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Abstract

Despite significant advancements, there is a001
limited understanding of how large language002
models (LLMs) utilize knowledge for reason-003
ing. To address this, we propose a method that004
deconstructs complex real-world questions into005
a graph, representing each question as a node006
with parent nodes of background knowledge007
needed to solve the question. We develop the008
DEPTHQA set, deconstructing questions into009
three depths: (i) recalling conceptual knowl-010
edge, (ii) applying procedural knowledge, and011
(iii) analyzing strategic knowledge. Based on012
a hierarchical graph, we quantify forward dis-013
crepancy, discrepancies in LLMs’ performance014
on simpler sub-problems versus complex ques-015
tions. We also measure backward discrepancy,016
where LLMs answer complex questions but017
struggle with simpler ones. Our analysis shows018
that smaller models have more discrepancies019
than larger models. Additionally, guiding mod-020
els from simpler to complex questions through021
multi-turn interactions improves performance022
across model sizes, highlighting the importance023
of structured intermediate steps in knowledge024
reasoning. This work enhances our understand-025
ing of LLM reasoning and suggests ways to026
improve their problem-solving abilities.027

1 Introduction028

With the rapid advancement of Large Language029

Models (LLMs), research interest has increasingly030

centered on their reasoning capabilities, particu-031

larly in solving complex questions. While many032

studies have assessed the general reasoning capabil-033

ities of LLMs (Wei et al., 2022a; Qin et al., 2023;034

Srivastava et al., 2023), the specific aspect of how035

these models recall and then utilize factual knowl-036

edge during reasoning has not been thoroughly ex-037

plored. Some research (Dziri et al., 2023; Press038

et al., 2023; Wang et al., 2024) concentrate on039

straightforward reasoning tasks such as combin-040

ing and comparing simple biographical facts to041

[Target Q] Why does ReLU training take less time than sigmoid or tanh training?

[Q2] How is the speed of neural network training measured?

[Q4] What is backpropagation in the context of neural networks?

[Q3] What role does an activation function play in neural network training?

[Q1] What does the gradient of a function represent?

: Strategic Knowledge (i.e., Why can it be used?)

[Q1] How do the gradients of activation functions affect the speed of neural 
network training?

: Procedural Knowledge (i.e., How can it be used?)

: Conceptual Knowledge (i.e., What it is?)

Figure 1: Example of reasoning across depths, showing
the sequence of questions from D1 (conceptual knowl-
edge) to D3 (strategic knowledge).

investigate the implicit reasoning skills of LLMs. 042

However, real-world questions often demand more 043

intricate reasoning processes that cannot be eas- 044

ily broken down into simple factual units. For in- 045

stance, as presented in Figure 1, to answer "Why 046

does ReLU training take less time than sigmoid 047

or tanh training?", one must understand the causal 048

relationship between gradients and training speed, 049

and compare the characteristics of activation func- 050

tions. This requires drawing conclusions beyond 051

simply aggregating facts about individual activa- 052

tion functions. 053

To investigate the reasoning ability of LLMs 054

in solving real-world questions, we propose the 055

deconstruction of complex questions into a graph 056

structure. In this structure, each node is repre- 057

sented by a question that signifies a specific level 058

of knowledge. We adopt Webb’s Depth of Knowl- 059

edge (Webb, 1997, 1999, 2002), which assesses 060

both the content and the depth of understanding 061

required. Webb’s Depth of Knowledge catego- 062

rizes questions into three levels: mere recall of 063

information (D1), application of knowledge (D2), 064

and strategic thinking (D3). The transition from 065

shallower to deeper nodes involves applying the 066

knowledge and reasoning gained from the shal- 067

lower nodes. This approach emphasizes the grad- 068
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Figure 2: Hierarchical structure of a deconstructed D3,
illustrating forward and backward discrepancies.

ual accumulation and integration of knowledge to069

address real-world problems effectively.070

We introduce the resulting DEPTHQA, a collec-071

tion of deconstructed questions and answers de-072

rived from human-written, scientific D3 questions073

in the TutorEval dataset (Chevalier et al., 2024).074

Our focus is on D3 as the target complex ques-075

tions, examining the utilization of multiple layers076

of knowledge and reasoning in the sequence of D1,077

D2, and D3. Figure 2 illustrates how the decon-078

struction process results in a hierarchical graph con-079

necting D1 to D3 questions. Based on the hierarchi-080

cal structure, we first measure forward reasoning081

gaps, denoted as forward discrepancy, which are082

differences in LLM performance on simpler sub-083

problems compared to more complex questions084

requiring advanced reasoning. Additionally, we085

introduce the backward discrepancy, which quanti-086

fies inconsistencies where LLMs can successfully087

answer complex inquiries but struggle with simpler088

ones. This dual assessment provides a comprehen-089

sive evaluation of the models’ reasoning capabili-090

ties across different levels of complexity.091

Using DEPTHQA, we investigate the knowl-092

edge reasoning ability of various instruction-tuned093

LLMs in the LLaMA 2 (Touvron et al., 2023),094

LLaMA 3 (AI@Meta, 2024), Mistral (Jiang et al.,095

2023), and Mixtral (Jiang et al., 2024) family, vary-096

ing in size from 7B to 70B. We compare the rela-097

tionship between model capacities and depthwise098

discrepancies, showing that smaller models exhibit099

larger discrepancies in both directions. We further100

analyze how reliance on memorization of training101

data affects discrepancy, revealing that forward and102

backward discrepancies in large models originate103

from distinct types of failures. Finally, to examine104

the importance of structured intermediate steps in105

reasoning, we gradually guide models from sim-106

pler to more advanced questions through multi-turn107

interactions, consistently improving performance108

across various model sizes.109

The contributions of our work are threefold: 110

• We propose to connect complex questions with 111

simpler sub-questions by deconstructing ques- 112

tions based on depth of knowledge. 113

• We design the DEPTHQA dataset to evaluate 114

LLMs’ capability to form complex knowledge 115

through reasoning. We measure forward and 116

backward reasoning discrepancies across differ- 117

ent levels of question complexity. 118

• We investigate the reasoning abilities of LLMs 119

with various capacities, analyzing the impact of 120

model size and training data memorization on 121

discrepancies. 122

2 Related Work 123

Recent advancements have highlighted the impres- 124

sive reasoning abilities of transformer language 125

models across a wide range of tasks (Wei et al., 126

2022a; Zhao et al., 2023). However, despite these 127

rapid developments, numerous studies have found 128

that these models often struggle with various types 129

of reasoning, such as commonsense and logical 130

reasoning (Qin et al., 2023; Srivastava et al., 2023). 131

Even advanced models like GPT-4 have been noted 132

to struggle with implicit reasoning over their in- 133

ternal knowledge, especially when it comes to ef- 134

fectively combining multiple steps to solve compo- 135

sitionally complex problems (Talmor et al., 2020; 136

Rogers et al., 2020; Allen-Zhu and Li, 2023; Yang 137

et al., 2024; Wang et al., 2024). 138

To tackle these challenges, several studies have 139

focused on prompting or fine-tuning LLMs to ver- 140

balize the intermediate steps of knowledge and rea- 141

soning during inference (Nye et al., 2021; Wei et al., 142

2022b; Kojima et al., 2022; Wang et al., 2022; 143

Sun et al., 2023; Wang et al., 2023b; Liu et al., 144

2023). This method has significantly improved per- 145

formance, especially in larger models with robust 146

generation capabilities. Theoretical analyses fur- 147

ther support the benefits of erbalizations, validating 148

their role in improving the reasoning capabilities 149

of language models (Feng et al., 2023; Wang et al., 150

2023a; Li et al., 2024). In our data, the complex- 151

ity of D3 questions often necessitates intermediate 152

steps to derive a conclusion, similar to explicit ver- 153

balized reasoning. However, unlike previous works, 154

our setup does not mandate detailed stepwise an- 155

swers, posing a direct query to the models. We 156

compare the discrepancy between questions with 157

different complexities, enabling a more realistic 158

assessment of multi-step reasoning abilities. 159
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Another line of work focuses on understanding160

transformers’ knowledge and reasoning through161

controlled experiments (Chan et al., 2022; Akyürek162

et al., 2023; Dai et al., 2023; von Oswald et al.,163

2022; Prystawski et al., 2023; Feng and Steinhardt,164

2024). Numerous studies on implicit reasoning165

often aim to identify latent reasoning pathways,166

but most have focused on simple synthetic tasks167

or toy models (Nanda et al., 2023; Conmy et al.,168

2023; Hou et al., 2023), or evaluating through bi-169

nary accuracy of the model’s short-form predic-170

tions without considering intermediate steps (Yang171

et al., 2024; Wang et al., 2024). Our DEPTHQA, in172

contrast, challenges the model to answer complex173

questions that require diverse reasoning types in174

long-form text. DEPTHQA further requires diverse175

types of reasoning across different depths, such as176

relational and causal reasoning, in addition to the177

comparative and compositional reasoning explored178

in prior studies (Press et al., 2023; Allen-Zhu and179

Li, 2023; Wang et al., 2024). This approach pro-180

vides a more practical and nuanced assessment of181

the model’s reasoning capabilities by investigating182

the gap in forward and backward reasoning direc-183

tions.184

3 Graph-based Reasoning Framework185

We develop a novel graph-based representation186

that delineates the dependencies between differ-187

ent levels of knowledge. We represent nodes as188

questions (Section 3.1) and edges as reasoning pro-189

cesses (Section 3.2). Based on the graph definition,190

we construct a dataset that encompasses diverse191

concepts and reasoning types (Section 3.3).192

3.1 Knowledge Depth in Nodes193

We represent each node as a question tied to a194

specific layer of knowledge. As our approach to195

addressing real-world problems emphasizes the196

gradual accumulation of knowledge similar to197

educational goals, we adopt the Webb’s Depth198

of Knowledge (DOK) (Webb, 1997, 1999, 2002)199

widely used in education settings to categorize the200

level of questions. The depth of knowledge lev-201

els Dk(k ∈ {1, 2, 3})1 in questions are defined as202

follows:203

D1. Factual and conceptual knowledge: The204

question involves the acquisition and recall205

1We exclude the highest level in the original Webb’s DOK,
D4, as this level often includes interactive or creative activ-
ities and is rare or even absent in most standardized assess-
ment (Webb, 2002; Hess, 2006).

of information, or following a simple formula, 206

focusing on what the knowledge entails. 207

D2. Procedural knowledge: The question neces- 208

sitates the application of concepts through the 209

selection of appropriate procedures and step- 210

by-step engagement, concentrating on how the 211

knowledge can be utilized. 212

D3. Strategic knowledge: The question demands 213

analysis, decision-making, or justification to 214

address non-routine problems, emphasizing 215

why the knowledge is applicable. 216

The levels can be viewed as ceilings that estab- 217

lish the extent or depth of an assessee’s understand- 218

ing (Hess, 2006), a concept recognized as a valu- 219

able assessment tool in educational contexts (Hess 220

et al., 2009). Accordingly, we correlate simpler 221

questions with shallower depths and more complex 222

questions with deeper depths. 223

3.2 Criteria for Reasoning in Edges 224

To conceptualize how simpler knowledge con- 225

tributes to the development of complex knowledge, 226

we define edges in our framework representing tran- 227

sitions from each child node at Dk to at least one 228

parent node at Dk+1
2. We perceive that advancing 229

to deeper knowledge often requires synthesizing 230

multiple aspects of simpler knowledge; thus, a par- 231

ent Dk+1 node should connect to multiple child 232

Dk nodes. This configuration establishes hierar- 233

chical dependencies among D1, D2, and D3 ques- 234

tions, effectively modeling the progression needed 235

to deepen understanding and engage with higher- 236

order knowledge. Additionally, we establish three 237

criteria for the graph that must be met to ensure 238

edges accurately represent the reasoning processes 239

from shallower questions. 240

C1. Comprehensiveness: Questions at lower lev- 241

els should aim to cover all foundational con- 242

cepts necessary to answer a question at higher 243

levels. This ensures that no critical knowledge 244

gaps exist as the complexity increases. 245

C2. Implicitness: Questions at lower levels 246

should avoid directly revealing answers or 247

heavily hinting at solutions for higher-level 248

questions. This encourages independent rea- 249

soning relying on the synthesis of implicit con- 250

2We acknowledge that a foundational concept may apply
to multiple advanced questions.

3



nections between nodes rather than straight-251

forward clues.252

C3. Non-binary questioning: Questions should253

elicit detailed, exploratory responses instead254

of simple yes/no answers. Given that LLMs255

may have an inherent positivity bias which256

leads them to prefer affirmative responses (Au-257

gustine et al., 2011; Dodds et al., 2015; Pa-258

padatos and Freedman, 2023), this helps in259

evaluating deep reasoning abilities beyond su-260

perficial or biased reasoning.261

3.3 Dataset: DEPTHQA262

We create DEPTHQA, a new question answering263

dataset as a testbed for graph-based reasoning. The264

dataset is constructed in a top-down approach by de-265

constructing D2 nodes from D3 nodes, followed by266

D1 nodes from D2 nodes, creating numerous edges267

at each step (Table 1). We design the construction268

process to meticulously backtrack the knowledge269

necessary to solve complex questions while meet-270

ing the three criteria to ensure the representation of271

reasoning transition.272

D3 question curation We select real-world273

questions from the TutorEval (Chevalier et al.,274

2024) dataset, which contains human-crafted275

queries based on college-level mathematical and276

scientific content from textbooks3 available on277

libretexts.org. Note that while these textbooks278

are likely included in models’ pre-training data due279

to its online availability, human-written questions280

in TutorEval challenges generalization of famil-281

iar concepts, which is not directly presented dur-282

ing training. We procure only complex D3 ques-283

tions from TutorEval, sorting them out using GPT-284

4 Turbo4 (Achiam et al., 2023) with guidance on285

depth of knowledge levels. From an initial set of286

834 questions, we manually refine our selection287

to 91 self-contained D3 questions, ensuring clar-288

ity. As the ground-truth solution to each TutorEval289

question is provided as key points, we then use290

GPT-4 Turbo to generate reference answers5 based291

on the original context of each question and the re-292

quired depth of knowledge annotated by the model293

itself in the previous step.294

3Textbooks are designed with a scaffolding approach to
knowledge development.

4We use the gpt-4-0125-preview version for GPT-4
Turbo throughout this work, including data construction, veri-
fication, and experiments.

5Chevalier et al. (2024) reports that GPT-4 excels in solv-
ing TutorEval problems with 92% correctness.

Domain # Questions # Edges between questions

D1 D2 D3 D1 ↔ D2 D2 ↔ D3

Math 573 193 49 774 196
Computer Science 163 54 14 212 55
Environmental Science 147 44 11 175 44
Physics 140 40 10 154 40
Life Sciences 98 28 7 111 28
Math ↔ {CS, Physics} - - - 11 0

Total 1,121 359 91 1,437 363

Table 1: Statistics of DEPTHQA.

Question deconstruction For each Dk question, 295

we generate up to four Dk−1 questions using GPT- 296

4 Turbo. Within the prompt, we include definitions 297

for all three depths of knowledge and decompo- 298

sition examples to signify the purpose of decon- 299

struction. We provide Dk paired with its reference 300

answer as well to facilitate the extraction of essen- 301

tial knowledge needed to tackle more challenging 302

questions, thereby maintaining the relevance of 303

questions and adhering to C1 (Comprehensive- 304

ness). We decide the optimal number of decompo- 305

sitions to four through qualitative analysis as there 306

is a tradeoff between comprehensiveness and im- 307

plicitness: outlining every implicit reasoning step 308

enhances comprehensiveness but can reduce im- 309

plicitness, and the reverse is also true. Therefore, 310

we clearly instruct these properties in the prompt 311

to treat C2 (Implicitness). 312

Deduplication and question augmentation We 313

have identified instances where similar knowledge 314

is posed by different D1 nodes linked to the same 315

D2 node or even between D1 and D2 nodes with- 316

out direct dependencies, leading to redundancy 317

in knowledge and reasoning processes. To ad- 318

dress this, we utilize a Sentence Transformers em- 319

bedding model6 (Reimers and Gurevych, 2019) 320

to identify and eliminate near-duplicate questions 321

through cosine similarity of their embeddings. We 322

then engage GPT-4 Turbo to generate new, tar- 323

geted questions and answers that effectively fill 324

any gaps in knowledge coverage. This approach 325

has led to a 88% reduction in misclassification 326

of D1 questions as D2, markedly enhancing C2 327

(Implicitness). Additionally, the total number of 328

near-duplicates has decreased by 88%, further im- 329

proving C1 (Comprehensiveness). We continually 330

update our graph data structure to incorporate these 331

modifications, enabling more interconnectedness 332

as some D2 nodes now link to multiple D3 nodes 333

or more than four D1 nodes. 334

6sentence-transformers/all-mpnet-base-v2
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Depth Reasoning type Example question %

3

Comparative In the context of computer programming, what is the difference between for and while, are they
always exchangeable? Show me some cases where one is strongly preferred to the other.

21.1

Causal How does deflection of hair cells along the basilar membrane result in different perceived sound
frequences?

10.5

Inductive How could a process satisfying the first law of thermodynamics still be impossible? 8.8

Criteria Development Explain if a matrix always have a basis of eigenvectors. 8.8

2
Relational What factors influence the time complexity of searching for an element in a data structure? 22.6

Procedural Describe the process involved in solving cubic equations using the cubic formula. 13.4

Application How can sustainable agricultural practices contribute to food security and economic development in
developing countries?

7.3

Table 2: Representative examples of required reasoning skills in D3 and D2. % of instances within each depth that
include the reasoning type is reported. Note that multiple reasoning types can be included in a single question.

Question debiasing Lastly, we undertake the335

task of manually rewriting 53 questions that origi-336

nally invoke binary "yes" or "no" answers, ensur-337

ing C3 (Non-binary Questioning). For example,338

a question that begins with "If I understand cor-339

rectly..." is transformed into "Clarify my under-340

standing that...", prompting the model to directly341

engage in analytical thinking rather than relying on342

simple affirmations or negations of the correctness.343

We provide details and examples in the data con-344

struction process in Appendix A and prompts in345

Appendix G.1.346

3.4 Diversity of Reasoning Processes347

We examine the types of reasoning needed to348

progress from basic to complex knowledge lev-349

els using a sample of 20 D3 questions along with350

their corresponding 80 D2 and 320 D1 questions.351

We discover that nearly all questions necessitate352

the identification and extraction of several pieces353

of relevant information to synthesize comprehen-354

sive answers. Table 2 displays examples of ques-355

tions requiring advanced reasoning skills, such as356

interpreting relationships between concepts, apply-357

ing specific conditions, and handling assumptions—358

demonstrating that basic knowledge manipulation359

is insufficient. This diversity in reasoning types360

within our dataset robustly challenges LLMs to361

demonstrate sophisticated cognitive abilities. De-362

tailed statistics and additional examples of reason-363

ing types are provided in Appendix C.364

4 Experiments365

In this section, we present experiments on366

the depthwise reasoning ability of LLMs using367

DEPTHQA. We first explain the evaluation metrics368

and models (Section 4.1). Experimental results that369

follow are overall depthwise and discrepancy evalu-370

ation results (Section 4.2), the impact of memoriza-371

tion in knowledge reasoning (Section 4.3), and the 372

effect of enforcing knowledge reasoning as multi- 373

turn inputs or prompt inputs (Section 4.4). 374

4.1 Experiment Setup 375

Depthwise evaluation For each question qk with 376

depth k, we score the factual correctness of the 377

predicted answer on a scale from 1 to 5. We employ 378

the LLM-as-a-Judge approach, which correlates 379

highly with human judgments in scoring long-form 380

responses (Zheng et al., 2024; Kim et al., 2024a; 381

Lee et al., 2024; Kim et al., 2024b). Specifically, 382

we utilize GPT-4 Turbo (Achiam et al., 2023) for 383

absolute scoring. Following Kim et al. (2024a) 384

and Lee et al. (2024), the model generates a score 385

and detailed feedback for each question, reference 386

answer, and prediction, based on a defined scoring 387

rubric. Further details on the evaluation process 388

are provided in Appendix D. We report average 389

accuracy at Dk, the averaged factual correctness 390

of questions at depth k. 391

Discrepancy evaluation As we deconstruct com- 392

plex questions into a hierarchical graph, we can 393

measure forward discrepancy and backward dis- 394

crepancy between neighboring questions. For- 395

ward discrepancy measures the differences in per- 396

formance on sub-problems compared to deeper 397

questions requiring advanced reasoning. Given 398

a question qk with depth k ∈ {2, 3}, Parent(qk) 399

represents a set of parent questions at depth k − 1. 400

Forward discrepancy for qk is defined as follows: 401

Forward Discrepancy(qk) = 402

max

(
0,

1

4

(
avgq∈Parent(qk)

[f(q)]− f(qk)
))

(1)

403

where f is function for factual correctness. Con- 404

versely, backward discrepancy quantifies incon- 405
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Model
Average Accuracy ↑ Forward Discrepancy ↓ Backward Discrepancy ↓

D1 D2 D3 Overall D2 ↔ D3 D1 ↔ D2 Overall D2 ↔ D3 D1 ↔ D2 Overall

LLaMA 2 7B Chat 3.828 3.320 3.165 3.673 0.130 0.181 0.176 0.219 0.110 0.134
LLaMA 2 13B Chat 4.289 3.872 3.615 4.155 0.152 0.158 0.157 0.126 0.078 0.088
LLaMA 2 70B Chat 4.495 4.153 4.022 4.390 0.126 0.136 0.134 0.136 0.063 0.079
Mistral 7B Instruct v0.2 4.280 3.897 4.000 4.176 0.092 0.157 0.147 0.144 0.070 0.088
Mixtral 8x7B Instruct v0.1 4.599 4.532 4.429 4.574 0.087 0.079 0.081 0.063 0.063 0.063
LLaMA 3 8B Instruct 4.482 4.351 4.286 4.440 0.083 0.096 0.093 0.088 0.072 0.075
LLaMA 3 70B Instruct 4.764 4.749 4.648 4.754 0.065 0.050 0.053 0.043 0.044 0.044
GPT-3.5 Turbo 4.269 4.251 4.011 4.250 0.100 0.072 0.078 0.046 0.067 0.063

Table 3: Depthwise reasoning performance of large language models. Bold indicates the best-performing model,
and underline represents the second best performance. Darker color indicates higher discrepancy.

sistencies where LLMs can successfully answer406

deeper questions but struggle with shallower ones.407

Given a question qk with depth k ∈ {1, 2}, back-408

ward discrepancy is defined as follows:409

Backward Discrepancy(qk) =410

max

(
0,

1

4

(
avgq∈Child(qk)

[f(q)]− f(qk)
))

(2)

411

where Child(qk) represents a set of child questions412

at depth k+1. Both forward discrepancy and back-413

ward discrepancy are normalized to the range [0, 1]414

by dividing by the maximum possible gap of 4. To415

focus on the reasoning gap within depths, we report416

the average values of each discrepancy for exam-417

ples where the average score for Parent(qk) and418

Child(qk) is larger than 4. This approach ignores419

cases where models failed to provide appropriate420

answers.421

Models We investigate the depthwise knowledge422

reasoning ability of open-source LLMs. We test423

representative open-source models based on the424

LLaMA (Touvron et al., 2023) architecture, in-425

cluding LLaMA 2 7B, 13B, 70B Chat (Touvron426

et al., 2023), Mistral 7B Instruct v0.2 (Jiang et al.,427

2023), Mixtral 8x7B Instruct v0.1 (Jiang et al.,428

2024), and LLaMA 3 8B, 70B Instruct (AI@Meta,429

2024). Additionally, we include the latest GPT-3.5430

Turbo (OpenAI, 2022) to compare the performance431

of these open-source models against a proprietary432

model.433

4.2 Depthwise Knowledge Reasoning Results434

Overall results Table 3 presents the overall435

depthwise reasoning performance of LLMs. As436

anticipated, solving questions in D3 is the most437

challenging, while D1 yields higher performance438

across all models. Among the models, LLaMA 3439

70B Instruct demonstrates the best performance440

across all depths, with Mixtral 8x7B Instruct 441

achieving the second-best results. LLaMA 3 70B 442

Instruct also exhibits the lowest discrepancies for 443

both forward and backward discrepancy metrics, 444

effectively solving questions at all depths with min- 445

imal discrepancies. Conversely, the least capable 446

model, LLaMA 2 7B Chat, shows the lowest per- 447

formance along with the highest forward and back- 448

ward discrepancies. Note that the relatively low 449

forward discrepancy from D1 ↔ D2 for LLaMA 2 450

7B Chat is due to its low performance at D2. This 451

observation hightlight the varying capabilities of 452

different LLMs in handling depthwise reasoning. 453

Discrepancy patterns We observe distinct pat- 454

terns by analyzing the trends in forward and back- 455

ward discrepancies separately. When considering 456

discrepancies as the product of intensity (i.e., the 457

value of discrepancies) and frequency (i.e., the ratio 458

of questions with positive discrepancy), forward 459

discrepancy tends to occur more frequently but 460

with lower intensity. For instance, LLaMA 3 8B 461

Instruct exhibits an intensity of 0.225 with a fre- 462

quency of 41.44%. In contrast, backward discrep- 463

ancy happens less frequently but is more significant 464

when it occurs. LLaMA 3 8B Instruct shows an 465

intensity of 0.323 with a frequency of 23.32% for 466

backward discrepancy.7 This results show the dis- 467

tinct nature of forward and backward discrepancies 468

in model performance. 469

4.3 Memorization in Depthwise Knowledge 470

Reasoning 471

4.3.1 Depthwise Memorization 472

To determine whether solving complex questions 473

requires reasoning rather than memorization of 474

training data, we use a pre-training data detec- 475

tion method to approximate potential aspects of 476

7The intensity and frequency for all models are provided
in Appendix E.
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Figure 3: Memorization analysis with Min-K% probability. (a)-(d) show the average Min-K% probability at each
depth. (e)-(g) present the score difference between neighboring questions, whose Min-K% probability is in the
bottom 25% or top 75%. A positive gap indicates backward discrepancy, while a negative gap represents forward
discrepancy.

memorization. Following Shi et al. (2023), we477

compare the Min-K% probability within models.478

Higher values suggest a lesser possibility of pre-479

dictions directly existing in the training data, com-480

pared to those with lower values. More specifi-481

cally, Min-K% probability averages the negative482

log-likelihood of the K% tokens with the lowest483

probabilities in the model’s predictions. If a given484

prediction was included in the training, outlier485

words with low probabilities would be less fre-486

quently appeared, resulting in high probabilities487

for the Min-K% tokens. Since Min-K% probability488

is the average negative log-likelihood, the resulting489

value would be lower if the text was present during490

training.8491

Models rely less on memorization for complex492

questions. Figure 3 (a)-(d) present the depthwise493

average of the Min-K% probability for four mod-494

els. We observe that as the depth increases, the495

Min-K% probability also increases for all mod-496

els. This indicates that answering questions based497

on simple conceptual knowledge corresponding to498

D1 is more likely to be solved by recalling train-499

ing data. While shallow questions (D1) can be500

addressed through memorization, solving deeper501

questions (D3) requires more than just recalling a502

single piece of memorized knowledge, indicating a503

need for genuine reasoning capabilities.504

8For our calculations, we set k to 20 and used a sequence
length of 128.

4.3.2 Memorization Gap between Depths 505

Further analysis of questions in the bottom 25% 506

and top 75% quantiles of the Min-K% probabil- 507

ity distribution provides additional insights. Fig- 508

ure 3 (e)-(g) show the score difference between 509

neighboring questions (D2 ↔ D3), whose Min- 510

K% probability is in the bottom 25% or top 75%. 511

The gap is calculated as the difference between the 512

factual correctness of D3 and D2, normalized by 513

the maximum gap of 4. A positive value indicates 514

higher factual accuracy for the deeper questions, 515

signifying backward discrepancy, while a negative 516

value indicates higher accuracy for the shallower 517

question, representing forward discrepancy. 518

Failure modes for discrepancies We observe 519

that the model with small capacity, LLaMA 2 7B 520

Chat, exhibits large variances in both directions, 521

showing significant forward and backward discrep- 522

ancies. In contrast, models with larger capacities, 523

such as LLaMA 2 70B Chat and LLaMA 3 70B In- 524

struct, demonstrate smaller variances. Additionally, 525

models with larger capacities tend to show rela- 526

tively higher forward discrepancies for the top 75% 527

examples, which rely less on memorization. On 528

the other hand, the bottom 25% show a slight shift 529

towards positive values, indicating relatively more 530

backward discrepancies. This suggests that failures 531

in knowledge reasoning result in forward discrepan- 532

cies, while failures due to reliance on memorization 533

may lead to backward discrepancies. The depth- 534
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Figure 4: Performance change after providing shallower
questions. Note that D1 is not reported for prompt
inputs, as D1 do not have shallower questions.

wise Min-K% probability and score difference for535

other models are provided in Appendix F.536

4.4 Effect of Explicit Reasoning Process537

In this study, as presented in Figure 1 (a), D3 ques-538

tions can be solved through sequential reasoning,539

utilizing answers from D1 to D3 questions. Previ-540

ous studies on reasoning (Wei et al., 2022b; Press541

et al., 2023; Zhou et al., 2023) have shown that542

enforcing LLMs to explicitly reason through inter-543

mediate steps can improve their reasoning ability.544

We investigate whether explicitly providing these545

reasoning processes to the model can aid in solving546

complex questions.547

We encourage the model to reason by providing548

shallower questions in three ways: (i) Multi-turn,549

where shallower questions are provided as inputs550

in a multi-turn conversation; (ii) Prompt (Gold),551

where shallower questions and their gold answers552

are provided in prompts; (iii) Prompt (Pred.),553

where shallower questions with the model’s pre-554

dictions are given in prompts. Note that prompt-555

based approaches require shallower QA pairs as556

inputs, which cannot be applied to D1 questions.557

The input example for each approach is provided558

in Appendix G.559

Explicitly providing shallower solutions is ben- 560

eficial for small models and complex questions. 561

Figure 4 illustrates the depthwise performance 562

changes after incorporating deconstructed ques- 563

tion information. Providing shallower questions 564

benefits models with smaller capacities, such as 565

LLaMA 2 7B Chat and Mistral 7B Instruct v0.2. 566

For relatively simple questions (D2), the benefit is 567

less pronounced or may even decrease the perfor- 568

mance of more capable models (>7B). However, 569

intermediate questions (D2) are beneficial for com- 570

plex questions (D3), except for models with large 571

capacities (≥ 56B). 572

Implicitly guiding reasoning via multi-turn in- 573

teractions best improves performance. When 574

comparing the two prompt-based inputs, smaller 575

models tend to perform better with gold answers, 576

while more capable models favor self-prediction re- 577

sults. This preference may stem from the alignment 578

of self-generated inputs with the models’ internal 579

reasoning when they are already proficient. The 580

multi-turn approach provides the most stable re- 581

sults across all depths, enhancing the performance 582

of smaller models while causing minimal perfor- 583

mance drops for larger models. Additionally, the 584

multi-turn approach improves D1 performance by 585

providing context or domain information as part of 586

the interaction history. 587

5 Conclusion 588

In this study, we explore the reasoning capabilities 589

of LLMs by deconstructing real-world questions 590

into a graph. We introduce DEPTHQA, a set of de- 591

constructed D3 questions mapped into a hierarchi- 592

cal graph, requiring utilization of muliple layers of 593

knowledge in the sequence of D1, D2 to D3. This 594

hierarchical approach provides a comprehensive 595

assessment of LLM performance by measuring for- 596

ward and backward discrepancies between simpler 597

and complex questions. Our comparative analy- 598

sis of LLMs with different capacities reveals an 599

inverse relationship between model capacities and 600

discrepancies. Memorization analysis suggests that 601

the sources of forward and backward discrepancies 602

in large models stem from different types of fail- 603

ures. Lastly, we demonstrate that guiding models 604

from shallower to deeper questions through multi- 605

turn interactions stabilizes performance across the 606

majority of models. These findings emphasize the 607

importance of intermediate knowledge extraction 608

in understanding LLM reasoning capabilities. 609
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Limitations610

Small sample size Our dataset, DEPTHQA, con-611

structed to evaluate the knowledge reasoning abil-612

ities of LLMs, consists of 91 complex (D3) ques-613

tions from the TutorEval dataset, along with 1,480614

derived shallower (D2, D1) questions. Despite the615

diversity in reasoning types explored (Section 3.4)616

and the hierarchical structuring of subquestions,617

the limited number of complex questions and the618

narrow content scope restrict the generalizability of619

our findings. The selection of TutorEval as our pri-620

mary source is based on the challenge of manually621

developing intricate questions that necessitate ad-622

vanced reasoning skills and the scarcity of existing623

datasets that meet criteria for (1) real-world rele-624

vance, (2) long-form question answering to assess625

deep knowledge reasoning, and (3) minimal risk626

of test set contamination. Within TutorEval, com-627

plex D3 questions represent only 33.6% of its 834628

questions, which further reduces to 10.9% when ex-629

cluding questions that require external knowledge630

retrieval. We encourage future research to establish631

more robust benchmarks that provide a larger and632

more varied set of questions to better assess the633

knowledge reasoning capabilities of LLMs.634

GPT-4 data generation and evaluation All635

questions except for D3 and reference answers in636

DEPTHQA is generated by GPT-4 Turbo, which637

may introduce inaccuracies due to potential errors638

in the decomposition process or unverified knowl-639

edge produced by the model. To ensure the quality640

of these questions, we have established strict de-641

composition criteria (Section 3.2) and implemented642

rigorous procedures including detailed instructions,643

question augmentation, and manual rewriting and644

verification (Section 3.3). The reliability of the an-645

swers is supported by findings from Chevalier et al.646

(2024), which demonstrate GPT-4’s high accuracy647

of 92% on TutorEval problems as assessed by hu-648

man evaluators. Furthermore, we utilize GPT-4649

Turbo to assess the correctness of model predic-650

tions. Following established protocols from previ-651

ous studies (Kim et al., 2024a,b) which highlight652

GPT-4’s strong correlation with human judgments653

on long-form content, we provide detailed instruc-654

tions and specific scoring rubrics to the evaluator655

to ensure that the evaluation process aligns closely656

with our research objectives.657
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A Details in Dataset Construction889

Classifying questions based on depth of knowl-890

edge To categorize questions from the TutorEval891

dataset (Chevalier et al., 2024), we use GPT-4892

Turbo set at a temperature of 0.7, following the893

specific prompt detailed in Table 14. We evaluate894

the model’s classification accuracy using a valida-895

tion set of 50 questions, which we have previously896

annotated with their respective depth of knowledge897

levels. Our optimal prompting strategy involves898

incorporating key points from each question pro-899

vided in the original dataset and instructing the900

model to provide a step-by-step explanation of its901

classification reasoning. This approach achieves a902

precision of 0.67 and a recall of 0.77, with a low903

rate of false positives. Analysis of the entire set904

of 834 questions reveals the distribution of depth905

levels: 43% at D2, 33.6% at D3, 23.3% at D1, and906

only one question at D4.907

D3 question filtering and disambiguation908

From the 280 D3 questions initially identified,909

we manually exclude questions that are not self-910

contained, meaning they refer to specific contexts911

or excerpts in textbook passages that cannot be912

seamlessly integrated into our input. Examples in-913

clude questions like, "I don’t understand the point914

of Theorems 4.3.2 and 4.3.3. Why do we care915

about these statements?" and "Please tell me the916

common conceptual points between the Weinrich917

and Wise 1928 study and the Roland et al. 1980918

paper." Additionally, we disambiguate questions919

to ensure clarity and context accuracy. For exam-920

ple, the question "Why is branching unstructured?921

And is it a bad design choice?" was initially vague922

about its reference to ‘branching.’ Upon review,923

we identify the context as computer programming924

rather than database systems and revise the ques-925

tion to: "In the context of computer programming,926

why is branching considered unstructured, and is it927

considered a poor design choice?".928

Question deduplication and augmentation As929

explained in Section 3.3, we leverage cosine simi-930

larity of question embeddings produced by a Sen-931

tence Transformers embedding model9 (Reimers932

and Gurevych, 2019) to identify near-duplicate933

questions. Specifically, within the same depth 1934

or 2, we apply a similarity threshold of 0.9 to iden-935

tify duplicates and eliminate them. For questions936

across D1 and D2, we remove D2 questions with a937

9sentence-transformers/all-mpnet-base-v2

Top-1 before deduplication (similarity = 0.97)
D2: How do you calculate the determinant of a matrix?
D1: How do you find the determinant of a matrix?

Top-1 after deduplication (similarity = 0.93)
D2: What does it mean for two vectors to be orthogonal, and
how can you verify this property?
D1: What does it mean for two vectors to be orthogonal?

Table 4: Top-1 similar question pairs between D2 and
D1 before and after the deduplication and augmentation
process. While the pair above shares essentially the
same depth of knowledge, the pair below substantially
differ in knowledge depth due to the D2 question asking
additional procedures.

Describe how division and remainders work when consider-
ing congruence modulo a number.

1. What is the result of a division called?
2. How is a remainder defined in division?
3. What does it mean for two numbers to be congruent mod-

ulo a number?
4. What does the term ‘congruence modulo a number’ mean?

⇒ What is the modulo operation in mathematics?

Table 5: The original 4th shallower question (red) is ask-
ing redundant knowledge addressed in the 3rd question.
We remove the duplicate question and replace it with a
question asking a different concept (blue).

similarity score ≥ 0.9 to D1 questions and remove 938

D1 questions with a similarity score between 0.8 939

and 0.9 to D1 questions, under the rationale that 940

the D2 question is effectively at D1 level and vice 941

versa. The similarity threshold and the candidate 942

to remove was determined through qualitative anal- 943

ysis. We analyze that the false positive rate of D1 944

questions misclassified as D2 decreases from 60% 945

to 7% (reduction rate of 88%). Table 4 compares 946

top-1 similar question pairs between D2 and D1 be- 947

fore and after deduplication. We further use GPT-4 948

Turbo with temperature 0.7 (prompt in Table 20 949

and 21) to augment questions filling the gap of 950

knowledge. Table 5 illustrates how an augmented 951

question successfully replaces a previously redun- 952

dant question, enhancing comprehensiveness. 953

Motivation of question debiasing In our prelim- 954

inary study, we found that models tend to favor 955

"yes" over "no" at the beginning of the response to 956

a question that can be answered in binary format, 957

as exemplified in Table 6. We recognize that the 958

inherent positivity bias in models (Augustine et al., 959

2011; Dodds et al., 2015; Papadatos and Freedman, 960

2023) has the potential to skew the model’s rea- 961

12

https://huggingface.co/sentence-transformers/all-mpnet-base-v2


Original question: Flipped question:
Being congruent modulo an ideal sounds a bit like two numbers
being congruent modulo another number. Is there a connection
between these two notions? ⇒ Yes

Are the concepts of being congruent modulo an ideal and two
numbers being congruent modulo another number entirely dis-
tinct with no connection? ⇒ No

Predicted answer: Predicted answer:
Yes, there is a connection between the two notions. In mathe-
matics, when we say that two integers are congruent modulo n,
it means that they have the same remainder when divided by n.
For example, 3 and 6 are congruent modulo 3 because when we
divide 3 by 3, the remainder is 0, and when we divide 6 by 3, the
remainder is also 0. [... ]

Yes, the concepts of being congruent modulo an ideal and two
numbers being congruent modulo another number are distinct.
When we say that two numbers a and b are congruent modulo
n, we mean that their difference a - b is a multiple of n. This is
written as a ≡ b (mod n). [... ]

Table 6: Example of Mistral 7B Instruct v0.2 favoring affirmative responses over negative responses when the
knowledge required is consistent but only the question format is flipped.

Are there problems that one can use standard induction to
prove but cannot use strong induction to prove?
⇒ What kind of problems can be proven using standard
induction but not strong induction?

If I understand correctly, adding sine functions always results
in a new sine function?
⇒ Clarify my understanding that adding sine functions al-
ways results in a new sine function.

Can a linear transformation map all points of a vector space
to a single point, and under what conditions does this occur?
⇒ Describe the possibility of a linear transformation map-
ping all points of a vector space to a single point. Under what
conditions does this occur?

Table 7: Example conversions of binary questions into
non-binary questions.

soning processes and consequently obscure a true962

evaluation of its capability to reason and articu-963

late nuanced thoughts. To mitigate this, we debias964

problematic questions by reframing them into more965

exploratory inquiries. Example transformations are966

in Table 7.967

B Dataset License968

The TutorEval (Chevalier et al., 2024) dataset from969

which we source complex questions has not dis-970

closed the license yet. Our DEPTHQA is subject971

to OpenAI’s Terms of Use for the generated data.972

We will notify the intended use of our dataset for973

research when releasing our dataset to the public.974

C Reasoning Type Analysis975

In Table 8, we report the distribution of reasoning976

types annotated by the authors on a sample of 20977

D3 questions and D2 and D2 related to them. We978

provide question deconstructions examples in Ta-979

ble 11 and Table 12 where each showcases distinct980

reasoning types and knowledge.981

Reasoning Type Depth 3 Depth 2

Count % Count %

Comparative 12 21.1 19 11.6
Relational 10 17.5 37 22.6
Causal 6 10.5 19 11.6
Inductive 5 8.8 6 3.7
Criteria Development 5 8.8 13 7.9
Procedural 4 7.0 22 13.4
Evaluative 4 7.0 12 7.3
Example 2 3.5 8 4.9
Quantitative 2 3.5 6 3.7
Application 2 3.5 19 11.6
Other 5 8.8 3 1.8

Total 57 100 164 100

Table 8: Distribution of reasoning types for D3 and D2

in a subset of DEPTHQA. Multiple reasoning types can
be included in one instance.

D Details in Experiments 982

D.1 Model Inference 983

To inference LLMs used in our experimental setup 984

(Section 4.1), we use a standardized API from 985

OpenRouter10 to access LLMs and use the comple- 986

mentary LiteLLM11 interface to call model genera- 987

tions. An exception is LLaMA 7B Chat, which is 988

not hosted in OpenRouter; we use the HuggingFace 989

model and the vLLM (Kwon et al., 2023) inference 990

engine for this particular model, performing local 991

inference on 1 NVIDIA A6000 GPU. We use the 992

default sampling parameters suited for each model. 993

The specific prompt templates used to induce rea- 994

soning paths are organized in Appendix G.2. The 995

inference on the whole pass of DEPTHQA finishes 996

within 10 minutes. We report single-run results. 997

10openrouter.ai
11litellm.vercel.app/docs/providers/openrouter
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D.2 LLM-as-a-Judge Evaluation998

When prompting GPT-4 Turbo to evaluate model999

responses, we use a temperature of 1.0, nucleus1000

sampling with top_p of 0.9, and maximum num-1001

ber of generation tokens of 1,024, following pre-1002

vious works (Ye et al., 2024; Kim et al., 2024a,b;1003

Lee et al., 2024). The prompt template including1004

the score rubric is in Table 25. We report single-1005

run results. Unlike prior works that emphasize1006

the use of instance-specific scoring rubrics (Kim1007

et al., 2024a,b; Lee et al., 2024), our initial ex-1008

periments comparing evaluations given a common1009

rubric and instance-specific rubric showed that1010

instance-specific rubrics increase noise in evalu-1011

ation and decrease the quality of evaluation. We1012

speculate that it is because the focus of our evalua-1013

tion is on a common factor of factual correctness,1014

i.e., whether the model accurately uses knowledge1015

in the reasoning process, different from conven-1016

tional benchmark evaluations.1017

E Discrepancy Results1018

To separately observe how frequently each discrep-1019

ancy occurs and its intensity when it happens, Ta-1020

ble 9 and Table 10 show the average intensity and1021

frequency of each forward and backward discrep-1022

ancy. Note that the average discrepancy is calcu-1023

lated as the product of the value and frequency.1024

Overall, forward discrepancies appeared more fre-1025

quently, although their intensity was relatively low1026

(between 0.14 and 0.26). In contrast, backward1027

discrepancies appeared less than 25%, except for1028

LLaMA 2 7B, which exhibited high intensity (be-1029

tween 0.26 and 0.37).1030

F Overall Results with Min-K%1031

Probability1032

F.1 Depthwise Min-K% Prob.1033

In Figure 5, we plot the Min-k% probability of1034

LLaMA 2 13B Chat, Mistral 8B Instruct and Mix-1035

tral 8x7B Instruct. Similar to Figure 3, D3 shows 1036

the highest average Min-K% probability, indicating 1037

the least memorization over all three models. 1038

F.2 Score Gap within Neighboring Questions 1039

Figure 6 presents the KDE plot of the factual accu- 1040

racy gap between q3 and q2 for q3 instances whose 1041

Min-%K probability is in the bottom 25% and top 1042

75%. A positive gap represents higher factual ac- 1043

curacy for q3, indicating backward discrepancy. In 1044

contrast, a negative difference represents forward 1045

discrepancy. 1046

G Prompts 1047

G.1 Data construction 1048

We provide the prompts used to classify TutorEval 1049

questions (Table 14), generate D3 answers (Ta- 1050

ble 15), generate D2 or D2 answers (Table 16), 1051

generate questions at D2 (Table 18) and D1 (Ta- 1052

ble 19), and augment questions at D2 (Table 20) 1053

and D1 (Table 21). For generating or augmenting 1054

any question at D2 or D1, we use the same system 1055

prompt (Table 17) that describes the definitions of 1056

depths of knowledge. 1057

G.2 Inference 1058

We provide the prompts used for zero-shot (Ta- 1059

ble 22), Prompt (Gold) and Prompt (Pred.) (Ta- 1060

ble 23), and multi-turn (Table 24) inference. 1061

G.3 Evaluation 1062

The prompt used for LLM-as-a-Judge evaluation is 1063

in Table 25. 1064

Model Average Forward Discrepancy Value Frequency (%)

D2 ↔ D3 D1 ↔ D2 Overall D2 ↔ D3 D1 ↔ D2 Overall D2 ↔ D3 D1 ↔ D2 Overall

LLaMA 2 7B Chat 0.1304 0.1814 0.1756 0.2708 0.2683 0.2685 48.15 67.62 65.40
LLaMA 2 13B Chat 0.1524 0.1582 0.1573 0.2572 0.2720 0.2697 59.26 58.14 58.31
LLAMA 2 70B Chat 0.1259 0.1361 0.1344 0.2633 0.2490 0.2512 47.83 54.68 53.50
Mistral 7B Instruct v0.2 0.0920 0.1569 0.1474 0.2031 0.2294 0.2267 45.28 68.39 65.01
Mixtral 8x7B Instruct v0.1 0.0868 0.0791 0.0806 0.1844 0.2058 0.2009 47.06 38.46 40.14
Llama 3 8B Instruct 0.0831 0.0957 0.0934 0.2225 0.2258 0.2253 37.33 42.38 41.44
Llama3 70B Instruct 0.0653 0.0497 0.0528 0.2176 0.2211 0.2202 30.00 22.47 23.99
GPT-3.5 Turbo 0.1002 0.0722 0.0779 0.1608 0.1369 0.1424 62.35 52.73 54.70

Table 9: Average intensity and frequency of forward discrepancy.
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Model Average Backward Discrepancy Value Frequency (%)

D2 ↔ D3 D1 ↔ D2 Overall D2 ↔ D3 D1 ↔ D2 Overall D2 ↔ D3 D1 ↔ D2 Overall

LLaMA 2 7B Chat 0.2193 0.1104 0.1342 0.3827 0.3589 0.3671 57.31 30.77 36.57
LLaMA 2 13B Chat 0.1255 0.0782 0.0879 0.3846 0.3339 0.3473 32.64 23.43 25.32
LLAMA 2 70B Chat 0.1363 0.0632 0.0787 0.3811 0.3258 0.3442 35.76 19.40 22.88
Mistral 7B Instruct v0.2 0.1442 0.0700 0.0881 0.3488 0.3071 0.3225 41.33 22.81 27.31
Mixtral 8x7B Instruct v0.1 0.0627 0.0635 0.0633 0.2979 0.2728 0.2781 21.04 23.27 22.76
Llama 3 8B Instruct 0.0878 0.0717 0.0752 0.3500 0.3141 0.3227 25.08 22.82 23.32
Llama3 70B Instruct 0.0427 0.0442 0.0438 0.2778 0.2692 0.2710 15.38 16.41 16.18
GPT-3.5 Turbo 0.0457 0.0672 0.0626 0.2892 0.2602 0.2644 15.79 25.81 23.68

Table 10: Average intensity and frequency of backward discrepancy.
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(c) Mixtral 8x7B Instruct

Figure 5: Average Min-K% probabilaity at each depth. Lower values indicate more memorization while higher
values indicate less memorization.
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Figure 6: Factual accuracy difference between neighboring q3 and q2 in bottom 25% and top 75% quantiles. Positive
gap indicates backward discrepancy and negative gap represents forward discrepancy.
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Does a matrix always have a basis of eigenvectors?
How can you determine if a square matrix is diagonalizable?

What is the definition of a square matrix?
What are the characteristics of a diagonal matrix?
What is meant by the eigenvalues of a matrix?
How is the characteristic equation of a matrix defined?

What is the process for finding the eigenvalues of a matrix?
Explain how to compute eigenvectors from a given set of eigenvalues.
Describe the method to perform a similarity transformation on a matrix.

Table 11: Hierarchical question deconstruction for analyzing matrix diagonalizability. The topmost complex
question, D3, requires developing criteria of whether the statement holds or not. The first D2 question identifies the
key property to help determine the case. The D1 child questions addresses relevant definitions, characteristics, and
formula in order to synthesize the foundational concepts.

I thought that animals from different species could not produce viable offspring. However, a horse and a donkey
can produce viable offspring. Isn’t this contradictory?

How do horses and donkeys differ genetically and what makes them separate species?
What is the definition of a viable offspring in biological terms?
Can you explain the concept of hybrid vigor and how it applies to cross-species offspring such as mules?

What is the definition of hybrid vigor?
What is a mule?
How is a mule produced?
What are the parent species of a mule?

What are the implications of sterility in hybrids like mules for their classification as members of a species?

Table 12: Hierarchical question deconstruction for understanding species differentiation and hybrid viability.
Key reasoning steps include identifying exceptions, elucidating causal relationships, and hypothesizing potential
outcomes in species classification criteria, culminating in a robust evaluation of biological definitions and exceptions.
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Question:
I’m studying ideal and real gasses in engineering thermodynamics. Why can’t we measure temperature in Fahrenheit?

Predicted answer:
In engineering thermodynamics, it’s common to work with ideal and real gases, and temperature plays a crucial role in
characterizing their behavior.

Actually, you can measure temperature in Fahrenheit, but not in the context of the ideal gas law or ideal gas equations. The
issue lies in the definition and scaling of the Fahrenheit and Celsius temperature scales.

Celsius is the preferred choice for scientific and engineering applications because it’s based on the concept of absolute zero,
which is the theoretically lowest possible temperature. It’s defined as 0 K (kelvin). This allows for a coherent and consistent
framework for discussing temperature and thermodynamic quantities.

Fahrenheit, on the other hand, has a different zero point (32°F) and relies on arbitrary reference points to define its scale.
Although it’s still used for everyday applications, it doesn’t provide the same theoretical foundation as Celsius.

The ideal gas law and the equations of state for gases are typically expressed in terms of absolute temperature (K or °R), and
Celsius is the most compatible scale for these applications.

So, while you could measure temperature in Fahrenheit if needed, it’s essential to understand the underlying science
and choose the most relevant and consistent temperature scale when working with ideal and real gases in engineering
thermodynamics.

Feedback:
Feedback: The response provides an accurate explanation regarding the use of Fahrenheit versus Celsius (and indirectly
Kelvin) in the context of thermodynamics and ideal gases. It correctly identifies the reasons why Celsius and Kelvin are
preferred for scientific studies, focusing on the relevance of absolute zero and the uniformity in scientific communication.
However, it slightly misleads by stating that Celsius is based on the concept of absolute zero, when in fact, it is Kelvin that is
based on this concept. Celsius is indeed more aligned with Kelvin compared to Fahrenheit but it is not based on absolute zero;
rather, it is defined by the melting point of ice and the boiling point of water at one atmosphere of pressure, which are then
used to extrapolate its relation to Kelvin. The response demonstrates a strong understanding but includes a minor inaccuracy
regarding the basis of the Celsius scale. This inaccuracy does not significantly detract from the overall quality and factual
correctness of the explanation but is worth noting for precision.

Score:
4

Table 13: Example LLaMA 8B Instruct zero-shot inference on a D3 question followed by GPT-4 Turbo evaluation.
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System prompt:
You are an excellent question classifier. You will be given (1) a question and (2) key points that a good response would
address when answering the question. You have to classify at which Depth of Knowledge (DOK) level the question is located.
DOK is a framework that focuses on the context which knowledge will be demonstrated. Here is the definition of each DOK
level:

1. DOK-1 (Basic Knowledge and Recall): This level addresses "What is the knowledge?". It evaluates the ability to
remember, explain, or pinpoint fundamental facts, terms, principles, and procedures. It’s about recognizing or recollecting
basic information and performing simple, direct tasks.
2. DOK-2 (Application of Knowledge and Skills): This level explores "How can the knowledge be used?". It tests the
ability to employ knowledge and concepts in practical situations, which involves choosing appropriate methods, solving
straightforward problems, or interpreting data. This level acts as an intermediary step between fundamental understanding
and more advanced reasoning.
3. DOK-3 (Analytical and Strategic Thinking): This level questions "Why can the knowledge be used?". It challenges one to
use strategic thought, logic, and problem-solving in intricate, abstract situations that might have more than one solution. This
stage demands critical thinking, rationale, and conceptualization of theoretical scenarios.
4. DOK-4 (Extended and Integrative Knowledge): This level examines "How else can the knowledge be applied?". It assesses
the ability to conduct thorough research, apply concepts and skills in real-world scenarios, and integrate knowledge across
different disciplines or sources. It involves developing original ideas, conducting experiments, and synthesizing information
from various fields. Note that in the science domain, this level may be constrained to designing studies, experiments, and
projects and is thus rare or even absent in most standardized assessment.

User prompt:
Please classify the following question into DOK-1, 2, 3, or 4. Refer to the key points to help your judgment. Think
step-by-step and provide an explanation of your judgment. After providing your explanation, output the DOK level that is an
integer of 1, 2, 3, or 4. The output format should looks as follows: {explanation for reaching the DOK decision} [RESULT
]{DOK level that is an integer in the range 1 to 4}.

## Question
{question}
## Key points
{key_points}
## Answer

Table 14: Prompt for classifying TutorEval questions.

System prompt:
You are an excellent assistant that effectively answers complex questions. You are given a passage, question, and key points
to answer the question. Read the instruction and give an appropriate answer.

User prompt:
## Chapter
{chapter}

## Instruction
Answer the question below.
- You may refer to the contents in the chapter text above if necessary, but do NOT expose in your answer that you are referring
to the provided source.
- Ensure that the answer is complete, fully satisfying the key points to answer the question.
- The answer must also match the level of cognitive complexity required, incorporating the context which the depth of
knowledge will be demonstrated.

## Question
{question}

## Key points to answer the question
{key_points}

## Complexity of the question
{explanation}

## Answer

Table 15: Prompt for generating reference answer for a D3 question.
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System prompt:
You are a helpful assistant that accurately answers complex questions. Ensure that your answer is focused and compact.

User prompt:
{question}

Table 16: Prompt for generating reference answer for a D1 or D2 question.

System prompt:
You are an excellent question generator. You will be given a question and a gold answer to the question. You have to generate
shallower questions from the given question. Here is the definition of the depth of knowledge a question requires:

1. Depth-1 (Basic Knowledge and Recall): This level addresses "What is the knowledge?". It evaluates the ability to
remember, explain, or pinpoint fundamental facts, terms, principles, and procedures. It’s about recognizing or recollecting
basic information and performing simple, direct tasks.
2. Depth-2 (Application of Knowledge and Skills): This level explores "How can the knowledge be used?". It tests the
ability to employ knowledge and concepts in practical situations, which involves choosing appropriate methods, solving
straightforward problems, or interpreting data. This level acts as an intermediary step between fundamental understanding
and more advanced reasoning.
3. Depth-3 (Analytical and Strategic Thinking): This level questions "Why can the knowledge be used?". It challenges one to
use strategic thought, logic, and problem-solving in intricate, abstract situations that might have more than one solution. This
stage demands critical thinking, rationale, and conceptualization of theoretical scenarios.

Table 17: System prompt for generating or augmenting D1 or D2 questions.

19



User prompt:
## Instruction
Create maximum of 4 Depth-2 questions that are necessary to answer the provided Depth-3 question correctly.
- Remember that Depth-2 questions are centered on application of procedural knowledge and skills and Depth-3 questions are
centered on analysis and strategic knowledge.
- Take into consideration the level of cognitive complexity required to solve the Depth-3 question, so that your generated
questions fall under the description of Depth-2 appropriately.
- Ensure that your collection of generated Depth-2 questions adequately and comprehensively covers ALL the necessary
factual or conceptual knowledge required to answer the given Depth-3 question.
- Ensure that all of your generated Depth-2 questions do not directly answer to the given Depth-3 question.
- The number of generated Depth-2 questions should not exceed 4.
- The generated Depth-2 questions should be in JSON format: {"Depth-2_questions": [list of Depth-2 question strings ]}

## Example 1
### Depth-3 question
What is the intuition behind the Gram - Schmidt procedure?
### Generated Depth-2 questions
{"Depth-2_questions": [’How do you project one vector onto another vector?’, ’What does it mean for two vectors to be
orthogonal, and how can you verify this property?’, ’Describe the process of normalizing a vector.’, ’Explain how subtracting
the projection of one vector from another results in orthogonality.’, ’Given a set of vectors, how can you determine if they are
linearly independent?’, ’How can the concept of linear independence be used to form a basis for a vector space?’ ]}

## Example 2
### Depth-3 question
Why couldn’t we test general relativity effects using the Eotvos experiment?
### Generated Depth-2 questions
{"Depth-2_questions": ["How does the Eötvös experiment determine the equivalence between inertial mass and gravitational
mass?", "Describe the Equivalence Principle and its significance in the theory of General Relativity.", "Identify experiments
or observations that could directly test the predictions of General Relativity, such as time dilation or the bending of light.",
"How do experiments measuring time dilation differ in design and scope from those measuring mass equivalence?" ]}

## Example 3
### Depth-3 question
Why are aldehydes more readily oxidized to carboxylic acids compared to ketones, and how does this difference in reactivity
influence their identification in the laboratory?
### Generated Depth-2 questions
{"Depth-2_questions": ["How can you identify an aldehyde using Tollens’ reagent?", "Why does the carbonyl carbon in
aldehydes have a significant partial positive charge?", "How does the structure of ketones differ from that of aldehydes, and
how does this affect their reactivity towards oxidation?" ]}

## Example 4
### Depth-3 question
In the context of computer programming, why is branching unstructured? And is it a bad design choice?
### Generated Depth-2 questions
{"Depth-2_questions": ["What are the key differences between structured and unstructured branching in programming?",
"How does the ’goto’ statement work in computer programming?", "What are the potential risks involved with using
unstructured branching in large software projects?", "How does the structure of a program affect its maintainability?", "How
can the flow of execution in a program influence its debuggability?" ]}

## Depth-3 question
{question}

## Answer to the Depth-3 question
{answer}

## Generated Depth-2 questions

Table 18: User prompt for generating D2 questions.
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User prompt:
## Instruction
Create maximum of 4 Depth-1 questions that are necessary to answer the provided Depth-2 question correctly.
- Remember that Depth-1 questions are centered on basic recall of factual and conceptual knowledge. Depth-2 questions are
centered on application of procedural knowledge and skills.
- Take into consideration the level of cognitive complexity required to solve the Depth-2 question, so that your generated
questions fall under the description of Depth-1 appropriately.
- Ensure that your collection of generated Depth-1 questions adequately and comprehensively covers ALL the necessary
factual or conceptual knowledge required to answer the given Depth-2 question.
- Ensure that all of your generated Depth-1 questions do not directly answer to the given Depth-2 question.
- Try to exclude Depth-1 questions that ask too generic or commonsense knowledge.
- The number of generated DOK-2 questions should not exceed 4.
- The generated Depth-1 questions should be in JSON format: {"Depth-1_questions": [list of Depth-1 question strings]}

## Example 1
### Depth-2 question
How can the concept of algebraic closure be demonstrated using polynomial equations with complex roots?
### Generated Depth-1 questions
{"Depth-1_questions": [’What is the definition of algebraic closure?’, ’What is a polynomial equation?’, ’What are complex
roots in the context of polynomial equations?’, ’How can complex roots be represented?’]}

## Example 2
### Depth-2 question
How do you perform a convolution operation between two random variables?
### Generated Depth-1 questions
{"Depth-1_questions": [’What is a convolution operation?’, ’What is a random variable?’, ’How is the product of two
functions calculated?’, ’What does it mean to integrate a function?’]}

## Example 3
### Depth-2 question
In what ways can a decision tree’s structure be represented programmatically?
### Generated Depth-1 questions
{"Depth-1_questions": [’What is a decision tree in the context of programming?’, ’What are the basic components of a
decision tree?’, ’What is a data structure in programming?’, "What does ’represented programmatically’ mean?"]}

## Example 4
### Depth-2 question
How do neutrinos differ from other subatomic particles, and why are they considered potential candidates for dark matter?
### Generated Depth-1 questions
{"Depth-1_questions": [’What are neutrinos?’, ’What are subatomic particles?’, ’What is dark matter?’, ’What characteristics
do particles need to be considered candidates for dark matter?’]}

## Depth-2 question
{question}

## Answer to the Depth-2 question
{answer}

## Generated Depth-1 questions

Table 19: User prompt for generating D1 questions.
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User prompt:
## Instruction
Create {count} Depth-2 question(s) that complement current Depth-2 questions, which are necessary to correctly answer the
provided Depth-3 question.
- Remember that Depth-2 questions are centered on application of procedural knowledge and skills and Depth-3 questions are
centered on analysis and strategic knowledge.
- Take into consideration the level of cognitive complexity required to solve the Depth-3 question, so that your generated
questions fall under the description of Depth-2 appropriately.
- Complement the existing Depth-2 questions with additional questions to ensure they collectively cover all necessary
procedural knowledge and skills required to answer the Depth-3 question effectively.
- Ensure that all of your generated Depth-2 questions do not directly answer to the given Depth-3 question.
- The number of all Depth-2 questions should not exceed 4.
- The generated Depth-2 questions should be in JSON format: {"Depth-2_questions": [list of Depth-2 question strings ]}

## Example 1
### Depth-3 question and current Depth-2 questions
What is the intuition behind the Gram - Schmidt procedure?
{"current_Depth-2_questions": [’How do you project one vector onto another vector?’, ’What does it mean for two vectors
to be orthogonal, and how can you verify this property?’, ’Describe the process of normalizing a vector.’, ’Explain how
subtracting the projection of one vector from another results in orthogonality.’, ’Given a set of vectors, how can you determine
if they are linearly independent?’ ]}
### Generated complementary Depth-2 questions
{"complementary_Depth-2_questions": [’How can the concept of linear independence be used to form a basis for a vector
space?’ ]}

## Example 2
### Depth-3 question and current Depth-2 questions
Why couldn’t we test general relativity effects using the Eotvos experiment?
{"current_Depth-2_questions": ["How does the Eötvös experiment determine the equivalence between inertial mass and
gravitational mass?", "Describe the Equivalence Principle and its significance in the theory of General Relativity.", "Identify
experiments or observations that could directly test the predictions of General Relativity, such as time dilation or the bending
of light." ]}
### Generated complementary Depth-2 questions
{"complementary_Depth-2_questions": ["How do experiments measuring time dilation differ in design and scope from those
measuring mass equivalence?" ]}

## Example 3
### Depth-3 question and current Depth-2 questions
Why are aldehydes more readily oxidized to carboxylic acids compared to ketones, and how does this difference in reactivity
influence their identification in the laboratory?
{"current_Depth-2_questions": ["How can you identify an aldehyde using Tollens’ reagent?", "Why does the carbonyl carbon
in aldehydes have a significant partial positive charge?" ]}
### Generated complementary Depth-2 questions
{"complementary_Depth-2_questions": ["How does the structure of ketones differ from that of aldehydes, and how does this
affect their reactivity towards oxidation?" ]}

## Example 4
### Depth-3 question and current Depth-2 questions
In the context of computer programming, why is branching unstructured? And is it a bad design choice?
{"current_Depth-2_questions": ["What are the key differences between structured and unstructured branching in program-
ming?", "How does the ’goto’ statement work in computer programming?" ]}
### Generated complementary Depth-2 questions
{"complementary_Depth-2_questions": ["What are the potential risks involved with using unstructured branching in large
software projects?", "How does the structure of a program affect its maintainability?", "How can the flow of execution in a
program influence its debuggability?" ]}

## Depth-3 question
{question}

## Answer to the Depth-3 question
{answer}

## Current Depth-2 questions
{"current_Depth-2_questions": {current_questions}}

## Generated {count} complementary Depth-2 questions

Table 20: User prompt for augmenting D2 questions.
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User prompt:
## Instruction
Create {count} Depth-1 question(s) that complement current Depth-1 questions, which are necessary to correctly answer the
provided Depth-2 question.
- Remember that Depth-1 questions are centered on basic recall of factual and conceptual knowledge. Depth-2 questions are
centered on application of procedural knowledge and skills.
- Take into consideration the level of cognitive complexity required to solve the Depth-2 question, so that your generated
questions fall under the description of Depth-1 appropriately.
- Complement the existing Depth-1 questions with additional questions to ensure they collectively cover all necessary
procedural knowledge and skills required to answer the Depth-2 question effectively.
- Ensure that all of your generated Depth-1 questions do not directly answer to the given Depth-2 question.
- Try to exclude Depth-1 questions that ask too generic or commonsense knowledge.
- The number of all Depth-1 questions should not exceed 4.
- The generated Depth-1 questions should be in JSON format: {"complementary_Depth-1_questions": [list of Depth-1
question strings]}

## Example 1
### Depth-2 question and current Depth-1 questions
How can the concept of algebraic closure be demonstrated using polynomial equations with complex roots?
{"current_Depth-1_questions": [’What is the definition of algebraic closure?’, ’What is a polynomial equation?’, ’What are
complex roots in the context of polynomial equations?’]}
### Generated complementary Depth-1 questions
{"complementary_Depth-1_questions": [’How can complex roots be represented?’]}

## Example 2
### Depth-2 question and current Depth-1 questions
How do you perform a convolution operation between two random variables?
{"current_Depth-1_questions": [’What is a convolution operation?’, ’What is a random variable?’, ’How is the product of
two functions calculated?’]}
### Generated complementary Depth-1 questions
{"complementary_Depth-1_questions": [’What does it mean to integrate a function?’]}

## Example 3
### Depth-2 question and current Depth-1 questions
In what ways can a decision tree’s structure be represented programmatically?
{"current_Depth-1_questions": [’What is a decision tree in the context of programming?’, ’What are the basic components of
a decision tree?’]}
### Generated complementary Depth-1 questions
{"complementary_Depth-1_questions": [’What is a data structure in programming?’, "What does ’represented programmati-
cally’ mean?"]}

## Example 4
### Depth-2 question and current Depth-1 questions
How do neutrinos differ from other subatomic particles, and why are they considered potential candidates for dark matter?
{"current_Depth-1_questions": [’What are neutrinos?’, ’What are subatomic particles?’]}
### Generated complementary Depth-1 questions
{"complementary_Depth-1_questions": [’What is dark matter?’, ’What characteristics do particles need to be considered
candidates for dark matter?’]}

## Depth-2 question
{question}

## Answer to the Depth-2 question
{answer}

## Current Depth-1 questions
{"current_Depth-1_questions": {current_questions}}

## Generated {count} complementary Depth-1 questions

Table 21: User prompt for augmenting D1 questions.
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System prompt:
You are a helpful, respectful and honest assistant. Answer the question.

User prompt:
## Question:
{Dk question}

## Answer:

Table 22: Prompt for zero-shot inference.

System prompt:
You are a helpful, respectful and honest assistant. Answer the question.

User prompt:
## QA pairs:
Q: {Dk−1 question 1}
A: {Dk−1 answer 1}
Q: {Dk−1 question 2}
A: {Dk−1 answer 2}
...
## Question:
{Dk question}

## Answer:

Table 23: Prompt for inference given reference answers or self-predictions on shallower questions.

System prompt:
You are a helpful, respectful and honest assistant. Answer the question.

User prompt:
## Question:
{Dk−1 question}

## Answer:

[Last turn] System prompt:
You are a helpful, respectful and honest assistant. Answer the question.

User prompt:
Based on previous questions, answer the question. ## Question:
{Dk question}

## Answer:

Table 24: Prompt for multi-turn inference.
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System prompt:
You are a fair judge assistant tasked with providing clear, objective feedback based on specific criteria, ensuring each
assessment reflects the absolute standards set for performance.

User prompt:
###Task Description:
An instruction (might include an Input inside it), a response to evaluate, and a score rubric representing a evaluation criteria
are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in
general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT ](an integer number
between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{instruction}

###Response to evaluate:
{response}

###Reference Answer (Score 5):
{reference_answer}

###Score Rubrics:
[Is the response correct, accurate, and factual? ]
Score 1: The response is largely incorrect, inaccurate, and not factual. It demonstrates a fundamental misunderstanding of the
query or topic, leading to irrelevant or completely erroneous information.
Score 2: The response is partially correct but contains significant inaccuracies or factual errors. It shows some understanding
of the query or topic but fails to provide a fully accurate or reliable answer.
Score 3: The response is generally correct and factual but may include minor inaccuracies or lack of detail. It shows a good
understanding of the query or topic but may miss some nuances or specific information.
Score 4: The response is mostly correct, accurate, and factual. It demonstrates a strong understanding of the query or topic,
with only minimal inaccuracies or omissions that do not significantly detract from the overall quality of the response.
Score 5: The response is consistently correct, accurate, and entirely factual. It reflects a comprehensive understanding of the
query or topic, providing detailed, precise, and fully reliable information without any inaccuracies or omissions.

###Feedback:

Table 25: Prompt for LLM-as-a-Judge evaluation with an accuracy score rubric.
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