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Abstract
Visual classifiers offer high-dimensional feature
representations that are challenging to interpret
and analyze. Text, in contrast, provides a
more expressive and human-friendly interpretable
medium for understanding and analyzing model
behavior. We propose a simple, yet powerful
method for reformulating any visual classifier so
that it can be accessed with open-set text queries
without compromising its original performance.
Our approach is label-free, efficient, and preserves
the underlying classifier’s distribution and reason-
ing processes. We thus unlock several text-based
interpretability applications for any classifier. We
apply our method on 40 visual classifiers and
demonstrate two primary applications: 1) building
both label-free and zero-shot concept bottleneck
models and therefore converting any classifier to
be inherently-interpretable and 2) zero-shot de-
coding of visual features into natural language. In
both applications, we achieve state-of-the-art re-
sults, greatly outperforming existing works. Our
method enables text approaches for interpreting
visual classifiers.1

1. Introduction
Visual classifiers inherently and purely provide visual sig-
nals, which are high-dimensional dense vector representa-
tions of images that are hard to interpret and dissect, limiting
attribution maps as the main medium for interpretation. At-
tribution maps provide general and high-level information,
indicating where in the image the most important region is
for the prediction. Nevertheless, text is significantly more
expressive, human-friendly, specific, and unlocks a variety
of other interpretability applications that require language
(Tewel et al., 2021; Koh et al., 2020; Oikarinen & Weng,
2023; Song et al., 2022; Minderer et al., 2022). Therefore,
a question that arises is how can we talk or access those
visual classifiers via open-set text? Performing this allows
us to have a text interface that can be used to query visual
classifiers. So far, this has only been achieved with generic
vision-language models such as CLIP-based (Radford et al.,
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Figure 1. We formulate any classifier to allow querying it and
measuring its association with any text, while maintaining its
performance and distribution. f is the feature vector of an image

2021), which learn a shared vision-language space and thus
enables any text to query the visual model directly. How-
ever, the deep learning field extends far beyond CLIP. For
example, industries—being the primary end-users of such
models—often rely on custom visual models tailored to
their specific needs. This creates an application bottleneck:
any task involving both visual and textual interpretations
becomes restricted to CLIP or similar approaches, limiting
flexibility, forcing reliance on such models, and inheriting
their limitations.

In this work, we lift this restriction by proposing a method to
reformulate any visual classifier such that it can be accessed
via open-set text (Figure 1). Our method is characterized
by four important properties: First, it is efficient; it is in-
expensive to train and can be performed on any standard
hardware, regardless of the size of the original classifier.
Secondly, it is label-free, no labels are required to achieve
this formulation. Thirdly, it is faithful to the classifier and
preserves its underlying distribution and reasoning process.
Finally, our method is applicable to any vision architecture,
whether convolutional-based, transformer-based or hybrid.

A visual classifier assigns an image to a specific category
from a predefined set of discrete class labels. In ImageNet-
1K (Deng et al., 2009), there are a total of 1, 000 labels.
Originally, these discrete class labels correspond to class
names in text format. For example, in ImageNet-trained
models, the discrete label 1 corresponds to the class goldfish.
These classes are typically discretized to facilitate training
with cross-entropy. However, when the textual class names
are embedded into vector representations (e.g, using a text
encoder or word embedding model), they provide semantic
information. Specifically, these embeddings also semanti-
cally encode words that are close to the class name within
the text embedding space. For the “goldfish” example, the
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closest words could be “freshwater”, “fins” and “orange”.
Our method learns to map images into this text embedding
space, thus associating both the class name and its surround-
ing semantic space with the image. This is accomplished
through a trainable MLP that projects the visual features
into the text embedding space, and is trained by aligning
its output distribution across all classes with the original
classifier’s output distribution, while keeping both the vi-
sual and textual encoders frozen. By using solely the class
names without any supplementary information, we can learn
a semantically meaningful image-text space. This allows us
to query the visual classifier with any text query beyond the
class names.

We demonstrate the effectiveness of our method with two
primary applications. 1) We build label-free concept bot-
tleneck models for any classifier (not being restricted to
CLIP) while obtaining the linear probe classifier in a zero-
shot manner (we do not train a linear probe on the concept
activations), also ensuring that the new linear classifier re-
mains faithful to the original classifier. 2) We show that
our method can decode visual features of any classifier into
natural language in a zero-shot manner, without requiring
training on image-text data such as image-caption pairs,
while also showing the generalization of our method to
datasets beyond ImageNet.

In summary, our contributions are as follows:

• We propose an efficient, label-free method to reconfig-
ure any visual classifier such that it can be queried with
open-set text queries, while also being faithful to the
classifier.

• We demonstrate the effectiveness of our method with
40 different architectures through two applications:
label-free, faithful zero-shot Concept Bottleneck Mod-
els (CBMs) for any visual classifier, and zero-shot
decoding of visual features into natural language.

• Our method sets new state-of-the-art results outper-
forming existing works, including those which use
CLIP as the visual encoder, although being trained
with 400× less images and 400,000× less captions,
thus efficiently learning faithful text interfaces to inter-
pret any visual classifier.

2. Related Work
While CLIP is the predominant approach to interpret vision
models through language (Oikarinen & Weng, 2023), there
exist works that try to decode visual features of models
beyond CLIP. DeVIL (Dani et al., 2023) trains an autore-
gressive text generator to map visual features from different
layers of a classifier into image captions, leveraging anno-
tated image-caption pairs as ground-truth data. Similarly,

Natural Language Explanations (NLEs) (Park et al., 2018;
Kayser et al., 2021; Sammani et al., 2022) use annotated
textual explanations in place of conventional captions. No-
tably, all these works (1) rely on annotated datasets and (2)
explicitly train the generated text to align with what annota-
tors want the visual features to describe, and are therefore
not faithful to the classifier. ZS-A2T (Salewski et al., 2023)
maps attention maps into natural language in a zero-shot
manner using LLMs, but is constrained to vision-language
models trained to learn a shared vision-language embedding
space (e.g., through a contrastive objective), and thus can-
not be applied to visual classifiers. Our work on the other
hand decodes visual features of any classifier in a zero-shot
manner without requiring any annotated data, while also
maintaining faithfulness to the original classifier.

Text-to-Concept (T2C) (Moayeri et al., 2023) is the closest
related work to ours, where a linear layer is trained to map
image features of any classifier into the CLIP vision encoder
space, such that they can be interpreted via text using the
CLIP text encoder. Since the linear layer maps features to
the CLIP space, T2C is strongly biased towards interpreting
the CLIP model rather than the original classifier. As the
ground-truth data for training the linear mapper are the fea-
tures extracted from the CLIP vision encoder, this method is
approximate to using the CLIP vision encoder directly to en-
code the image. Moreover, T2C relies on CLIP supervision.
In contrast, our approach is label-free and our mapping func-
tion is explicitly trained to preserve the classifier’s original
distribution, ensuring faithfulness to it.

3. Method
Consider an image I and a visual classifier F composed
of a visual feature extractor Fv and a linear classifier W .
Note that F can be of any architecture. Fv embeds I into an
n−dimensional feature vector f ∈ Rn. That is, f = Fv(I).
The linear classifier W ∈ Rn×K takes f as input and out-
puts a probability distribution o for the image across K
classes. That is, o = softmax(f.W ) ∈ RK . For ImageNet-
1K, K = 1000. Consider also any off-the-shelf text en-
coder T which takes in an input text l and embeds it into
a m−dimensional vector representation u ∈ Rm. That is,
u = T (l). Note that u and f are not in the same space and
can have a different number of dimensions, so we cannot
query f with the text l.

We propose to learn a simple light-weight MLP mapping
function which projects the visual features f into the text
embedding space of T , resulting in a new vector f̃ . That
is, f̃ = MLP(f), where f̃ ∈ Rm. Note that the visual
encoder Fv, the linear classifier W , and the text encoder
T are all frozen; only the MLP is trainable, making our
method efficient. We then take the textual class names of
the K classes, and convert each into a text prompt lp, repre-
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Figure 2. An overview of our method for reformulating visual classifiers. (a) The process of training the MLP mapping between vision
and text space. (b) The process of inference with adapted visual classifier. The text encoder acts as a linear classifier weight generator in
our re-formulated classification process. indicates that the module is frozen, while indicates trainable.

sented as: “an image of a {class}” where {class} represents
the class name in text format. This results in K textual
prompts, each of which is encoded with T : ui = T (lpi ),
∀i = 1, . . . ,K. Stacking all the encoded prompts, we get
a matrix U ∈ RK×m. We then calculate the cosine similar-
ity2 between each ui and the visual features f : si = f̃ .ui.
Equivalently, this can be performed as a single matrix multi-
plication: S = f̃ .UT , where S ∈ RK represents the cosine
similarity scores between the visual features and every text
prompt lpi representing a class.

The most straightforward approach to training the MLP map-
per is to leverage the ground-truth labels from the dataset,
aligning S with the ground-truth distribution. However, this
approach violates two key properties: (1) it necessitates
annotated data, and (2) re-training the classifier alters its
original distribution o, thereby changing the reasoning pro-
cess of the classifier (i.e., how it maps visual features to
class probabilities and makes predictions). Notably, the
original soft probability distribution o is a function of the
linear classifier W , so W cannot be ignored. We instead
propose to align S to the original distribution o through the
cross-entropy loss. For a single sample, the loss is given by:

L = −
K∑
i=1

oi log

(
esi∑K
j=1 e

sj

)
. (1)

This task can be viewed as a knowledge distillation prob-
lem, except that we do not distill the knowledge of a bigger
teacher model to a smaller student model, but distill the
distribution of the original model to a reformulated way of
classification. This makes our approach label-free and pre-
serves the distribution and reasoning process of the classifier
F . We provide a PyTorch-like pseudocode of our training
approach in Listing 1, and illustrate it in Figure 2(a). It is

2in the rest of this paper, we will omit the unit norm in cosine
similarity to reduce clutter, and represent it with the dot product

important to note that we only use the class name to for-
mulate the textual prompt lp, and no other supplementary
information such as class descriptions or hierarchies (see
Section F in the appendix for more information).

After training, the projected visual features and the text en-
coder features lie in the same space, and we can therefore
query the visual features with any text by finding the align-
ment score between the encoded text and the visual features.
In the case of image classification, the text queries remain
the class prompts, and encoding them with the text encoder
T is equivalent to generating the weights of a linear clas-
sifier for the newly formulated classification task, defined
as argmax(f̃ .UT ). This is shown in Figure 2(b). We show
later that this weight generating process is important to build
faithful concept bottleneck models.

# text_feats: textual features of class names from a frozen
sentence encoder, shape (num_classes, text_dim)

# classifier: linear classifier weights of a frozen
vision_encoder, shape (visual_dim, num_classes)

# mlp: trainable MLP from visual_dim -> text_dim
# images: batch of B images, shape (N, 3, height, width)

visual_feats = vision_encoder(images) # (N, visual_dim)
logits = visual_feats @ classifier # (N, num_classes)
original_dist = softmax(logits, dim=-1) # (N, num_classes)

mapped_feats = mlp(visual_feats) # (N, text_dim)
mapped_feats = l2_norm(mapped_feats) # (N, text_dim)
text_feats = l2_norm(text_feats) # (N, text_dim)

pred_logits = mapped_feats @ text_feats.T # (N, num_classes)
pred_dist = softmax(pred_logits, dim=-1) # (N, num_classes)

# cross entropy with original model’s soft distribution
loss = -(original_dist * log(pred_dist)).sum(dim=1).mean()
loss.backward() # only mapper parameters are updated

Listing 1. PyTorch-like pseudocode for our method

4. Applications
In this section, we show how our method can be used to
build text-based interpretability applications. At application,
all model components (including the MLP) are frozen.

3
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4.1. Zero-Shot Concept Bottleneck Models

Concept Bottleneck Models (CBMs) (Koh et al., 2020) are
a class of inherently interpretable models and have recently
attracted significant attention. They consist of two steps: (1)
concept discovery, followed by (2) concepts-to-predictions.
In (1), the dense output features of a visual encoder are first
mapped to textual concepts (e.g., words or short descriptions
of objects) each with a score which represents the concept
activation to the image. In (2), a linear classifier W con is
trained on top of these concept activations to predict the
class such that a prediction can be interpreted as a linear
sum of interpretable concepts rather than a linear sum of
dense features. Recently, the Label-Free CBMs (LF-CBMs)
family uses CLIP to perform the concept discovery step
without annotated image-concept data, by either using CLIP
as a model to provide ground-truth image-concept simi-
larities to train a layer which performs concept discovery
(Oikarinen et al., 2023), or by querying the image features
from a set of predefined concepts within the CLIP space
(Yang et al., 2022; Panousis et al., 2023) and using the co-
sine similarity scores between the concepts and the image as
concept activations. However, there are major issues in the
current literature of CBMs. Firstly, LF-CBMs are restricted
to CLIP-based models, as the concept discovery step would
otherwise not be possible since it necessitates an image-text
similarity model. Secondly, all CBM approaches to date
require training a linear probe on the concept activations
which 1) hinders an on-the-fly ready-to-deploy CBMs, and
2) disconnects W con from the original feature-based clas-
sifier U , since W con is trained from scratch in a different
space using ground-truth data and is hence not faithful to the
original model, and 3) requires training a new W con classi-
fier for every different set of concepts, hindering flexibility
to the choice of concepts.

Our method allows us to solve all the aforementioned is-
sues and formulate zero-shot CBMs for any classifier. We
remind readers from Section 3 that U ∈ RK×m represents
the classification weights of the newly formulated classifier
(the output of the text encoder T for the class prompts). We
assume that we are given a large set of predefined textual
concepts, denoted as Z , and with cardinality |Z| = Z. Fol-
lowing other works (Rao et al., 2024), and without loss of
generality, we use the Z = 20K most common words in
English3 as our concept set. These are general concepts
that represent world knowledge and are not tailored towards
any specific dataset. We use the same text encoder T that
generates the linear classifier U to generate concept embed-
dings, by feeding each concept zi ∈ Z to the text encoder
T to generate a concept embedding ci. That is, ci = T (zi),
∀i = 1, . . . , Z. By performing this for all Z concepts, we
obtain a concept embedding matrix C ∈ RZ×m. For an im-

3https://github.com/first20hours/google-10000-english

age I , we extract its visual features f and use MLP to map
them to f̃ which now lies in the text embedding space. That
is, f̃ = MLP(f), and f̃ ∈ Rm. Since C and the mapped
visual features f̃ are now in the same space, we can query f̃
to find which concepts it responds to. That is, we perform
concept discovery using the cosine similarity between f̃ and
C. The concept activations are obtained by f̃ .C ∈ RZ and
represent the activation score for each of the Z concepts.
We provide an illustration in Figure 3.
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Figure 3. Our suggested approach to concept discovery in CBMs.

We now show how to build the classifier W con that takes in
the concept activations and outputs a distribution Scn over
classes. We build W con in a zero-shot manner. Here, zero-
shot indicates that no training is required to map concept
activations to classes. Recall that both U and C are outputs
of the text encoder T , and they are already in the same space.
Therefore, we can build the weights of the classifier W con

with a text-to-text search between the concepts and the class
name. Specifically, we calculate the cosine similarity be-
tween the concept embeddings C and the linear classifier U
to obtain the new weights for W con. That is, we perform
C ·UT ∈ RZ×K . Therefore, the weights of W con represent
how similar the class name is to all the concepts. In total,
the output distribution Scn of the CBM is defined as:

Scn = (f̃ · CT )︸ ︷︷ ︸
concept discovery

· (C · UT )︸ ︷︷ ︸
concept-to-class

= f̃ · CTC︸ ︷︷ ︸
gram matrix

·UT . (2)

By observing Eq. 2, we observe that we scale the linear
feature-based classifier U by the gram matrix of concepts
(CTC ∈ Rm×m). Notably, if the gram matrix is identity
(CTC = I), we get back our original feature-based clas-
sifier given by f̃ .UT . Therefore, to convert any classifier
to a CBM, all we have to do is plug in the gram matrix
in-between, making it a convenient way to directly switch
to an inherently interpretable model. Eq. 2 also shows that
we do not change the linear classifier U , we only scale it
by the gram matrix of concepts. This means our CBMs
are faithful to the original classifier. By this, we obtain
zero-shot CBMs that discover concepts and builds W con,

4
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both in a training-free manner, for any classifier, while also
maintaining faithfulness to the original classifier and being
flexible in the concept set.

4.2. Zero-Shot Decoding of Visual Features into Text

In this application, we aim to decode the visual feature vec-
tor f for an image I , given by f = Fv(I), into natural
language sentence. This offers a text-based interpretation
of what the visual features contain. We adapt the method
introduced in (Tewel et al., 2021) for our purpose. Specifi-
cally, we first project the visual feature vector f using the
MLP to obtain f̃ . That is, f̃ = MLP(f). Since f̃ is now in
the same space as the text encoder T , we can measure its
association to any encoded text. We utilize an off-the-self
pretrained language decoder model (e.g., GPT-2), denoted
as G, to generate open-ended text. We keep G frozen to
maintain its language generation capabilities and instead
use prefix-tuning (Li & Liang, 2021) to guide G to generate
a text that maximizes the similarity with the transformed
visual feature vector f̃ . Specifically, we attach a set of learn-
able “virtual” tokens to G. Denote the generated output text
of G for one iteration as hj , where j represents the iteration
number. hj is encoded with the text encoder T , to yield a
vector yj , That is, yj = T (hj). As yj and f̃ are now in the
same embedding space, we maximize the cosine similarity
between them in order to update the learnable tokens. We
perform this process for several iterations. An overview of
this process is shown in Figure 4. As this process is not
the core contribution of our work, we leave more details to
Section E of the appendix, which also includes a detailed
illustration in Figure 9.

MLP

ViT/CNN

ሚ𝑓

Text Encoder 
𝑓

Pretrained 
Language 
Model

Prefix Hard Prompt

text generated

maximize 𝑦1

Figure 4. To decode visual features into natural language using
any pretrained language decoder (e.g., GPT-2), we apply prefix
tuning while keeping the language decoder fixed, generating text
that maximizes the similarity with the visual features. The figure
is shown for iteration j = 1

5. Experiments
We first provide results on our newly formulated visual
classifiers. We use the ImageNet-1K dataset due to the

widespread availability of visual classifiers trained and eval-
uated on it. We apply our method on a diverse set of
40 visual classifiers. For CNNs, we consider the follow-
ing family of models (each with several variants): Resid-
ual Networks (ResNets) (He et al., 2015), Wide ResNets
(Zagoruyko & Komodakis, 2016), ResNeXts (Xie et al.,
2016), ShuffleNetv2 (Ma et al., 2018), EfficientNetv2 (Tan
& Le, 2021), Densely Connected Networks (DenseNets)
(Huang et al., 2016), ConvNeXts (Liu et al., 2022) and
ConvNeXtv2 (Woo et al., 2023). For Transformers, we
consider the following family of models (each with several
variants): Vision Transformers (ViTs) (Dosovitskiy et al.,
2021), DINOv2 (Oquab et al., 2024), BeiT (Bao et al., 2022),
the hybrid Convolution-Vision Transformer CvT (Wu et al.,
2021), Swin Transformer (Liu et al., 2021b) and Swin Trans-
former v2 (Liu et al., 2021a). All models are pretrained on
ImageNet-1K from the PyTorch4 and HuggingFace (Wolf
et al., 2020) libraries. Models with the subscript pt indicate
that the model was pretrained on ImageNet-21k before be-
ing finetuned on ImageNet-1K. Models with a subscript v2
are trained following the updated PyTorch training recipe
(Vryniotis, 2021). Finally, BEiT, DINOv2 and ConvNeXtv2
are pretrained in a self-supervised manner before being fine-
tuned on ImageNet-1k. Both the pretrained classifier and
text encoder remain frozen, only the MLP is trained on the
ImageNet training set following Eq. 1.

Performance is evaluated using the same protocol and
dataset splits as the original classifier, specifically the 50,000
validation split of ImageNet-1K. For the text encoder, we
use the MiniLM Sentence Encoder (Wang et al., 2020).
Implementation details can be found in Section D of the
appendix. Results are presented in Table 1. We report
the replicated Top-1 accuracy of the re-formulated classi-
fier with our method in the first column, the original Top-1
accuracy of the classifier in the second column, and the
difference between them (∆) in the last column. As can be
seen, the loss in performance as indicated by ∆ is minimal,
with an average drop in performance of approximately 0.2
points across all models. We refer to Appendix Section C
for results on other models, and Appendix Section B for
ablation studies on alternative text encoders.

Zero-Shot Concept Bottleneck Models: We report CBM
evaluation results on the ImageNet validation set using the
top-1 accuracy in Table 2. Our zero-shot CBMs (ZS-CBMs)
outperforms all the supervised CBMs, even those based on
the CLIP family, and sets a new state-of-the-art. Notably,
even a simple ResNet-50 classifier trained solely on Ima-
geNet already outperforms the CBM for the significantly
more powerful ResNet-50 CLIP model trained on 400M
samples. The best results are obtained by the ConvNeXtv2
and ViT-L/16 models, which achieve a top-1 accuracy of

4https://pytorch.org/vision/stable/models.html
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Model Top-1 Orig. ∆

ResNet50 75.80 76.13 −0.33
ResNet50v2 80.14 80.34 −0.20
ResNet101v2 81.50 81.68 −0.18
ResNet101 77.19 77.37 −0.18
WideResnet50 78.35 78.47 −0.12
WideResNet50v2 81.17 81.31 −0.14
WideResNet101v2 82.21 82.34 −0.13
DenseNet161 77.04 77.14 −0.10
DenseNet169 75.46 75.60 −0.14
EfficientNetv2-S 84.04 84.23 −0.19
EfficientNetv2-M 84.95 85.11 −0.16
ShuffleNetv2x2.0 75.83 76.23 −0.40
ConvNeXt-Small 83.42 83.62 −0.20
ConvNeXt-Base 83.88 84.06 −0.18
ConvNeXt-Bpt 85.27 85.52 −0.25
ResNeXt50-32x4d 77.44 77.62 −0.18
ResNeXt50-32x4dv2 80.79 80.88 −0.09
ResNeXt101-64x4d 83.13 83.25 −0.12
ResNeXt101-32x8d 79.10 79.31 −0.21
ViT-B/16 80.70 81.07 −0.37
ViT-B/16v2 84.94 85.30 −0.36
ViT-L/32 76.72 76.97 −0.25
ViT-L/16 79.56 79.66 −0.10
Swin-Base 83.22 83.58 −0.36
Swinv2-Base 83.72 84.11 −0.39
BeiT-B/16 84.54 85.06 −0.52
BeiT-L/16 87.22 87.34 −0.12
DINOv2-B 84.40 84.22 +0.18
ConvNeXtV2-B 84.56 84.73 −0.17
ConvNeXtV2-Bpt 86.07 86.25 −0.18
ConvNeXtV2-Bpt@384 87.34 87.50 −0.16

Table 1. Performance comparison of our re-formulated classifiers
for several models. Top-1 indicates our results of the new formula-
tion, and Orig. denotes the original Top-1 accuracy. ∆ represents
the difference between them ∆ = Top-1 - Orig.

86.3. All models show close to original accuracy, which
means we can transform any classifier to be inherently inter-
pretable without much loss in performance.

In Figure 5, we present qualitative examples of a selection
from the top concepts responsible for the prediction, along
with their weight importance. The weight importance is
calculated by multiplying the concept activation with its
corresponding weight to the predicted class. By observing
the second example, we see that the image is predicted as a
“goose” because it has duck-like features, it is in the size of a
swan, and it has bird and pigeon-like features. Similarly, we
can see that the third image is a “spotted salamander” due
to its lizard-like structure, a head that looks like the frog’s
head, a snake-like tail and spots like a leopard. In the last
image, we can see that the prediction is “ostrich” due to its

Method Model Top-1

Supervised CBMs
LF-CBM CLIP ResNet50 67.5
LF-CBM CLIP ViT-B/16 75.4
LaBo CLIP ResNet50 68.9
LaBo CLIP ViT-B/16 78.9
CDM CLIP ResNet50 72.2
CDM CLIP ViT-B/16 79.3
DCLIP CLIP ViT-B/16 68.0
DN-CBM CLIP ResNet50 72.9
DN-CBM CLIP ViT-B/16 79.5

Zero-Shot CBMs (Ours)
ZS-CBM ResNet50 73.9
ZS-CBM ResNet50v2 78.1
ZS-CBM ResNet101 75.3
ZS-CBM ResNet101v2 79.9
ZS-CBM WideResNet50 76.9
ZS-CBM WideResNet50v2 79.2
ZS-CBM WideResNet101v2 81.0
ZS-CBM DenseNet121 69.9
ZS-CBM DenseNet161 75.2
ZS-CBM EfficientNetv2-S 83.0
ZS-CBM EfficientNetv2-M 83.9
ZS-CBM ConvNeXt-Small 81.9
ZS-CBM ConvNeXt-Base 82.8
ZS-CBM ViT-B/32 73.3
ZS-CBM ViT-B/16 79.3
ZS-CBM ViT-B/16v2 83.2
ZS-CBM Swin-Base 82.2
ZS-CBM Swinv2-Base 82.6
ZS-CBM ViT-B/16pt 81.5
ZS-CBM BeiT-B/16 83.0
ZS-CBM DINOv2-B 82.6
ZS-CBM ConvNeXt-Bpt 84.0
ZS-CBM ConvNeXtV2-Bpt 84.9
ZS-CBM BeiT-L/16 86.2
ZS-CBM ConvNeXtV2-Bpt@384 86.3
ZS-CBM ViT-L/16v2 86.3

Table 2. Performance of Zero-Shot CBMs (ZS-CBM) on ImageNet
validation set for several classifiers.

camel-like hump, mammal-like size, piegeon-like body, the
horse-riding-like feature, and is a type of a bird. In Figure
6, we present a probability distribution of global class-wise
concepts. These are concepts detected for all images of
a specific class, along with their frequency. We consider
two semantically similar classes but distinctively different:
“hammerhead shark” and a “tiger shark”. We highlight in
yellow the top concepts in “hammerhead shark” that are not
present in “tiger shark”. These concepts are “harpoon” and
“lobster hammer”, both which are distinctive to the head of
the hammerhead shark and drive its prediction.

Zero-Shot Decoding of Visual Features: We now evalu-
ate the performance of the textually decoded visual features.
Since the ground-truth content of visual features is unknown,
we rely on COCO captions (Lin et al., 2014) for evalua-
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camel                      0.16  

mammals           0.1  
pigeon            0.09 
horse            0.08 

birds             0.08 

feathers      0.08 

prediction : ostrich

reptiles                     0.09 
lizard                     0.08
frog                      0.07 
snake              0.05 
leopard       0.04 
serpent        0.04 

prediction : spotted salamander
a desert animal     0.17 
a venom                0.15

claws on legs      0.15 

lizard-like body      0.13

a spider           0.12 

prediction : scorpion

small, crab-like  0.11

duck                        0.22

swan                  0.18 
bird                  0.17 
pigeon            0.17 

poultry         0.15 

feather      0.14 

prediction : goose

Figure 5. Qualitative examples of our zero-shot CBMs. We show the top-detected concepts, each with their corresponding importance
score to the prediction. All examples use the 20K concept set, except for the first which uses the ImageNet LF-CBM concept set

hammerhead shark tiger shark

Figure 6. Global class-wise interpretability analysis with our Concept Bottleneck Model. We highlight in yellow the top concepts in
”hammerhead shark” that are not present in ”tiger shark”, and therefore distinctive to ”hammerhead shark”.

tion. While these captions may not perfectly correspond
to the actual information represented by a visual feature
vector—potentially differing from what a human annotator
expects—they provide a reasonable approximation for this
purpose. Note that the COCO dataset differs in distribution
than ImageNet, as a single image may contain many ob-
jects, interactions between them, and potentially categories
not included in ImageNet (e.g., person). Therefore, it also
serves as a way to evaluate generalization of our method to
other datasets, given that we only used the ImageNet class
names for training. Since we do not train any model on the
ground-truth image captions provided by COCO, we use
zero-shot image captioning as a benchmark. We present
results on the widely used “Karpathy test split” with various
vision classifiers.

As baselines, we compare our approach against existing
methods in zero-shot image captioning, specifically Zero-
Cap (Tewel et al., 2021) and ConZIC (Zeng et al., 2023),
both which use CLIP. For evaluation, we employ standard
natural language generation (NLG) metrics: BLEU-4 (B@4)
(Papineni et al., 2002), METEOR (M) (Banerjee & Lavie,
2005), ROUGE-L (R-L) (Lin, 2004), CIDEr (C) (Vedantam
et al., 2014), and SPICE (S) (Anderson et al., 2016). Results
are shown Table 3. ConvNeXtv2 achieves state-of-the-art
performance on CIDEr and SPICE, the two most critical
metrics for evaluating image captioning systems. Even with
a simple ResNet-50 vision encoder trained on ImageNet-1K
(1.2 million images), our approach outperforms the baseline

methods on CIDEr and SPICE, despite the latter utilizing the
significantly more powerful CLIP vision encoder, trained
on 400 million image-text pairs. We also present qualita-
tive examples of the decoded visual features for different
models in Figure 7. We can see from the first example,
that BeiT-L/16 contains both the vegetables and dog in its
features, while ConvNexTv2 only focuses on the vegetables,
and ViT-B/16 and DINOv2 only focus on on the dog. Al-
though some generations lacks semantic correctness (e.g.,
who was born in a dog), they are still meaningful enough for
humans to understand and reason. This application allows a
user-friendly way of interpreting visual features, applicable
even to a layman user.

Note that our results in Table 3 are outperformed by the
baseline ZeroCap on the BLEU-4 (B4) and METEOR (M)
metrics. However, it is important to note that B4 and M are
n-gram overlap-based metrics. They assume that the gener-
ated caption follows a specific structure and style. We verify
this by revisiting an old image captioning paradigm termed
as compositional captioning (Kulkarni et al., 2011), and
later revived with deep learning methods (Lu et al., 2018).
In compositional captioning, a set of image-grounded con-
cepts (such as attributes, objects and verbs) are first detected,
and a language model is then used to compose them into a
natural sounding sentence. With the current advancements
of Large Language Models (LLMs), we can use an LLM
as a compositioner. Specifically, we detect the top concepts
and verbs to the image using the concept discovery method

7
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BeiT-L/16: shower curtain, bathing room and toilet.
ConvNextv2: shower curtain toilet seat and toilets, which 
were made by the bath.
ViT-B/16: shower curtain in the bathroom, and a small 
bathtub.
DINOv2-B: showers curtain seating in the toilets at showering.

BeiT-L/16: motorcycles with the motorized scooters and 
electric motors
ConvNextv2: motorbike, scooter and motorcycle scrapping
ViT-B/16: motorcycles and motor scooters, motorcycle engines
DINOv2-B: motorcycles propelled by the propulsion motorless 
robotic scrappers

BeiT-L/16: broccoli and vegetables, the dog enjoying a 
puppy's favorite vegetable
ConvNextv2: broccoli caulifol, cabbage or spinach
ViT-B/16: Gordon, who was born in a dog and Labrador 
puppy
DINOv2-B: puppy british dog and toys

Figure 7. Qualitative examples of decoded visual features from different visual classifiers, into natural text.

Model B4 M R-L C S

ZeroCap 2.6 11.5 — 14.6 5.5
ConZIC 1.3 11.5 — 12.8 5.2

DenseNet161 1.50 10.2 20.4 15.8 6.3
ResNet50 1.43 10.2 20.3 15.9 6.2
WideResNet50 1.40 10.2 20.4 16.0 6.4
WideResNet101v2 1.50 10.4 20.5 16.6 6.4
ResNet101v2 1.48 10.4 20.6 16.7 6.5
ResNet50v2 1.47 10.5 20.6 16.8 6.5
ConvNeXt-Bpt 1.50 10.6 20.8 17.2 6.7
DINOv2-Base 1.50 10.7 21.0 17.3 6.7
ViT-B/16v2 1.50 10.5 20.9 17.3 6.5
BeiT-L/16 1.50 10.6 20.9 17.6 6.9
ViT-B/16pt 1.50 10.7 20.9 17.7 6.9
ConvNeXtV2-Bpt@384 1.60 10.7 21.1 17.9 6.9

Table 3. Zero-Shot Image Captioning Performance

introduced in Section 4.1 and shown in Figure 3, and feed
them, along with their similarity scores, to an LLM. For
the concepts, we use the same concept set as in Section 4.1.
We also add a list of the most common verbs5 in English
to the pool. This allows us to cover all possible words and
interactions. We prompt the LLM to utilize the provided
information to compose a sentence, given a very few in-
context examples from the COCO captioning training set
(in our experiments, we use 9 examples). This allows us to
generate sentences adhering to a specific style and structure.
For this experiment, we used GPT4o-mini (OpenAI, 2024)
as our LLM, as it is fast and cost-efficient. In the prompt,
we explicitly instruct the LLM to refrain from reasoning or
generating content based on its own knowledge or assump-
tions, and that all its outputs must be strictly grounded in
the provided concepts, verbs, and score importances. We
provide details on the exact prompt we used in Appendix
Section G. Results are shown in Table 4. While results on

5https://github.com/datmt/English-Words-Updated

Model B4 M R-L C S

ZeroCap 2.6 11.5 — 14.6 5.5
ConZIC 1.3 11.5 — 12.8 5.2

Ours

DenseNet161 4.20 12.5 30.1 17.0 6.6
ResNet50 4.10 12.5 30.1 17.0 6.6
WideResNet50v2 4.20 12.7 30.3 17.7 6.9
ResNet101v2 4.30 12.6 30.1 18.0 6.8
ConvNeXt-Base 4.50 12.7 30.3 18.1 6.9
ResNet50v2 4.50 12.8 30.5 18.4 6.9
EfficientNetv2-S 4.40 12.7 30.4 18.6 6.9
ViT-B/16pt 4.50 12.8 30.2 18.7 7.2
ConvNeXtV2-Bpt@384 4.40 12.7 30.2 18.7 7.2
BeiT-B/16 4.50 12.8 30.3 18.9 7.1
DINOv2-Base 4.60 13.0 30.7 18.7 7.1

Table 4. Composition Captioning Performance across models.

CiDEr and SPICE are incremental compared to results in
Table 3, the n-gram metrics (B4, M and R-L) are boosted,
which verifies our hypothesis about the low scores of B4
and M in Table 3 compared to baseline methods.

6. Conclusion
In this work, we presented a method to transform visual
classifiers such that they can be queried via open-set text
queries. In two prominent applications, zero-shot CBMs
and decoding of visual features into natural language, we
achieve state-of-the-art results. Our method can be applied
to various other applications that were previously restricted
to CLIP models. Our work thus removes this restriction,
being applicable to any visual classifier. Finally, as with
any research work, this study has its own limitations which
should be clearly acknowledged. We discuss limitations of
our method in Appendix Section A.
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Appendix

A. Limitations and Ethical Concerns
As with any research work, our study has its own set of limitations that should be transparent and acknowledged. In
particular, we identify two primary limitations of our method: the first concerns wrong semantic associations of class names
in CBMs, while the second pertains to the limited generalization of our method to fine-grained datasets.

We start by addressing the first limitation of wrong semantic associations of class names in CBMs. This issue is closely
tied to the choice of concept set used. When using the 20K most common words in English as our concept set, we observe
that class names get associated to either wrong semantically-related concepts, or with components of the class name itself,
making the detected concepts in CBMs less meaningful. Figure 8 illustrates such cases. In the first example, the top-detected
concepts for the prediction “african grey” are concepts that are direct components of the class name itself (grey, african),
variations of these words (gray, africa), or incorrect semantic associations with the word “african” that do not pertain to
the bird itself (Ethiopian, Tanzania). Similarly, in the second example, the bird drake is linked to artist-related concepts
(Rihanna, Robbie, lyric). This occurs because the bird “drake” is less familiar to the text encoder than the artist “drake”. In
fact, a google search with the word “drake” yields directly the artist rather than the bird. In the third example, a similar issue
arises with the animal cock, leading to associations with male reproductive terms. For each example, we also report the total
logit score of the prediction.

However, it is worth noting the following:

1. Meaningful concepts such as “duck” (second example) and “hen” (third example) are still detected among the top
concepts

2. The incorrect semantic associations contribute only a negligible portion of the total logit, accounting for approximately
0.01% of the overall prediction score.

3. This issue is considerably less severe when using alternative concept sets, such as the LF-CBM concept set tailored for
ImageNet.

4. This issue also appears in CLIP-based CBMs and hence not unique to our approach

predicted: african grey
grey                             0.16
african                   0.15
gray                         0.15 
species           0.11 
ethiopian   0.10

africa          0.09 
peacock     0.08 

tanzania     0.08 

predicted: drake
drake                                     0.61
dylan                         0.16
cory                           0.16 
rihanna                  0.15 
robbie                 0.14
thug  0.14 
lyric         0.13 

duck  0.13 

predicted: cock
cock                                     0.50
d**k                           0.23
image                     0.22 
p****s                 0.21 
imagery          0.19
peck  0.19 
c*m               0.18 
hen  0.16 

Total Prediction Logit:  32.65 Total Prediction Logit:  180.22 Total Prediction Logit:  367.1

Figure 8. Limitations of our method is wrong semantic concept association in CBMs

The second limitation is the lack of generalization to fine-grained datasets. We test our ImageNet-trained reformulated
classifiers to perform zero-shot transfer to the Places365 dataset (Zhou et al., 2017) for scene classification. It is important
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to note that Places365 is known to induce low performance, even when using supervised training with the powerful CLIP
model, making it a challenging classification dataset. To perform zero-shot transfer, we convert the class names of Places365
into text prompts of the form: “a scene of a {class} location” which are then encoded using the text encoder T to obtain
the classification weights Uplaces. The image is encoded with the respective vision encoder to obtain the visual features f ,
which are then projected via the MLP to yield f̃ . Zero-shot classification is performed using argmax(f̃ .UT

places). Results
on the Places365 validation set are shown in Table 5. We report the supervised learning performance by training a linear
probe on top of the CLIP model features. The supervised top-1 accuracy is 53.40 and 55.10 for ResNet50 and ViT-B/16
CLIP models, respectively. As demonstrated, these low top-1 accuracies suggest that Places365 is a particularly challenging
dataset for classification. We then report the zero-shot performance of our method on several visual classifiers. The
best-performing model achieves a top-1 zero-shot accuracy of 14.36%, much lower than the supervised performance.
However, we observe that Transformer models based on large-scale pretraining perform better, a trend that aligns with
findings in the out-of-distribution (OOD) literature. Moreover, our approach performs significantly better than a randomly
shuffled classifier where we shuffle its weights across classes.

Model Top-1 (%) Top-5 (%)
Supervised
CLIP RN50 Linear Probe 53.40 -
CLIP ViT-B Linear Probe 55.10 -

Zero-Shot
Shuffled Classifier 0.24 1.54
DenseNet161 10.55 25.18
ResNet50 10.58 25.14
ResNet101 10.97 25.42
ViT-B/16 11.47 26.53
ResNet50v2 11.66 27.40
ConvNeXt-Base 11.76 27.12
Swin-Base 12.12 26.83
Swinv2-Base 12.13 27.18
EfficientNetv2-M 12.31 28.33
ViT-B/16v2 13.11 29.54
DINOv2-Base 13.96 32.35
ConvNeXtv2 (pt) 14.05 30.92
BeiT-L/16 14.15 31.08
ViT-B/16 (pt) 14.22 32.18
ConvNeXt (pt) 14.36 31.64

Table 5. Top-1 and Top-5 zero-shot transfer results to Places365 for various models

B. Ablation Studies on the Text Encoder
In this section, we present ablation studies using other text encoders. We test a variety of text encoders from the Sentence-
BERT library (Reimers & Gurevych, 2019) using the ResNet50 visual classifier. Results are presented in Table 6. We
observe that the choice of the text encoder has minimal effect on the performance, as even lower-performing text encoders
are capable of understanding class names.

Text Encoder Top-1 (%)

DistilRoberta 75.73
MPNet-Base 75.78
MPNet-Base-MultiQA 75.76
MiniLM 75.80

Table 6. Ablation studies on other text encoders
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C. Performance on Additional Models
We report performance on additional models that were not included in the main manuscript in Table 7.

Model Top-1 Orig. ∆

ConvNeXt-Tiny 82.19 82.52 −0.33
ViT-B/32 75.40 75.91 −0.51
Swin-Small 82.63 83.20 −0.57
Swinv2-Tiny 81.44 82.07 −0.63
CvT-21 80.45 81.27 −0.82
ViT-L/16v2 87.61 88.06 −0.45
Swinv2-Small 83.32 83.71 −0.39
ViT-B/16pt 83.55 84.37 −0.82

Table 7. Performance of our reformulated classifiers for additional models

D. Implementation Details
For the text encoder, we use the all-MiniLM-L12-v16 model available on the Sentence Transformers library (Reimers &
Gurevych, 2019). This text encoder was trained on a large and diverse dataset of over 1 billion training text pairs. It contains
a dimensionality of m = 384 and has a maximum sequence length of 256.

Our MLP projector is composed of 3 layers, the first projects the visual feature dimensions n to n× 2 and is followed by a
Layer Normalization (Ba et al., 2016), a GELU activation function (Hendrycks & Gimpel, 2016) and Dropout (Srivastava
et al., 2014) with a drop probability of 0.5. The second layer projects the n× 2 dimensions to n× 2 and is followed by
a Layer Normalization and a GELU activation function. The final linear layer projects the n × 2 dimensions to m (the
dimensions of the text encoder). We train the MLP projector with a batch size of 256 using the ADAM optimizer (Kingma
& Ba, 2015) with a learning rate of 1e-4 that decays using a cosine schedule (Loshchilov & Hutter, 2017) over the total
number of epochs. We follow the original image sizes that the classifier was trained on.

For the training images, we apply the standard image transformations that all classifiers were trained on which include a
Random Resized Crop and a Random Horizontal Flip. For the validation images, we follow exactly the transformations
that the classifier was evaluated on, which include resizing the image followed by a Center Crop to the image size that the
classifier expects. Each model is trained on a single NVIDIA GeForce RTX 2080 Ti GPU.

E. Process of Decoding Visual Features
We remind readers of the mapping function, denoted as MLP, that transforms the visual features f into the same space
as textual features, producing f̃ . A pre-trained language model G is then optimized to generate a sentence that closely
aligns with f̃ . To preserve the generative power of G, we keep it frozen and apply prefix-tuning (Li & Liang, 2021), which
prepends learnable tokens in the embedding space. During inference, these tokens are optimized separately for each input.
Our method builds upon the work of (Tewel et al., 2021).

A high-level overview of this process is illustrated in Figure 9. Using a pre-trained language model G, we prepend randomly
initialized learnable tokens, referred to as prefixes, which guide G to produce text that maximizes alignment with visual
features. These learnable prefixes function as key-value pairs in each attention block, ensuring that every generated word
can attend to them.

For each iteration j, at a timestep ts, we sample the top-Q tokens from the output distribution of G, denoted as Gout,
which serve as possible continuations for the sentence. These Q candidate sentences are then encoded by a text encoder T ,
mapping them into the same embedding space as f̃ . We compute the cosine similarity between each encoded sentence and
f̃ , resulting in Q similarity scores. These scores are normalized with softmax and define a target distribution used to train
Gout via Cross-Entropy loss. The learnable prefixes are updated through backpropagation.

With the updated prefixes, G is run again, and the most probable token is selected as the next word. This process is repeated

6https://huggingface.co/sentence-transformers/all-MiniLM-L12-v1
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for a predefined number of timesteps (up to the desired sentence length) or until the < . > token is generated. At the end of
each iteration, a full sentence is generated. We conduct this process for 20 iterations, generating 20 sentences in total. The
final output is chosen as the sentence with the highest similarity to the visual features f̃ .

We also add the fluency loss from (Tewel et al., 2021) as well as other token processing operations. We refer readers to
(Tewel et al., 2021) for more information. We use the small GPT-2 of 124M parameters as G. We also noticed that using a
bigger G (e.g., GPT-2 medium) does not enhance performance, indicating that a decoder with basic language generation
knowledge is sufficient.

ViT/CNN 𝑓

Visual 
Space

Text 
Space

MLP

sample 
top-Q 
tokens

an image of a plastic
an image of a monitor
an image of a man
an image of a fur
an image of a black 

Text 
Encoder

plastic
monitor
man
fur
black 

Pretrained 
Language 
Model

Prefix an image of a

vocab distribution

Step 1: Convert the 
image into text space

Step 2: Generation of a 
sentence which maximizes 
the similarity with ෨𝒇

ሚ𝑓

cosine 
similarity ሚ𝑓

0.1
0.03
0.15
0.6
0.4

Use as target 

labels to update 

prefix with 

cross-entropy

Figure 9. The process used to decode visual features of an image. The process is shown for the first timestep ts = 1 with a hard prompt
set as “an image of a”.

F. Using only class names
We remind readers from Section 3 that we only use the class names to formate the text prompt for the text encoder when
training the MLP. In practice, we can go beyond class names by using resources like a class hierarchy from WordNet (Lin,
1998) (the original source where ImageNet was extracted from), or class descriptions extracted from a LLM as in CuPL
(Pratt et al., 2023) or VCVD(Menon & Vondrick, 2023). However, this approach would be considered as “cheating,” as it
fails to faithfully replicate the classifier. The original classifier implicitly learns the semantics, hierarchies, relationships and
distinctive features of different classes. Explicitly providing additional information would not replicate the classifier faithfully,
and would also force the classifier to focus on predefined features or those we intend it to learn. Moreover, this would also
leak information to downstream tasks such as CBMs and textual decoding of visual features, compromising the fairness of
evaluation. For instance, if class descriptions were used in the training, the concepts in CBMs would align with those specified
in the training prompts. For these reasons, we refrain from using any other additional information than the class names. We
use the class names provided from https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a.

G. Compositional Captioning
The prompt we used for compositional captioning is as follows:

I will give you several attributes and verbs that are included in an image,

15

https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a


825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2025

each with a score. The score reflects how important (or how grounded) the
attrribute/verb is to the image, and higher means more important and grounded.
Your job is to formulate a caption that describes the images by looking at the
attributes/verbs with their associated scores. You should not reason or generate
anything that is based on your own knowledge or guess. Everything you say has
to be grounded in the attrbiutes/verbs and score importances. Please use the
following the structure, style, and pattern of the following examples. Example
1: A woman wearing a net on her head cutting a cake. Example 2: A child
holding a flowered umbrella and petting a yak. Example 3: A young boy standing
in front of a computer keyboard. Example 4: a boy wearing headphones using
one computer in a long row of computers. Example 5: A kitchen with a stove,
microwave and refrigerator. Example 6: A chef carrying a large pan inside of a
kitchen. Here are the attributes and scores: {detected concepts with scores},
and these are the verbs and scores: {detected verbs with scores}.

Next, we explore alternative concept sets in Compositional Captioning. In the main manuscript, we reported results using
the 20,000 most common English words as our concept set. Since the LLM remains fixed and functions as a composer,
integrating detected concepts and verbs grounded in the image into a caption, we can seamlessly substitute the concept set
with any domain-specific concept set alternative. This allows for the generation of captions (here, decoded visual features)
tailored to a specific domain. Here, we maintain the same set of verbs but explore the use of concepts specific to the
ImageNet dataset. Since ImageNet lacks dedicated captions, we evaluate the domain-specific captioning by anticipating a
decline in performance on the COCO captioning dataset. We use the ImageNet-specific concept set from (Oikarinen et al.,
2023) and report zero-shot captioning performance in Table 8. As shown, we observe a decrease in all metrics. This shows
that our method can readily decode visual features into text for any domain. Finally, also note that we can control the style
of the generations by simply prompting the LLM to compose the concepts and verbs in a specific style (e.g., humorous,
positive, negative).

Method B4 M R-L C S

ZeroCap 2.6 11.5 — 14.6 5.5
ConZIC 1.3 11.5 — 12.8 5.2

Ours

MobileNetv3-L 3.50 12.7 29.1 11.4 6.1
ResNet50 3.60 12.7 29.3 12.0 6.0
ResNet101v2 3.50 12.9 29.3 12.2 6.3
WideResNet101v2 3.70 12.9 29.6 12.4 6.2
ConvNeXt-Base 3.80 12.8 29.5 12.7 6.2
EfficientNetv2-S 3.70 12.9 29.6 12.9 6.3
ViT-B/16 (pt) 3.80 13.1 29.5 13.2 6.5
BeiT-L/16 3.90 13.2 29.6 13.4 6.6

Table 8. Composition Captioning Performance using the ImageNet-specific LF-CBM concept set
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