
Why learn if you can infer? Robot arm control
with Hierarchical Active Inference

Corrado Pezzato
VERSES

corrado.pezzato@verses.ai

Christopher Buckley
VERSES

christopher.buckley@verses.ai

Tim Verbelen
VERSES

tim.verbelen@verses.ai

Abstract

Recently deep reinforcement learning (RL) approaches have become successful in a
wide range of domains, including robot control. Using learning instead of classical
control approaches is appealing, as it avoids dealing with redundancy in over-
actuated arms, hard-coding obstacle avoidance, and performing inverse kinematics
calculations. However, this comes at the cost of excessive training data to fit a
black-box model. In this paper, we cast motor control as an inference problem on a
generative model that pertains to the robot arm’s kinematic chain structure, which
might be a more bio-mimetic implementation. We demonstrate that we retain
both the attractive properties of RL and the efficiency of more classical forward
kinematics approaches without requiring expensive training, achieving superior
success rates as the degrees of freedom of the arm increase.

1 Introduction

A long-standing challenge in robot control is how to generate robust control signals in configuration
space (i.e. joint positions or torques), for reaching a particular point in task space (i.e. Cartesian
coordinates). Traditional approaches rely on inverse kinematics (IK) solvers or operational space
controllers (OSC) [10]. However, these struggle with redundancy, i.e. when multiple solutions
exist for more than 6 degrees of freedom (DOF) [6, 12], and cannot reason about constraints such
as avoiding collisions between the robot arm and obstacles in the environment. Recently, deep
reinforcement learning (RL) has been proposed to address these limitations, by training a policy
to output joint commands directly [1, 8, 9]. Despite their impressive results, such learning-based
systems typically require long training times, using hand-crafted reward functions and without safety
constraints [7].

In contrast, the brain is believed to maintain an internal forward model, predicting sensory outcomes
from motor actions [14]. In optimal control theory, this is complemented with an inverse model to
realize control signals that minimize a well-defined value function [15, 16]. When replacing value
functions with prior beliefs, optimal control can be formulated in terms of predictive coding [3]. This
turns motor control into an (active) inference problem, where a generative forward model maps to
desired prior beliefs, and control signals are inferred that realize those desires [13]. By defining the
generative model as a hierarchical structure that mimics the structure of the arm’s kinematic chain,
we can obtain kinematic inversion through inference [11]. This is consistent with recent evidence
that the Cerebellum consists of hierarchical cortical processing loops [4] and is mainly involved in
forward modeling [18].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Hi
er

ar
ch

y

Base

j

j+1

Shoulder

Elbow

Hand
Hand

Shoulder

Figure 1: Overview of the hierarchical active inference approach for n-DOF robot arm control.
Intrinsic and extrinsic beliefs µi, µe are internal representations of joint angles and Cartesian poses
respectively. They generate proprioceptive and visual predictions pp and pv at their level according
to the generative models gv , gp. They are also linked through a kinematic generative model ge. The
functions fi and fe describe the dynamics and are used to guide goal-directed behavior.

In this paper, we extend this principle for controlling n-DOF robotic arms in 3D space and compare it
against trained RL policies. We demonstrate that our controller is more accurate than the policies
trained with RL, and although slower in reaching a goal, on average yields shorter path lengths. We
argue that active inference is well-suited to combine the flexibility of learning approaches with the
efficiency of traditional robotic control methods that utilize forward models.

2 Methodology

Active inference unifies both action and perception because both drive agents to minimize surprise [2].
In the context of motor control, an agent is equipped with prior beliefs in an extrinsic frame (i.e.
Cartesian coordinates) and infers motor commands that minimize prediction errors [13]. We propose
a hierarchical kinematic generative model, which is fit for controlling any n-DOF robotic arm.

2.1 Generic kinematic generative model

The structure of a hierarchical active inference (HAIF) agent is depicted in fig. 1. Each level of
the hierarchy has the same structure, which is repeated for each link of a robot arm. The main
contribution of this paper is the definition of a generic kinematic generative model ge. In the proposed
model, the HAIF agent comprises an intrinsic belief µi about joint angles and links’ lengths, as well
as an extrinsic belief µe about a link’s absolute Cartesian position and orientation, for each joint j:

µj
i =

[
θj , lj

]⊤
µj

e =
[
xj , yj , zj , qjw, qjx, qjy, qjz

]⊤
=

[
tj qj

]⊤
. (1)

As opposed to [11], we consider quaternions to represent generic rotations instead of Euler angles.
This choice avoids translating often between Euler angles and Rotation matrices in a generic 3D
case. In general, the kinematic generative model ge computes the extrinsic beliefs at the current
level j given the current intrinsic beliefs µj

i and the extrinsic beliefs from the level below µj−1
e , i.e.

µj
e = ge(µ

j
i ,µ

j−1
e). The goal is to obtain a set of equations to describe how the internal beliefs

of active inference agents are generated and updated over time. Following [11], the biologically
plausible belief update equations are:

µ̇j
i =

[
µj′

i + πj
pε

j
p + ∂µi

g⊤
e π

j+1
e εj+1

e + ∂f j⊤
i πj

µi
εjµi

−πj
µi
εjµi

]
(2)

µ̇j
e =

[
µj′

e − πj
eε

j
e + ∂µe

g⊤
e π

j+1
e εj+1

e + πj
vε

j
v + ∂f j⊤

e πj
µe
εjµe

−πj
µe
εjµe

]
, (3)

where πp, πe, πv are precision parameters for proprioceptive, extrinsic, and visual models, and
εp, εe and εv are the proprioceptive, extrinsic, and visual prediction errors respectively. Finally,

2

εjµi
= µj′

i − f j
i (µ

j
i) and εjµe

= µj′

e − f j
e (µ

j
i) are dynamics prediction errors, with precision πµi

and πµe . These are used to achieve goal-directed behavior and collision avoidance as explained later.

In the equations above, we assumed to be able to observe joint positions, velocities, and link positions
such that gp and gv are identity mappings. Link positions can be computed from joint positions via
forward kinematics or estimated via visual input. We now have to find a suitable form for ge to easily
compute the gradients with respect to intrinsic and extrinsic beliefs. As in our model, ge describes
the 3D position and orientation of the subsequent link of a kinematic chain given the pose of the
previous one, the natural starting point to find ge is considering generic transformation matrices. To
compute the absolute position and orientation of the current link j given the absolute position and
orientation of the previous one, we can write:

wTj =

[
Rj−1Rj tj−1 +Rj−1tj

0 1

]
, (4)

where w indicates the world frame as an absolute reference, R represents a rotation matrix, and t a
translation vector. The world frame can be the base link of a robot arm. From eq. (4), we note that
the resulting absolute rotation of a link is the multiplication of two rotation matrices. However, we
can express this as a quaternion multiplication qj−1 · qj . Similarly, we can rotate a vector tj by a
quaternion qj−1 corresponding to Rj−1 such that we can define the generative model ge as:

ge(µ
j
i ,µ

j−1
e) =

[
tj−1 + h(qj−1 · [0 tj] · qj−1∗)

qj−1 · qj

]
, (5)

where qj−1∗ is the conjugate quaternion, ′′·′′ represents the Hamilton product, and h() is a function
that returns the imaginary coefficients of a quaternion. In our HAIF agent, the translation tj−1 and
quaternion qj−1 are given by the extrinsic beliefs µj−1

e . The translation vector tj and rotation qj

are instead dependent on the kinematic properties of the current link j and the joint angle and length
θj , lj . Considering a generic Denavit–Hartenberg (DH) transformation matrix

 cos θj − sin θj cosαj sin θj sinαj lj cos θj

sin θj cos θj cosαj − cos θj sinαj lj sin θj

0 sinαj cosαj dj

0 0 0 1

 (6)

we note that the translation vector is simply tj = [lj cos θj , lj sin θj , dj]. According to the DH
convention, the rotational part of the transformation matrix is the composition of a rotation θj about
the previous z-axis and a rotation of αj around the x-axis. We can then write:

qj =
[
cos θj

2 cos αj

2 , cos θj

2 cos αj

2 , cos θj

2 cos αj

2 , cos θj

2 cos αj

2

]
. (7)

The generative model in eq. (5) can then be fully specified as a function of the intrinsic and extrinsic
beliefs, and the gradients can be computed in closed form, see appendix A for full details.

2.2 Arm model, goals, and control

Given the generic kinematic generative model in eq. (5) and the belief update equations eqs. (2)
and (3), we can control arbitrary serial kinematic chains. To do so, the first step is to define the DH
parameters for a robot manipulator. This standard and well-known procedure describes a kinematic
chain defining lj , αj , dj to populate eq. (6) for every link.

To realize goal-directed behavior, we can define attractive goals and repulsive forces as in [11]. Goals
can be both intrinsic (joint positions) or extrinsic (Cartesian poses), and they can be combined to
define future desired states µ∗. Goals act as attractors, forming dynamic functions fa = κa(µ

∗ − µ)
that linearly minimize the distance between the desired and current states. The desired states can be
defined flexibly in terms of the current beliefs as

µ∗ = Nµ+ n∗, (8)

where N achieves dynamic behaviors, such as keeping a limb vertical by imposing the x, y co-
ordinates of a link to be the same as the previous one, while n∗ imposes an attractor to a static

3

configuration. For example, reaching a position target with link j would result in N = 0 and
n∗ = [x∗, y∗, z∗, qj].

The same idea can be used for collision avoidance through repulsive forces where a repulsive state
µ! has to be avoided. Note that µ! can concern intrinsic beliefs, to realize joint limit avoidance or
extrinsic beliefs for collision avoidance with the environment. We define joint limit avoidance as:

fr,θ(µ) =

{
0, if ||eθ|| > γθ
kr,θζ(1/γθ − 1/||eθ||), otherwise

, (9)

where eθ = µ!
θ − µθ, µθ is the slice of beliefs about joint angles, µ!

θ are the joint limits, and γθ is a
chosen threshold. The variable ζ ∈ {−1, 1} is negative for lower limits and positive for upper limits.
The collision avoidance strategy is instead the same as [11]:

fr,obst(µ) =

{
0, if ||eobst|| > γobst
kr,obst(1/γobst − 1/||eobst||)eobst/||eobst||3, otherwise

, (10)

where eobst = µ!
pos − µpos, µpos is the slice of beliefs about link positions, and µ!

pos is the position
of an obstacle. Goal attractors and repulsive forces for joint limits and collision avoidance are
then summed together to form the dynamics function of a single level. This allows one to achieve
behaviors such as reaching a target while avoiding an obstacle. Hyperparameters are manually chosen
to achieve sufficient performance in the test cases but could be automatically optimized. The control
action is computed by minimizing the proprioceptive component of the free energy with respect to
the control signals [11]:

ȧ = −∂aFp = −∂as̃pπpε̃p (11)
where −∂as̃p is the partial derivative of proprioceptive observations with respect to the control, and
ε̃p = s̃p − gp(µ) are the generalized proprioceptive prediction errors.

3 Experiments

We evaluate the ability of HAIF to perform reaching tasks in a 3D environment and compare the
performance with a policy trained with RL. We also test how our method generalizes when the arm
has to reach a target while avoiding moving obstacles or needs to infer the lengths of its links.

Reaching tasks We benchmark our solution according to the RL reaching benchmark from [1], where
the goal is to control a robot in joint space to reach a target position in Cartesian space. The authors in
[1] provide a reusable open-source implementation of various RL algorithms with several examples
for training an agent to reach a target position. We evaluate reaching performance in two cases: 1) a
single fixed goal, and 2) a randomly generated goal position within a constrained workspace. We
utilize the same robot arms as in [1], namely a 5DOF WidowX and a 7DOF Jaco arm. All experiments
and training are performed on a laptop with Intel Core i9 CPU and RTX 4090 GPU.

To solve the tasks, we train a total of four different RL agents with five seeds, one per task and
robot, using the provided PPO implementations, see appendix B for details. To apply HAIF to
the two different robots and tasks, instead, we only need to specify the DH parameters for the

Figure 2: Success rates for reaching tasks within 5cm and 2cm thresholds using WidowX 5DOF and
Jaco 7DOF robot arms.

4

Figure 3: Average time to goal (ratio) and path length (ratio) (left). Example of end effector distance
δee to goal for WidowX (center) and Jaco (right) while reaching a random goal.

different kinematic chains and provide an attractor for the end effector to the goal position as
µ∗ = [x∗, y∗, z∗, qee]. We perform 100 trials per task, and we consider different evaluation metrics:
success rate, relative time to goal, and relative path length. The success rate is computed for four
different thresholds of 5cm, 2cm, 1cm, and 0.5 cm. An episode is considered successful if the
end-effector is within a threshold at the end of the episode. The relative time to goal is the average
time taken to reach goals defined as the ratio between the methods RL/HAIF (the higher the better).
The path length is the average path length to reach goals defined as the ratio between RL/HAIF (the
higher the better). Both the time to goal and path length are computed as soon as the end-effector is
within 5cm of the target.

For the fixed goal-reaching and random goal-reaching tasks, the success rates for the 5cm and 2cm
thresholds are reported in fig. 2. The results for the 1cm and 0.5cm thresholds can be found in the
appendix in fig. 8. In the considered reaching tasks, our method achieves a success rate of 100%
for each of the selected thresholds. The performance of the RL agents, however, deteriorates as the
number of DOFs of the robot arm increases and when goals are randomly assigned. The time to goal,
path length, and an example of end effector distance to goal over time is shown in fig. 3. On average
the RL controller moves faster, but the path length is similar or longer. Our controller also displays a
smooth trajectory, converging precisely to the target, whereas the RL policies are more jittery and
oscillate around the target at the distance they got reward during training.

Generalization To emphasize the generality of our method, we apply HAIF to a different arm, a
Fetch 7-DOF to 1) reach tasks in the presence of dynamic obstacles and 2) reach with unknown link
lengths. To solve these tasks, we only need to provide a new set of DH parameters for Fetch. For the
collision avoidance task, we spawn two dynamic obstacles with a constant velocity of 0.1 to 0.3m/s
aiming towards the arm. An example of dodging the obstacles is reported in fig. 4. For links’ length
estimation tasks, instead, we initialize the HAIF agent with wrong beliefs about these parameters,
such that the resulting kinematic chain is incorrect. We randomly sample length values in a range
[0, 0.2]m for every link. As can be seen in fig. 5, the estimated (red) kinematic chain converges to
the true one (blue). Future work will extend the model to estimate the full set of DH parameters.

Figure 4: Obstacle avoidance of two dynamic obstacles while reaching a target using 7-DOF Fetch
arm. We assume the positions of the obstacles are observed.

Figure 5: Link lengths (red) are inferred while reaching a goal.

5

4 Conclusion and Discussion

This paper presented a hierarchical active inference controller for n-DOF robot arm control. We
demonstrate that casting control as inference yields robust performance, without requiring long
training times typical of contemporary reinforcement learning methods. Although black-box models
optimized with gradient descent are attractive as a one-size-fits-all solution, we argue that their
strength, i.e. the lack of predefined priors, is also their weakness for particular, well-defined appli-
cations, as they have to learn these prior structures solely from data. In the case of robot control,
writing down the generative model using knowledge of the structure of the kinematic chain, enables
us to tackle the problem with only inference. Note that in our model only the number of joints is
hard-wired in the hierarchical structure of the model, but e.g. the link lengths can be inferred from
observations. Future work will aim to further the benchmark against various RL methods on more
challenging manipulation tasks, extend the work to full body control of mobile manipulators, and
interface with a vision perception pipeline for vision-based active inference [17].

References
[1] Pierre Aumjaud, David McAuliffe, Francisco J. Rodríguez Lera, and Philip Cardiff. rl_reach:

Reproducible reinforcement learning experiments for robotic reaching tasks. Software Impacts,
8:100061, May 2021.

[2] Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience,
11(2):127–138, January 2010.

[3] Karl Friston. What is optimal about motor control? Neuron, 72(3):488–498, 2011.

[4] Shlomi Haar and Opher Donchin. A revised computational neuroanatomy for motor control.
Journal of Cognitive Neuroscience, 32(10):1823–1836, October 2020.

[5] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, et al. Stable baselines,
2018.

[6] J. Hollerbach and Ki Suh. Redundancy resolution of manipulators through torque optimization.
IEEE Journal on Robotics and Automation, 3(4):308–316, August 1987.

[7] Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning for ma-
nipulation: challenges, representations, and algorithms. J. Mach. Learn. Res., 22(1), jan
2021.

[8] Visak Kumar, David Hoeller, Balakumar Sundaralingam, Jonathan Tremblay, and Stan Birch-
field. Joint space control via deep reinforcement learning. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, September 2021.

[9] Pietro Mazzaglia, Nicholas Backshall, Xiao Ma, and Stephen James. Redundancy-aware action
spaces for robot learning, 2024.

[10] Jun Nakanishi, Rick Cory, Michael Mistry, Jan Peters, and Stefan Schaal. Operational space
control: A theoretical and empirical comparison. The International Journal of Robotics
Research, 27(6):737–757, June 2008.

[11] Matteo Priorelli, Giovanni Pezzulo, and Ivilin Peev Stoianov. Deep kinematic inference affords
efficient and scalable control of bodily movements. Proceedings of the National Academy of
Sciences, 120(51):e2309058120, December 2023.

[12] H. Seraji. Configuration control of redundant manipulators: theory and implementation. IEEE
Transactions on Robotics and Automation, 5(4):472–490, 1989.

[13] Stewart Shipp, Rick A. Adams, and Karl J. Friston. Reflections on agranular architecture:
predictive coding in the motor cortex. Trends in Neurosciences, 36(12):706–716, December
2013.

6

[14] Hirokazu Tanaka, Takahiro Ishikawa, Jongho Lee, and Shinji Kakei. The cerebro-cerebellum as
a locus of forward model: A review. Frontiers in Systems Neuroscience, 14, 2020.

[15] Emanuel Todorov. Optimality principles in sensorimotor control. Nature Neuroscience,
7(9):907–915, August 2004.

[16] Emanuel Todorov and Michael I. Jordan. Optimal feedback control as a theory of motor
coordination. Nature Neuroscience, 5(11):1226–1235, November 2002.

[17] Toon Van de Maele, Tim Verbelen, Pietro Mazzaglia, Stefano Ferraro, and Bart Dhoedt. Object-
centric scene representations using active inference. Neural Computation, 36(4):677–704,
March 2024.

[18] Fatemeh Yavari, Shirin Mahdavi, Farzad Towhidkhah, Mohammad-Ali Ahmadi-Pajouh, Hamed
Ekhtiari, and Mohammad Darainy. Cerebellum as a forward but not inverse model in vi-
suomotor adaptation task: a tdcs-based and modeling study. Experimental Brain Research,
234(4):997–1012, December 2015.

A Generative model details

A.1 Quaternions vs Euler angles

Quaternions and Euler angles are both methods for representing rotations in three-dimensional space,
but they differ significantly in their properties, applications, and advantages. Three angles represent
Euler Angles, typically denoted roll, pitch, and yaw. They describe rotations around the X, Y, and Z
axes sequentially. Quaternions represent rotations using a four-dimensional structure with one scalar
part and a three-dimensional vector part. They consist of four components q = [qw, qx, qy, qz].
Euler angles are subject to singularities while quaternions are a continuous representation. Apart from
this issue, using quaternions in the proposed kinematic generative model is advantageous because
they allow to combine rotations through quaternion multiplication. On the contrary, summing Euler
angles directly does not yield a meaningful combined rotation in the general 3D case.

A.2 Kinematic generative model

The generic kinematic model in eq. (5) can be expressed as

ge(µ
j
i ,µ

j−1
e) =

[
tj−1 + h(qj−1 · [0 tj] · qj−1∗)

qj−1 · qj

]
,=



xj−1 + xtf

yj−1 + ytf
zj−1 + ztf

qw, tf

qx, tf
qy, tf
qz, tf


, (12)

where xtf , ytf , ztf and q∗, tf are the transformed translations and rotation. Computing the Hamilton
products yields the following expressions for the transformed positions

xtf = qj−1
w

2
lj cos θj + qj−1

x

2
lj cos θj − qj−1

y

2
lj cos θj − qj−1

z

2
lj cos θj

+2qj−1
x qj−1

y lj sin θj + 2qj−1
x qj−1

z dj + 2qj−1
w qj−1

y dj − 2qj−1
w qj−1

z lj sin θj ,

ytf = qj−1
w

2
lj sin θj − qj−1

x

2
lj sin θj + qj−1

y

2
lj sin θj − qj−1

z

2
lj sin θj

+2qj−1
x qj−1

y lj cos θj + 2qj−1
y qj−1

z dj − 2qj−1
w qj−1

x dj + 2qj−1
w qj−1

z lj cos θj ,

ztf = qj−1
w

2
dj − qj−1

x

2
dj − qj−1

y

2
dj + qj−1

z

2
dj

+2qj−1
x qj−1

z lj cos θj + 2qj−1
y qj−1

z lj sin θj − 2qj−1
w qj−1

y lj cos θj + 2qj−1
w qj−1

x lj sin θj ,

7

and orientation:

qw, tf = qj−1
w cos

θj

2
cos

αj

2
− qj−1

x cos
θj

2
sin

αj

2
− qj−1

y sin
θj

2
sin

αj

2
− qj−1

z sin
θj

2
cos

αj

2
,

qx, tf = qj−1
w cos

θj

2
sin

αj

2
+ qj−1

x cos
θj

2
cos

αj

2
+ qj−1

y sin
θj

2
cos

αj

2
− qj−1

z sin
θj

2
sin

αj

2
,

qy, tf = qj−1
w sin

θj

2
sin

αj

2
− qj−1

x sin
θj

2
cos

αj

2
+ qj−1

y cos
θj

2
cos

αj

2
+ qj−1

z cos
θj

2
sin

αj

2
,

qz, tf = qj−1
w sin

θj

2
cos

αj

2
+ qj−1

x sin
θj

2
sin

αj

2
− qj−1

y cos
θj

2
sin

αj

2
+ qj−1

z cos
θj

2
cos

αj

2
.

A.3 Gradients of the kinematic generative model

To compute the updates for intrinsic and extrinsic beliefs in eqs. (2) and (3), the gradients of the
generative model with respect to µi and µe have to be computed. It holds in general that:

∂ge
∂µi

=

[
∂θge
∂lge

]
∈ R2×7,

∂ge
∂µe

=

[
∂x,y,zge
∂qge

]
∈ R7×7 (13)

Thanks to the choice of using quaternions as singularity-free orientation representation, these gradients
are easy to compute since the terms in the generative model are either linear or quadratic in the
parameters, or they appear as arguments of sine and cosine functions. Note that the intrinsic beliefs
could also be augmented to keep track of all the DH parameters so that one could estimate not only
link lengths but for instance their relative orientation.

A.4 DH parameters for the robot arms

The DH parameters for the different robot arms based on the URDF files of the WidowX, Jaco, and
Fetch robot arms are reported in tables 1 to 3.

Table 1: Jaco DH table

l α d θi

0.0 90° 0.2755 θ1
0.0 90° 0.0 θ2 - 180°
0.0 90° -0.410 θ3
0.0 -90° 0.0 θ4 - 180°
0.0 -90° -0.3111 θ5
0.0 90° 0.0 θ6 + 180°
0.0 0° -0.2638 θ7

Table 2: Fetch DH table

l α d θi

0.117 -90° 0.0 θ1
0.0 -90° 0.0 θ2 - 90°
0.0 90° 0.352 θ3
0.0 -90° 0.0 θ4
0.0 90° 0.3215 θ5
0.0 -90° 0.0 θ6
0.0 0° 0.30495 θ7

Table 3: WidowX DH table

l α d θi

0.0 -90° 0.125 θ1
0.15 0° 0.0 θ2 - 70.14°

0.14203 0° 0.0 θ3 + 70.14°
0.0 -90° 0.0 θ4 - 90°
0.0 0° 0.1145 θ5

B RL agents

B.1 Environment details

We train four separate RL agents: two for WidowX 5DOF and two for Jaco 7DOF, to reach either a
fixed goal or a randomized one in the workspace. The training environment is depicted in fig. 6.

8

Figure 6: WidowX 5DOF and Jaco 7DOF training environments from [1].

The benchmark in [1] is built on top of Stable Baselines 3 [5] and it supports various model-free
RL algorithms. We chose Proximal Policy Optimization (PPO) because it performs well on robotic
control tasks, including robot arm reaching [1]. We report the settings we utilized:

• Environment names: widowx_reacher-v5 (fixed goal), widowx_reacher-v28 (random
goal), ReachingJaco-v3 (fixed goal), ReachingJaco-v7 (random goal),

• Reward Function: REW15 in [1]. We chose a combination of sparse and dense rewards
because it was indicated as the best choice for minimizing distance in reaching tasks.

r =

{
−dt, if d ≥ ϵ

1, if d < ϵ
(14)

where
– r: Reward
– dt: Distance at time t

– ϵ: Threshold for sparse reward (0.001)
• Observation space: OBS5 in [1].

[ETx,ETy,ETz,EGx,EGy,EGz,Gx,Gy,Gz,A1, A2, A3, A4, A5, A6] (15)

where
– Ei : End effector coordinate along the i axis
– Gi : Goal coordinate along the i axis
– EGi : Vector End effector - Goal along the i axis
– ETx : Vector End effector - Torso along the i axis
– Ai : Angular position of joint i

• Action space: ACT2 in [1]. Relative joint position (Continuous position control and
compute physics for collision)

[δ1, δ2, δ3, δ4, δ5, δ6] (16)

where δi : Increment from previous joint position (in rad)

B.2 Performance metrics

We trained five different seeds per RL agent and we report the mean rewards obtained from the
benchmark results [1] in fig. 7:

C Additional results

We report below additional results for success rates of our method and the RL agents in case of tighter
thresholds to reach a goal, namely 1cm and 0.5cm, see fig. 8. Additionally, we report the evaluation
of the time to goal and path length ratios seed by seed in fig. 9.

9

Figure 7: Mean rewards for the trained RL agents for reaching tasks.

Figure 8: Success rates for reaching tasks within 1cm and 0.5cm thresholds using WidowX 5DOF
and Jaco 7DOF robot arms.

10

Figure 9: Time to goal and path length ratios (RL/HAIF) for different seeds. The higher the better,
where unit value means equal performance.

11

	Introduction
	Methodology
	Generic kinematic generative model
	Arm model, goals, and control

	Experiments
	Conclusion and Discussion
	Generative model details
	Quaternions vs Euler angles
	Kinematic generative model
	Gradients of the kinematic generative model
	DH parameters for the robot arms

	RL agents
	Environment details
	Performance metrics

	Additional results

