
Stochastic Inverse Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

The goal of the inverse reinforcement learning (IRL) problem is to recover the1

reward functions from expert demonstrations. However, the IRL problem like2

any ill-posed inverse problem suffers the congenital defect that the policy may be3

optimal for many reward functions, and expert demonstrations may be optimal4

for many policies. In this work, we generalize the IRL problem to a well-posed5

expectation optimization problem stochastic inverse reinforcement learning (SIRL)6

to recover the probability distribution over reward functions. We adopt the Monte7

Carlo expectation-maximization (MCEM) method to estimate the parameter of8

the probability distribution as the first solution to the SIRL problem. The solution9

is succinct, robust, and transferable for a learning task and can generate alternative10

solutions to the IRL problem. Through our formulation, it is possible to observe the11

intrinsic property for the IRL problem from a global viewpoint, and our approach12

achieves a considerable performance on the objectworld.13

1 Introduction14

The IRL problem addresses an inverse problem that a set of expert demonstrations determines a15

reward function over a Markov decision process (MDP) if the model dynamics are known [Rus98,16

NR+00]. The recovered reward function provides a succinct, robust, and transferable definition17

of the learning task and completely determines the optimal policy. However, the IRL problem is18

ill-posed that the policy may be optimal for many reward functions and expert demonstrations may19

be optimal for many policies. For example, all policies are optimal for a constant reward function. In20

a real-world scenario, experts always act sub-optimally or inconsistently, which is another challenge.21

To overcome these limitations, two classes of probabilistic approaches for the IRL problem are pro-22

posed, i.e., Bayesian inverse reinforcement learning (BIRL) [RA07] based on Bayesians’ maximum23

a posteriori (MAP) estimation and maximum entropy IRL (MaxEnt) [ZMBD08, Zie10] based on24

frequentists’ maximum likelihood (MLE) estimation. BIRL solves for the distribution of reward25

functions without an assumption that experts behave optimally, and encode the external a priori26

information in a choice of a prior distribution. However, BIRL also suffers from the practical27

limitation that a large number of algorithmic iterations is required for the procedure of Markov chain28

Monte Carlo (MCMC) in a sampling of posterior over reward functions. Advanced techniques,29

for example Kernel technique [MH12] and gradient method [CK11], are proposed to improve the30

efficiency and tractability of this situation.31

MaxEnt employs the principle of maximum entropy to resolve the ambiguity in choosing demonstra-32

tions over a policy. This class of methods, inheriting the merits from previous non-probabilistic IRL33

approaches including [NR+00, AN04, RBZ06, ADNT08, SS08, HGE16], imposes regular structures34

of reward functions in a combination of hand-selected features. Formally, the reward function is a35

linear or nonlinear combination of the feature basis functions which consists of a set of real-valued36

functions {φi(s, a)}i=1 hand-selected by experts. The goal of this approach is to find the best-fitting37

weights of feature basis functions through the MLE approach. [WOP15] and [LPK11] use deep38

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

neural networks and Gaussian processes to fit the parameters based on demonstrations respectively39

but still suffer from the problem that the true reward shaped by the changing environment dynamics.40

Influenced by the work of [FCAL16, FLA16], [FLL17] propose a framework called adversarial IRL41

(AIRL) to recover robust reward functions in a changing dynamics based on adversarial learning42

and achieves superior results. Compared with AIRL, another adversarial method called generative43

adversarial imitation learning (GAIL) [HE16] seeks to directly recover the expert’s policy rather than44

reward functions. Many follow-up methods enhance and extend GAIL for multipurpose in various45

application scenarios [LSE17, HCS+17, WMR+17]. However, GAIL is in a lack of an explanation46

of expert’s behavior and a portable representation for the knowledge transfer which are the merits of47

the class of the MaxEnt approach, because the MaxEnt approach is equipped with the "transferable"48

regular structures over reward functions.49

In this paper, under the framework of the MaxEnt approach, we propose a generalized perspective of50

studying the IRL problem called stochastic inverse reinforcement learning (SIRL). It is formulated51

as an expectation optimization problem aiming to recover a probability distribution over the reward52

function from expert demonstrations. The solution of SIRL is succinct and robust for the learning53

task in the meaning that it can generate more than one weight over feature basis functions which54

compose alternative solutions to the IRL problem. Benefits of the class of the MaxEnt method, the55

solution to our generalized problem SIRL is also transferable. Since of the intractable integration in56

our formulation, we employ the Monte Carlo expectation-maximization (MCEM) approach [WT90]57

to give the first solution to the SIRL problem in a model-based environment. In general, the solutions58

to the IRL problem are not always best-fitting in the previous approaches because a highly nonlinear59

inverse problem with the limited information is very likely to get trapped in a secondary maximum60

in the recovery. Taking advantage of the Monte Carlo mechanism of a global exhaustive search,61

our MCEM approach avoids the secondary maximum and theoretically convergent demonstrated62

by pieces of literature [CJJ05, CL95]. Our approach is also quickly convergent because of the63

preset simple geometric configuration over weight space in which we approximate it with a Gaussian64

Mixture Model (GMM). Hence, our approach works well in a real-world scenario with a small and65

variability set of expert demonstrations.66

In particular, the contributions of this paper are threefold:67

1. We generalize the IRL problem to a well-posed expectation optimization problem SIRL.68

2. We provide the first theoretically existing solution to SIRL by the MCEM approach.69

3. We show the effectiveness of our approach by comparing the performance of the proposed70

method to those of the previous algorithms on the objectworld.71

2 Problem Statement72

Given an MDP\R := (S,A, T , γ) with a known transition function T := P(st+1 = s′
∣∣st = s, at =73

a) for s, s′ ∈ S and a ∈ A and a hand-crafted reward feature basis function {φi(s)}Mi=1. A stochastic74

regular structure on the reward function assumes weightsW of the reward feature functions φi(s),75

which are random variables with a reward conditional probability distributionDR(W|ζE) conditional76

on expert demonstrations ζE . Parametrizing DR(W|ζE) with parameter Θ, our aim is to estimate77

the best-fitting parameter Θ∗ from the expert demonstrations ζE , such that DR(W|ζE ,Θ∗) more78

likely generates weights to compose reward functions as the ones derived from expert demonstrations,79

which is called stochastic inverse reinforcement learning problem.80

Suppose a representative trajectory class CEε satisfies that each trajectory element set O ∈ CEε is a81

subset of expert demonstrations ζE with the cardinality at least ε · |ζE |, where ε is a preset threshold82

and |ζE | is the number of expert demonstrations, written as,83

CEε :=
{
O
∣∣∣O ⊂ ζE with |O| ≥ ε · |ζE |

}
.

Integrate out unobserved weightsW , and the SIRL problem is formulated to estimate parameter Θ84

on an expectation optimization problem over the representative trajectory class as follows:85

Θ∗ := arg max
Θ

EO∈CEε
[∫
W
fM(O,W|Θ)dW

]
, (1)

2

where trajectory element set O assumes to be uniformly distributed for the sake of simplicity in86

this study, and fM is the conditional joint probability density function of trajectory element O and87

weightsW for reward feature functions conditional on parameter Θ.88

2.0.1 Note:89

• Problem 1 is well-posed and typically not intractable analytically.90

• Trajectory element set O is usually known from the rough estimation of the statistics in91

expert demonstrations in practice.92

• We introduce representative trajectory class to overcome the limitation of the sub-optimality93

of expert demonstrations ζE [RA07], which is also called a lack of sampling representa-94

tiveness in statistics [KM79], e.g., driver’s demonstrations encode his own preferences in95

driving style but may not reflect the true rewards of an environment. With the technique of96

representative trajectory class, each subset of driver’s demonstrations (i.e. trajectory element97

set O) constitutes a subproblem in Problem 1.98

3 Experiments99

We evaluate our approach on a classic environment objectworld introduced by [LPK11] which is100

a particularly challenging environment with a large number of irrelevant features and the highly101

nonlinearity of the reward functions. Note that since almost only objectworld provides a tool that102

allows analysis and display the evolution procedure of the SIRL problem in a 2D heat map, we skip the103

typical invisible physics-based control tasks for the evaluation of our approach, i.e. cartpole [BSA83],104

mountain car [Moo90], MuJoCo [TET12], and etc.105

We employ the expected value difference (EVD) proposed by [LPK11] to be the metric of optimality106

as follows:107

EVD(W) := E
[∞∑
t=0

γt ·R(st, at)
∣∣∣π∗]− E

[∞∑
t=0

γt ·R(st, at)
∣∣∣π(W)

]
,

which is a measure of the difference between the expected reward earned under the optimal policy108

π∗, given by the true reward, and the policy derived from the rewards sampling from our reward109

conditional probability distribution D(W|ζE ,Θ∗), where Θ∗ is the best estimation parameter in our110

approach.111

3.1 Evaluation Procedure and Analysis112

In this section, we design three tasks to evaluate the effectiveness of our generative model reward113

conditional probability distribution D(W|ζE ,Θ∗). For each task, the environment setting is as114

follows. The instance of a 10 × 10 objectworld has 25 random objects with 2 colors and a 0.9115

discount factor. 20 expert demonstrations are generated according to the given optimal policy for the116

recovery. The length of each expert demonstration is 5-grid size trajectory length. Four algorithms117

for the evaluation includes MaxEnt, DeepMaxEnt, SIRL, and DSIRL, where SIRL and DSIRL are118

implemented as Algorithm 2 in Appendix. The weights are drawn from reward conditional probability119

distribution D(W|ζE ,Θ∗) as the coefficients of feature basis functions {φi(s, a)}i=1.120

In our evaluation, SIRL and DSIRL start from 10 samples and double the sample size per iteration121

until it converges for the convergence issue, refer to Section B.2. In the first stage, the epochs of122

algorithm iteration are set to 20 and the learning rates are 0.01. The parameter ε in representative123

trajectory set OEε is preset as 0.95. In the second stage, 3-component GMM for SIRL and DSIRL is124

set with at most 1000 iterations before convergence. Additionally, the architecture of neural networks125

in DeepMaxEnt and DSIRL are implemented as 3-layer fully-connected with the sigmoid function.126

3.1.1 Recovery Experiment127

In the recovery experiment, we compare the true reward function, the optimal policy, and the optimal128

value with ones derived from expert demonstrations under the four methods. Since our approach129

is an average of all the outcomes which are prone to imitate the true optimal value from expert130

3

demonstrations, we use the mean of reward conditional probability distribution for SIRL and DSIRL131

as a comparison.132

In Figure 1, the EVD of the optimal values in the last row are 48.9, 31.1, 33.7 and 11.3 for four133

methods respectively, and the covariances of GMM model for SIRL and DSIRL are limited up to134

5.53 and 1.36 on each coordinate respectively. It yields that in a highly nonlinear inverse problem,135

the recovery abilities of SIRL and DISRL are better than MaxEnt’s and DeepMaxEnt’s respectively.136

The reason is mainly because Monte Carlo mechanism in our approach alleviates the problem of137

getting stuck in local minima by allowing random exit from it.138

3.1.2 Robustness Experiment139

In the robustness experiment, we evaluate the robustness of our approach that solutions generated140

by D(W|ζE ,Θ∗) are effective to the IRL problem. To capture the robust solutions, we design the141

following generative algorithm with the pseudocode in Algorithm 1.142

In the right generative algorithm, we use
Frobenius norm to measure the distance be-
tween weights drawn fromD(W|ζE ,Θ∗) as
follows,

||W||F :=
√

Tr(W ·WT).

We also constrain that each drawn weight
W ∼ D(W|ζE ,Θ∗) in the solution set G
satisfies as follows,

||W −W ′||F > δ and EVD(W) < ε,

whereW ′ represents any member in the so-
lution set G. δ, ε are the preset thresholds in
the generative algorithm.

Algorithm 1: Generative Algorithm

Input: D(W|ζE ,Θ∗), required solution set size N ,
and preset thresholds ε and δ.

Output: Solution set G := {Wi}Ni=1.

while i < N do
W ∼ D(W|ζE ,Θ∗) ;
for anyW ′ ∈ S do

if ||W −W ′||F > δ and EVD(W) < ε then
G ← W;

end
end
i← i+ 1;

end

143

In Figure 2, the right column figures are generated from weights in the solution set G whose EVD144

values are around 10.2. Note that the recovered reward function in the first row has a similar but145

different pattern appearance. The optimal value derived from these recovered reward functions has a146

very small EVD value with the true reward. It yields the effectiveness of our robust generative model147

which can generate more than one solutions to the IRL problem.148

3.1.3 Hyperparameter Experiment149

In the hyperparameter experiment, we evaluate the effectiveness of our approach under the influence150

of different preset quantities and qualities of expert demonstrations. The amount of information151

carried in expert demonstrations composes a specific learning environment, and hence it has an152

impact on the effectiveness of our generative model. We verify three hyperparameters including153

the number of expert demonstrations in Figure 3, the trajectory length of expert demonstrations in154

Figure 4 and the portion size in representative trajectory class CEε in Figure 5 on the objectworld. The155

shadow of the line in the figures represents the standard error for each experimental trail. Notice that156

the EVDs for SIRL and DSIRL are both decreasing as the number and the trajectory length of expert157

demonstrations, and the portion size in the representative trajectory class are increasing. A notable158

point in Figure 3 is that very few expert demonstrations (less than 200) for our approach also yields a159

small EVDs, which manifests the merit of Monte Carlo mechanism in our approach.160

4 Conclusion161

In this paper, we propose a generalized problem SIRL for the IRL problem to get the distribution of162

reward functions. The new problem is well-posed and we employ the method of MCEM to give the163

first succinct, robust, and transferable solution. In the experiment, we evaluate our approach on the164

objectworld and the experimental results confirm the effectiveness of our approach.165

4

References166

[ADNT08] Pieter Abbeel, Dmitri Dolgov, Andrew Y Ng, and Sebastian Thrun. Apprenticeship167

learning for motion planning with application to parking lot navigation. In 2008168

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1083–169

1090. IEEE, 2008.170

[AN04] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement171

learning. In Proceedings of the twenty-first international conference on Machine172

learning, page 1. ACM, 2004.173

[BH99] James G Booth and James P Hobert. Maximizing generalized linear mixed model174

likelihoods with an automated monte carlo em algorithm. Journal of the Royal Statistical175

Society: Series B (Statistical Methodology), 61(1):265–285, 1999.176

[BSA83] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive177

elements that can solve difficult learning control problems. IEEE transactions on178

systems, man, and cybernetics, (5):834–846, 1983.179

[CJJ05] Brian S Caffo, Wolfgang Jank, and Galin L Jones. Ascent-based monte carlo180

expectation–maximization. Journal of the Royal Statistical Society: Series B (Sta-181

tistical Methodology), 67(2):235–251, 2005.182

[CK11] Jaedeug Choi and Kee-Eung Kim. Map inference for bayesian inverse reinforcement183

learning. In Advances in Neural Information Processing Systems, pages 1989–1997,184

2011.185

[CL95] KS Chan and Johannes Ledolter. Monte carlo em estimation for time series models186

involving counts. Journal of the American Statistical Association, 90(429):242–252,187

1995.188

[FCAL16] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between189

generative adversarial networks, inverse reinforcement learning, and energy-based190

models. arXiv preprint arXiv:1611.03852, 2016.191

[FLA16] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse192

optimal control via policy optimization. In International conference on machine193

learning, pages 49–58, 2016.194

[FLL17] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial195

inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.196

[FM+03] Gersende Fort, Eric Moulines, et al. Convergence of the monte carlo expectation197

maximization for curved exponential families. The Annals of Statistics, 31(4):1220–198

1259, 2003.199

[HCS+17] Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph J Lim.200

Multi-modal imitation learning from unstructured demonstrations using generative201

adversarial nets. In Advances in Neural Information Processing Systems, pages 1235–202

1245, 2017.203

[HE16] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances204

in neural information processing systems, pages 4565–4573, 2016.205

[HGE16] Jonathan Ho, Jayesh Gupta, and Stefano Ermon. Model-free imitation learning with206

policy optimization. In International Conference on Machine Learning, pages 2760–207

2769, 2016.208

[KM79] William Kruskal and Frederick Mosteller. Representative sampling, iii: The current209

statistical literature. International Statistical Review/Revue Internationale de Statistique,210

pages 245–265, 1979.211

[LPK11] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement212

learning with gaussian processes. In Advances in Neural Information Processing213

Systems, pages 19–27, 2011.214

[LSE17] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning215

from visual demonstrations. In Advances in Neural Information Processing Systems,216

pages 3812–3822, 2017.217

5

[MH12] Bernard Michini and Jonathan P How. Improving the efficiency of bayesian inverse218

reinforcement learning. In 2012 IEEE International Conference on Robotics and219

Automation, pages 3651–3656. IEEE, 2012.220

[MNW+18] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,221

Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A222

distributed framework for emerging {AI} applications. In 13th {USENIX} Symposium223

on Operating Systems Design and Implementation ({OSDI} 18), pages 561–577, 2018.224

[Moo90] Andrew William Moore. Efficient memory-based learning for robot control. 1990.225

[NR+00] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In226

Icml, volume 1, page 2, 2000.227

[RA07] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In228

IJCAI, volume 7, pages 2586–2591, 2007.229

[RBZ06] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin230

planning. In Proceedings of the 23rd international conference on Machine learning,231

pages 729–736. ACM, 2006.232

[Rus98] Stuart Russell. Learning agents for uncertain environments. In Proceedings of the233

eleventh annual conference on Computational learning theory, pages 101–103, 1998.234

[SS08] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship235

learning. In Advances in neural information processing systems, pages 1449–1456,236

2008.237

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-238

based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and239

Systems, pages 5026–5033. IEEE, 2012.240

[WMR+17] Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas241

Heess. Robust imitation of diverse behaviors. In Advances in Neural Information242

Processing Systems, pages 5320–5329, 2017.243

[WOP15] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep244

inverse reinforcement learning. arXiv preprint arXiv:1507.04888, 2015.245

[WT90] Greg CG Wei and Martin A Tanner. A monte carlo implementation of the em algorithm246

and the poor man’s data augmentation algorithms. Journal of the American statistical247

Association, 85(411):699–704, 1990.248

[Zie10] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum249

causal entropy. 2010.250

[ZMBD08] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum251

entropy inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago,252

IL, USA, 2008.253

6

A Preliminary254

An MDP is a tupleM := 〈S,A, T , R, γ〉, where S is the set of states, A is the set of actions, and255

the transition function (a.k.a. model dynamics) T := P(st+1 = s′
∣∣st = s, at = a) for s, s′ ∈ S and256

a ∈ A is the probability of being current state s, taking action a and yielding next state s′. Reward257

functionR(s, a) is a real-valued function and γ ∈ [0, 1) is the discount factor. A policy π : S → A258

is deterministic or stochastic, where the deterministic one is written as a = π(s), and the stochastic259

one is as a conditional distribution π(a|s). Sequential decisions are recorded in a series of episodes260

which consist of states s, actions a, and rewards r. The goal of reinforcement learning aims to get261

optimal policy π∗ for maximizing the expected total reward, i.e.262

π∗ := arg max
π

E
[∞∑
t=0

γt · R(st, at)
∣∣∣π].

Given an MDP without a reward functionR, i.e., MDP\R=〈S,A, T 〉, and m expert demonstrations263

ζE := {ζ1, · · · , ζm}. Each expert demonstration ζi is a sequential of state-action pairs. The goal of264

the IRL problem is to estimate the unknown reward functionR(s, a) from expert demonstrations ζE265

and the reward functions compose a complete MDP. The estimated complete MDP yields an optimal266

policy that acts as closely as the expert demonstrations.267

A.1 Regular Structure of Reward Functions268

In this section, we provide a formal definition of the regular (linear/nonlinear) structure of reward269

functions. The linear structure [NR+00, ZMBD08, SS08, HGE16] is an M linear combination of270

feature basis functions, written as,271

R(s, a) :=

M∑
i

αi · φi(s, a),

where φi : S ×A 7−→ Rd are a d-dimensional feature functions hand-selected by experts.272

The nonlinear structure [WOP15] is of the form as follows,273

R(s, a) := N
(
φ1(s, a), · · · , φM (s, a)

)
,

where N is neural networks of hand-crafted reward feature basis functions {φi(s, a)}Mi=1.274

B Methodology275

In this section, we propose a novel approach to estimate the best-fitting parameter Θ∗ in Problem 1,276

which is called the two-stage hierarchical method, a variant of MCEM method.277

B.1 Two-stage Hierarchical Method278

The two-stage hierarchical method requires us to write parameter Θ in a profile form Θ := (Θ1,Θ2).279

The conditional joint density fM(O,W|Θ) in Equation 1 can be written as the product of two280

conditional densities gM and hM as follows:281

fM(O,W|Θ1,Θ2) = gM(O|W,Θ1) · hM(W|Θ2). (2)

Take the log of both sides in Equation 2, and we have282

log fM(O,W|Θ1,Θ2) = log gM(O|W,Θ1) + log hM(W|Θ2). (3)

We maximize the right side of Equation 3 over the profile parameter Θ in the expectation-283

maximization (EM) update steps at the t-th iteration independently as follows,284

Θt+1
1 : = arg max

Θ1

E
(

log gM(O|W,Θ1)
∣∣∣CEε ,Θt

)
; (4)

Θt+1
2 : = arg max

Θ2

E
(

log hM(W|Θ2)
∣∣∣Θt
)
. (5)

7

B.1.1 Initialization285

We randomly initialize profile parameter Θ0 := (Θ0
1,Θ

0
2) and sample a collection of N0 rewards286

weights {WΘ0

1 , · · · ,WΘ0

N } ∼ DR(W|ζE ,Θ0
2). The reward weightsWΘ0

i compose reward RWΘ0
i

287

in each learning taskM0
i := (S,A, T , RWΘ0

i
, γ) for i = 1, · · · , N0.288

B.1.2 First Stage289

In the first stage, we aim to update parameter Θ1 in the intractable expectation of Equation 4.290

Specifically, we take a Monte Carlo method to estimate model parameters Θt+1
1 in an empirical291

expectation at the t-th iteration,292

E
[

log gM(O|W,Θt+1
1)

∣∣∣CEε ,Θt
]

:=
1

Nt
·
Nt∑
i=1

log gMt
i
(Oti |WΘt

i ,Θt+1
1), (6)

where reward weights at the t-th iterationWΘt

i are randomly drawn from the reward conditional prob-293

ability distribution DR(W|ζE ,Θt) and compose a set of learning tasksMt
i := (S,A, T , RWΘt

i
, γ)294

with a trajectory element set Oti uniformly drawn from representative trajectory class CEε , for295

i = 1, · · · , Nt.296

The parameter Θt+1
1 in Equation 6 hasNt coordinates written as Θt+1

1 :=
(

(Θt+1
1)1, · · · , (Θt+1

1)Nt

)
.297

For each learning taskMt
i, the i-th coordinate (Θt+1

1)i is derived from maximization of a posteriori,298

(Θt+1
1)i := arg max

θ
log gMt

i

(
Oti |WΘt

i , θ
)
,

which is a convex formulation maximized by a gradient ascent method.299

In practice, we move m steps uphill to the optimum in each learning taskMt
i. The update formula of300

m-step reward weightsWmΘt

i is written as301

WmΘt

i :=WΘt

i +

m∑
i=1

λti · ∇(Θ1)i log gMt
i

(
Oti |WΘt

i , (Θ1)i
)
,

where the learning rate λti at the t-th iteration is preset. Hence, the parameter Θt+1
1 is represented as302

Θt+1
1 :=

(
WmΘt

1 , · · · ,WmΘt

Nt

)
.303

B.1.3 Second Stage304

In the second stage, we aim to update parameter Θ2 in the intractable expectation of Equation 5.305

Specifically, we consider the empirical expectation at the t-th iteration as follows,306

E
(

log hM(W|Θt+1
2)

∣∣∣Θt
)

:=
1

Nt
·
Nt∑
i=1

log hMt
i
(WmΘt

i |Θt+1
2), (7)

where hM is implicit but fitting a set of m-step reward weights {WmΘt

i }
Nt
i=1 in a generative307

model yields a large empirical expectation value. The reward conditional probability distribution308

DR(W|ζE ,Θt+1
2) is a generative model formulated as a Gaussian Mixture Model (GMM), i.e.309

DR(W|ζE ,Θt+1
2) :=

K∑
k=1

αk · N (W|µk,Σk),

where αk ≥ 0 and
∑K
k=1 αk = 1, and parameter set Θt+1

2 := {αk;µk,Σk}Kk=1.310

We estimate parameter Θt+1
2 in GMM by EM approach and initialize GMM with the t-th iteration311

parameter Θt
2 with the procedure as follows:312

For i = 1, · · · , Nt, we have313

8

• Expectation Step: Compute responsibility γij for m-step reward weightWmΘt

i ,314

γij :=
αj · N (WmΘt

i |µj ,Σj)∑K
k=1 αk · N (WmΘt

i |µk,Σk)
.

• Maximization Step: Compute weighted mean µj and variance Σj by,315

µj :=

∑Nt
i=1 γij · WmΘt

i∑Nt
i=1 γij

; αj :=
1

Nt
·
Nt∑
i=1

γij ; Σj :=

∑Nt
i=1 γij · (WmΘt

i − µj) · (WmΘt

i − µj)T∑Nt
i=1 γij

.

After EM converges, Θt+1
2 := {αk;µk,Σk}Kk=1 and profile parameter Θt+1 := (Θt+1

1 ,Θt+1
2).316

Finally, when the two-stage hierarchical method converges, parameter Θ2 of profile parameter Θ is317

our desired best-fitting parameter Θ∗ for DR(W|ζE ,Θ∗).318

B.1.4 Pseudocode319

Algorithm 2: Stochastic Inverse Reinforcement Learning

Input: Model-based environment (S,A, T) and expert demonstrations ζE , Monte Carlo sample
size N0, and preset thresholds δMCEM and εMCEM .

Output: Reward conditional probability distribution DR(W|ζE ,Θ∗).

Initialization: Randomly initialization of profile parameter Θ0 := (Θ0
1,Θ

0
2);

while stopping criteria not satisfied (refer to Section B.2) do
Draw Nt reward weightsWΘt

i ∼ DR(W|ζE ,Θt
2) to compose learning taskMt

i with
uniformly drawn trajectory element set Oti ;

First Stage: Monte Carlo estimation of weights for reward function;
for Mt

i do
Evaluate∇(Θ1)i log gMt

i

(
Oti |WΘt

i , (Θ1)i
)

;
Compute updated weight parameter
WmΘt

i ←WΘt

i +
∑m
i=1 λ

t
i · ∇(Θ1)i log gMt

i

(
Oti |WΘt

i , (Θ1)i
)

;
end
Update Θt+1

1 ← {WmΘt

i }
Nt
i=1 ;

Second Stage: Fit GMM with m-step reward weight {WmΘt

i }
Nt
i=1 with EM parameter

initialization Θt
2 ;

while EM not converge do

Expectation Step: γij ← αj ·N (WmΘt

i |µj ,Σj)∑K
k=1 αk·N (WmΘt

i |µk,Σk)
;

Maximization Step:

µj ←
∑Nt
i=1 γij · WmΘt

i∑Nt
i=1 γij

; αj ←
1

Nt
·
Nt∑
i=1

γij ;

Σj ←
∑Nt
i=1 γij · (WmΘt

i − µj) · (WmΘt

i − µj)T∑Nt
i=1 γij

;

end
Update Θt+1

2 and profile parameter Θt+1 ← (Θt+1
1 ,Θt+1

2);
end

B.2 Termination Criteria320

In this section, we discuss the termination criteria in our algorithm. EM terminates usually when the321

parameters do not substantively change after enough iterations. For example, one classic termination322

9

criterion in EM terminates at the t-th iteration satisfying as follows,323

max
|θt − θt−1|
|θt|+ δEM

< εEM ,

for user-specified δEM and εEM , where θ is the model parameter in EM.324

However, the same termination criterion for MCEM has a risk of early terminating because of the325

Monte Carlo error in the update step. Hence, we adopt a practical method in which the following326

stopping criterion holds in three consecutive times,327

max
|Θt −Θt−1|
|Θt|+ δMCEM

< εMCEM ,

for user-specified δMCEM and εMCEM [BH99]. Other stopping criteria for MCEM refers to [CJJ05,328

CL95].329

B.3 Convergence Issue330

The convergence issue of MCEM is more complicated than EM. In light of model-based interactive331

MDP\R, we can always increase the sample size during each iteration of MCEM. In practice, we332

require the Monte Carlo sample size satisfy the following inequality,333 ∑
t

1

Nt
<∞.

Additional requirement for the convergence property is a compact assumption over that parameter334

space. A comprehensive proof refers to [CL95, FM+03].335

C Experiments336

C.1 Objectworld337

The objectworld is a learning environment for the IRL problem. It is an N × N grid board with338

colored objects placed in randomly selected cells. Each colored object is assigned one inner color339

and one outer color from C preselected colors. Each cell on the grid board is a state, and stepping to340

four neighbor cells (up, down, left, right) or staying in place (stay) are five actions with a 30% chance341

of moving in a random direction.342

The ground truth of reward function is defined in the following way. Suppose two primary colors343

of C preselected colors are red and blue. The reward of a state is 1 if the state is within 3 steps of344

an outer red object and 2 steps of an outer blue object, -1 if the state is within 3 steps of an outer345

red object, and 0 otherwise. The other pairs of inner and outer colors are distractors. Continuous346

and discrete versions of feature basis functions are provided. For the continuous version, φ(s) is347

a 2C-dimensional real-valued feature vector. Each dimension records the Euclidean distance from348

the state to objects. For example, the first and second coordinates are the distances to the nearest349

inner and outer red object respectively, and so on through all C colors. For the discrete version,350

φ(s) is a (2C ·N)-dimensional binary feature vector. Each N -dimensional vector records a binary351

representation of distance to the nearest inner or outer color object with the d-th coordinate 1 if the352

corresponding continuous distance is less than d.353

C.1.1 Evaluation Platform354

All the methods are implemented in Python 3.5 and Theano 1.0.0 with a machine learning distributed355

framework Ray [MNW+18]. The experiments are conducted on a machine with Intel(R) Core(TM)356

i7-7700 CPU @ 3.60GHz and Nvidia GeForce GTX 1070 GPU.357

C.1.2 Experimental Results358

10

Figure 1: Results for recovery experiment.

Figure 2: Results for recovery experiment.

Figure 3: Results under 40, 80,
160, 320, 640, 1280 and 2560 ex-
pert demonstrations.

Figure 4: Results under 1, 2, 4, 8,
16, 32, and 64 grid size trajectory
length of expert demonstrations.

Figure 5: Results under 0.65,
0.70, 0.75, 0.80, 0.85, 0.90, and
0.95 portion size in CEε .

11

	Introduction
	Problem Statement
	Note:

	Experiments
	Evaluation Procedure and Analysis
	Recovery Experiment
	Robustness Experiment
	Hyperparameter Experiment

	Conclusion
	Preliminary
	Regular Structure of Reward Functions

	Methodology
	Two-stage Hierarchical Method
	Initialization
	First Stage
	Second Stage
	Pseudocode

	Termination Criteria
	Convergence Issue

	Experiments
	Objectworld
	Evaluation Platform
	Experimental Results

