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Abstract001

Test-Time Scaling (TTS) methods for enhanc-002
ing Large Language Model (LLM) reasoning003
often incur substantial inference costs, due to004
reliance on long chain-of-thought (CoT) gen-005
eration, self-consistency sampling methods,006
or searching under Process Reward Models007
(PRMs). This paper introduces Guided by Gut008
(GG), an efficient self-guided TTS framework009
that enables LLMs to perform step-by-step rea-010
soning at a low cost, without any reward mod-011
els or verifiers. GG performs a lightweight tree012
search guided solely by intrinsic confidence013
signals of the LLM at each reasoning step and014
improves the reliability of such internal confi-015
dence signals by reinforcement learning. Em-016
pirical evaluations on challenging mathemati-017
cal reasoning benchmarks demonstrate that GG018
enables smaller models (e.g., 1.5B-7B parame-019
ters) to achieve accuracy matching or surpass-020
ing significantly larger models (e.g., 32B–70B021
parameters), while reducing GPU memory us-022
age by up to 10×. Compared to TTS with PRMs,023
GG achieves comparable accuracy with 8×024
faster inference speeds and 4–5× lower mem-025
ory usage. Additionally, GG reduces KV cache026
memory usage by approximately 50% com-027
pared to Best-of-N sampling, facilitating more028
efficient and practical deployment of TTS tech-029
niques.030

1 Introduction031

Enhancing the performance of Large Language032

Models (LLMs) often requires significant compu-033

tational resources through model scaling (Achiam034

et al., 2023; Ouyang et al., 2022; Villalobos et al.,035

2022) or complex inference strategies (Ji et al.,036

2025; Zhou et al., 2024). Test-Time Scaling (TTS)037

techniques like Chain-of-Thought (CoT) (Wei et al.,038

2022) allocate additional computation during in-039

ference. This re-allocation of compute resources040

provides a powerful alternative for boosting LLM041

reasoning capabilities, as evidenced by models042

like OpenAI’s o series (OpenAI, 2024), DeepSeek043

Cheaper
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Figure 1: We compare the performance and GPU
VRAM usage of Guided by Gut (GG; stars) to Best-of-
N (BoN; triangles) and Chain-of-Thought (CoT; circles)
on several LLMs. GG achieves better accuracy at much
lower memory cost (log-scaled).

R1 (Guo et al., 2025), and others (Yang et al., 044

2024a; Team et al., 2025; Bai et al., 2025). 045

Contemporary TTS methods (Lightman et al., 046

2023; Wang et al., 2023; Snell et al., 2024) are ca- 047

pable of enhancing LLMs containing 1.5B parame- 048

ters such that they outperform 70B, 405B parameter 049

or even large closed-source LLMs on difficult rea- 050

soning and mathematical benchmarks (Liu et al., 051

2025a). However, TTS is an expensive search pro- 052

cess where the total compute cost to generate an 053

answer matches or may even exceed that of a larger 054

LLM (Zhang et al., 2025; Luo et al., 2025). For 055

example, Sampling-based methods (Wang et al., 056

2023) like Best-of-N (BoN) (Brown et al., 2024) op- 057

erate by generating a large number of candidate so- 058

lutions (e.g., potentially hundreds) and then choos- 059

ing the optimal one from this pool, which requires 060

prohibitively large amounts of LLM inference for 061

complex tasks. In addition, Process Reward Mod- 062

els are auxiliary verification models which guide 063

the TTS process by providing step-by-step correct- 064

ness feedback (Xiong et al., 2024; Zheng et al., 065
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B1, 𝑪 = 0.48 :Then Leah notices her backpack is 7 kg heavy, so she 

lends James 3 apples. So now Leah has her apples plus 3. Wait, does 

that mean her cherries are unchanged? So she gives 3 apples and 

nothing in return? Maybe.

B2, 𝑪 = 0.53 :Leah's backpack is suddenly weighing 7 kg. Does this 

affect how many apples she has? Hmm, just an distraction. So I can 

proceed with the apples.

Question: James, Leah, Milo, Nia each have 6 apples and 10 cherries.

Leah, whose backpack mysteriously weighs 7 kg, lends James 3 apples.

James gives 2 apples to Nia. 

Milo casually tosses 1 apple to Leah.

How many apples is James holding when the streetlights come on?

B1, 𝑪 = 0.82: After tossing: Milo: Still 6 apples, Leah: 3 + 1=4 apples

B2, 𝑪 = 0.88: After tossing: Milo: 6 - 1=5 apples, Leah: 3 + 1=4 apples

Step3:

Step7:

Figure 2: Comparison of reasoning generation strategies. (1) Standard Chain-of-Thought (CoT) generates a single
reasoning path autoregressively. (2) Search guided by an external Process Reward Model (PRM) explores multiple
candidate steps (st1, s

t
2, . . . ), using PRM scores to select promising paths. (3) Our proposed Self-Guided Search

similarly explores multiple steps but uses intrinsic confidence signals (C), derived from the LLM to guide the search
at each step without relying on an external PRM. The example illustrates a tree search. At each step, the search
expands into two branches, and you’ll see a corresponding confidence score for each. Here, B denotes a branch.

2024; Zhang et al., 2025; Wang et al., 2023). Such066

verifier-guided techniques can be computationally067

expensive to train and deploy and suffer from gen-068

eralizability issues (Liu et al., 2025a; Zhong et al.,069

2025; Zheng et al., 2024). Thus, regardless of strat-070

egy, TTS for small-scale LLMs relies on expensive071

inference, which severely limits practical applica-072

tion and motivates the need for more cost-effective073

TTS frameworks.074

In this paper, we propose Guided by Gut (GG), a075

computationally efficient and scalable TTS frame-076

work toward efficient LLM reasoning with low-077

ered inference cost. GG leverages intrinsic signals078

derived from the LLM’s generation process, fine-079

tuned via reinforcement learning (RL), to enable080

smaller models to achieve substantially stronger081

reasoning performance at a lower cost. The key082

idea is that the probability assigned by the LLM083

to a reasoning step implicitly encodes its own esti-084

mate of the step’s value or reward. This allows GG085

to guide inference using the model’s internal con-086

fidence, resulting in performance that matches or087

exceeds that of much larger models and costly TTS088

strategies, while operating at significantly lower089

GPU memory usage, as illustrated in Figure 1.090

Our main contribution involves a self-guided091

search algorithm free of reward models and a fine-092

tuning procedure to calibrate a model’s internal093

confidence for correctness:094

• Efficient Test-Time Search with Self-095

Guidance: Instead of relying on an exter-096

nal verifier model or PRM, we leverage in-097

trinsic reasoning step-level confidence signals 098

derived from an LLM’s output probabilities 099

to construct a lightweight guidance for test- 100

time search, which can be integrated into any 101

existing LLM easily. We introduce a tree 102

search algorithm based on Diverse Verifier 103

Tree Search (DVTS) (Beeching et al.) guided 104

by the LLM’s intrinsic signals. To achieve 105

efficient TTS, our algorithm is optimized for 106

minimal computational cost during inference. 107

• Reinforced Confidence via RL Fine-tuning: 108

We incorporate RL via Group Relative Policy 109

Optimization (GRPO) into model fine-tuning 110

specifically to improve the reliability of LLM 111

internal confidence estimation, calibrating the 112

confidence signals to align with output cor- 113

rectness, leading to reliable guidance during 114

test-time scaling. 115

We apply GG to reasoning LLMs from 116

DeepSeek R1 family (Guo et al., 2025) and 117

Qwen2.5-Math (Yang et al., 2024b) as a non- 118

reasoning model and evaluate it on bench- 119

mark tasks like AIME24/25 (AI-MO, 2024a), 120

MATH500 (Hendrycks et al., 2021), and AMC (AI- 121

MO, 2024b). Experimental results not only demon- 122

strate that GG achieves significant performance 123

improvements over relevant baselines such as BoN 124

and CoT, but also highlight its superior computa- 125

tional efficiency. Specifically, GG enables smaller 126

models (e.g., 1.5B-7B parameters) to outperform 127

much larger counterparts (e.g., 32B and 70B), 128

achieving similar or superior accuracy while us- 129
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ing up to 4×–10× less GPU memory. Further-130

more, compared to computationally expensive131

PRM-based approaches, GG achieves comparable132

accuracy at a fraction of the computational cost,133

leading to 4×–5× lower GPU memory usage and134

up to 8× faster inference speeds. Furthermore, GG135

achieves an approximately 50% reduction in KV136

cache memory usage compared to the BoN strat-137

egy, facilitating significantly more efficient and138

cost-effective deployment of reasoning LLMs.139

2 Related Work140

Test-Time Scaling (TTS). TTS enhances model141

performance by strategically allocating more com-142

putation at inference (Beeching et al.; Face, 2025),143

a key factor in improving reasoning for complex144

tasks (OpenAI, 2024; Guo et al., 2025). Meth-145

ods range from simple autoregressive Chain-of-146

Thought (CoT) (Wei et al., 2022) to sampling-147

based Best-of-N (BoN) (Brown et al., 2024) and148

sophisticated tree-search algorithms like Beam149

Search (Xie et al., 2023), Diverse Verifier Tree150

Search (DVTS) (Beeching et al.), and Monte Carlo151

Tree Search (MCTS) (Xie et al., 2024). This al-152

lows smaller models (<10B) to achieve reason-153

ing capabilities comparable to much larger ones154

(>70B) (Liu et al., 2025a), but at the cost of multi-155

ple, computationally intensive inference rounds to156

generate potential reasoning steps.157

External Verification. To guide exploration to-158

wards the most promising step or reasoning path,159

many complex TTS methods rely on an external160

verifier to score the quality of reasoning paths. This161

role is typically filled by a Process Reward Model162

(PRM) (Liu et al., 2025a) or an Outcome Reward163

Model (ORM) (Lightman et al., 2023). These veri-164

fiers, often large models themselves, introduce sig-165

nificant computational overhead (Snell et al., 2024;166

Beeching et al.). While mitigation strategies like167

sample pruning or dynamic stopping exist (Tauben-168

feld et al., 2025; Razghandi et al., 2025; Wan et al.,169

2024; Huang et al., 2023), powerful search tech-170

niques often still depend on a costly verifier (Xie171

et al., 2023). To address this, our approach, GG,172

avoids external verifiers in favor of simple, near-173

zero overhead internal signals.174

Model Confidence in Language Models.175

Model confidence, an LLM’s internal estimate of176

its certainty, is increasingly used to guide infer-177

ence and training. It has been applied for cost-178

saving measures like early stopping (Sui et al.,179

2025; Li et al., 2024; Ding et al., 2025) and as a 180

reward signal when ground-truth labels are unavail- 181

able (Zhao et al., 2025; Yu et al., 2025b; Huang 182

et al., 2025). However, confidence is often unre- 183

liable, with LLMs exhibiting overconfidence that 184

correlates weakly with correctness (Pawitan and 185

Holmes, 2025). Our work tackles this by calibrat- 186

ing this internal signal via minimal RL fine-tuning, 187

transforming it into a reliable guide for verifier-free, 188

test-time search. 189

Reinforcement Learning for LLM Reason- 190

ing. Recent literature highlights Reinforcement 191

Learning’s crucial role in advancing Large Lan- 192

guage Model reasoning without human interven- 193

tion (Face, 2025). ReFT(Luong et al., 2024) em- 194

ploys Proximal Policy Optimization (PPO) to en- 195

hance the generalizability of LLMs for reasoning. 196

A key algorithm, Group Relative Policy Optimiza- 197

tion (GRPO) (Shao et al., 2024), notably elimi- 198

nates the need for a separate value function in PPO. 199

Further research explores various RL training as- 200

pects to improve reasoning capabilities (Yu et al., 201

2025a; Zeng et al., 2025; Liu et al., 2025b). Deep- 202

ScaleR (Luo et al., 2025) aims to boost existing 203

reasoning models through additional GRPO fine- 204

tuning with iterative context lengthening. 205

3 Methodology 206

This section outlines our proposed method, Guided 207

by Gut (GG). We begin by providing essential back- 208

ground on the Test-Time Scaling process. Follow- 209

ing this, we elaborate on the self-guided search 210

mechanism and overall strategy. 211

3.1 Preliminaries 212

Problem Formulation. Given an input prompt 213

or question Q, our objective is to generate a log- 214

ical reasoning chain R = [s1, s2, . . . , sT ] leading 215

to a correct final answer A, where each step st 216

typically constitutes a sentence or short paragraph 217

incrementally building upon previous steps. The 218

overall reasoning process thus follows the pipeline: 219

Q → R → A, 220

with the reasoning chain R explicitly bridging the 221

input question and the final answer through inter- 222

mediate logical steps. 223

Chain-of-Thought (CoT) Reasoning. Standard 224

CoT (Wei et al., 2022) approaches jointly generate 225

the reasoning chain and final answer via autoregres- 226

sive language modeling. Formally, given Q, the 227
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model sequentially generates each reasoning step228

conditioned on previously generated steps:229

P (R = s1:T | Q) =
T∏
t=1

P (st | Q, s1:t−1). (1)230

Each step st thus depends on the input Q and pre-231

ceding reasoning steps s1:t−1, mirroring autoregres-232

sive token generation in language modeling.233

Guiding Search with Reward Models. Single-234

path autoregressive generation methods can suffer235

from error accumulation (Wu et al., 2025; Mukher-236

jee et al., 2025). To mitigate this, tree search meth-237

ods explore multiple reasoning trajectories simul-238

taneously. These methods use an external Process239

Reward Model (PRM) or Outcome-supervised Re-240

ward Model (ORM) for step-wise correctness eval-241

uations. A PRM is a model that, given an input242

Q and previous steps s1:t−1, assigns a correctness243

score or reward rt to candidate next steps st:244

rt = PRM(st | Q, s1:t−1) (2)245

Likewise, an ORM is a sparse reward model246

where only the final step receives a non-zero re-247

ward; rt<T = 0. Thus, these reward models im-248

prove logical coherence and accuracy by guiding249

search algorithms like Beam Search, BoN.250

3.2 Proposed Method: Self-Guided Search251

The usage of verifier models like PRMs and ORMs,252

while effective, introduces computational overhead253

and generalizability issues (Liu et al., 2025a). To254

address these limitations, we propose Guided by255

Gut (GG), which leverages the intrinsic signals256

directly obtained from the LLM internal token gen-257

eration process. This removes the dependency on258

external evaluation, ensuring minimal computa-259

tional overhead. Specifically, our approach uses260

two intrinsic signals to guide reasoning:261

• Confidence C(st) reflects the internal assur-262

ance a model has with respect to a given rea-263

soning step st. We compute confidence di-264

rectly from token-level probabilities:265

C(st) = exp

(
1

mt

mt∑
l=1

log p(stl | context)

)
(3)266

where mt is the number of tokens in reason-267

ing step st and ‘context’ represents previous268

tokens in st and all prior reasoning steps.269

• Novelty N(st) encourages exploration by 270

measuring the dissimilarity of candidate rea- 271

soning steps to previously explored paths. 272

Specifically, we calculate novelty as the pro- 273

portion of new tokens introduced by the candi- 274

date step st relative to tokens already explored 275

within the current reasoning context. 276

We formulate a reward rt to guide the search 277

process by combining these intrinsic signals as: 278

rt = C(st) + λNN(st), (4) 279

where λN balances exploration and exploitation. 280

Unlike verifier-guided approaches, our reward is in- 281

trinsicly computed from LLM prediction statistics, 282

eliminating external dependency. 283

3.3 Enhancing Confidence via Reinforcement 284

Learning Fine-Tuning 285

A significant challenge in using intrinsic statistics is 286

ensuring reliability, as raw model confidence may 287

not accurately reflect correctness. To refine this 288

process, we incorporate a minimal Reinforcement 289

Learning fine-tuning phase. 290

Specifically, we utilize Group Relative Pol- 291

icy Optimization (GRPO) (Shao et al., 2024), a 292

memory-efficient variant of Proximal Policy Op- 293

timization (PPO) (Schulman et al., 2017) tailored 294

for LLM applications. Let π represent the LLM we 295

want to fine-tune, parameterized either current fine- 296

tuned weights θ, fine-tuned weights from the previ- 297

ous iteration θold or the original reference weights 298

θref . At each iteration GRPO samples a group of 299

G outputs {oi}Gi=1 from πθold , where each output oi 300

represents a chain of reasoning steps and an answer 301

oi = [Ri, Ai]. Each output receives a reward ri, 302

which we describe below: 303

Confidence-Based Reward. We design a novel 304

reward function that directly incorporates model 305

confidence into RL fine-tuning, addressing the lim- 306

itations of conventional correctness-only rewards. 307

Prior methods often rely on sparse, binary signals 308

based solely on the correctness of the final answer, 309

which offer no learning signal when all comple- 310

tions are incorrect. In contrast, our approach inte- 311

grates both final answer correctness and a weighted 312

measure of confidence across reasoning steps, pro- 313

ducing a richer, more informative reward that en- 314

courages calibrated self-guidance. 315

To compute this reward, we first define the confi- 316

dence score for a reasoning chain Ri as a weighted 317

average over the last k steps: 318
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Base Model (No Finetuning) RL Finetuned (Correctness Reward) RL Finetuned (Confidence Reward)

Figure 3: Answer Confidence Distribution Across Training Settings. Normalized distributions of confidence scores for
correct (green) and incorrect (orange) completions under different fine-tuning strategies. Vertical dashed lines indicate mean
confidence for each group. The base model (left) is overconfident, assigning high confidence to many incorrect answers.
Correctness reward fine-tuning (middle) improves accuracy but does not calibrate confidence. Confidence-based fine-tuning
(right) improves calibration by lowering confidence for incorrect completions.

C(Ri) =
1∑k
l=1 l

k∑
l=1

l · c(sT−k+l
i ) (5)319

Then the RL fine-tuning reward ri is computed320

based on Ai’s correctness and the reasoning chain321

confidence C(Ri), as follows:322

ri =

{
1 + C(Ri)

4 if IsCorrect(Ai),

1− 10C(Ri)
4 otherwise,

(6)323

where IsCorrect(Ai) returns a boolean validat-324

ing the final answer as correct or not. Equation 6325

ensures that correct, highly confident answers are326

rewarded more strongly, whereas incorrect, over-327

confident answers receive greater penalties, thus328

promoting precise confidence calibration.329

Reward Design. Our reward function calibrates330

confidence as a reliable intrinsic signal for guid-331

ing reasoning (Eq. 6). Correct answers receive332

rewards in [1, 2], while incorrect ones are penal-333

ized within [−9, 1] based on confidence C(Ri) ∈334

[0, 1]. Raising C to the 4th power (e.g., 0.94=0.656335

vs. 0.54=0.0625) nonlinearly amplifies contrast336

near the extremes, and a penalty multiplier of 10337

strongly discourages overconfident errors—critical338

for self-guided search.339

Figure 3 shows that confidence-based fine-tuning340

reduces the mean confidence of incorrect comple-341

tions from 0.95 to 0.88, implicitly lowering the con-342

fidence of flawed reasoning chains. While some343

low-confidence correct or high-confidence incor-344

rect completions may still receive rewards near 1,345

this is acceptable: the goal is not perfect accuracy346

enforcement but to align confidence with correct-347

ness, yielding a more trustworthy search signal.348

Additional ablations on reward design choices are 349

provided in the section5 and A.1.1. 350

Advantage and Fine-tuning Update. After com- 351

puting the reward ri for each sampled output oi, we 352

compute the normalized advantage Âi as follows: 353

Âi =
ri −mean({rj}Gj=1)

std({rj}Gj=1)
. (7) 354

We then compute the clipped surrogate policy 355

update δi (Schulman et al., 2017) for a given output 356

oi as follows: 357

δi =
1

|oi|

|oi|∑
l=1

[
min

(
ρi,lÂi, clip(ρi,l,1−ϵ,1+ϵ)Âi

)
− β DKL(πθ∥πref)

]
,

(8) 358359

Where: ρi,l =
πθ(oi,l | q, oi,<l)

πθold(oi,l | q, oi,<l)
. (9) 360

Here, ϵ limits the update size, while the KL diver- 361

gence term penalizes deviation from the reference 362

policy, weighted by β. These mechanisms help en- 363

sure stable and conservative policy updates. Finally, 364

we aggregate the clipped surrogates across a batch 365

of G samples to compute the GRPO objective: 366

JGRPO(θ) = E{oi}Gi=1∼πθold
[
1

G

G∑
i=1

δi]. (10) 367

3.4 Search Strategy 368

We employ Diverse Verifier Tree Search 369

(DVTS) (Beeching et al.), an extension of beam 370

search that splits initial beams into independent 371

subtrees that are expanded greedily using a reward 372

model or our proposed intrinsic rewards. DVTS 373
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enhances solution diversity and performance.374

We apply DVTS within the CoT framework375

by operating at the reasoning step (st) level,376

identifying step completions via model-specific377

delimiters. This structure allows the search to378

evaluate and expand complete logical increments379

during the reasoning process.380

Our modified DVTS algorithm runs recursively381

until it encounters one of the termination condi-382

tions we specify: a maximum reasoning depth or383

a maximum token length limit is exceeded, the384

reasoning exhibits signs of text degeneration, e.g.,385

excessive repetition, or in the best case, the LLM386

arrives at a final answer A. To avoid incomplete387

outputs due to overthinking near the limits, we in-388

ject a model-specific signal prompting a conclusion.389

For example, with DeepSeek models, appending390

“**Final Answer**” effectively elicits the final an-391

swer, ensuring usable completions even in complex392

cases. We provide a formal explanation of the393

search algorithm in A.2 due to space constraints.394

4 Experimental Results395

In this section, we validate our Guided by Gut Test-396

Time Scaling (GG) approach. We first describe397

our experimental setup, then present our findings.398

Finally, we ablate the components of our method.399

4.1 Confidence Calibration via RL400

We perform a reinforcement learning fine-tuning401

phase. Our primary goal during RL fine-tuning is402

not to maximize raw task accuracy but to enhance403

the reliability of the intrinsic confidence signals404

utilized by GG through GRPO, as described in Sec-405

tion 3.3 and in our reward function (Equation 6).406

For this calibration step, we utilize the LIMO407

dataset (Ye et al., 2025). This dataset contains408

817 high-quality examples curated specifically for409

complex mathematical reasoning. We fine-tune410

the DeepSeek-R1-Distill-Qwen-1.5B & 7B mod-411

els with Low-Rank Adapters (LoRA) (Hu et al.,412

2022). The implementation leverages the TRL (von413

Werra et al., 2020) library and an adaptation of the414

open-r1 codebase (Face, 2025). Key aspects of415

the setup include a low learning rate of 2.0× 10−6416

with a cosine scheduler (Loshchilov and Hutter,417

2017), LoRA rank r = 128 and α = 128, and418

GRPO training with G = 8 generations per prompt419

at a temperature of 0.6. We perform fine-tuning420

on two NVIDIA A100 80 GPUs using bfloat16421

precision with FlashAttention-2 (Dao, 2023) op-422

Table 1: AIME24/25 accuracy, inference time, and
GPU memory usage. Higher accuracy ↑ and lower
time/memory ↓ are better. DS refers to DeepSeek.

Model TTS N
Accuracy [%] ↑ Time

(min/q) ↓
GPU

(GB) ↓
AIME24 AIME25

DS-R1-Qwen-1.5B CoT 26.8 21.4 0.20 4
DS-R1-Qwen-7B CoT 48.1 38.6 1.00 18
DS-R1-Qwen-14B CoT 65.8 48.4 6.50 36
DS-R1-Qwen-32B CoT 66.9 51.8 11.5 80
DS-R1-Llama-70B CoT 70.0 54.1 20.0 180
DS-R1-671B CoT 79.1 64.3 – 1536
OpenAI o1-mini CoT 63.6 – – –

DS-R1-Qwen-1.5B GG 32 66.7 40.0 2.7 11
GG 64 66.7 46.7 5.1 18

DS-R1-Qwen-7B GG 32 73.3 53.3 10.3 31
GG 64 76.7 53.3 18.0 45

Table 2: Accuracy (mean [max]) and KV-cache memory
for DeepSeek-R1/Qwen models with different test-time
search (TTS) strategies on four math benchmarks.
Higher accuracy ↑ and lower memory ↓ are better.

Model TTS N
Accuracy [%] ↑ KV

(GB) ↓
AIME24 AIME25 MATH500 AMC

DS-R1-
Qwen 1.5B

CoT – 26.8 21.4 83.9 68.3 0.86

BoN 32 52.2 [56.7] 34.4 [36.7] 91.7 90.0 13.7
GG 32 58.9 [66.7] 37.5 [40.0] 91.9 92.5 6.9

BoN 64 57.8 [66.7] 36.7 [36.7] 92.3 90.0 27.4
GG 64 61.7 [66.7] 42.2 [46.7] 92.9 93.3 13.7

DS-R1-
Qwen 7B

CoT – 48.1 38.6 92.8 85.5 1.7

BoN 32 72.2 [73.3] 51.1 [53.3] 96.1 92.5 27.2
GG 32 71.7 [73.3] 52.5 [53.3] 96.3 94.1 13.7

BoN 64 75.5 [76.7] 50.0 [53.3] 96.1 93.7 54.4
GG 64 76.7 [76.7] 51.7 [53.3] 96.5 95.0 27.2

timization, using prompt/completion length lim- 423

its of 768/8096 tokens and a batch size of 8 per 424

device with 8 gradient accumulation steps for 3 425

epochs. The fine-tuning process completes in ap- 426

proximately one day. 427

4.2 Results 428

To demonstrate the efficacy and efficiency of 429

Guided by Gut (GG), we first benchmark our ap- 430

proach using <10B parameter LLMs against sev- 431

eral larger Chain-of-Thought (CoT) LLMs, includ- 432

ing closed-source OpenAI o1 mini. We also com- 433

pare to competitive tree-based TTS methods such 434

as Best-of-N (BoN), a robust TTS baseline that out- 435

performs PRM-guided search with R1 models (Liu 436

et al., 2025a). In addition, we include a comparison 437

with PRM-guided search approaches to highlight 438

GG’s competitive performance without requiring 439

an external verifier. 440

Evaluation Settings. We allocate token budgets 441

based on method requirements: 16k tokens for 442
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tree-based TTS methods, i.e., GG and BoN, and443

32k tokens for standard CoT models (consistent444

with original papers) to balance comprehensive445

comparisons with computational feasibility. We446

set the maximum reasoning steps to 200 for R1447

models. We configure BoN to use N = 32 or448

N = 64 samples using majority voting. Likewise,449

we evaluate our Confidence-Guided DVTS(GG)450

with equivalent compute budgets: using N = 32451

total paths (from 16 subtrees with M = 2 beam452

width/verifiers) and N = 64 total paths (from 32453

subtrees with M = 2), employing weighted major-454

ity voting based on final answer confidence scores.455

Benchmarks. We evaluate GG across four math-456

ematical datasets that span different levels of com-457

plexity and styles. Our primary benchmarks are458

AIME24 and AIME25(AI-MO, 2024a; yentinglin,459

2025), each consisting of 30 high-difficulty ques-460

tions from the American Invitational Mathemat-461

ics Examination. These benchmarks are ideal for462

test-time scaling, as they demand multi-step rea-463

soning and symbolic manipulation, and demon-464

strate substantial performance improvements with465

better inference strategies. To assess generaliza-466

tion, we also include AMC23(zwhe99, 2023), a467

40-question set from the American Mathematics468

Competition focused on core high school math, and469

MATH500 (Lightman et al., 2023), a 500-question470

diverse subset of the MATH benchmark testing471

various topics and difficulty levels.472

Table 1 shows that GG-equipped models deliver473

strong performance compared to much larger CoT-474

based LLMs on AIME24 and AIME25. Notably,475

DS-R1-Qwen-1.5B(GG) matches the performance476

of DS-R1-Qwen-32B, while DS-R1-Qwen-7B(GG)477

approaches DS-R1-Llama-70B and even surpasses478

o1-mini on AIME24. With a modest sampling479

budget (N = 32), DS-R1-Qwen-7B (GG) outper-480

forms all CoT-based models below 100B param-481

eters. Moreover, it does so using only one-sixth482

the VRAM of DS-R1-Llama-70B, while offering483

faster inference. Only DS-R1-671B, with nearly484

10× more parameters, achieves higher accuracy,485

but at the cost of nearly 30× more memory.486

We further evaluate GG against BoN and CoT487

strategies on AIME24, AIME25, MATH500, and488

AMC using DS-R1-Qwen 1.5B and 7B models in489

Table 2. To ensure fair and reliable comparison,490

particularly for AIME benchmarks known for high491

variance, all configurations were run four times492

with different seeds, reporting average and maxi-493

Table 3: Performance of PRM-based and
GG(without RL calibration phase) scoring with
Qwen2.5-Math-1.5B-Instruct + DVTS. Higher accuracy
↑ and lower time/memory ↓ are better. Best values for
each N are shown in bold.

Scoring Verifier N
Accuracy [%] ↑ Time

(min/q) ↓
GPU

(GB) ↓
AMC23 MATH500

PRM

MathShepherd-7B 16 58.3 79.1 0.8 19
RLHFlowLlama3.1-8B 16 60.0 79.0 0.9 21
Qwen2.5-MathPRM-7B 16 62.5 79.5 0.8 19

GG(No RL) ✗ 16 63.3 78.9 0.1 4

PRM

MathShepherd-7B 32 60.0 81.1 1.5 23
RLHFlowLlama3.1-8B 32 61.7 80.7 1.6 25
Qwen2.5-MathPRM-7B 32 63.3 82.0 1.5 23

GG(No RL) ✗ 32 65.0 80.0 0.2 5

mum accuracies across runs. Experimental settings 494

match those in Table 2. GG also matches or beats 495

BoN across both N = 32 and N = 64 configura- 496

tions, while requiring approximately 50% less KV 497

cache memory. 498

Comparison with Process Reward Models. To 499

evaluate the generalizability of GG and the strength 500

of confidence-guided search in the absence of 501

Confidence-based RL fine-tuning, we apply GG 502

to Qwen2.5-Math-1.5B-Instruct(Bai et al., 2025), 503

a non-reasoning model commonly used in PRM- 504

guided TTS studies(Wang et al., 2024; Beeching 505

et al.; Liu et al., 2025a). This serves two purposes: 506

(1) to demonstrate GG’s effectiveness on both rea- 507

soning and non-reasoning models, and (2) to assess 508

whether uncalibrated intrinsic confidence can still 509

guide the search. Since this model lacks CoT rea- 510

soning capabilities, we evaluate it only on the eas- 511

ier MATH500 and the medium-difficulty AMC23 512

datasets, avoiding the harder AIME24/25 bench- 513

marks that require deep reasoning. 514

We conduct this evaluation with a 4k token limit 515

and 50 reasoning steps per sample, which reflects 516

the shorter non-CoT answers and the overhead of 517

PRM-guided search. Importantly, the underlying 518

search strategy for both PRM and GG is DVTS; the 519

only difference lies in the guidance signal where 520

GG uses intrinsic confidence, while PRM relies 521

on an external verifier. Table 3 shows that GG 522

matches the performance of several PRMs—such 523

as MathShepherd-7B, RLHFlowLlama3.1-8B, and 524

Qwen2.5-MathPRM-7B—on both AMC23 and 525

MATH500, without relying on external verifiers. 526

Notably, GG achieves this while using less than 527

5GB of GPU memory and running 8× faster, high- 528

lighting its efficiency and practicality. 529
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(a) RL fine-tuning ablation.

Fine-tuning Setting Score ↑

No RL Fine-tuning 54.5%
Correctness Reward Only 54.9%
Confidence (No Penalty) 54.0%
Confidence Reward (GG) 58.9%

(b) Novelty method ablation.

Novelty Method Score ↑

New Token Counting 58.9
Cosine Similarity 58.4

(c) Novelty weight (λN ) ablation.

Novelty Weight (λN ) Score ↑

0.0 57.5
0.5 58.9
1.0 51.9

Table 4: Ablation studies on the AIME24 dataset. All experiments use New Token Counting for novelty unless
otherwise specified. The finalized design is shown in bold.

5 Ablation Studies530

We conduct ablation studies to verify the efficacy531

of the different components that constitute GG. All532

ablation studies utilize DeepSeek-R1-Qwen-1.5B533

under standard experimental conditions (DVTS,534

N = 32, M = 2, λN = 0.5, 16k completion535

length) on AIME24. Reported scores are averaged536

over four runs. Due to space constraints, we pro-537

vide additional ablations in the Appendix A.1.538

Impact of Confidence-Based RL Fine-tuning.539

To assess the contribution of our confidence-based540

reward to RL fine-tuning, we compare four settings:541

(1) no RL fine-tuning, (2) RL with correctness-only542

reward, (3) RL with confidence-based reward but543

without penalizing incorrect answers (i.e., r = 0544

for incorrect completions), and (4) RL with our545

full confidence-based reward(Eq. 6). As shown in546

Table 4a, RL with our Confidence Reward achieves547

the highest score (58.9), outperforming both the no-548

RL baseline (54.5) and the correctness-only reward549

(54.9). Removing the penalty for incorrect answers550

leads to the lowest score (54.0), emphasizing its551

importance. These results show that the gains stem552

not just from RL fine-tuning, but from our specific553

reward design that aligns model confidence with554

correctness and discourages overconfident errors.555

Novelty: Method Selection and Weight (λN ) Im-556

pact. For the novelty component N(st), we con-557

sider two methods: The first is cosine similarity558

using embeddings from a sentence transformer,559

all-MiniLM-L6-v2 (Reimers and Gurevych, 2019).560

The second method is to count new words. As561

shown in Table 4b, counting new words performs562

comparably to cosine similarity but is simpler and563

computationally lighter. Thus, we selected word564

counting for N(st).565

Using word counting for novelty, we then inves-566

tigate the impact of the corresponding weight, λN .567

Table 4c summarizes this ablation. Setting λN = 0568

(no novelty signal) yields a score of 57.5. A bal-569

anced λN = 0.5 achieves the best score of 58.9. 570

Conversely, setting λN = 1 (relying predominantly 571

on novelty) significantly degrades performance to 572

51.9. This confirms that balancing novelty (for 573

exploration) with confidence is crucial, with confi- 574

dence being the primary guiding signal. 575

6 Conclusion 576

We introduce Guided by Gut (GG), a Test-Time 577

Scaling framework enabling smaller Large Lan- 578

guage Models (e.g., 1.5B parameters) to surpass 579

significantly larger models (e.g., 32B) in perfor- 580

mance while offering faster inference and substan- 581

tially reduced GPU memory and KV cache usage. 582

GG leverages intrinsic model signals, confidence 583

and novelty, extracted directly from LLM outputs, 584

further calibrated through reinforcement learning, 585

providing a lightweight and effective alternative 586

to costly external verifier-based methods such as 587

PRMs. Compared to Best-of-N strategies, GG 588

achieves comparable or superior results with ap- 589

proximately 50% less KV cache memory and com- 590

petitive inference speeds, while delivering perfor- 591

mance on par with PRM-guided approaches. 592

Limitations. The intrinsic signals employed in 593

GG, such as confidence scores, do not inherently 594

verify the actual correctness of each reasoning step. 595

There exist cases where the model assigns high con- 596

fidence to incorrect reasoning steps, hence the im- 597

portance of our RL fine-tuning phase. Overall, the 598

goal of our method is to provide a simple, efficient, 599

and without relying on external verifier signals to 600

guide the search process, rather than guaranteeing 601

the absolute correctness of each step that may occur 602

when using a strong PRM. We analyze and discuss 603

representative failure cases in the Appendix A.3 to 604

provide deeper insight into these limitations. 605
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A Appendix855

We provide additional details and analyses to com-856

plement the main paper. Section A.1 includes fur-857

ther ablation studies to dissect the contributions858

of individual components of our Guided by Gut859

(GG) framework. Section A.2 provides a detailed860

walkthrough of our Self-Guided Search algorithm.861

Finally, Section A.3 provides an illustrative exam-862

ple showcasing the step-by-step reasoning process863

of GG.864

A.1 Ablation Studies865

In addition to the main ablations 5, we further ab-866

late the effect of our non-linear reward design and867

the beam width (M ) within the DVTS search algo-868

rithm.869

Table 5: Beam width (M ) ablation on AIME24 with
total paths N = 32. The finalized setting is shown in
bold.

Beam Width (M ) Trees (N/M ) Score ↑

2 16 58.9
4 8 47.0
8 4 44.0

A.1.1 More Insight on Reward Design 870

We further analyze the impact of our non-linear 871

confidence-based reward formulation by compar- 872

ing it against a simpler linear alternative. As 873

defined in Equation 6, our final reward assigns 874

ri = 1 + C(Ri)
4 for correct answers and ri = 875

1−10C(Ri)
4 for incorrect ones. This non-linearity 876

amplifies distinctions between confidence values 877

near the extremes, encouraging stronger learning 878

signals for both confident correct answers and over- 879

confident errors. 880

To isolate the benefit of this non-linear design, 881

we compare it with a linear variant where the re- 882

ward is defined as ri = 1 + C(Ri) if correct, and 883

ri = 1− C(Ri) otherwise. As shown in Figure 4, 884

our non-linear reward leads to better calibration, 885

reducing the average confidence of incorrect com- 886

pletions from 0.91 (linear) to 0.88. This improved 887

separation makes the confidence signal more reli- 888

able for guiding test-time search. 889

In Section 5, we also showed that removing the 890

penalty for incorrect answers altogether (ri = 0 891

if incorrect) significantly degrades performance. 892

Together, these ablations confirm that both the non- 893

linear scaling and the penalty for confident incor- 894

rect answers help with learning a well-calibrated 895

confidence signal. 896

A.1.2 Impact of Beam Width (M ). 897

We examine the effect of the beam width (M ) pa- 898

rameter within our DVTS search strategy, keep- 899

ing the total path budget fixed at N = 32. In 900

DVTS, increasing M reduces the number of inde- 901

pendent subtrees (N/M ) explored. We compare 902

performance for M = 2 (16 subtrees), M = 4 (8 903

subtrees), and M = 8 (4 subtrees), with results in 904

Table 5. Increasing M while keeping N constant 905

entails significantly worse performance: M = 2 906

achieved 58.9, while M = 4 dropped to 47.0, and 907

M = 8 further decreased to 44.0. This confirms 908

that increasing M under a fixed budget N limits 909

exploration diversity crucial for DVTS, making a 910

smaller beam width (M = 2) more effective for 911
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RL Finetuned - Confidence Reward V1 RL Finetuned - Confidence Reward V2

Figure 4: Effect of RL reward design on confidence calibration. Each subplot shows the normalized distribution
of confidence scores for correct (green) and incorrect (orange) completions. Vertical dashed lines mark the mean
confidence for correct and incorrect completions. Left: Linear reward (r = 1 + C if correct, 1 − C if incorrect).
Right: Non-linear reward (r = 1 + C4 if correct, 1− 10C4 if incorrect) improves calibration, further shifting the
average confidence of incorrect completions from 0.91 to 0.88.

the N = 32 budget.912

A.2 Implementation Details of Self-Guided913

Search914

To clarify how the search operates, we walk915

through Algorithm 1 step by step. Our approach916

builds on Diverse Verifier Tree Search, a variant917

of beam search that partitions the total number918

of candidate paths N into N
M diverse subtrees.919

Each subtree is then greedily expanded based on920

confidence-calibrated intrinsic rewards.921

The algorithm begins with a prompt Q, a lan-922

guage model πθ, and user-defined hyperparam-923

eters such as the total number of paths N . In924

line 2, the LLM is queried with Q to generate925

initial reasoning branches, forming the roots of926

several subtrees. For each subtree, we define a927

maximum search depth T and consider M can-928

didate next steps at each level. These candidates929

are scored using the reward in Eq. 4 (line 11),930

and the highest-scoring step is appended to the931

current reasoning chain (lines 12–13).932

The procedure continues recursively until one933

of the termination criteria (lines 14–20) is met:934

(1) the reasoning chain exceeds depth T , (2) the935

total token budget τ is surpassed, (3) the model936

exhibits signs of degeneration such as repetitive937

output, or (4) a complete reasoning chain R with938

a conclusive final answer A is generated. To mit-939

igate premature truncation near token or depth940

limits, we incorporate model-specific prompts941

that encourage finalization. For instance, ap-942

pending "Final Answer" is particularly effective943

with DeepSeek models for reliably triggering944

a conclusive output. Finally, Algorithm 1 ag- 945

gregates the candidate completions and selects 946

the final answer A∗ using a confidence-weighted 947

voting scheme defined in Eq. 5. 948

A.3 Search and Self-Guidance Example 949

We analyze a particular reasoning trace, distinct 950

from the illustrative example presented in the fi- 951

nal part of this section, to demonstrate a scenario 952

where an error initially occurred and to highlight 953

the step-by-step operation of the Guided by Gut 954

(GG) framework. 955

Even though intrinsic confidence often serves 956

as a reliable guiding signal, the model can still 957

make mistakes, as it lacks a mechanism to defini- 958

tively verify correctness. In the provided exam- 959

ple trace, initially, the high-confidence Branch 960

2 mistakenly computes the sum as 459 pounds, 961

despite a confidence score of 0.89 at Step 2 and 962

0.79 at Step 5. However, the intrinsic confidence 963

eventually leads to a self-correction: at Step 7, 964

Branch 2 corrects its previous error, accurately 965

computing the sum as 449 pounds with a con- 966

fidence of 0.82. From this point forward, the 967

correct answer is consistently maintained. 968

This behavior highlights the GG framework’s 969

key strength: it effectively leverages intrinsic 970

signals from the model to guide reasoning de- 971

cisions with negligible computational overhead, 972

achieving performance comparable to other Test- 973

Time Scaling (TTS) methods like Process Re- 974

ward Models (PRMs), but crucially without the 975

heavy computational demands typically associ- 976

ated with them. The example prompt and its 977

12



Algorithm 1: Self-Guided Test-Time Scaling with Confidence-Calibrated DVTS
Input: Prompt Q, Model πθ , Beam width M , Total paths N , Max depth T , Token limit τ
Output: Final Answer A∗

1 Initialize empty answer set A = ∅;
2 Initialize N

M
diverse subtrees from Q;

3 foreach subtree j = 1 to N/M ; ▷ Traverse each subtree
4 do
5 Initialize path R(j) ← [ ];
6 for t = 1 to T ; ▷ Roll out reasoning steps
7 do
8 Generate M candidate steps {sti}Mi=1 using model πθ(R

(j));
9 foreach candidate sti ; ▷ Score each candidate

10 do
11 Compute ri = C(st) + λNN(st);

12 Select top-1 step st∗ ← argmaxi ri;
13 Append st∗ to R(j);
14 if st∗ contains final answer token (e.g., “boxed{}”) ; ▷ Answer is complete
15 then
16 Extract A(j) and add to set A;
17 break and prune subtree j;

18 if TokenCount(R(j)) > τ or t = T−1 ; ▷ Force answer near limit
19 then
20 Append “Final Answer” to R(j);

21 Select final answer A∗ ← confidence-weighted vote over A;
22 return A∗

corresponding reasoning trace are shown below.978

Prompt:979

In the quiet town of Balancing Scales, four980

friends like to cloak their weights in puzzles.981

• Ivy confides, “If you double my weight982

and then add a baker’s dozen, you’ll land983

exactly on Jasper’s number.”984

• Jasper counters, “Kai is as heavy as the985

arithmetic mean of Ivy and me.”986

• Kai chuckles, “That may be so, yet Luna987

still comes in eight pounds lighter than I988

do.”989

Everyone already knows that Ivy tips the scale990

at 125 pounds. What is the combined weight991

of Jasper and Luna, expressed in pounds?992

Reasoning Trace:993

Step 2994

• Branch 1, Confidence Score: 0.88:995

– 2. Jasper and Kai’s Weight Rela-996

tionship:997

– Jasper says, "Kai weighs the average998

of Ivy and me."999

– Let me think about this. If I 1000

take the average of two numbers, 1001

that’s their sum divided by two. 1002

So, mathematically: Kai’s weight = 1003
Ivy’s weight+Jasper’s weight

2 1004

– Plugging in the known values: 1005

Kai’s weight = 125+263
2 1006

– Let’s compute the numerator first: 1007

125 + 263 = 388 1008

– Then divide by 2: 388/2 = 194 1009

– So, Kai weighs 194 pounds. Got that 1010

down. 1011

• Branch 2, Confidence Score: 0.89: 1012

– 2. Jasper and Kai’s Weight Rela- 1013

tionship: 1014

– Jasper says, "Kai weighs the average 1015

of Ivy and me." 1016

– This means that Kai’s weight K is the 1017

average of Ivy’s and Jasper’s weights. 1018

– So, mathematically: K = 1019
Ivy’s weight+Jasper’s weight

2 1020

– Plugging in the known values: K = 1021
125+263

2 1022

– Let me compute the numerator: 125 + 1023

263 = 388 1024

– Then divide by 2: 388/2 = 194 1025

13



– So, Kai is 194 pounds.1026

– 3. Kai and Luna’s Relationship:1027

– Kai laughs, “That’s true, but Luna still1028

comes in eight pounds lighter than I1029

am.”1030

– This tells us that Luna’s weight L is1031

equal to Kai’s weight minus 8 pounds.1032

L = K − 81033

– Since we found K as 194 pounds, this1034

gives: L = 194− 8 = 186 pounds.1035

– So, Luna is 186 pounds.1036

– 4. We need to find the combined1037

weight of Jasper and Luna:1038

– So, that’s J + L.1039

– We already know J is 263 and L is 186,1040

so adding those together:1041

– 263+186 = . . . Let me compute that:1042

– 200 + 100 = 3001043

– 60 + 80 = 1401044

– 3 + 6 = 91045

– Wait, that might not be the right way1046

to break it down. Alternatively, just1047

adding them directly:1048

– 263 + 186:1049

* Start with the units place: 3+ 6 =1050

91051

* Tens place: 6 + 8 = 14, carryover1052

11053

* Hundreds place: 2 + 1 = 3, plus1054

the carried-over 1 makes 41055

– So altogether, 459 pounds.1056

Step 31057

• Branch 1, Confidence Score: 0.5: Let1058

me double-check just in case I made any1059

arithmetic mistakes.1060

• Branch 2, Confidence Score: 0.66: Wait,1061

let me verify each step again to make sure1062

I didn’t make an arithmetic error.1063

Step 51064

• Branch 1, Confidence Score: 0.73: 263 +1065

186: Starting from the right:1066

– 3 + 6 = 91067

– 6 + 8 = 14, carryover 11068

– 2 + 1 + 1(carried) = 41069

So, yes, 449. Previously, I thought 388/2 1070

was 194, then 194 − 8 = 186, and then 1071

adding 263 + 186. 1072

• Branch 2, Confidence Score: 0.79: Com- 1073

pute 263 + 186: 1074

– Units place: 3 + 6 = 9 1075

– Tens place: 6 + 8 = 14, write down 4, 1076

carryover 1 1077

– Hundreds place: 2 + 1 = 3, plus the 1078

carried-over 1 makes 4 1079

So total is 459. So why did I think it was 1080

449 earlier? Maybe a mistake in initial 1081

breakdown. 1082

Step 6 1083

• Branch 1, Confidence Score: 0.6: Wait, 1084

no, my breakdown seems correct: 400 + 1085

40 + 9 = 449. Oh! Wait, wait—no. 263 + 1086

186: Maybe an error in adding. Let’s try 1087

adding 263 + 186 step by step. 1088

• Branch 1, Confidence Score: 0.52: Wait, 1089

263 + 186: I think I miscalculated the tens 1090

and hundreds in my head. Maybe it’s 459, 1091

correct. 1092

Step 7 1093

• Branch 1, Confidence Score: 0.68: Start- 1094

ing from the right: 1095

– 3 (units place) + 6 (units) = 9 1096

– 6 (tens place) + 8 (tens) = 14, carry- 1097

over 1 1098

– 2 (hundreds place) + 1 (hundreds) = 3, 1099

plus the carried over 1 = 4 1100

So, it’s 459. So correct. 1101

• Branch 2, Confidence Score: 0.82: 263 + 1102

186. Break it down: 1103

– Start with 263. Let me add 100 to it: 1104

263 + 100 = 363 1105

– Then add 80: 363 + 80 = 443 1106

– Then add 6: 443 + 6 = 449 1107

Step 8 1108

• Branch 1, Confidence Score: 0.81: Wait, 1109

so if I add 263 + 186: 1110
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– 200 + 100 = 3001111

– 60 + 80 = 1401112

– 3 + 6 = 91113

Total: 300 + 140 + 9 = 449.1114

• Branch 2, Confidence Score: 0.45: Wait1115

earlier, when I thought 449, I was off by1116

one. No, wait—no, actually 263 + 186 =1117

449 is incorrect. So where is the confusion?1118

Is it an arithmetic error?1119

Step 181120

• Branch 1, Confidence Score: 0.73: Wait,1121

so earlier, when I thought it was 459, that1122

was a mistake.1123

• Branch 2, Confidence Score: 0.67: Wait,1124

so that’s the correct combined weight. So1125

earlier when I thought 459, that was a mis-1126

calculation. So now, the answer is 4491127

pounds.1128

A.4 Broader Impacts.1129

This work proposes an efficient test-time reason-1130

ing framework for language models. Our con-1131

tributions reduce the computational requirement1132

needed to use reasoning models. Experimental1133

results demonstrate that we can combine GG1134

with a locally smaller LLM and achieve compa-1135

rable performance to open-source models that re-1136

quire GPU rack servers or closed-source models1137

behind an API. Therefore, one potential future1138

impact of our work we hope to see is increased1139

usage of locally-deployed reasoning LLMs.1140

A.5 License1141

Our work builds on several open-source compo-1142

nents, all released under permissive licenses:1143

• Code:1144

– Open-R1:1145

github.com/huggingface/open-r11146

(Apache 2.0 License)1147

– Search-and-Learn:1148

github.com/huggingface/search-1149

and-learn (Apache 2.0 License)1150

• Models:1151

– DeepSeek-R1 (1.5B and 7B):1152

huggingface.co/deepseek-1153

ai/DeepSeek-R1-Distill-Qwen-1.5B1154

(MIT License)1155

• Training Data: 1156

– GAIR/LIMO dataset: hugging- 1157

face.co/datasets/GAIR/LIMO 1158

(Apache 2.0 License) 1159
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