, indeed, the case. Specif- 328

ically, fine-tuning on a target task—in contrast to 329

the cross-lingual adjustment objective—reduces 330

the separation between related and unrelated words. 331

To counter this effect, we ran an additional exper- 332

iment in a continual-learning mode (Riabi et al., 333

2021), which relies on experience replay (Ratcliff, 334

1990; Robins, 1995). 335

Technically, this entails a multi-task training 336

(Caruana, 1996) with a combined loss function: 337

4We also experimented with other options reported in the
literature – fist/last tokens’ vectors, as well as aligning sub-
word tokens produced by BERT. Although these choices in-
duced some variations in results, there is no single pattern
across all tasks and languages, see § A.1.

4
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Lang Family Script Word Number of
order Wiki pages

en IE/Germanic Latin SVO 6.3M
es IE/Romance Latin SVO 1.7M
ru IE/Slavic Cyrillic SVO 1.7M
vi Austroasiatic Latin SVO 1.3M
hi IE/Indo-Aryan Devanagari SOV 150K

IE : Indo-European; Prevalent word order: SVO – subject-
verb-object, SOV – subject-object-verb;

Table 1: Language information.

338

L = Ltarget + αLalign, (2)339

where Ltarget is the loss-function for the target task,340

e.g., NLI, Lalign is a cross-lingual loss function341

given by Eq. 1, and α > 0 is a small weight. During342

training, we iterate over the complete (reshuffled)343

dataset for the target task: After computing Ltarget344

for a current batch we randomly sample a small345

batch of aligned pairs of words {(si, ti)} from the346

parallel corpus and compute Lalign.347

4 Tasks and Data348

4.1 Languages and Parallel Data349

In our experiments we transfer models trained on350

English to four languages: Spanish, Russian, Viet-351

namese, and Hindi. This set represents four dif-352

ferent families (including one non-Indo-European353

language), three scripts, and two different prevalent354

word orders (see Table 1). All the languages are355

among languages that were used to train mBERT.5356

We use a parallel corpus (i.e., a bitext) WikiMa-357

trix (Schwenk et al., 2021) to align embeddings.358

WikiMatrix is a large collection of aligned sen-359

tences in 1,620 different language pairs mined from360

Wikipedia. The dataset is distributed under CC-BY-361

SA license.362

4.2 Natural Language Inference363

Natural language inference (NLI) is a task of deter-364

mining the relation between two ordered sentences365

(hypothesis and premise) and classifying them into:366

entailment, contradiction, or “no relation”. English367

MultiNLI collection consists of 433K multi-genre368

sentence pairs (Williams et al., 2018). The XNLI369

dataset—distributed under the CC BY-NC license—370

complements the MultiNLI training set with newly371

collected 2.5K development and 5K test English372

5However, Hindi Wikipedia is an order of magnitude
smaller compared to other Wikipedias, which may have led to
somewhat inferior contextualized embeddings.

examples (Conneau et al., 2018). They were pro- 373

fessionally translated into 15 languages, including 374

all four target languages of the current study. Ad- 375

ditionally, for each of the target language test set, 376

we created a new mixed-language XNLI set by 377

randomly picking either a hypothesis or a premise 378

and replacing it with the original English sentence. 379

Performance on XNLI datasets is evaluated using 380

classification accuracy. 381

4.3 Named Entity Recognition 382

Named entity recognition (NER) is a task of locat- 383

ing named entities in unstructured text and clas- 384

sifying them into predefined categories such as 385

persons, organizations, locations, etc. In our ex- 386

periments, we employ the Wikiann NER corpus 387

(Rahimi et al., 2019) that is derived from a larger 388

“silver-standard” collection that was created fully 389

automatically (Pan et al., 2017). Wikiann NER has 390

data for 41 language, including all languages in 391

the current study. The dataset is distributed under 392

the Apache-2.0 license. The named entity types 393

include location (LOC), person (PER), and orga- 394

nization (ORG). The English training set contains 395

20K sentences. Test sets for Spanish, Vietnamese, 396

and Russian have 10K sentences each; for Hindi – 397

1K sentences. Performance is evaluated using the 398

token-level micro-averaged F1. 399

4.4 Question Answering 400

Machine reading comprehension (MRC) is a vari- 401

ant of QA task. Given a question and a text para- 402

graph, the system needs to return a continuous span 403

of paragraph tokens as an answer. The first large- 404

scale MRC dataset is the English Wikipedia-based 405

dataset SQuAD (Rajpurkar et al., 2016), which 406

contains about 100K paragraph-question-answer 407

triples. SQuAD has become a de facto standard 408

and inspired creation of analogous resources in 409

other languages (Rogers et al., 2021). SQuAD is 410

available under the CC BY-SA license. We use 411

SQuAD as the source dataset to train MRC models. 412

To test the models, we use XQuAD, MLQA, and 413

TyDi QA datasets. XQuAD (Artetxe et al., 2020) 414

is a professional translation of 240 SQuAD para- 415

graphs and 1,190 questions-answer pairs into 10 416

languages (including four languages of our study). 417

MLQA (Lewis et al., 2020) data is available for 418

six languages including Spanish, Vietnamese, and 419

Hindi (but it does not have Russian). There are 420

about 5K questions for each of our languages. TyDi 421

QA (Clark et al., 2020) includes 11 typologically 422
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diverse languages of which we use only Russian423

(812 test items). SQuAD, XQuAD, and MLQA are424

distributed under the CC BY-SA license; TyDi QA –425

under the Apache-2.0 license.426

In addition to monolingual test data, we exper-427

imented with two parallel/cross-lingual datasets:428

MLQA and XQuAD and explored two directions:429

(1) question is in a target language, but paragraph430

is in English; (2) a question is in English, but a431

paragraph is in a target language.432

QA performance is evaluated using token-level433

F1-score.434

5 Experimental Results and Analysis435

5.1 Setup436

All experiments were conducted on a single Tesla437

V100 16GB. For cross-lingual model adjustment438

we use the Adam optimizer and hyper-parameters439

provided by Cao et al. (2020). To obtain reliable440

results we run five iterations (using different seeds)441

of model adjustment (for each configuration) fol-442

lowed by fine-tuning on downstream tasks. For443

each run we sample a required number of sentences444

from a set of 250K parallel (WikiMatrix) sentences445

word-aligned with fast_align.6 One run of model446

adjustment on 30K parallel sentences takes about447

15 minutes.448

The code to fine-tune mBERT on XNLI, SQuAD,449

and Wikiann is based on HuggingFace sample450

scripts,7 which were modified to support contin-451

ual learning. These scripts use a basic architecture452

consisting of a BERT model and a task-specific453

linear layer. We also reuse parameters provided by454

HuggingFace, except for the weight α = 0.01455

in the multi-task loss (Eq. 2), which was tuned on456

a validation set. Also note that batch sizes are 32457

(for the main target loss) and 16 (for the auxiliary458

cross-lingual adjustment loss in the case of con-459

tinual learning). Fine-tuning on XNLI, SQuAD460

and Wikiann takes about 100, 60, and 3 minutes,461

respectively. With continual learning it takes 240,462

90, and 15 minutes, respectively. Including all463

preliminary and exploratory experiments the to-464

tal computational budget was approximately 500465

hours.466

6We ran the main body of experiments with 30K paral-
lel sentences. In addition, we conducted experiments with
5K/10K/30k/100K/250K Ru-En sentence pairs, see § A.1.

7https://github.com/huggingface/
transformers/tree/master/examples/
pytorch

mBERT es ru vi hi
Original XNLI

Original 74.20 67.95 69.58 59.03
Adjusted 74.82* 69.45* 70.88* 61.54*

Adjust.+continual 75.89** 71.26** 72.79** 63.90**
Mixed-language NLI

Original 70.93 64.24 62.72 53.53
Adjusted 72.06* 66.56* 66.50* 57.31*

Adjust.+continual 73.50** 69.09** 69.14** 61.09**
Statistically significant differences from an original and ad-

justed mBERT are marked with * and **, respectively (p-value
threshold 0.05).

Table 2: Performance on original and mixed-language
NLI datasets (accuracy).

mBERT es ru vi hi
Original 73.40 63.43 71.02 65.24
Adjusted 73.28 65.49* 71.99* 68.22*

Adjust.+continual 72.71** 66.27** 71.35** 66.07**
Statistically significant differences from an original and ad-

justed mBERT are marked with * and **, respectively (p-
value threshold 0.05).

Table 3: Performance on NER tasks (token-level F1).

All reported results are averages over five runs 467

with different seeds. We further assess significance 468

of differences between results for the original and 469

adjusted mBERT using paired statistical tests. For 470

QA and XNLI we first average metric values for 471

each example over different runs and then carry 472

out a paired t-test using averaged values. For NER 473

we concatenate example-specific predictions for all 474

seeds and run 1,000 iterations of a permutation test 475

for concatenated sequences (Pitman, 1937; Efron 476

and Tibshirani, 1993). 477

5.2 Main Results 478

Results for NLI, NER, and QA tasks are summa- 479

rized in Tables 2, 3, and 4, respectively. We can 480

observe consistent and statistically significant im- 481

provements (up to 2.5 accuracy point) of aligned 482

models over zero-shot transfer on XNLI for all lan- 483

guages. This is in line with Cao et al. (2020) even 484

though we used a set of more diverse languages, 485

presumably noisier parallel data, and a slightly dif- 486

ferent learning scheme. Employing continual learn- 487

ing leads to additional substantial gains (up to 2.4 488

accuracy points). We also evaluated models on 489

the (bilingual) mixed-language XNLI test data (see 490

§ 4.2). According to the bottom part of Table 2, 491

compared to the original XNLI, we observe bigger 492

gains for all four languages, especially when we 493

employ continual learning. For Hindi, we obtain 494

a 7.5 point gain by using both the adjustment and 495

continual learning. 496

6
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mBERT Spanish Russian Vietnamese Hindi
MLQA XQuAD TyDi QA XQuAD MLQA XQuAD MLQA XQuAD

Original 64.96 75.59 67.05 70.72 59.95 69.18 48.73 57.56
Adjusted 63.11* 73.99* 67.03 70.58 58.46* 68.63 48.47 57.81

Adjust+continual 62.76** 73.44 67.63 70.51 57.71** 68.64 48.02** 57.83
Question in target language, paragraph in English

Original 67.34 75.74 – 71.54 56.08 65.00 42.48 47.83
Adjusted 66.93* 75.65 – 71.68 56.74* 66.75* 44.91* 50.45*

Adjust+continual 66.31** 74.88** – 70.99 54.51** 64.63** 43.88** 50.13
Question in English, paragraph in target language

Original 67.36 76.71 – 67.31 64.43 68.12 55.32 58.62
Adjusted 66.96* 76.42 – 68.25* 65.01* 68.99 55.63 58.93

Adjust+continual 66.68** 76.21 – 68.06 64.36** 68.54 54.74** 58.22
Statistically significant differences from an original and adjusted mBERT are marked with * and **, respectively

(p-value threshold 0.05).

Table 4: Effectiveness of QA systems (F1-score).

NER results are somewhat mixed: We observe497

statistically significant gains (up to 3 points for498

Hindi) on all languages except Spanish. In that,499

continual learning is beneficial only for Russian.500

When we fine-tune a cross-lingually adjusted501

mBERT on QA tasks, there are no statistically sig-502

nificant gains. In that, there is a statistically sig-503

nificant decrease for all Spanish datasets and Viet-504

namese MLQA. Use of continual learning leads to505

further degradation in nearly all cases. Note that506

models are noticeably more accurate on XQuAD507

compared to MLQA, which can be due to XQuAD508

being a translation of SQuAD, which is, in turn, is509

used to train our QA models.510

Muttenthaler et al. (2020) and van Aken et al.511

(2019) showed that QA models essentially clus-512

tered answer token vectors and separated them513

from the rest of the paragraph token vectors using514

a vector representation of the question. Thus, to515

solve the QA task, the model learns to rely on mu-516

tual similarities among question and answer tokens517

(on English QA data) rather than on their actual518

vector representations. As a consequence, there519

is no need to make representations in the target520

language to be similar to English-language repre-521

sentations. which, in turn, may partially explain522

why the cross-lingual adjustment is unsuccessful523

for QA.524

We further hypothesizes that such an alignment525

is more crucial for cross-lingual tasks, which we526

can be partially corroborated using experiments527

with two parallel datasets: MLQA and XQuAD.528

We explored two directions: (1) question is in a529

target language, but paragraph is in English; (2) a530

question is in English, but a paragraph is in a target531

language. According to results in the lower part of532

Table 4, there are, indeed, several cases when the533

adjustment is beneficial. Note that cross-lingual 534

adjustment is also more useful for the mixed, i.e., 535

cross-lingual XNLI data, than for original one (Ta- 536

ble 2). We observe improvements for Vietnamese 537

and Hindi, which is in line with cross-lingual QA 538

results by Faisal and Anastasopoulos (2021), but 539

there are no gains for Spanish and Russian. 540

5.3 Diagnostic Experiments 541

The lackluster performance of the cross-lingual ad- 542

justment of Cao et al. (2020) on QA data motivated 543

us to carry out additional “diagnostic” experiments: 544

We hope to discover potential issues with our setup 545

or derive additional insights about the problem and 546

data. None of these tests, however, uncovered any 547

anomalies or issues. 548

First we conjectured that the adjustment some- 549

how harms mono-lingual capabilities of mBERT. 550

Comparing original and adjusted mBERT fine- 551

tuned on original and/or translated SQuAD and 552

tested on SQuAD and MLQA data did not support 553

this conjecture, see § A.2. 554

Second, we hypothesized that our parallel cor- 555

pora lacked in either quality or quantity, which we 556

tested on Russian data. The quality was checked 557

by aligning Yandex ru-en corpus,8 which did not 558

lead to better results compared to WikiMatrix. In 559

§ A.1, we showed that as the amount of parallel 560

data increases, this clearly improved both NLI and 561

NER. In that, QA performance peaked at roughly 562

5K parallel sentences and further decreased as the 563

number of parallel sentences increases. 564

Third, we ran experiments with an extended ver- 565

sion of m-BERT (see § A.3), to ensure that rela- 566

tive (original vs adjusted mBERT) performance on 567

Hindi is not negatively affected by the low qual- 568

8https://translate.yandex.ru/corpus
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ity of mBERT token inventory for Hindi. These569

experiments show that the adjustment can, indeed,570

improve Hindi QA models.571

K et al. (2020) showed that the quality of cross-572

lingual transfer was higher in the case of languages573

with similar word order. Hsu et al. (2019) and574

Zhao et al. (2021) experimented with word re-575

arrangements for cross-lingual QA and NLI, re-576

spectively, and obtained some improvements. We577

trained a QA model using an English-Hindi ad-578

justed mBERT on the SQuAD-SOV dataset re-579

leased by Hsu et al. (2019), where sentences were580

re-arranged to Subject-Object-Verb order. This581

combination led to a degraded quality.9582

5.4 Analysis of the Adjusted mBERT583

We calculate L2 distances between contextualized584

embeddings in English and other languages.10 The585

embeddings are taken from the last layer output586

(i.e., no prediction heads are used). To this end we587

sampled semantically related words from parallel588

sentences (matched via fast_align) and unrelated589

words from unpaired sentences (nearly always un-590

related). For each pair of languages and each NLP591

task, the sampling processed is carried out for: (1)592

the original mBERT, (2) an adjusted mBERT, (3)593

the original mBERT fine-tuned for the target NLP594

task, (4) the adjusted mBERT fine-tuned for the tar-595

get NLP task, (5) the adjusted mBERT fine-tuned596

for the target task using continual learning (full set597

of histograms can be found in Appendix B).598

Timkey and van Schijndel (2021), among others,599

report that in a monolingual setting there are a few600

(single digit) “rogue” dimensions that dominate601

computation of the cosine similarity. Yet, these602

dimensions do not explain model behavior, which603

makes such distance analysis pointless. This is604

less problematic on our data with L2 distance: For605

example for all XNLI models, 10 and 100 most606

“influential” dimensions account only for about 5%607

and 25% of the overall distance, respectively.608

From Fig. 1 we can see that the cross-lingual609

adjustment makes embeddings of semantically sim-610

ilar words from different languages closer to each611

other while keeping unrelated words apart, which612

9Manual inspection of the data revealed that all SQuAD
data is lowercased, which may negatively impact QA train-
ing. Moreover, the quality of rearrangements is rather low,
most obvious problem is incorrect processing of passive voice
constructions.

10Although most prior work uses the cosine similarity in-
stead of L2 (Rudman et al., 2022), it does not distinguish
between vectors with the same direction, but different lengths.

is in line with Zhao et al. (2021). However, prior 613

work did not inspect histograms obtained after fine- 614

tuning. Yet, quite surprisingly, fine-tuning of both 615

the original and adjusted mBERT on the English 616

NLI data (Fig. 1c and 1d) makes distributions of 617

related and unrelated words almost fully overlap, 618

i.e. all embeddings become close to each other. 619

Compared to the original mBERT, fine-tuning of 620

the adjusted mBERT (Fig. 1d) does result in a bet- 621

ter separation of related and unrelated words, but 622

the effect is quite modest. We believe this is an 623

example of “catastrophic forgetting“ (McCloskey 624

and Cohen, 1989), where fine-tuning the model on 625

a target task causes the model to forget some of 626

the knowledge obtained during cross-lingual ad- 627

justment. 628

Continual learning (Fig. 1e) permits fine-tuning 629

for the target task while maintaining a separation 630

between related and related words, which also con- 631

sistently improves performance for the NLI task. It 632

is crucial to note that we see no direct relationship 633

between the degree of separation and the success of 634

cross-lingual transfer among all tasks and training 635

regimes. In the case of NER, the biggest separation 636

is achieved for Spanish (see Fig. 2 in Appendix B), 637

but fine-tuning of the adjusted mBERT results in a 638

lower accuracy. More generally, fine-tuning with 639

continual learning always leads to better separation 640

of related and unrelated words, but this is beneficial 641

only for the NLI task. 642

6 Conclusion 643

We evaluate effectiveness of an existing approach 644

to cross-lingual adjustment of mBERT (Cao et al., 645

2020) using four typologically different languages 646

(Spanish, Russian, Vietnamese, and Hindi) and 647

three NLP tasks (QA, NLI, and NER). The original 648

mBERT is being compared to mBERT “adjusted” 649

with a help of a small parallel corpus. The cross- 650

lingual adjustment of mBERT improves NLI in four 651

languages and NER in three languages. However, 652

in the case of QA performance never improves and 653

sometimes degrades. For Hindi data, this happens 654

due to a lower quality of mBERT on Hindi data. 655

Inspired by the analysis of histograms of distances, 656

we obtain additional improvement on NLI using 657

continual learning. Our study contributes to a better 658

understanding of cross-lingual transfer capabilities 659

of large multilingual language models. It also iden- 660

tifies limitations of their cross-lingual adjustment 661

in various NLP tasks. 662
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On the limitations of unsupervised bilingual dictio-900
nary induction. In Proceedings of the 56th Annual901
Meeting of the Association for Computational Lin-902
guistics (Volume 1: Long Papers), pages 778–788.903

William Timkey and Marten van Schijndel. 2021. All904
bark and no bite: Rogue dimensions in transformer905
language models obscure representational quality. In906
EMNLP (1), pages 4527–4546. Association for Com-907
putational Linguistics.908

Iulia Turc, Kenton Lee, Jacob Eisenstein, Ming-Wei909
Chang, and Kristina Toutanova. 2021. Revisiting the910
primacy of english in zero-shot cross-lingual transfer.911
arXiv preprint arXiv:2106.16171.912

Betty van Aken, Benjamin Winter, Alexander Löser,913
and Felix A Gers. 2019. How does BERT answer914
questions? A layer-wise analysis of transformer rep-915
resentations. In Proceedings of the 28th ACM Inter-916
national Conference on Information and Knowledge917
Management, pages 1823–1832.918

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob919
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz920
Kaiser, and Illia Polosukhin. 2017. Attention is all921
you need. In NIPS, pages 5998–6008.922

Yuxuan Wang, Wanxiang Che, Jiang Guo, Yijia Liu, and923
Ting Liu. 2019a. Cross-lingual BERT transformation924
for zero-shot dependency parsing. In Proceedings of925
the 2019 Conference on Empirical Methods in Natu-926
ral Language Processing and the 9th International927
Joint Conference on Natural Language Processing928
(EMNLP-IJCNLP), pages 5721–5727, Hong Kong,929
China.930

Zihan Wang, Karthikeyan K, Stephen Mayhew, and Dan931
Roth. 2020. Extending multilingual BERT to low-932
resource languages. In Findings of the Association933
for Computational Linguistics: EMNLP 2020, pages934
2649–2656.935

Zirui Wang, Jiateng Xie, Ruochen Xu, Yiming Yang, 936
Graham Neubig, and Jaime Carbonell. 2019b. Cross- 937
lingual alignment vs joint training: A comparative 938
study and a simple unified framework. arXiv preprint 939
arXiv:1910.04708. 940

Adina Williams, Nikita Nangia, and Samuel Bowman. 941
2018. A broad-coverage challenge corpus for sen- 942
tence understanding through inference. In Proceed- 943
ings of the 2018 Conference of the North American 944
Chapter of the Association for Computational Lin- 945
guistics: Human Language Technologies, Volume 1 946
(Long Papers), pages 1112–1122. 947

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas: 948
The surprising cross-lingual effectiveness of BERT. 949
In Proceedings of the 2019 Conference on Empirical 950
Methods in Natural Language Processing and the 9th 951
International Joint Conference on Natural Language 952
Processing (EMNLP-IJCNLP), pages 833–844. 953

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, 954
Mohammad Norouzi, Wolfgang Macherey, Maxim 955
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff 956
Klingner, Apurva Shah, Melvin Johnson, Xiaobing 957
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, 958
Taku Kudo, Hideto Kazawa, Keith Stevens, George 959
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason 960
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, 961
Greg Corrado, Macduff Hughes, and Jeffrey Dean. 962
2016. Google’s neural machine translation system: 963
Bridging the gap between human and machine trans- 964
lation. CoRR, abs/1609.08144. 965

Wei Zhao, Steffen Eger, Johannes Bjerva, and Isabelle 966
Augenstein. 2021. Inducing language-agnostic mul- 967
tilingual representations. In Proceedings of *SEM 968
2021: The Tenth Joint Conference on Lexical and 969
Computational Semantics, pages 229–240. 970

11



A Additional Experiments971

A.1 Hyper-Parameter Tuning972

An objective of this section analysis is to assess973

the impact of most important hyper-parameters,974

which might have substantially affected outcomes.975

We focus on the size of the parallel corpus, on the976

approach to aggregating subword embedding, and977

a choice of aligned tokens (is using [CLS] and/or978

[SEP] beneficial?). In all cases we measure a979

performance gain/loss compared to the original,980

i.e., unadjusted mBERT.981

Size XNLI NER TyDi QA XQuAD
5K +0.62 +2.06 +0.24 +0.75

10K +0.76 +2.01 +0.62 +0.42
30K +1.50 +2.07 –0.02 –0.14

100K +2.24 +2.19 –1.09 –0.11
250K +2.67 +2.53 –1.98 –2.17

Table 5: Performance gains (compared to the original
mBERT) of models aligned on En-Ru data depending
on the number of sentence pairs.

Size and quality of the parallel corpus. Be-982

cause zero-shot transfer is typically more challeng-983

ing for languages with non-Latin script: compare984

results for Spanish and Vietnamese vs. results for985

Russia and Hindi in Tables 2 and 3, we initially con-986

sidered experimenting with either Russian or Hindi.987

Eventually, we chose Russian, because the Russian988

Wikipedia is much larger compared to Hindi. As a989

result it has a better alignment quality as indicated990

by higher margin scores (Schwenk et al., 2021). In991

addition of WikiMatrix, we experimented with the992

Yandex ru-en corpus,11 but it did not produce better993

results compared to WikiMatrix.994

We adjusted mBERT on several parallel corpora995

where the number of paired sentences ranged from996

5K to 250K. We then fine-tuned the adjusted model997

for several target tasks. As in all other experiments,998

we train the models with five seeds and report av-999

eraged results. Table 5 shows that XNLI and NER1000

accuracy improves nearly monotonically as the size1001

of the parallel corpus increases.1002

QA models benefit from adjustment using only1003

a small amount of parallel data (and even slightly1004

outperform the original mBERT baseline when ad-1005

justed using 5K sentence pairs). QA performance1006

peaks at roughly 5K parallel sentences and further1007

decreases as the number of parallel sentences in-1008

creases. This seems to be some form of overfitting,1009

11https://translate.yandex.ru/corpus

but the reasons are unclear: We tried to carry out 1010

a cross-lingual adjustment with the learning rates 1011

inversely proportional to the parallel corpus size, 1012

but the improvements were small and inconsistent. 1013

Mode XNLI NER MLQA XQuAD
start +2.36 +3.08 –0.16 +0.01
end +2.39 +2.59 –1.12 –0.44
avg +2.51 +2.98 –0.25 +0.24

subword alignment +2.37 +0.99 –5.01 –4.42

Table 6: Impact of subword aggregation approach
(Hindi): Performance gains compared to the original
mBERT.

Adjustment by XNLI NER MLQA XQuAD
[CLS] +1.15 +1.61 –0.12 +0.5

[CLS] [SEP] +1.25 +1.83 –0.50 +0.2
words +2.48 +3.03 –0.26 –0.03

all +2.51 +2.98 –0.25 +0.24

Table 7: Impact of special and word tokens (Hindi):
Performance gains compared to the original mBERT.

Subword embedding aggregation. In our main 1014

experiments, we align words by using their aver- 1015

aged (avg) subword embeddings, which performed 1016

best in preliminary QA experiments. However, 1017

as Table 6 shows this is not an optimal approach 1018

across all tasks and languages. For example, in the 1019

case of Hindi, we get better results using the first 1020

token (start) on NER task (though differences are 1021

small). 1022

Interestingly, when we apply fast_align to orig- 1023

inal WordPiece tokens (subword alignment), we 1024

obtain much worse results on all tasks except NLI. 1025

We hypothesize that a lower quality of the subword 1026

alignment approach is likely due to a small mBERT 1027

vocabulary allocated for Hindi. This leads to exces- 1028

sive word splitting and, consequently, to a worse 1029

alignment. We confirm this conjecture in § A.3. 1030

A choice of aligned tokens. In our main experi- 1031

ments, the mBERT adjustment procedure uses both 1032

regular word and special-word tokens [CLS] and 1033

[SEP]. In Table 7 we show ablation experiments 1034

where we exclude some of the tokens from the 1035

alignment procedure. We conjectured that in the 1036

NLI task the model relies more on the sentence- 1037

level representation through a [CLS] token. How- 1038

ever, a more then one-point gain is achieved by 1039

aligning only words, which is slightly improves 1040

when the alignment additionally uses [CLS]. The 1041

same is true for the NER task. In the case of QA, 1042

aligning only the [CLS] token is suboptimal, but 1043

12

https://translate.yandex.ru/corpus


mBERT SQuAD MLQA
es ru vi hi es vi hi

Original 89.26 66.63 66.15 60.64
Adjusted 89.0 88.99 88.95 89.0 66.52 66.06 60.77

Table 8: Comparison of original mBERT and
aligned mBERT on mono-lingual QA data (F1-
score). First row after the caption shows languages
used in cross-lingual alignment (and the language
of the dataset for MLQA). Models tested on MLQA
are trained on the translated SQuAD.

EmBERT XNLI NER MLQA XQuAD
Original 63.76 65.12 53.47 64.11

Adjusted by 30K 65.70 66.79 54.94 64.11
Adjusted by 100K 66.69 66.29 54.66 65.10

Table 9: Extended mBERT for Hindi.

combining regular words with special tokens is1044

beneficial.1045

A.2 Assessing Mono-lingual Capabilities of1046

Adjusted mBERT1047

The main objective of this section is to assess if1048

the mono-lingual capabilities of mBERT were neg-1049

atively affected by the cross-lingual adjustment.1050

To this end, we fine-tune adjusted and the origi-1051

nal mBERT on monolingual QA data, which in-1052

cludes the original SQuAD dataset as well as its1053

machine translations into three languages: Spanish,1054

Vietnamese, and Hindi released along the MLQA1055

dataset.121056

The results are shown in Table 8, where the first1057

row after the caption shows languages used in cross-1058

lingual alignment. In the case of translated SQuAD1059

a language used in in the adjustment coincides with1060

the evaluation language. For SQuAD evaluation is1061

done in English. According to Table 8, there are1062

only marginal (at most 0.3%) differences between1063

the F1-scores of original and adjusted mBERT.1064

12https://github.com/facebookresearch/
MLQA

A.3 Evaluating Extended mBERT for Hindi 1065

We were concerned that results on Hindi were af- 1066

fected by the poor quality of the token inventory, 1067

which—compared to English—leads to a substan- 1068

tial word segmentation. Thus, we carried out ad- 1069

ditional experiment using an “extended” mBERT 1070

version, which has a much better token inventory 1071

for Hindi (Wang et al., 2020).13 Comparing Ta- 1072

bles 9 and Tables 2, 3, 4, we can see that using 1073

the extended mBERT allows us to achieve better 1074

results. Moreover, applying the cross-lingual ad- 1075

justment produces at least one point gain for all 1076

tasks including both MLQA and XQuAD. We, thus 1077

conclude that poor performance of the adjustment 1078

procedure on Hindi data can be attributed to a lower 1079

quality of mBERT on Hindi data. 1080

13https://github.com/ZihanWangKi/
extend_bert

13

https://github.com/facebookresearch/MLQA
https://github.com/facebookresearch/MLQA
https://github.com/ZihanWangKi/extend_bert
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B Histograms of L2 Distances between Contextualized Embeddings1081
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Figure 2: Histograms of L2 distances between pairs of contextualized representations (produced by mBERT)
for randomly sampled related (i.e., aligned) and unrelated word pairs from WikiMatrix. Columns correspond to
language pairs. Rows depict histograms of the original mBERT model, its cross-lingual adjustments, as well as their
variants fine-tuned on QA, NER, and NLI tasks using a regular as well as a continual mode.
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