
Sequential Learning and Retrieval in a Sparse
Distributed Memory:

The K-winner Modern Hopfield Network

Shaunak Bhandarkar∗
shaunakb@stanford.edu

James McClelland∗

jlmcc@stanford.edu

Abstract

Many autoassociative memory models rely on a localist framework, using a neuron
or slot for each memory. However, neuroscience research suggests that memories
depend on sparse, distributed representations over neurons with sparse connectivity.
Accordingly, we extend a canonical localist memory model—the modern Hopfield
network (MHN)—to a distributed variant called the K-winner modern Hopfield
network, equating the number of synaptic parameters (weights) in the localist and
K-winner variants. We study both models’ abilities to reconstruct once-presented
patterns organized into long presentation sequences, updating the parameters of the
best-matching memory neuron (or k best neurons) as each new pattern is presented.
We find that K-winner MHN’s exhibit superior retention of older memories.

1 Introduction

It is common to model memory using an individual neuron [1] or slot [2] for each memory. The
modern Hopfield network (MHN) [3] exemplifies this, storing memories in the connections into and
out of individual neurons and accessing them with computations equivalent to query-based retrieval of
patterns stored in slots in modern artificial intelligence systems [4]. There is, however, an alternative
tradition [5, 6, 7, 8], in which memories are distributed across the connections of a sparse ensemble
of neurons, each connected only to a subset of the neurons representing the item to be stored, and
each participating in many different memories. Inspired by the usefulness of slot-based systems in
AI, we wondered whether certain aspects of their behavior can be captured as emergent properties
of sparse, distributed memory systems. If so, this would help build bridges between computational
abstractions and their possible biological implementations; and if sparse, distributed memories have
advantages, they might be taken up to enhance AI systems.

Another tradition treats memory as unbounded, at least in principle [9, 10], but brains have limited
capacity, so we studied learning in fixed-capacity systems. This requires a policy to allow rapid
storage of new memories while minimizing interference with items previously learned. Here, we
explore a simple policy from early biologically-inspired neural models [1, 11, 12], whereby each
input updates the connections of neurons most closely aligned with itself. We apply this policy in
a setting where the memory system encounters each pattern in a long sequence of independent (or
structured) patterns exactly once, examining fidelity of retrieval of patterns of varying ’ages’.

2 Model Design

Extending the modern Hopfield network (MHN), we present the K-winner MHN, an autoassoicative
memory with visible layer size nv and hidden layer size nh. We see the visible layer as a proxy for

∗Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA

Associative Memory & Hopfield Networks in 2023. NeurIPS 2023 workshop.

A B C

Figure 1: A Comparison of the small-scale K-winner MHN’s and original MHN’s retrieval ability
(using 100% cues) for memories of different ages, relative to their an untrained (pseudo-memory)
baselines. B Same as A but using 50% cues from real and pseudo-memories. Results were averaged
over 200 independent runs of each model. C Retrieval sensitivity d′ for the small-scale K-winner and
original MHN using 100% cues (top) and 50% cues (middle); and d′ with full cues for the large-scale
networks described in the text (bottom). Cyan: d′ standard error. Horizontal segments show ages
where K-winner MHN d′ is higher (red) and MHN d′ is higher (black), with uncorrected p < 0.0159.

the input to the hippocampus (i.e. the entorhinal cortex) while the hidden layer is a simplified proxy
for the hippocampus. The visible layer receives binary patterns with fixed sparsity sv (the fraction
of the nv visible neurons set to 1). The hidden layer forms a binary representation of the input with
sparsity sh, less than sv. We assess retrieval of previously seen patterns from complete or partial
input cues. The original MHN is a special case of this approach, in which sh = 1/nh, so that a single
hidden unit is chosen to represent each memory.

As in the MHN, the stored memories reside in two sets of weights: a matrix M ∈ Rnh×nv from the
visible layer to the hidden layer, and a return matrix M ′ ∈ Rnv×nh . Before training, each entry in
each matrix is initialized uniformly to a number in (0, 1). Additionally, we incorporate the concept
of synaptic sparsity via a binary "fan-in" matrix F ∈ Rnh×nv , in which each row of F is randomly
initialized to have a f · nv of 1’s, where f is the fraction of visible units with connections to each
hidden unit. We thus obtain the effective weight matrices W = M ⊙ F and W ′ = M ′ ⊙ FT (where
⊙ denotes elementwise multiplication), enforcing symmetry as in the MHN. Then, for input pattern
x, the retrieved output is given by

xout = σv(W
′σh(Wx)).

For simplicity, the functions σl (l ∈ {v, h}) are hard k-winner-take-all functions, such that the
kl := sl · nl units of layer l with the highest activations are set to 1 and the rest to 0. Using
z := σh(Wx) for the hidden representation, we generalize the modern Hopfield network via the
biologically inspired weight update rule [1, 11]:

Wij ←Wij + ϵ(xj −Wij)ziFij

where ϵ ∈ (0, 1) is the learning rate. We apply the same update to the jith entry in the return matrix
W ′ [12], imposing symmetry as in the MHN. Note that when sh = 1/nh (so that kh = 1), f = 1,
and ϵ = 1, the model becomes a binary version of the original MHN, storing each new memory that
enters the system in the incoming and outgoing connections of one of its nh neurons, completely
replacing one old memory. When we compare this localist model to the sparse distributed case
(kh > 1, f < 1), we equate the total number of weights (parameters) by setting nh in the K-winner
case to 1/f times the nh of the localist case. We conducted exploratory modeling of the parameter
space of small K-winner models, reporting below on a parameter setting that brings out interesting
comparisons with the original (1-winner) MHN.

3 Experiments

3.1 Sequential Learning with Random Sparse Patterns

We present a small-scale K-winner MHN with ϵ = 0.3, f = 0.5, nh = 200, sh = 0.025 (kh = 5),
and compare it to a small-scale MHN with ϵ = f = 1, nh = 100, sh = 0.01 (kh = 1), testing their

2

Figure 2: Sample tree generated by TGCRP consisting of 10 patterns with nv = 5, sv = 0.6, b = 1.

ability to retrieve previously learned patterns after a single pass through a 4000-pattern sequence
of independent random binary patterns of dimension nv = 100 and sparsity sv = 0.1. Preliminary
analyses showed that no trace of the first 3000 patterns remained in either model. We then examined
each model’s performance in retrieving the most recent 1000 patterns, with weights frozen, on the
following measures.

Full pattern retrieval. For the pattern xa of age a (the ath most recently learned pattern), we assess
the proportion ρ(xa) of the units of xa correctly retrieved at test time, when the full pattern xa is
passed as input (Fig. 1A). For each age a, we also consider an untrained "pseudo-memory" x̃a

(with sv = 0.1) and compute ρ(x̃a). The MHN perfectly retrieves the most recent pattern, but its
performance rapidly degrades. The K-winner MHN’s performance is slightly worse initially2 but
degrades more slowly; Fig. 1C (top) shows a d′ measure3 indicating how well ρ(xa) represents
retrieval above baseline (see Appendix Section 6.1 for a discussion of the difference in baseline
retrieval accuracies between the two models and an alternate metric of memory performance). The
K-winner MHN’s advantage is reliable from age 23.

Pattern completion. We also assessed the proportion of units correctly retrieved from 50% partial cues
(half of the 1’s in xa are randomly chosen and set to 0) from real memories and pseudo-memories
(Fig. 1B). Again, the K-winner MHN’s performance is slightly worse than that of the original MHN
at first, but degrades more slowly, as confirmed by d′ in Fig. 1C (middle). The K-winner MHN’s
advantage is reliable from age 29.

Much sparser fan-in. The entorhinal input to the hippocampus contains far more than nv = 100
units, and each hippocampal neuron connects with a far smaller fraction of entorhinal neurons than
f = 0.5. In light of this, we scaled-up the visible layer, setting nv = 1000, without changing input
pattern sparsity sv = 0.1. For the large-scale K-winner MHN, we set nh = 2000 and f = 0.05 (with
ϵ = 0.3 and sh = 0.025 as before, so that kh = 50), and compared it to an MHN with nh = 100 and
f = ϵ = kh = 1. Fig. 1C (bottom) shows d′ for full pattern probes, averaged over 10 independent d′
samples with each computed using 20 independent runs. Here, the K-winner MHN shines. Both have
d′ > 5 at first. While the large-scale MHN is ahead initially, the large-scale K-winner model’s d′
advantage becomes reliable at age 9 and persists well past age 500.

3.2 Memory Performance with Structured Patterns

It is natural to wonder how our sparse distributed model fares against the 1-winner MHN when
memories have nontrivial similarity structure. One can generate such data by means of a hierarchical
generative process, as items reflective of natural experience often possess hierarchical structure
[13, 14]. We devise a method called the Tree-Generating Chinese Restaurant Process (TGCRP)
described in Appendix Section 6.2. The TGCRP algorithm generates a tree of binary patterns of size
nv and sparsity level sv, in which each child node’s pattern is the same as its parent node’s pattern,
except that b of its 1’s are switched to 0’s and b of its 0’s are switched to 1’s (at random), where b
specifies the number of bit flips going from a parent to a child; the leaf nodes of the tree are used as
the patterns with which to train our memory models (see Fig. 2).

2This occurs because the weight update is not large enough to ensure that the winning units’ outgoing weights
can reproduce the stored item perfectly.

3We averaged over 50 independent sample estimates of d′ using 20 independent runs per sample. Within
each sample, for the memory xa,i and pseudo-memory x̃a,i of age a in run i, we use ρ(xa,i) and ρ(x̃a,i)

to compute δa,i = ρ(xa,i) − ρ(x̃a,i). We then compute d′ = µδa/σδa where µδa = 1
20

∑20
i=1 δa,i and

σδa =
√∑20

i=1(δa,i − µδa)
2/20.

3

We generated large pattern trees using the TGCRP with nv = 1000, sv = 0.1, and varying b, training
the model on a total of 4000 randomly-ordered memory patterns sampled from the leaf nodes of the
tree. As before, we tested the 1000 newest memories (of these 4000 patterns) for retrieval testing,
with weights frozen; we also sampled 1000 untrained "pseudo-memory" patterns from the leaf nodes
of the same tree. To compare the memory sensitivities (past baseline) of the K-winner and original
MHN, we ran a d′ experiment with our large-scale networks for varied b, testing retrieval for full
(100%) cues. With b = 10 the performance of the two models is very similar; for b = 5, the original
MHN performs better, but for b = 15 (out of 100 1-bits), the K-winner advantage for all but the most
recent memories readily emerges (Fig. 3).

Figure 3: d′ measure for our large-scale K-winner MHN and original MHN using 100% cues but
varying the number of bit flips. Cyan: d′ standard error. Horizontal segments show ages where
K-winner MHN d′ is higher (red) and MHN d′ is higher (black), with uncorrected p < 0.01.

4 Discussion

Across our simulations, we find that the localist MHN maximizes retrieval accuracy for small-age
memories, but rapidly loses memory information; our K-winner model yields slightly lower accuracy
for small-age memories but degrades more gracefully for older memories. Although not shown, the
K-winner models exhibit higher cumulative d′ over all past memories, indicating a higher effective
storage capacity. We believe this occurs in part because the K-winner MHN adjusts the weights for
several units using partial weight updates; while this mechanism slightly compromises on perfect
retrieval of recent memories, it enables a given memory trace to persist – superimposed on the weights
associated with other memories – for many iterations of sequential learning before being fully erased.
In contrast, in the MHN, a given memory is erased once its corresponding hidden neuron is assigned
a new memory (see Appendix Section 6.1.3 for a quantitative characterization of this phenomenon).

The K-winner MHN’s retention advantage for older memories appears to persist even when memories
have nontrivial similarity structure (rather than being uniformly sampled at random); at the same time,
training on TGCRP data with very high similarity structure causes learning ability to decrease across
both networks, and the K-winner advantage can be reversed in very high-similarity training data. We
aim to further probe this phenomenon in the context of one-shot visual recognition memory [15], in
which the (structured) dataset consists of suitably generated latent embeddings of naturalistic images.

We have begun to explore the effects of lowering the learning rate (ϵ) in the original MHN. This
allows traces of several memories to persist in this model as well, also at a cost to initial retrieval
accuracy. Future work will explore the performance trade-offs of variants of the MHN with datasets
of varying structure as the parameters kh, f , and ϵ vary from their default values of 1 in the original
MHN. Preliminary findings (see Appendix Section 6.1.4) suggest that a smaller learning rate increases
d′ for older memories in the MHN, but that a K-winner model may still retain an advantage.

In sum, further work is required to understand the full space of K-winner MHNs and their performance
with varied data sets. The work presented here suggests that there may be data and parameter regimes
in which K-winner MHNs (with kh > 1) have clear advantages over MHNs. Future work will also
explore refinements of both models that might further enhance their memory capabilities.

4

5 Acknowledgements

SB was supported by a summer internship award (2022) from the Symbolic Systems department at
Stanford University. We thank members of the PDP lab at Stanford for discussion.

References
[1] Stephen Grossberg. Adaptive pattern classification and universal recoding: 1. parallel development and

coding of neural feature detectors. Biological cybernetics, 23(3):121–134, 1976.

[2] Douglas L. Hintzman. "schema abstraction" in a multiple-trace memory model. Psychological Review,
93(4):411–428, 1986.

[3] Dmitry Krotov and John J. Hopfield. Large associative memory problem in neurobiology and machine
learning. ArXiv, abs/2008.06996, 2021.

[4] Hubert Ramsauer, Bernhard Schafl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gruber,
Markus Holzleitner, Milena Pavlovi’c, Geir Kjetil Sandve, Victor Greiff, David P. Kreil, Michael Kopp,
Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. ArXiv,
abs/2008.02217, 2021.

[5] Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

[6] D. Marr. Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society of
London. B, Biological Sciences, 262(841):23–81, 1971.

[7] Bruce L McNaughton and Richard GM Morris. Hippocampal synaptic enhancement and information
storage within a distributed memory system. Trends in neurosciences, 10(10):408–415, 1987.

[8] Randall C O’Reilly and James L McClelland. Hippocampal conjunctive encoding, storage, and recall:
Avoiding a trade-off. Hippocampus, 4(6):661–682, 1994.

[9] A. Turing. Turing machine. Proc London Math Soc, pages 230–265, 1936.

[10] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska,
Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech
Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summer-
field, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hybrid computing using a neural network
with dynamic external memory. Nature, 538(7626):471–476, October 2016.

[11] Chr Von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik,
14(2):85–100, 1973.

[12] Stephen Grossberg. Adaptive pattern classification and universal recoding: 2. feedback, expectation,
olfaction, illusions. Biological cybernetics, 23(4):187–202, 1976.

[13] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic develop-
ment in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):11537–11546,
2019.

[14] J. McClelland and T. Rogers. The parallel distributed processing approach to semantic cognition. Nat Rev
Neurosci 4, (2003), 4:310–322, 2003.

[15] Lionel Standing. Learning 10000 pictures. Quarterly Journal of Experimental Psychology, 25(2):207–222,
1973.

[16] Laurens de Haan and Ana Ferreira. Extreme Value Theory: An Introduction (Springer Series in Operations
Research and Financial Engineering). Springer, 1st edition. edition, 2010.

5

6 Appendix

6.1 Baseline Retrieval Accuracy and a Raw Difference Metric for Memory Performance with
Random Patterns

6.1.1 Baseline Accuracy

Here we briefly discuss the difference in baseline retrieval accuracy between the K-winner MHN and
the original 1-winner MHN when trained on random untrained patterns (shown in Fig. 1A).

We first consider the original MHN’s retrieval accuracy (where nv = nh = 100). Here, all of
the real patterns and "pseudo-memory" patterns were sampled uniformly from the collection of
length 100 binary patterns with 10 1-bits. When an untrained pattern is presented to an MHN with
nh = 100 other memories stored in it, it will replace the best-matching memory presently in the
system, meaning that this pattern has is expected to have higher-than-average correlation with the
new incoming pattern. This is why the retrieval accuracy baseline for the 1-winner MHN is greater
than 0.1 – the average correlation between random patterns. More precisely, the accuracy baseline
should roughly equal the maximum of nh = 100 samples from the distribution of possible pattern
overlaps; see Section 6.1.3 for more details.

We do not have a full analysis of the exact baseline retrieval accuracy of the K-winner MHN. However,
we can offer an intuitive characterization of some factors contributing to its higher baseline accuracy
(as compared to the original MHN). Recall that in the small-scale K-winner (where nv = 100,
nh = 200, kh = 5, f = 0.5, and ϵ = 0.3), each of the hidden units ’sees’ only a subset of the bits
from any given input pattern. In this case, the distribution of best matches will be based on a smaller
sample size (fnh = 50 rather than nh = 100 elements); correspondingly, the standard deviation of
a sampled proportion is proportional to 1√

n
and the maximum of such a distribution will be larger

than the maximum of a distribution of samples each with a larger n. Additionally, it is possible that
having kh > 1 adds a measure of robustness to retrieval (under uncertainty), enabling the retrieved
output to be averaged over kh rows of the weight matrix W rather than a single row. Other factors
likely influence the actual baseline retrieval accuracy as well.

6.1.2 Raw Difference Metric

Figure 4: Raw difference (R.D.) across memory ages for the (small-scale and large-scale) K-winner
and original MHNs, for 100% and 50% cues. Cyan: standard error. Horizontal segments show ages
where the K-winner MHN has a higher R.D. (red) and original MHN has a higher R.D. (gray), with
uncorrected p < 0.01. Exponential decay regression curves for K-winner (orange) and original MHN
(yellow) nets (all r2 values ≥ 0.96) as well as theoretical fit curve for original MHN shown (green).

In addition to the d′ measure, we use a raw difference (R.D.) metric, averaged over the results 50
samples for our small-scale networks and 10 samples for our large-scale networks (see Fig. 4). Each
R.D. sample itself is computed over 20 independent runs; defining δa,i := ρ(xa,i) − ρ(x̃a,i) (as
explained in Footnote 3), we compute the R.D. sample as µδa = 1

20

∑20
i=1 δa,i. Intuitively, this

simplified metric quantifies a network’s raw retrieval capability past baseline, owing to the learning
process.

6

Next, we computed exponential regression curves for the R.D.’s of each network over memory age
(Fig. 4). This was motivated by the fact that, for the original MHN, the retention for a given memory
decays by a factor of

(
1− 1

nh

)
(proability of slot replacement) at each timestep; for a more detailed

explanation, see Section 6.1.3 below. We perform exponential regression (R.D.(a) ∼ Ce−β(a−1))
over the first 200 memory ages; for example, for the large-scale networks with 50% cues (Fig. 4, bot-
tom), we obtain (Ck-win, βk-win) = (0.366, 0.007) and (CMHN, βMHN) = (0.847, 0.010), respectively.
In Fig. 4, we also compute the theoretical decay curve for the original MHN (derived in Sec-
tion 6.1.3 below): (CMHN-theory, βMHN-theory) =

(
1− sv −

√
2c
nv

(1− sv) log(nh),− log
(
1− 1

nh

))
.

Here, c ∈ (0, 1] is the pattern cue level, expressed as a proportion. Each MHN theory curve
matches its empirical counterpart, e.g., for the large-scale MHN with 50% cues, we obtain
(CMHN-theory, βMHN-theory) = (0.836, 0.010) ≈ (CMHN, βMHN). Comparing the empirical constants
Ck-win and CMHN shows that the original MHN yields higher R.D.’s for small ages; comparing decay
rates (β) shows that the K-winner MHN’s retrieval performance degrades more slowly, supporting its
superior retention of older memories.

6.1.3 Theoretical Analysis of MHN Retention Decay

The raw difference (R.D.) metric used in the previous section captures the retention decay in both our
networks (past their respective baselines); understanding how an exponential decay curve specifically
arises, as well as how the network hyperparameters (ϵ, f , kh) contribute to the particular exponential
decay curve obtained, warrants further theoretical analysis of the K-winner MHN. In this section,
we present a detailed analysis of how the original MHN’s (where kh = 1, ϵ = 1, f = 1) R.D. curve
follows an exponential decay equation, given some light constraints on the cue level c and size of the
network; in future work, we seek to theoretically characterize the decay equation for any K-winner
MHN, using ideas from order statistics [16].
Theorem 1. Suppose M is a slot-based (localist) MHN with input size nv, input sparsity level sv,
and (sufficiently large) hidden size nh, feedforward function f , and that M has been trained on N

patterns where N →∞. Assume additionally that there exists a positive constant c0 << sv log
(

1
sv

)
such that nh ≤ ec0nv . Let xa denote the pattern of age a (with a ≥ 1, and letting a =∞ mean that
xa is a pseudo-pattern), and moreoever let xa,c (c ∈ (0, 1]) be a partial cue for xa, where a random
proportion 1− c of the 1 bits in xa are made 0. Finally, let x̃ := f(xa,c). Then, we have that

θ :=

log

(
1−

(
1− 1

n1+ϵ
h

) 1
nh−1

)
kv log(sv)

<< 1

for any ϵ ∈ (0, 1); moreover, if it holds that c > θ, it follows that

R.D.(a) := E
[
1

kv
x̃Txa −

1

kv
f(x∞,c)

Tx∞

]

=

(
1− sv −

√
2c

nv
(1− sv) log(nh)

)(
1− 1

nh

)a−1

+O

(
log log(nh)

log(nh)

)
.

Here, kv = svnv and R.D.(a) denotes the expectation of the raw difference at age a, where the
expectation is taken over all possible runs of the model M .

To prove this theorem, we need to first prove two propositions.
Proposition 2. Suppose that, with the conditions of the above proposition, the slot that held the
memory xa in the MHN M has been replaced, or alternatively that a =∞. Then, with this additional
condition, we have

E
[
1

kv
x̃Txa

]
= sv +

√
2c

nv
(1− sv) log(nh) +O

(
log log(nh)

log(nh)

)
.

Remark 3. Observe that this proposition gives a formula for the baseline retrieval accuracy of
the MHN M (for the cue level c), or equivalently, the expected retrieval accuracy for any given
pseudo-pattern of cue level c.

7

Proof. Suppose that p1, . . . , pnh
are the patterns stored in M . Then, for the input query xa,c, and

any random stored pattern pi, we have

xT
a,cpi =

∑
j:(xa,c)j=1

(pi)j

is a sum of ckv random variables. Assuming these variables are approximately i.i.d. Bernoulli
random variables with p = kv

nv
= sv, the Central Limit Theorem implies that xT

a,cpi ∼
N
(

ck2
v

nv
,
√
ckvsv(1− sv)

)
. At this point, the stored pattern pi such that xT

a,cpi will be retrieved.
That is, retrieving pi is equivalent to finding the largest value in a sample of nh Gaussian random
variables. To further this insight, we draw from the following theorem from Extreme Value Theory
(see [16], Example 1.1.7):

Theorem 4. Suppose that s1, s2, . . . , sN are i.i.d. samples from the standard Gaussian distribution
N (0, 1). Let S := max1≤j≤N sj . Then, as N →∞, S−aN

bN
converges in distribution to the Gumbel

distribution given by the pdf pG(z) = e−z−e−z

, where aN :=
√
2 log nh − log(4π log(nh))√

2 log(nh)
and

bN := 1√
2 lognh

.

With the terminology of the above theorem, we have that
E [S]− aN

bN
→ E[G] = γ,

where G is a standard Gumbel variable (as specified by the theorem). It is well-known that the
expectation of this variable is the Euler-Mascheroni constant, γ. Rearranging, we have that E[S]→

aN + bNγ =
√
2 log(nh) + O

(
log log(nh)√

log(nh)

)
as N → ∞. Thus, for the random variables xT

a,cpi

(1 ≤ i ≤ nh) given by N
(

ck2
v

nv
,
√
ckvsv(1− sv)

)
, we have

E
[
arg max

1≤i≤nh

xT
a,cpi

]
=

ck2v
nv

+
√
ckvsv(1− sv)E[S]

≈ ck2v
nv

+
√
2ckvsv(1− sv) log(nh) +O

(√
kv log log(nh)√

log(nh)

)
.

Now, suppose that the pattern pl (for some 1 ≤ l ≤ nh maximizes xT
a,cpi. Then, the MHN will

simply retrieve the pattern x̃ := pl. Notice that
E
[
x̃Txa

]
= E

[
pTl xac

]
+ E

[
pTl (xa − xa,c)

]
.

The first summand is exactly the quantity we have just approximated, and the latter summand is
simply the expected amount of correlation between a random pattern with kv 1-bits and a random
pattern with (1− c)kv 1-bits. This is just (1− c)kv · kv

nv
=

(1−c)k2
v

nv
(again, simplifying by assuming

that each bit of pl is a Bernoulli variable). Therefore, (for nh sufficiently large), we have

E[x̃Txa] =
ck2v
nv

+
√
2ckvsv(1− sv) log(nh) +O

(√
kv log log(nh)√

log(nh)

)
+

(1− c)k2v
nv

=
k2v
nv

+
√
2ckvsv(1− sv) log(nh) +O

(√
kv log log(nh)√

log(nh)

)
,

and therefore

E
[
1

kv
x̃Txa

]
= sv +

√
2c

nv
(1− sv) log(nh) +O

(
log log(nh)√
kv
√
log(nh)

)
.

Finally, from the conditions of Theorem 1, we know that nh ≤ ec0nv , meaning that nv ≥ 1
c0

log(nh).

Then,
√
kv ≥

√
svnv ≥

√
sv
c0

log(nh). Therefore, we in fact have

E
[
1

kv
x̃Txa

]
= sv +

√
2c

nv
(1− sv) log(nh) +O

(
log log(nh)

log(nh)

)
.

8

Before proving the main theorem, we prove one further important proposition:

Proposition 5. Fix δ ∈ (0, 1). Suppose that when xa,c is queried to the MHN M , xa is currently
stored in M . Then, provided that

c >
log(1− (1− δ)

1
nh−1)

kv log(sv)
,

it follows that

E
[
1

kv
x̃Txa

]
> 1− δ.

Remark 6. In practice, the lower bound constraint on c can be further refined by more careful
analysis. However, we should note that for our purposes, this bound will suffice. Indeed, for the
large-scale MHN described in the main paper, we have nh = 100, kv = 100, sv = 0.1; if we took
δ = 10−3, then applying the inequality yields the constraint c > 0.05. Therefore, for the experiments
detailed in our paper (which use c = 0.5 (50% cues) and c = 1 (100% cues)), we may effectively
assume that E

[
1
kv
x̃Txa

]
= 1 given that xa is still stored by M .

Proof. First, observe that if xa is still stored by M , then the only way for x̃ to not be xa is if there
exists some other pattern p in M such that xa,c is a sub-pattern of p and the network retrieves this
other pattern. That is,

E
[
1

kv
x̃Txa

]
= E

[
1

kv
x̃Txa

∣∣∣∣ ∃ multiple super-patterns
]
P (∃ multiple super-patterns)+1·P (̸ ∃ other super-patterns).

If we let η := P (∃ multiple super-patterns), then P (∄ other super-patterns) = 1−η and we have that
E
[

1
kv
x̃Txa

]
≥ 1−η. Now, we focus on bounding η above. Notice first that P (∄ other super-patterns)

is the probability that each pattern p among the nh − 1 patterns stored by M that are not xa satisfies
pTxa,c < ckv; in this case, the hidden neuron corresponding to xa will receive the highest activation
and hence xa will be retrieved. Moreover,

P (pTxa,c < ckv) = 1− P (pTxa,c = ckv) = 1− kv
nv

kv − 1

nv − 1
· · · kv − (ckv − 1)

nv − (ckv − 1)
≥ 1− (

kv
nv

)ckv .

Thus,
1− η = P (∄ other super-patterns) ≥

(
1− sckv

v

)nh−1
,

so
η ≤ 1−

(
1− sckv

v

)nh−1
.

Now, given that

c >
log(1− (1− δ)

1
nh−1)

kv log(sv)
,

rearranging gives us
ckv log(sv) < log

(
1− (1− δ)

1
nh−1

)
=⇒ sckv

v < 1− (1− δ)
1

nh−1

=⇒ (1− δ)
1

nh−1 < 1− sckv
v

=⇒ δ > 1− (1− sckv
v)nh−1.

Thus, given that c is bounded below as specified, we have that η < δ and thus

E
[
1

kv
x̃Txa

]
≥ 1− η ≥ 1− δ.

Now, we are ready to prove our main result.

9

Proof of Theorem 1. Notice that, at test time, when xa,c is queried to the MHN M , the original
pattern xa is either still in the network or it has been replaced by another memory. Thus, we have

E
[
1

kv
x̃Txa

]
= E

[
1

kv
x̃Txa

∣∣∣∣ xa in memory
]
P (xa in memory)

+E
[
1

kv
x̃Txa

∣∣∣∣ xa not in memory
]
P (xa not in memory).

By fixing suitable δ close to 0 (e.g., δ = 10−3, as in the case of our large-scale networks – see Remark
6), the first expectation term above is bounded below by 1− δ and above by 1 (using Proposition 5).
To obtain a precise error term (in the general case), suppose that δ = 1

n1+ϵ
h

, for any ϵ ∈ (0, 1). In this

case, we have that 1
n2
h
≤ δ ≤ 1

nh
, so

1− (1− δ)
1

nh−1 = 1−

1− 1

nh − 1
δ +

1
nh−1

(
1

nh−1 − 1
)

2!
δ2 − . . .

≥ 1

nh − 1
δ −

1
nh−1

2!

(
δ2 + δ3 + . . .

)
≥ 1

(nh − 1)n2
h

−
1

nh−1

2!

(
1

nh(nh − 1)

)
≥ 1

(nh − 1)n2
h

− 1

2

1

(nh − 1)2nh
=

nh − 2

2n2
h(nh − 1)2

>
1

4n3
h

,

where we have assumed that nh−2
nh−1 > 1

2 . Consequently, we have that

log(1− (1− δ)
1

nh−1)

kv log(sv)
≤ log(4n3

h)

−nvsv log(sv)
=

1

−sv log(sv)
log 4 + 3 log(nh)

nv

≤ 1

sv log
(

1
sv

) (log 4

nv
+ 3c0

)
= o(1),

where we have used the assumption that nv is sufficiently large and that nh ≤ ec0nv for some positive
constant c0 << sv log

(
1
sv

)
. This indicates that for δ = 1

n1+ϵ
h

, for any ϵ ∈ (0, 1), the term

θ :=
log(1− (1− δ)

1
nh−1)

kv log(sv)

which constrains c from below is made to be sufficiently close to 0; moreover, for this choice of δ, we
have

E
[
1

kv
x̃Txa

∣∣∣∣ xa in memory
]
= 1 + o

(
1

n1+ϵ
h

)
for any ϵ ∈ (0, 1).

Furthermore, by Proposition 2, both of the terms E
[

1
kv
x̃Txa

∣∣∣ xa not in memory
]

and

E
[

1
kv
f(x∞,c)

Tx∞

]
are well-approximated by

sv +

√
2c

nv
(1− sv) log(nh) +O

(
log log(nh)

log(nh)

)
provided that nh is sufficiently large. Finally, because M is a slot-based memory system, the
probability that xa is still in the memory is the probability that the hidden neuron that represents xa

has not since been replaced (for a− 1 timesteps of learning). Thus,

P (xa in memory) =
(
1− 1

nh

)a−1

10

P (xa not in memory) = 1−
(
1− 1

nh

)a−1

.

Putting all of our above facts together, we have that

R.D.(a) = E
[
1

kv
x̃Txa −

1

kv
f(x∞,c)

Tx∞

]
= E

[
1

kv
x̃Txa

]
− E

[
1

kv
f(x∞,c)

Tx∞

]

=

(
1 + o

(
1

n1+ϵ
h

))(
1− 1

nh

)a−1

+

(
sv +

√
2c

nv
(1− sv) log(nh) +O

(
log log(nh)

log(nh)

))(
1−

(
1− 1

nh

)a−1
)

−
(
sv +

√
2c

nv
(1− sv) log(nh) +O

(
log log(nh)

log(nh)

))
=

(
1− sv −

√
2c

nv
(1− sv) log(nh)

)(
1− 1

nh

)a−1

+O

(
log log(nh)

log(nh)

)
.

Theorem 1 indeed shows that the MHN raw difference decay curves presented in Fig. 4 are expected
to closely follow exponential decay equations of the form R.D.(a) = Ceβ(a−1), where

C = 1− sv −
√

2c

nv
(1− sv) log(nh)

and β = − log

(
1− 1

nh

)
.

6.1.4 Performance of MHN with Graded Weight Updates

The theoretical analysis from the previous section fully characterizes retrieval accuracy (and raw
difference) for a special case of the K-winner network where ϵ = 1, f = 1, kh = 1. Our endeavor to
analyze retention decay in the case of general (ϵ, f, kh) can be seen as an endeavor to understand the
parameter space of all possible K-winner MHN’s. As a first step in this direction, one might ask how
the original one-winner MHN performs when the weight updates do not correspond to slot-based
replacements but rather graded adjustments (i.e., ϵ < 1). Does the distributed K-winner MHN (with
kh > 1) still retain its advantages over this modified instantiation of the MHN?

To empirically probe this question, we first ran a test of raw retrieval accuracy for our large-scale
MHN (ϵ = 1, f = 1, kh = 1, nv = 1000, nh = 100) compared against a graded version of
this MHN in which ϵ is reduced to 0.3. Each of their respective retrieval accuracies, shown in
Fig. 5A, is averaged over 10 samples, where each sample itself was computed as an average over
20 independent runs of the respective model (similarly to Footnote 3). We also evaluated the d′

sensitivities for these networks, in addition to those for two (large-scale) distributed K-winner MHN’s
(f = 0.05, kh = 50, nv = 1000, nh = 2000) in which the learning rates were set to ϵ = 0.3 and
ϵ = 0.2, respectively (Fig. 5B).

Somewhat like the K-winner MHN, the graded MHN (ϵ = 0.3) appears to possess lower initial
retrieval accuracy but more graceful retention decay compared to the slot-based MHN (ϵ = 1);
interestingly, the graded MHN also demonstrates robust d′ sensitivity for older memories. In
particular, it appears to maintain a higher d′ than the corresponding large-scale K-winner MHN (with
ϵ = 0.3) from roughly age 400 onwards. However, when the distributed K-winner MHN’s learning
rate is reduced from ϵ = 0.3 to ϵ = 0.2, its resulting d′ values appear to be higher than those of the
graded MHN (Fig. 5B). This suggests that, for any given graded MHN with learning rate ϵ < 1, we
may be able to find a distributed K-winner MHN with learning rate ϵ′ < 1 that maintains a learning
advantage over the graded MHN.

This preliminary exploration of the (ϵ, f, kh)-parameter space additionally suggests that decreasing
ϵ reduces initial retrieval accuracy while also slowing down retention decay for older memories.
More broadly, it highlights the need to theoretically characterize the (ϵ, f, kh) parameter space, so
as to understand whether there exist classes of "optimal" K-winner MHN’s that have high accuracy
baselines and high learning ability past baseline, even for older memories.

11

A B

Figure 5: A Raw retrieval accuracies for large-scale MHN’s with ϵ = 1 and ϵ = 0.3, respectively,
after training on random patterns, using 100% cues during testing. B d′ measure for various K-winner
MHN’s (with the same total number of weights). Reducing ϵ from 0.3 (red) to 0.2 (green) enables the
distributed K-winner MHN to outperform the graded MHN with ϵ = 0.3 (shown in orange).

6.2 More on Hierarchically Generated Patterns

6.2.1 Tree-Generating Chinese Restaurant Process Algorithm

In this section, we illustrate how the Tree-Generating Chinese Restaurant Process Algorithm (TGCRP)
works. The ’Chinese Restaurant Process’ refers to an iterative (discrete) stochastic process for
clustering a group of objects, typically into clusters with uneven frequencies; such a process could,
for example, be useful in modeling objects whose frequencies follow a power law. Because objects in
natural experience tend to have hierarchical similarity structure (e.g., ’living things’ might branch out
into ’animals’ and ’plants’, which could further branch out into ’dogs’, ’cats’, ’trees’, ’bushes’, etc.),
we devise a modified variant of the Chinese Restaurant Process that is capable of probabilistically
generating a tree of patterns; lower patterns in the tree may be thought of as specific instantiations
of their higher-up ancestors in the tree. Moreover, we only take the leaf nodes of such a tree and
use these as the patterns for training and testing. Detailed in Algorithm 1 (below) is the TGCRP
algorithm.

In considering the practical implementation of Algorithm 1, a few important points should be noted:

1. The slightly repetitive calculation of Pi and Ni over the course of generating the probabilistic
tree appears to be onerous, but one can avoid such excessive computation by making them
dynamically updating values that get updated after each iteration.

2. This algorithm is used to generate a tree that contains ’num_data’ number of patterns. When
running the TGCRP algorithm in practice, it should be noted that the number of leaf nodes
of the tree is ∼ 1

2 of ’num_data’.

3. In each independent run of our retrieval d′ (and raw difference) experiments with TGCRP-
generated data, we generated one big tree with 14,000 total nodes, meaning that there were
roughly 7,000 leaf nodes. We shuffled these leaf nodes, and sampled 3,000 of them for
bringing our models’ respective weight distributions to equilibrium (steady state), 1,000
of them to be used as patterns for learning and retrieval, and 1,000 of them to be used as
pseudo-memories. (Note that the d′ and raw difference measures themselves were calculated
by averaging over many independent runs, each of which involved creating a new TGCRP
tree.)

6.2.2 Similarity Structure of TGCRP-Generated Data

In practice, we observe that applying the TGCRP algorithm while varying b produces training data
with varying similarity structure. This is reflected in the data similarity matrices for TGCRP-generated
data (Fig. 6), where we have used a pattern size of nv = 1000 and sparsity level of sv = 0.1. Observe
that decreasing b for a tree causes interspersed rectangular blocks of high similarity to appear, whereas
increasing b sufficiently removes off-diagonal similarity structure (effectively bringing us back to the
case of random i.i.d. patterns).

12

Algorithm 1 Hierarchical Data-Generating Algorithm (TGCRP). ’num_data’ is the number of nodes
in the entire tree. b is the number of bit flips done when going from a parent node to a child node.
Note that the function bit_flipped(p, b) returns a slight ’corruption’ of pattern p in which b random
1’s are set to 0’s and b random 0’s are set to 1’s. Additionally, let pattern(Q) denote the pattern stored
within the tree node Q.

Require: num_data ≥ 1, 1 ≤ b ≤ svnv

Make a root node R0 for the tree, and initialize it with a random binary pattern of length nv and
sparsity level sv .
for i in 1, . . . , num_data - 1 do

Initialize X to be the tree’s root node.
Create node Ri but do not yet add it to the tree.
while node Ri is not yet added to the tree do:

Let C1, . . . , Cm be the children nodes of X (m ≥ 0).
for l in 1, . . . ,m+ 1 do

Nr ← 1+ #{descendants of Cr} for each r = 1, . . . ,m.
if l ≤ m then

Pl ← Nl

1+
∑m

j=1 Nj

else if l = m+ 1 then
Pl ← 1

1+
∑m

j=1 Nj

end if
end for
Sample d ∈ {1, . . . ,m+ 1} using the categorical distribution Cat([P1, . . . Pm+1]).
if d = m+ 1 then

Make node Ri a new child node of X .
Make node Ri store the pattern bit_flipped(pattern(X), b).

else
X ← Cd

end if
end while

end for

Figure 6: A Each matrix shown contains the pairwise dot product similarities for sample TGCRP-
generated data. Matrices for TGCRP-generated data with b = 5, 10, 15, 30 (from left to right) are
shown. B Histograms depicting the upper-triangular entries in each of the matrices in A; as b is
increased (from left to right), the distribution of these entries tends to decrease to baseline. (For each
similarity matrix-histogram pair, we generated a single tree with 4,000 nodes, using a pattern size of
nv = 1000 and sv = 0.1.)

13

	Introduction
	Model Design
	Experiments
	Sequential Learning with Random Sparse Patterns
	Memory Performance with Structured Patterns

	Discussion
	Acknowledgements
	Appendix
	Baseline Retrieval Accuracy and a Raw Difference Metric for Memory Performance with Random Patterns
	Baseline Accuracy
	Raw Difference Metric
	Theoretical Analysis of MHN Retention Decay
	Performance of MHN with Graded Weight Updates

	More on Hierarchically Generated Patterns
	Tree-Generating Chinese Restaurant Process Algorithm
	Similarity Structure of TGCRP-Generated Data

