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Abstract

Test-Time Scaling (TTS) methods for enhanc-
ing Large Language Model (LLM) reasoning
often incur substantial inference costs, due to
reliance on long chain-of-thought (CoT) gen-
eration, self-consistency sampling methods,
or searching under Process Reward Models
(PRMs). This paper introduces Guided by Gut
(GG), an efficient self-guided TTS framework
that enables LLMs to perform step-by-step rea-
soning at a low cost, without any reward mod-
els or verifiers. GG performs a lightweight tree
search guided solely by intrinsic confidence
signals of the LLM at each reasoning step and
improves the reliability of such internal confi-
dence signals by reinforcement learning. Em-
pirical evaluations on challenging mathemati-
cal reasoning benchmarks demonstrate that GG
enables smaller models (e.g., 1.5B-7B parame-
ters) to achieve accuracy matching or surpass-
ing significantly larger models (e.g., 32B—70B
parameters), while reducing GPU memory us-
age by up to 10x. Compared to TTS with PRMs,
GG achieves comparable accuracy with 8x
faster inference speeds and 4-5x lower mem-
ory usage. Additionally, GG reduces KV cache
memory usage by approximately 50% com-
pared to Best-of-N sampling, facilitating more
efficient and practical deployment of TTS tech-
niques.

1 Introduction

Enhancing the performance of Large Language
Models (LLMs) often requires significant compu-
tational resources through model scaling (Achiam
et al., 2023; Ouyang et al., 2022; Villalobos et al.,
2022) or complex inference strategies (Ji et al.,
2025; Zhou et al., 2024). Test-Time Scaling (TTS)
techniques like Chain-of-Thought (CoT) (Wei et al.,
2022) allocate additional computation during in-
ference. This re-allocation of compute resources
provides a powerful alternative for boosting LLM
reasoning capabilities, as evidenced by models
like OpenAlT’s o series (OpenAl, 2024), DeepSeek
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Figure 1: We compare the performance and GPU
VRAM usage of Guided by Gut (GG; stars) to Best-of-
N (BoN; triangles) and Chain-of-Thought (CoT; circles)
on several LLMs. GG achieves better accuracy at much
lower memory cost (log-scaled).

R1 (Guo et al., 2025), and others (Yang et al.,
2024a; Team et al., 2025; Bai et al., 2025).

Contemporary TTS methods (Lightman et al.,
2023; Wang et al., 2023; Snell et al., 2024) are ca-
pable of enhancing LLMs containing 1.5B parame-
ters such that they outperform 70B, 405B parameter
or even large closed-source LLMs on difficult rea-
soning and mathematical benchmarks (Liu et al.,
2025a). However, TTS is an expensive search pro-
cess where the total compute cost to generate an
answer matches or may even exceed that of a larger
LLM (Zhang et al., 2025; Luo et al., 2025). For
example, Sampling-based methods (Wang et al.,
2023) like Best-of-N (BoN) (Brown et al., 2024) op-
erate by generating a large number of candidate so-
lutions (e.g., potentially hundreds) and then choos-
ing the optimal one from this pool, which requires
prohibitively large amounts of LLLM inference for
complex tasks. In addition, Process Reward Mod-
els are auxiliary verification models which guide
the TTS process by providing step-by-step correct-
ness feedback (Xiong et al., 2024; Zheng et al.,



(2) Search + PRM

(3) Search + GG

(1) coT

[ Question J [ Question J PRM:

Final Answer

Final Answer Final Answer

LLM’s Internal
Feedback:

Question: James, Leah, Milo, Nia each have 6 apples and 10 cherries.
Leah, whose backpack mysteriously weighs 7 kg, lends James 3 apples.
James gives 2 apples to Nia.

Milo casually tosses 1 apple to Leah.

How many apples is James holding when the streetlights come on?

Step3:

B1, € = 0.48 :Then Leah notices her backpack is 7 kg heavy, so she
lends James 3 apples. So now Leah has her apples plus 3. Wait, does
that mean her cherries are unchanged? So she gives 3 apples and
nothing in return? Maybe.

B2, € = 0.53 :Leah's backpack is suddenly weighing 7 kg. Does this
affect how many apples she has? Hmm, just an distraction. So I can
proceed with the apples.

Step7:
B1, € = 0.82: After tossing: Milo: Still 6 apples, Leah: 3 + 1=4 apples
B2, € = 0.88: After tossing: Milo: 6 - 1=5 apples, Leah: 3 + 1=4 apples

Figure 2: Comparison of reasoning generation strategies. (1) Standard Chain-of-Thought (CoT) generates a single
reasoning path autoregressively. (2) Search guided by an external Process Reward Model (PRM) explores multiple
candidate steps (st, s, ...), using PRM scores to select promising paths. (3) Our proposed Self-Guided Search
similarly explores multiple steps but uses intrinsic confidence signals (C), derived from the LLM to guide the search
at each step without relying on an external PRM. The example illustrates a tree search. At each step, the search
expands into two branches, and you’ll see a corresponding confidence score for each. Here, B denotes a branch.

2024; Zhang et al., 2025; Wang et al., 2023). Such
verifier-guided techniques can be computationally
expensive to train and deploy and suffer from gen-
eralizability issues (Liu et al., 2025a; Zhong et al.,
2025; Zheng et al., 2024). Thus, regardless of strat-
egy, TTS for small-scale LLMs relies on expensive
inference, which severely limits practical applica-
tion and motivates the need for more cost-effective
TTS frameworks.

In this paper, we propose Guided by Gut (GG), a
computationally efficient and scalable TTS frame-
work toward efficient LLM reasoning with low-
ered inference cost. GG leverages intrinsic signals
derived from the LLM’s generation process, fine-
tuned via reinforcement learning (RL), to enable
smaller models to achieve substantially stronger
reasoning performance at a lower cost. The key
idea is that the probability assigned by the LLM
to a reasoning step implicitly encodes its own esti-
mate of the step’s value or reward. This allows GG
to guide inference using the model’s internal con-
fidence, resulting in performance that matches or
exceeds that of much larger models and costly TTS
strategies, while operating at significantly lower
GPU memory usage, as illustrated in Figure 1.

Our main contribution involves a self-guided
search algorithm free of reward models and a fine-
tuning procedure to calibrate a model’s internal
confidence for correctness:

* Efficient Test-Time Search with Self-
Guidance: Instead of relying on an exter-
nal verifier model or PRM, we leverage in-

trinsic reasoning step-level confidence signals
derived from an LLM’s output probabilities
to construct a lightweight guidance for test-
time search, which can be integrated into any
existing LLM easily. We introduce a tree
search algorithm based on Diverse Verifier
Tree Search (DVTS) (Beeching et al.) guided
by the LLM’s intrinsic signals. To achieve
efficient TTS, our algorithm is optimized for
minimal computational cost during inference.

* Reinforced Confidence via RL Fine-tuning:
We incorporate RL via Group Relative Policy
Optimization (GRPO) into model fine-tuning
specifically to improve the reliability of LLM
internal confidence estimation, calibrating the
confidence signals to align with output cor-
rectness, leading to reliable guidance during
test-time scaling.

We apply GG to reasoning LLMs from
DeepSeek R1 family (Guo et al., 2025) and
Qwen2.5-Math (Yang et al., 2024b) as a non-
reasoning model and evaluate it on bench-
mark tasks like AIME24/25 (AI-MO, 2024a),
MATHS500 (Hendrycks et al., 2021), and AMC (Al-
MO, 2024b). Experimental results not only demon-
strate that GG achieves significant performance
improvements over relevant baselines such as BoN
and CoT, but also highlight its superior computa-
tional efficiency. Specifically, GG enables smaller
models (e.g., 1.5B-7B parameters) to outperform
much larger counterparts (e.g., 32B and 70B),
achieving similar or superior accuracy while us-



ing up to 4x—10x less GPU memory. Further-
more, compared to computationally expensive
PRM-based approaches, GG achieves comparable
accuracy at a fraction of the computational cost,
leading to 4x—5x lower GPU memory usage and
up to 8x faster inference speeds. Furthermore, GG
achieves an approximately 50% reduction in KV
cache memory usage compared to the BoN strat-
egy, facilitating significantly more efficient and
cost-effective deployment of reasoning LLMs.

2 Related Work

Test-Time Scaling (TTS). TTS enhances model
performance by strategically allocating more com-
putation at inference (Beeching et al.; Face, 2025),
a key factor in improving reasoning for complex
tasks (OpenAl, 2024; Guo et al., 2025). Meth-
ods range from simple autoregressive Chain-of-
Thought (CoT) (Wei et al., 2022) to sampling-
based Best-of-N (BoN) (Brown et al., 2024) and
sophisticated tree-search algorithms like Beam
Search (Xie et al., 2023), Diverse Verifier Tree
Search (DVTS) (Beeching et al.), and Monte Carlo
Tree Search (MCTS) (Xie et al., 2024). This al-
lows smaller models (<10B) to achieve reason-
ing capabilities comparable to much larger ones
(>70B) (Liu et al., 2025a), but at the cost of multi-
ple, computationally intensive inference rounds to
generate potential reasoning steps.

External Verification. To guide exploration to-
wards the most promising step or reasoning path,
many complex TTS methods rely on an external
verifier to score the quality of reasoning paths. This
role is typically filled by a Process Reward Model
(PRM) (Liu et al., 2025a) or an Outcome Reward
Model (ORM) (Lightman et al., 2023). These veri-
fiers, often large models themselves, introduce sig-
nificant computational overhead (Snell et al., 2024;
Beeching et al.). While mitigation strategies like
sample pruning or dynamic stopping exist (Tauben-
feld et al., 2025; Razghandi et al., 2025; Wan et al.,
2024; Huang et al., 2023), powerful search tech-
niques often still depend on a costly verifier (Xie
et al., 2023). To address this, our approach, GG,
avoids external verifiers in favor of simple, near-
zero overhead internal signals.

Model Confidence in Language Models.
Model confidence, an LLM’s internal estimate of
its certainty, is increasingly used to guide infer-
ence and training. It has been applied for cost-
saving measures like early stopping (Sui et al.,

2025; Li et al., 2024; Ding et al., 2025) and as a
reward signal when ground-truth labels are unavail-
able (Zhao et al., 2025; Yu et al., 2025b; Huang
et al., 2025). However, confidence is often unre-
liable, with LLLMs exhibiting overconfidence that
correlates weakly with correctness (Pawitan and
Holmes, 2025). Our work tackles this by calibrat-
ing this internal signal via minimal RL fine-tuning,
transforming it into a reliable guide for verifier-free,
test-time search.

Reinforcement Learning for LLM Reason-
ing. Recent literature highlights Reinforcement
Learning’s crucial role in advancing Large Lan-
guage Model reasoning without human interven-
tion (Face, 2025). ReFT(Luong et al., 2024) em-
ploys Proximal Policy Optimization (PPO) to en-
hance the generalizability of LLMs for reasoning.
A key algorithm, Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024), notably elimi-
nates the need for a separate value function in PPO.
Further research explores various RL training as-
pects to improve reasoning capabilities (Yu et al.,
2025a; Zeng et al., 2025; Liu et al., 2025b). Deep-
ScaleR (Luo et al., 2025) aims to boost existing
reasoning models through additional GRPO fine-
tuning with iterative context lengthening.

3 Methodology

This section outlines our proposed method, Guided
by Gut (GG). We begin by providing essential back-
ground on the Test-Time Scaling process. Follow-
ing this, we elaborate on the self-guided search
mechanism and overall strategy.

3.1 Preliminaries

Problem Formulation. Given an input prompt
or question (), our objective is to generate a log-
ical reasoning chain R = [s!,s2,...,s7] leading
to a correct final answer A, where each step s’
typically constitutes a sentence or short paragraph
incrementally building upon previous steps. The

overall reasoning process thus follows the pipeline:
Q—+R— A,

with the reasoning chain R explicitly bridging the
input question and the final answer through inter-
mediate logical steps.

Chain-of-Thought (CoT) Reasoning. Standard
CoT (Wei et al., 2022) approaches jointly generate
the reasoning chain and final answer via autoregres-
sive language modeling. Formally, given (), the



model sequentially generates each reasoning step
conditioned on previously generated steps:

T
P(R=s"T1Q) =[[PG" Q5" ). )
t=1

Each step s’ thus depends on the input @) and pre-
ceding reasoning steps s'*~!, mirroring autoregres-
sive token generation in language modeling.

Guiding Search with Reward Models. Single-
path autoregressive generation methods can suffer
from error accumulation (Wu et al., 2025; Mukher-
jee et al., 2025). To mitigate this, tree search meth-
ods explore multiple reasoning trajectories simul-
taneously. These methods use an external Process
Reward Model (PRM) or Outcome-supervised Re-
ward Model (ORM) for step-wise correctness eval-
uations. A PRM is a model that, given an input
(@ and previous steps s'*~1, assigns a correctness
score or reward r; to candidate next steps s’:

re = PRM(s' | Q, s 1) 2)

Likewise, an ORM is a sparse reward model
where only the final step receives a non-zero re-
ward; ri«7 = 0. Thus, these reward models im-
prove logical coherence and accuracy by guiding
search algorithms like Beam Search, BoN.

3.2 Proposed Method: Self-Guided Search

The usage of verifier models like PRMs and ORMs,
while effective, introduces computational overhead
and generalizability issues (Liu et al., 2025a). To
address these limitations, we propose Guided by
Gut (GG), which leverages the intrinsic signals
directly obtained from the LLM internal token gen-
eration process. This removes the dependency on
external evaluation, ensuring minimal computa-
tional overhead. Specifically, our approach uses
two intrinsic signals to guide reasoning:

* Confidence C(s') reflects the internal assur-
ance a model has with respect to a given rea-
soning step s'. We compute confidence di-
rectly from token-level probabilities:

me
C(s') = exp <W1lt Zlogp(sf | context))
=1
@)

where m; is the number of tokens in reason-
ing step s’ and ‘context’ represents previous
tokens in s’ and all prior reasoning steps.

* Novelty N(s') encourages exploration by
measuring the dissimilarity of candidate rea-
soning steps to previously explored paths.
Specifically, we calculate novelty as the pro-
portion of new tokens introduced by the candi-
date step s’ relative to tokens already explored
within the current reasoning context.

We formulate a reward r; to guide the search
process by combining these intrinsic signals as:

re = C(s") + AnN(s"), 4)

where Ay balances exploration and exploitation.
Unlike verifier-guided approaches, our reward is in-
trinsicly computed from LLM prediction statistics,
eliminating external dependency.

3.3 Enhancing Confidence via Reinforcement
Learning Fine-Tuning

A significant challenge in using intrinsic statistics is
ensuring reliability, as raw model confidence may
not accurately reflect correctness. To refine this
process, we incorporate a minimal Reinforcement
Learning fine-tuning phase.

Specifically, we utilize Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024), a
memory-efficient variant of Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) tailored
for LLM applications. Let 7 represent the LLM we
want to fine-tune, parameterized either current fine-
tuned weights 6, fine-tuned weights from the previ-
ous iteration 0,4 or the original reference weights
Orer. At each iteration GRPO samples a group of
G outputs {oi}?:1 from my,,,, where each output o;
represents a chain of reasoning steps and an answer
0; = [R;, A;]. Each output receives a reward r;,
which we describe below:

Confidence-Based Reward. We design a novel
reward function that directly incorporates model
confidence into RL fine-tuning, addressing the lim-
itations of conventional correctness-only rewards.
Prior methods often rely on sparse, binary signals
based solely on the correctness of the final answer,
which offer no learning signal when all comple-
tions are incorrect. In contrast, our approach inte-
grates both final answer correctness and a weighted
measure of confidence across reasoning steps, pro-
ducing a richer, more informative reward that en-
courages calibrated self-guidance.

To compute this reward, we first define the confi-
dence score for a reasoning chain R?; as a weighted
average over the last k steps:
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Figure 3: Answer Confidence Distribution Across Training Settings. Normalized distributions of confidence scores for
correct (green) and incorrect (orange) completions under different fine-tuning strategies. Vertical dashed lines indicate mean
confidence for each group. The base model (left) is overconfident, assigning high confidence to many incorrect answers.
Correctness reward fine-tuning (middle) improves accuracy but does not calibrate confidence. Confidence-based fine-tuning
(right) improves calibration by lowering confidence for incorrect completions.

T k—l—l (5)

C(R:) =
Zl l

Then the RL fine-tuning reward r; is computed
based on A;’s correctness and the reasoning chain
confidence C(R;), as follows:

1+ C(R)* if IsCorrect(4;),

6
1 —10C(R;)* otherwise, ©

P =

where IsCorrect(A;) returns a boolean validat-
ing the final answer as correct or not. Equation 6
ensures that correct, highly confident answers are
rewarded more strongly, whereas incorrect, over-
confident answers receive greater penalties, thus
promoting precise confidence calibration.

Reward Design. Our reward function calibrates
confidence as a reliable intrinsic signal for guid-
ing reasoning (Eq. 6). Correct answers receive
rewards in [1, 2], while incorrect ones are penal-
ized within [—9, 1] based on confidence C(R;) €
[0, 1]. Raising C to the 4™ power (e.g., 0.9*=0.656
vs. 0.5*=0.0625) nonlinearly amplifies contrast
near the extremes, and a penalty multiplier of 10
strongly discourages overconfident errors—critical
for self-guided search.

Figure 3 shows that confidence-based fine-tuning
reduces the mean confidence of incorrect comple-
tions from 0.95 to 0.88, implicitly lowering the con-
fidence of flawed reasoning chains. While some
low-confidence correct or high-confidence incor-
rect completions may still receive rewards near 1,
this is acceptable: the goal is not perfect accuracy
enforcement but to align confidence with correct-
ness, yielding a more trustworthy search signal.

Additional ablations on reward design choices are
provided in the section5 and A.1.1.

Advantage and Fine-tuning Update. After com-
puting the reward r; for each sampled output o;, we
compute the normalized advantage A; as follows:

. T — mean({rj}?zl)
std({r;}j=1)
We then compute the clipped surrogate policy
update d; (Schulman et al., 2017) for a given output
0; as follows:

|os]

1 p "
51' = ﬁ Z [min (p“Ai, C]ip(pi’l,l—e,l—i-é)Ai)
%
=1

5Dk (ol
(®)

779(01,1 | Q7Oz,<l) ) )
T00a (i1 | @501 <1)
Here, € limits the update size, while the KL diver-
gence term penalizes deviation from the reference
policy, weighted by 8. These mechanisms help en-
sure stable and conservative policy updates. Finally,
we aggregate the clipped surrogates across a batch
of GG samples to compute the GRPO objective:

Where: p;; =

1
Tarro(0) = Byoy6 oy [ D0 (10)

3.4 Search Strategy

We employ Diverse Verifier Tree Search
(DVTS) (Beeching et al.), an extension of beam
search that splits initial beams into independent
subtrees that are expanded greedily using a reward
model or our proposed intrinsic rewards. DVTS



enhances solution diversity and performance.
We apply DVTS within the CoT framework
by operating at the reasoning step (s') level,
identifying step completions via model-specific
delimiters. This structure allows the search to
evaluate and expand complete logical increments
during the reasoning process.

Our modified DVTS algorithm runs recursively
until it encounters one of the termination condi-
tions we specify: a maximum reasoning depth or
a maximum token length limit is exceeded, the
reasoning exhibits signs of text degeneration, e.g.,
excessive repetition, or in the best case, the LLM
arrives at a final answer A. To avoid incomplete
outputs due to overthinking near the limits, we in-
ject a model-specific signal prompting a conclusion.
For example, with DeepSeek models, appending
“**Final Answer**” effectively elicits the final an-
swer, ensuring usable completions even in complex
cases. We provide a formal explanation of the
search algorithm in A.2 due to space constraints.

4 Experimental Results

In this section, we validate our Guided by Gut Test-
Time Scaling (GG) approach. We first describe
our experimental setup, then present our findings.
Finally, we ablate the components of our method.

4.1 Confidence Calibration via RL

We perform a reinforcement learning fine-tuning
phase. Our primary goal during RL fine-tuning is
not to maximize raw task accuracy but to enhance
the reliability of the intrinsic confidence signals
utilized by GG through GRPO, as described in Sec-
tion 3.3 and in our reward function (Equation 6).
For this calibration step, we utilize the LIMO
dataset (Ye et al., 2025). This dataset contains
817 high-quality examples curated specifically for
complex mathematical reasoning. We fine-tune
the DeepSeek-R1-Distill-Qwen-1.5B & 7B mod-
els with Low-Rank Adapters (LoRA) (Hu et al.,
2022). The implementation leverages the TRL (von
Werra et al., 2020) library and an adaptation of the
open-rl codebase (Face, 2025). Key aspects of
the setup include a low learning rate of 2.0 x 10~
with a cosine scheduler (Loshchilov and Hutter,
2017), LoRA rank » = 128 and o = 128, and
GRPO training with G = 8 generations per prompt
at a temperature of 0.6. We perform fine-tuning
on two NVIDIA A100 80 GPUs using bfloatl6
precision with FlashAttention-2 (Dao, 2023) op-

Table 1: AIME?24/25 accuracy, inference time, and
GPU memory usage. Higher accuracy 1 and lower
time/memory | are better. DS refers to DeepSeek.

Accuracy [%] 1 Time GPU

Model TTS N .
min/ GB

AIME24 AIME25 (VO (GBI

DS-R1-Qwen-1.5B CoT 268 214 0.20 4
DS-R1-Qwen-7B  CoT 481 386 100 18
DS-R1-Qwen-14B  CoT 658 484 650 36
DS-R1-Qwen-32B  CoT 69 518 15 80
DS-RI-Llama-70B CoT 700 541 200 180
DS-R1-671B CoT 7901 643 ~ 1536
OpenAl ol-mini ~ CoT 63.6 - - -
GG 32 667 400 27 11
DS-RI-Qwen-1.5B G5 64 667 467 5118
GG 32 733 533 103 31

DS-RI-Qwen-7B 55 g4 767 533 180 45

Table 2: Accuracy (mean [max]) and KV-cache memory
for DeepSeek-R1/Qwen models with different test-time
search (TTS) strategies on four math benchmarks.
Higher accuracy 1 and lower memory | are better.

Model  TTS N Accuracy [%] T (G'g)/ .
AIME24  AIME25 MATH500 AMC
CoT - 268 214 839 683  0.86

DS-R1. BON 32 522[56.7] 34.4[36.7] 917 900 137
Qwen 158 GG 32 589[66.7] 37.5[400] 919 925 69

BoN 64 57.8[66.7] 36.7 [36.7] 92.3 90.0 27.4
GG 64 61.7[66.7] 42.2[46.7] 92.9 93.3 13.7

CoT - 48.1 38.6 92.8 85.5 1.7

DS-R1- BoN 32 72.2[73.3] 51.1[53.3] 96.1 92.5 27.2
Qwen 7B GG 32 71.7[73.3] 52.5[53.3] 96.3 94.1 13.7

BoN 64 75.5[76.7] 50.0 [53.3] 96.1 93.7 544
GG 64 76.7[76.7] 51.7[53.3] 96.5 95.0 27.2

timization, using prompt/completion length lim-
its of 768/8096 tokens and a batch size of 8 per
device with 8 gradient accumulation steps for 3
epochs. The fine-tuning process completes in ap-
proximately one day.

4.2 Results

To demonstrate the efficacy and efficiency of
Guided by Gut (GG), we first benchmark our ap-
proach using <10B parameter LLMs against sev-
eral larger Chain-of-Thought (CoT) LLMs, includ-
ing closed-source OpenAl ol mini. We also com-
pare to competitive tree-based TTS methods such
as Best-of-N (BoN), a robust TTS baseline that out-
performs PRM-guided search with R1 models (Liu
et al., 2025a). In addition, we include a comparison
with PRM-guided search approaches to highlight
GG’s competitive performance without requiring
an external verifier.

Evaluation Settings. We allocate token budgets
based on method requirements: 16k tokens for



tree-based TTS methods, i.e., GG and BoN, and
32k tokens for standard CoT models (consistent
with original papers) to balance comprehensive
comparisons with computational feasibility. We
set the maximum reasoning steps to 200 for R1
models. We configure BoN to use N = 32 or
N = 64 samples using majority voting. Likewise,
we evaluate our Confidence-Guided DVTS(GG)
with equivalent compute budgets: using N = 32
total paths (from 16 subtrees with M = 2 beam
width/verifiers) and N = 64 total paths (from 32
subtrees with M = 2), employing weighted major-
ity voting based on final answer confidence scores.

Benchmarks. We evaluate GG across four math-
ematical datasets that span different levels of com-
plexity and styles. Our primary benchmarks are
AIME24 and AIME25(AI-MO, 2024a; yentinglin,
2025), each consisting of 30 high-difficulty ques-
tions from the American Invitational Mathemat-
ics Examination. These benchmarks are ideal for
test-time scaling, as they demand multi-step rea-
soning and symbolic manipulation, and demon-
strate substantial performance improvements with
better inference strategies. To assess generaliza-
tion, we also include AMC23(zwhe99, 2023), a
40-question set from the American Mathematics
Competition focused on core high school math, and
MATHS00 (Lightman et al., 2023), a 500-question
diverse subset of the MATH benchmark testing
various topics and difficulty levels.

Table 1 shows that GG-equipped models deliver
strong performance compared to much larger CoT-
based LLMs on AIME24 and AIME25. Notably,
DS-R1-Qwen-1.5B(GG) matches the performance
of DS-RI-Qwen-32B, while DS-RI-Qwen-7B(GG)
approaches DS-R1-Llama-70B and even surpasses
ol-mini on AIME24. With a modest sampling
budget (N = 32), DS-RI-Qwen-7B (GG) outper-
forms all CoT-based models below 100B param-
eters. Moreover, it does so using only one-sixth
the VRAM of DS-RI-Llama-70B, while offering
faster inference. Only DS-RI-671B, with nearly
10x more parameters, achieves higher accuracy,
but at the cost of nearly 30x more memory.

We further evaluate GG against BoN and CoT
strategies on AIME24, AIME25, MATHS500, and
AMC using DS-RI1-Qwen 1.5B and 7B models in
Table 2. To ensure fair and reliable comparison,
particularly for AIME benchmarks known for high
variance, all configurations were run four times
with different seeds, reporting average and maxi-

Table 3: Performance of PRM-based and
GG(without RL calibration phase) scoring with
Owen2.5-Math-1.5B-Instruct + DVTS. Higher accuracy
1 and lower time/memory | are better. Best values for
each IV are shown in bold.

Accuracy [%]T Time GPU

Scoring Verifier N .

/ GB
AMC23 MATHs00 ™+ (B4

MathShepherd-7B 16 583 79.1 0.8 19
PRM RLHFlowLlama3.1-8B 16 60.0 79.0 0.9 21
Qwen2.5-MathPRM-7B 16  62.5 79.5 0.8 19
GG(No RL) 16 63.3 78.9 0.1 4
MathShepherd-7B 32 60.0 81.1 1.5 23
PRM RLHFlowLlama3.1-8B 32 61.7 80.7 1.6 25
Qwen2.5-MathPRM-7B 32 63.3 82.0 1.5 23
GG(No RL) 32 65.0 80.0 0.2 5

mum accuracies across runs. Experimental settings
match those in Table 2. GG also matches or beats
BoN across both N = 32 and N = 64 configura-
tions, while requiring approximately 50% less KV
cache memory.

Comparison with Process Reward Models. To
evaluate the generalizability of GG and the strength
of confidence-guided search in the absence of
Confidence-based RL fine-tuning, we apply GG
to Qwen2.5-Math-1.5B-Instruct(Bai et al., 2025),
a non-reasoning model commonly used in PRM-
guided TTS studies(Wang et al., 2024; Beeching
et al.; Liu et al., 2025a). This serves two purposes:
(1) to demonstrate GG’s effectiveness on both rea-
soning and non-reasoning models, and (2) to assess
whether uncalibrated intrinsic confidence can still
guide the search. Since this model lacks CoT rea-
soning capabilities, we evaluate it only on the eas-
ier MATHS500 and the medium-difficulty AMC23
datasets, avoiding the harder AIME24/25 bench-
marks that require deep reasoning.

We conduct this evaluation with a 4k token limit
and 50 reasoning steps per sample, which reflects
the shorter non-CoT answers and the overhead of
PRM-guided search. Importantly, the underlying
search strategy for both PRM and GG is DVTS; the
only difference lies in the guidance signal where
GG uses intrinsic confidence, while PRM relies
on an external verifier. Table 3 shows that GG
matches the performance of several PRMs—such
as MathShepherd-7B, RLHFlowLlama3.1-8B, and
Owen2.5-MathPRM-7B—on both AMC23 and
MATHS500, without relying on external verifiers.
Notably, GG achieves this while using less than
5GB of GPU memory and running 8x faster, high-
lighting its efficiency and practicality.



(a) RL fine-tuning ablation.

(b) Novelty method ablation.

(c) Novelty weight (Ax) ablation.

Fine-tuning Setting Score T Novelty Method Score T Novelty Weight (Ax)  Score 1
No RL Fine-tuning 54.5% New Token Counting 58.9 0.0 57.5
Correctness Reward Only 54.9% Cosine Similarity 58.4 0.5 58.9
Confidence (No Penalty) 54.0% 1.0 51.9
Confidence Reward (GG) 58.9%

Table 4: Ablation studies on the AIME24 dataset. All experiments use New Token Counting for novelty unless

otherwise specified. The finalized design is shown in bold.

5 Ablation Studies

We conduct ablation studies to verify the efficacy
of the different components that constitute GG. All
ablation studies utilize DeepSeek-R1-Qwen-1.5B
under standard experimental conditions (DVTS,
N = 32, M = 2, A\y = 0.5, 16k completion
length) on AIME24. Reported scores are averaged
over four runs. Due to space constraints, we pro-
vide additional ablations in the Appendix A.1.

Impact of Confidence-Based RL Fine-tuning.
To assess the contribution of our confidence-based
reward to RL fine-tuning, we compare four settings:
(1) no RL fine-tuning, (2) RL with correctness-only
reward, (3) RL with confidence-based reward but
without penalizing incorrect answers (i.e., 7 = 0
for incorrect completions), and (4) RL with our
full confidence-based reward(Eq. 6). As shown in
Table 4a, RL with our Confidence Reward achieves
the highest score (58.9), outperforming both the no-
RL baseline (54.5) and the correctness-only reward
(54.9). Removing the penalty for incorrect answers
leads to the lowest score (54.0), emphasizing its
importance. These results show that the gains stem
not just from RL fine-tuning, but from our specific
reward design that aligns model confidence with
correctness and discourages overconfident errors.

Novelty: Method Selection and Weight () /) Im-
pact. For the novelty component N (s?), we con-
sider two methods: The first is cosine similarity
using embeddings from a sentence transformer,
all-MiniLM-L6-v2 (Reimers and Gurevych, 2019).
The second method is to count new words. As
shown in Table 4b, counting new words performs
comparably to cosine similarity but is simpler and
computationally lighter. Thus, we selected word
counting for N (s).

Using word counting for novelty, we then inves-
tigate the impact of the corresponding weight, A .
Table 4c summarizes this ablation. Setting Ay = 0
(no novelty signal) yields a score of 57.5. A bal-

anced Ay = 0.5 achieves the best score of 58.9.
Conversely, setting Ay = 1 (relying predominantly
on novelty) significantly degrades performance to
51.9. This confirms that balancing novelty (for
exploration) with confidence is crucial, with confi-
dence being the primary guiding signal.

6 Conclusion

We introduce Guided by Gut (GG), a Test-Time
Scaling framework enabling smaller Large Lan-
guage Models (e.g., 1.5B parameters) to surpass
significantly larger models (e.g., 32B) in perfor-
mance while offering faster inference and substan-
tially reduced GPU memory and KV cache usage.
GG leverages intrinsic model signals, confidence
and novelty, extracted directly from LLLM outputs,
further calibrated through reinforcement learning,
providing a lightweight and effective alternative
to costly external verifier-based methods such as
PRMs. Compared to Best-of-N strategies, GG
achieves comparable or superior results with ap-
proximately 50% less KV cache memory and com-
petitive inference speeds, while delivering perfor-
mance on par with PRM-guided approaches.

Limitations. The intrinsic signals employed in
GG, such as confidence scores, do not inherently
verify the actual correctness of each reasoning step.
There exist cases where the model assigns high con-
fidence to incorrect reasoning steps, hence the im-
portance of our RL fine-tuning phase. Overall, the
goal of our method is to provide a simple, efficient,
and without relying on external verifier signals to
guide the search process, rather than guaranteeing
the absolute correctness of each step that may occur
when using a strong PRM. We analyze and discuss
representative failure cases in the Appendix A.3 to
provide deeper insight into these limitations.
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A Appendix

We provide additional details and analyses to com-
plement the main paper. Section A.1 includes fur-
ther ablation studies to dissect the contributions
of individual components of our Guided by Gut
(GG) framework. Section A.2 provides a detailed
walkthrough of our Self-Guided Search algorithm.
Finally, Section A.3 provides an illustrative exam-
ple showcasing the step-by-step reasoning process
of GG.

A.1 Ablation Studies

In addition to the main ablations 5, we further ab-
late the effect of our non-linear reward design and
the beam width (M) within the DVTS search algo-
rithm.
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Table 5: Beam width (M) ablation on AIME24 with
total paths NV = 32. The finalized setting is shown in
bold.

Beam Width (M) Trees (N/M) Scoret
2 16 58.9
4 8 47.0
8 4 44.0

A.1.1 More Insight on Reward Design

We further analyze the impact of our non-linear
confidence-based reward formulation by compar-
ing it against a simpler linear alternative. As
defined in Equation 6, our final reward assigns
r; = 14 C(R;)* for correct answers and 7; =
1—10C(R;)* for incorrect ones. This non-linearity
amplifies distinctions between confidence values
near the extremes, encouraging stronger learning
signals for both confident correct answers and over-
confident errors.

To isolate the benefit of this non-linear design,
we compare it with a linear variant where the re-
ward is defined as r; = 1 + C(R;) if correct, and
r; = 1 — C(R;) otherwise. As shown in Figure 4,
our non-linear reward leads to better calibration,
reducing the average confidence of incorrect com-
pletions from 0.91 (linear) to 0.88. This improved
separation makes the confidence signal more reli-
able for guiding test-time search.

In Section 5, we also showed that removing the
penalty for incorrect answers altogether (r; = 0
if incorrect) significantly degrades performance.
Together, these ablations confirm that both the non-
linear scaling and the penalty for confident incor-
rect answers help with learning a well-calibrated
confidence signal.

A.1.2 Impact of Beam Width ()).

We examine the effect of the beam width (M) pa-
rameter within our DVTS search strategy, keep-
ing the total path budget fixed at N = 32. In
DVTS, increasing M reduces the number of inde-
pendent subtrees (N/M) explored. We compare
performance for M = 2 (16 subtrees), M = 4 (8
subtrees), and M = 8 (4 subtrees), with results in
Table 5. Increasing M while keeping /N constant
entails significantly worse performance: M = 2
achieved 58.9, while M = 4 dropped to 47.0, and
M = 8 further decreased to 44.0. This confirms
that increasing M under a fixed budget N limits
exploration diversity crucial for DVTS, making a
smaller beam width (M = 2) more effective for
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Figure 4: Effect of RL reward design on confidence calibration. Each subplot shows the normalized distribution
of confidence scores for correct (green) and incorrect (orange) completions. Vertical dashed lines mark the mean
confidence for correct and incorrect completions. Left: Linear reward (r = 1 + C if correct, 1 — C if incorrect).
Right: Non-linear reward (r = 1 + C* if correct, 1 — 10C* if incorrect) improves calibration, further shifting the
average confidence of incorrect completions from 0.91 to 0.88.

the N = 32 budget.

A.2 TImplementation Details of Self-Guided
Search

To clarify how the search operates, we walk
through Algorithm 1 step by step. Our approach
builds on Diverse Verifier Tree Search, a variant
of beam search that partitions the total number
of candidate paths N into % diverse subtrees.
Each subtree is then greedily expanded based on
confidence-calibrated intrinsic rewards.

The algorithm begins with a prompt (), a lan-
guage model 7y, and user-defined hyperparam-
eters such as the total number of paths N. In
line 2, the LLM is queried with ) to generate
initial reasoning branches, forming the roots of
several subtrees. For each subtree, we define a
maximum search depth 7" and consider M can-
didate next steps at each level. These candidates
are scored using the reward in Eq. 4 (line 11),
and the highest-scoring step is appended to the
current reasoning chain (lines 12-13).

The procedure continues recursively until one
of the termination criteria (lines 14-20) is met:
(1) the reasoning chain exceeds depth 7', (2) the
total token budget 7 is surpassed, (3) the model
exhibits signs of degeneration such as repetitive
output, or (4) a complete reasoning chain R with
a conclusive final answer A is generated. To mit-
igate premature truncation near token or depth
limits, we incorporate model-specific prompts
that encourage finalization. For instance, ap-
pending "Final Answer" is particularly effective
with DeepSeek models for reliably triggering
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a conclusive output. Finally, Algorithm 1 ag-
gregates the candidate completions and selects
the final answer A* using a confidence-weighted
voting scheme defined in Eq. 5.

A.3 Search and Self-Guidance Example

We analyze a particular reasoning trace, distinct
from the illustrative example presented in the fi-
nal part of this section, to demonstrate a scenario
where an error initially occurred and to highlight
the step-by-step operation of the Guided by Gut
(GG) framework.

Even though intrinsic confidence often serves
as a reliable guiding signal, the model can still
make mistakes, as it lacks a mechanism to defini-
tively verify correctness. In the provided exam-
ple trace, initially, the high-confidence Branch
2 mistakenly computes the sum as 459 pounds,
despite a confidence score of 0.89 at Step 2 and
0.79 at Step 5. However, the intrinsic confidence
eventually leads to a self-correction: at Step 7,
Branch 2 corrects its previous error, accurately
computing the sum as 449 pounds with a con-
fidence of 0.82. From this point forward, the
correct answer is consistently maintained.

This behavior highlights the GG framework’s
key strength: it effectively leverages intrinsic
signals from the model to guide reasoning de-
cisions with negligible computational overhead,
achieving performance comparable to other Test-
Time Scaling (TTS) methods like Process Re-
ward Models (PRMs), but crucially without the
heavy computational demands typically associ-
ated with them. The example prompt and its



Algorithm 1: Self-Guided Test-Time Scaling with Confidence-Calibrated DVTS

Input: Prompt ), Model 7y, Beam width M, Total paths N, Max depth T, Token limit 7
Output: Final Answer A*

1 Initialize empty answer set A = (;

2 Initialize % diverse subtrees from Q;

3 foreach subtree j = 1to N/M

4 do
5 Initialize path RY) « [];
6 fort =1toT
7 do
8 Generate M candidate steps {5}, using model 7o (R\?));
9 foreach candidate st
10 do
11 | Compute r; = C(s") + ANN(s");
12 Select top-1 step st o« arg max; ;;
13 Append s, to RO,
14 if st contains final answer token (e.g., “boxed{}”); > Answer 1is complete
15 then
16 L Extract AY) and add to set A;
17 break and prune subtree j;
18 if TokenCount(Rm) >Ttort=T-1; > Force answer near limit
19 then
20 L Append “Final Answer”to R\,

21 Select final answer A* < confidence-weighted vote over A;
22 return A”

corresponding reasoning trace are shown below. — Let me think about this. If I
take the average of two numbers,
that’s their sum divided by two.

Prompt: . ) So, mathematically: Kai’s weight =
In the quiet town of Balancing Scales, four Ivy’s weight-+Jasper’s weight
2

friends like to cloak their weights in puzzles.

— Plugging in the known values:

 Ivy confides, “If you double my weight Kai’s weight = %
and then add a baker’s dOZen, you’ll land — Let’s Compute the numerator first:
exactly on Jasper’s number.” 125 + 263 = 388
» Jasper counters, “Kai is as heavy as the — Then divide by 2: 388/2 = 194
arithmetic mean of Ivy and me.” - So, Kai weighs 194 pounds. Got that
down.
 Kai chuckles, “That may be so, yet Luna
still comes in eight pounds lighter than I * Branch 2, Confidence Score: 0.89:
do.” — 2. Jasper and Kai’s Weight Rela-
Everyone already knows that Ivy tips the scale tionship:
at 125 pounds. What is the combined weight — Jasper says, "Kai weighs the average
of Jasper and Luna, expressed in pounds? of Ivy and me."

— This means that Kai’s weight K is the

R ing T : .
casoning trace average of Ivy’s and Jasper’s weights.

Step 2 — So, mathematically: K =

Ivy’s weight+Jasper’s weight
2

¢ Branch 1, Confidence Score: 0.88: — Plugging in the known values: K =

— 2. Jasper and Kai’s Weight Rela- %

tionship: — Let me compute the numerator: 125 +
— Jasper says, "Kai weighs the average 263 = 388

of Ivy and me." — Then divide by 2: 388/2 = 194
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- So, Kai is 194 pounds. So, yes, 449. Previously, I thought 388 /2

— 3. Kai and Luna’s Relationship: was 194, then 194 — 8 = 186, and then
— Kai laughs, “That’s true, but Luna still adding 263 + 186.
comes in eight pounds lighter than I * Branch 2, Confidence Score: 0.79: Com-
am. pute 263 + 186:

— This tells us that Luna’s weight L is )
equal to Kai’s weight minus 8 pounds. — Units place: 3+6 =9
L=K—-8 — Tens place: 6 + 8 = 14, write down 4,

— Since we found K as 194 pounds, this carryover 1

gives: L = 194 — 8 = 186 pounds. — Hundreds place: 2 + 1 = 3, plus the

— So, Luna is 186 pounds. carried-over 1 makes 4

— 4. We need to find the combined So total is 459. So why did I think it was
weight of Jasper and Luna: 449 earlier? Maybe a mistake in initial
— So, that’s J + L. breakdown.
— We already know J is 263 and L is 186, Step 6
so adding those together:
— 263+ 186 = ... Let me compute that:

e Branch 1, Confidence Score: 0.6: Wait,

= 200+ 100 =300 no, my breakdown seems correct: 400 +

- 60+80=140 40 + 9 = 449. Oh! Wait, wait—no. 263 +
-3+46=9 186: Maybe an error in adding. Let’s try
— Wait, that might not be the right way adding 263 + 186 step by step.
to break it down. Alternatively, just )
adding them directly: e Branch 1, Con'ﬁdence' Score: 0.52: Wait,
_ 263 + 186: 263 + 186: I think I miscalculated the tens
) . and hundreds in my head. Maybe it’s 459,
* Start with the units place: 3+ 6 = correct.
9
* Tens place: 6 + 8 = 14, carryover Step 7
1
* Hundreds place: 2 + 1 = 3, plus » Branch 1, Confidence Score: 0.68: Start-

the carried-over 1 makes 4 ing from the right:

— So altogether, 459 pounds. . )
— 3 (units place) + 6 (units) =9

Step 3 — 6 (tens place) + 8 (tens) = 14, carry-
over 1
e Branch 1, Confidence Score: 0.5: Let = 2 (hundreds place) + 1 (hundreds) = 3,
me double-check just in case I made any plus the carried over 1 =4
arithmetic mistakes. SO, it’s 459. So correct.
* Branch 2, Confidence Score: 0.66: Wait, * Branch 2, Confidence Score: 0.82: 263 +
let me verify each step again to make sure 186. Break it down:

I didn’t make an arithmetic error. . .
— Start with 263. Let me add 100 to it:

Step 5 263 + 100 = 363
— Then add 80: 363 + 80 = 443
* Branch 1, Confidence Score: 0.73: 263 + — Then add 6: 443 + 6 = 449
186: Starting from the right: Step 8
-3+6=9
- 6 + 8 = 14, carryover 1 * Branch 1, Confidence Score: 0.81: Wait,
- 2+ 1+ 1(carried) = 4 so if I add 263 + 186:
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~ 200 + 100 = 300
— 60+ 80 = 140
~346=9

Total: 300 + 140 + 9 = 449.

¢ Branch 2, Confidence Score: 0.45: Wait
earlier, when I thought 449, I was off by
one. No, wait—no, actually 263 + 186 =
449 is incorrect. So where is the confusion?
Is it an arithmetic error?

Step 18

¢ Branch 1, Confidence Score: 0.73: Wait,
so earlier, when I thought it was 459, that
was a mistake.

¢ Branch 2, Confidence Score: 0.67: Wait,
so that’s the correct combined weight. So
earlier when I thought 459, that was a mis-
calculation. So now, the answer is 449
pounds.

A.4 Broader Impacts.

This work proposes an efficient test-time reason-
ing framework for language models. Our con-
tributions reduce the computational requirement
needed to use reasoning models. Experimental
results demonstrate that we can combine GG
with a locally smaller LLM and achieve compa-
rable performance to open-source models that re-
quire GPU rack servers or closed-source models
behind an API. Therefore, one potential future
impact of our work we hope to see is increased
usage of locally-deployed reasoning LLMs.

A.5 License

Our work builds on several open-source compo-
nents, all released under permissive licenses:

¢ Code:

— Open-RI:
github.com/huggingface/open-rl
(Apache 2.0 License)

— Search-and-Learn:
github.com/huggingface/search-
and-learn (Apache 2.0 License)

e Models:

— DeepSeek-R1  (1.5B and 7B):
huggingface.co/deepseek-
ai/DeepSeek-R1-Distill-Qwen-1.5B
(MIT License)

15

* Training Data:

— GAIR/LIMO  dataset: hugging-
face.co/datasets/GAIR/LIMO
(Apache 2.0 License)


https://github.com/huggingface/open-r1
https://github.com/huggingface/search-and-learn
https://github.com/huggingface/search-and-learn
https://github.com/huggingface/search-and-learn
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://huggingface.co/datasets/GAIR/LIMO
https://huggingface.co/datasets/GAIR/LIMO
https://huggingface.co/datasets/GAIR/LIMO
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