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Abstract

Graph neural networks (GNNs) that incorporate cross-location signals have the
ability to capture spatial patterns during infectious disease epidemics, potentially
improving forecasting performance. However, these models may be susceptible
to biases arising from mis-specification, particularly related to the level of con-
nectivity within the graph (i.e., graph structure). In this paper, we investigated
the impact of graph structure on GNNs for epidemic forecasting. Multiple graph
structures are defined and analyzed based on several characteristics i.e., dense or
sparse, dynamic or static. We design a comprehensive ablation study and conduct
experiments on real-world data. One of the major findings is that sparse graphs built
using geographical information can achieve advanced performance and are more
generalizable among different tasks compared with more complex attention-based
adjacency matrices.

1 Introduction

Epidemic diseases, such as seasonal flu or COVID-19, have placed a heavy social and economic
burden on our society. For instance, the COVID-19 pandemic has caused over 770 million confirmed
cases and over 6.9 million deaths globally2. Timely and accurate spatial and temporal forecasts of
the epidemic dynamics is particularly crucial for developing effective interventions and marshaling
limited healthcare resources. Existing methodologies for forecasting include 1) Mechanistic causal
methods [2, 7, 17]; 2) Data-driven methods including statistical methods [8, 11, 13] and 3) deep
learning methods [4, 3, 12]. Given the spatial and temporal variations in the epidemic dynamics,
interests in graph neural networks (GNNs) have gained as they provide a framework for incorporate
cross-location signals for spatiotemporal epidemic forecasting [5, 16, 9, 6, 15].

GNNs considering cross-location signals can model the impact of one location on other locations
during the epidemics of infectious disease, which can lead to improved forecasting performance,
but could be impacted by model mis-specification biases, especially the level of connectivity in a
graph (i.e., graph structure). The connectivity of two locations can be represented by their geographic
distance. However, non-adjacent areas may also have potential dependencies due to human mobility
activity. Thus, beyond geographical adjacency information, model-generated adjacency information is
adopted to estimate the spatiotemporal correlations of two locations, e.g., gravity network [18]. During
COVID pandemic, mobility flow is often used [9, 1, 16] due to that it is real and dynamic, however,
it is usually not publicly accessible. During the COVID-19 pandemic, attention mechanism [14] is
widely used to learn implicit dynamic correlations of any two locations and has shown improved
performance in forecasting disease dynamics [5, 6, 15]. The empirical results have shown that
attention adjacency which is dynamic and dense often performs better than geographical adjacency
which is static and sparse. Despite the superior performance of attention-based GNNs presented

∗ co-first authors
2Source: https://covid19.who.int/ as of September 27, 2023

Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans.



in the previous works, it is yet to investigate the impact of graph structure on GNNs for epidemic
forecasting in a comprehensive manner. More interestingly, Zhang et al. in [19] proved that graph
sparsification with importance sampling can improve GNNs’ learning performance, which seems
contradictory to the empirical results.

In this paper, we try to investigate the following questions while using GNNs to forecast epidemic
dynamics: 1) what’s the impact of dynamic/static network structures for capturing the spatial
correlations of disease dynamics? 2) is the geographical information important for capture the
disease dynamics? 3) does attention capture implicit spatial patterns of disease dynamics for future
predictions? 4) sparse or dense graph, which one is better? We answer the questions through
comprehensive experiments on real-world epidemic data.

Contributions To the best of our knowledge, this paper provides the first comprehensive study
to examine the influence of graph structure of GNN models on epidemic forecasting performance.
(1) We define multiple graph structures characterized by several properties, i.e., dense or sparse,
geography or attention. (2) We design a comprehensive ablation study to explore the impact of
different graph structures. We also investigate sparse learning of GNNs for epidemic forecasting. (3)
We conduct experiments and discuss results using real-world epidemic data. (4) Interesting findings
are found and analyzed.

2 Preliminaries

Pre-existing GNN models To investigate the influence of graph structure on GNN predictive models,
we adopt a pre-existing GNN model [5] proposed for influenza-like-illness (ILI) forecasting using
both geographical adjacency and attention coefficients to build the graph. This model embeds the
input time series of each node via long-short-term-memory (LSTM) layers and use the embedding to
learn attention matrix which later is combined with geographical adjacency matrix. The temporal
embedding is propagated over the graph using the learned location-aware attention matrix on a
two-layer GNN. The details of the model can be found in [5]. We keep the model framework but
modify the location-aware attention module to consider different mechanism for building graph
adjacency matrix. This model is used as our base model. However, the experimental design and
analysis can be applied to any GNN-based models.

Sparse learning for improved GNNs The previous empirical results demonstrate that GNN with
attention adjacency (dense graph) can capture implicit spatial patterns than geographical adjacency
(sparse graph) leading to improved epidemic forecasting performance. However, a recent study [19]
theoretically analyzes sparse learning on two-layer GNNs for classification tasks. The insights of
this study indicate that graph sparsification and importance sampling can improve GNN performance
with a guarantee. This is contrary to the empirical results. We will design multiple dense and sparse
graphs on our base model to explore sparse learning for time series epidemic forecasting using GNNs.

3 Exploring Graph Structure in GNNs

3.1 Problem formulation

We formulate the epidemic forecasting problem as a multivariate time series forecasting problem
using a GNN model. We assume N locations in total and define a graph on the N locations as
G(V, E), where V is the set of N nodes, E ⊆ V × V is the set of edges. The nodes are connected via
an adjacency matrix A ∈ RN×N , where an element aij represents the connectivity level between
node i and node j. aij = 0 means no connection between two nodes, otherwise, they are connected
by an edge with weight aij . Note that A can be an asymmetric matrix, i.e., aij is not necessary to
be equal to aji. A node is associated with a time series of disease dynamics, e.g., the COVID-19
confirmed case counts for the past T days. For any node v ∈ V , the node’s hidden feature after
one graph convolutional network (GCN) layer is updated by aggregating neighbor’s features where
neighbors are determined by adjacency matrix A, i.e., weighted sum of connected nodes’ hidden
features. The forecasting objective is to predict an epidemiological target (e.g., COVID-19 counts) at
future time T + h for N regions where h denotes the horizon time.

In this paper, our aim is to examine the impact of different adjacency matrices on model performance.
More specifically, we define adjacency matrix A using: 1) sparse + static geographical adjacency S;
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Table 1: Notations of adjacency matrix and their descriptions
Notation Description State Density

S Geographical adjacency matrix. sij = 1 if location i is geographically adjacent to location j; otherwise,
sij = 0.

Static Sparse

R Randomly shuffled geographical adjacency matrix. The number of rij = 1 is the same with S. Static Sparse
V Adjacency matrix obtained by a gravity model [18]. vij =

pipj

(lij+1)2
and row normalized where

pi,pj are the population size of location i and j, lij denotes as harversine distance. Refer our git
repository for the details.

Static Dense

D Adjacency matrix of an unweighted complete graph. dij = 1, ∀i, j. Static Dense
B Learned attention matrix. bij is learned through GNN training and row normalized. Dynamic Dense
M Graphical + learned attention adjacency matrix. M = f(S,B) and f(·) is defined by Equation (6)

in [5].
Dynamic Dense

C Graphical + learned attention adjacency matrix. C = B ⊙ S where ⊙ denotes element-wise product. Dynamic Sparse

2) sparse + static randomly shuffled geographical adjacency R; 3) dense + static adjacency matrix of
a weighted complete graph V, where the weight is computed using a gravity model[18] to estimate
the static mobility flow between two locations; 4) dense + static adjacency matrix of an unweighted
complete graph D; 5) dense + dynamic learned attention adjacency B; 6) dense + dynamic learned
attention adjacency combined with graphical adjacency M; 7) sparse + dynamic learned attention
adjacency truncated by geographical adjacency C; A more detailed description is shown in Table 1.

3.2 Ablation study design

To answer the questions proposed in section 1, we carefully design an ablation study on those
adjacency matrices using our base GNN model. It is to be noted that the base GNN model is the same
for all ablations except for the adjacency matrix to aggregate the node’s features, i.e., A is replaced
by different adjacency matrices from Table 1. Note that we consider GNN models using geographical
adjacency S as the baseline since this is the most traditional graph structure for epidemic forecasting.

I. To examine whether geographical information is important in constructing GNN models,
we compare models using geographical adjacency S with models using randomly shuffled
geographical adjacency R. The motivation of using R is to remove geographical information
while keep the same graph complexity with S.

II. To explore the impact of dynamic and static network structures for capturing the spatial
correlations of disease dynamics, we compare models using attention adjacency B, gravity
adjacency V, and geographical adjacency S.

III. To investigate sparse learning of GNNs for time series epidemic forecasting, we compare
models using dense unweighted adjacency D with models using sparse unweighted adja-
cency S and R. S is a sparse graph with geo-based sampling, and R is a sparse graph with
random sampling.

IV. The combination of static geographical adjacency S and dynamic attention adjacency B is
explored using M (a dynamic strategy) and C (a static strategy). C is a sparse geo-attention
graph, while M is a dense geo-attention graph.

V. To align the learned attention-based adjacency matrix with the actual geographical adjacency,
we add a reconstruction loss term Lg = ∥A − S∥2 (introduced in [10]) to the prediction
error loss Le of the base GNN model, thus L = Le + λLg. Lg performs like a geo-based
regularization term penalizing on the complexity of the adjacency matrix A. Here λ is a
hyperparameter that used to scale the regularization term. We add Lg when using M and B.

3.3 Experiment settings

Data and metrics We use two real-world datasets for experiments: 1) ILI: weekly ILI positive
case counts at US state level, collected from CDC ILINet3 ranging from week 40, 2010 to week 12,
2023; 2) COVID: daily COVID-19 confirmed case counts at US state level, collected from JHU
COVID-19 repository4, ranging from March 2020 to March 2023. There are 651 ILI time points and

3https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
4https://github.com/CSSEGISandData/COVID-19
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Table 2: Forecasting performance on COVID-19 daily new confirmed cases and ILI weekly cases at
US state level. The performance is reported as the average of 3 random trials with standard deviation.

ILI COVID

RMSE PCC RMSE PCC

Graph 1 3 5 1 3 5 1 7 14 1 7 14
GS 375.82 557.71 688.16 0.9015 0.7227 0.4461 1712.37 1137.98 1195.12 0.5306 0.7388 0.7247

(±19.25) (±9.62) (±30.11) (±.014) (±.008) (±.101) (±101.41) (±4.48) (±6.98) (±.072) (±.000) (±.001)

GR 401.36 581.85 753.69 0.8741 0.6347 0.3888 1920.07 1233.03 1215.98 0.3367 0.7056 0.7205
(±6.53) (±100.45) (±157.96) (±.008) (±.167) (±.156) (±292.58) (±2.56) (±8.46) (±.222) (±.000) (±.001)

GV 393.41 588.95 711.41 0.8871 0.6593 0.4191 1839.37 1159.29 1237.18 0.3490 0.7373 0.7226
(±9.27) (±47.75) (±20.71) (±.016) (±.035) (±.075) (±162.30) (±15.84) (±31.33) (±.192) (±.002) (±.002)

GD 394.45 575.76 616.54 0.8690 0.8405 0.6389 1867.91 1170.59 1264.63 0.2979 0.7247 0.7005
(±19.67) (±91.86) (±12.53) (±.869) (±.008) (±.020) (±164.56) (±38.21) (±1.81) (±.154) (±.018) (±.000)

GB 366.70 588.91 710.67 0.9042 0.6508 0.3990 1764.99 1160.16 1263.61 0.4566 0.7360 0.71483
(±20.29) (±47.69) (±13.29) (±0.01) (±.058) (±.043) (±35.66) (±3.22) (±23.73) (±.015) (±.001) (±.003)

GM 375.03 567.18 718.37 0.8863 0.6786 0.3879 1761.58 1150.56 1269.20 0.4612 0.7359 0.7177
(±10.77) (±45.45) (±6.92) (±.034) (±.029) (±.021) (±60.76) (±11.86) (±28.73) (±.07) (±.000) (±.002)

GC 376.47 571.56 716.09 0.8998 0.6796 0.4408 1630.78 1148.70 1264.94 0.5489 0.7348 0.7152
(±16.13) (±65.39) (±12.53) (±.005) (±.071) (±.107) (±216.87) (±11.71) (±17.14) (±.104) (±.000) (±.001)

GB + Lg 398.59 590.19 779.99 0.8597 0.6691 0.3414 1972.77 1178.89 1242.17 0.2538 0.7304 0.7126
(±56.66) (±6.08) (±23.59) (±.051) (±0.00) (±.075) (±85.59) (±85.22) (±2.39) (±.075) (±.019) (±.003)

GM + Lg 343.37 546.01 667.67 0.8967 0.6509 0.4703 1837.77 1137.91 1191.21 0.3926 0.7254 0.7259
(±30.58) (±15.28) (±19.08) (±.011) (±.006) (±.003) (±107.72) (±5.50) (±2.51) (±.096) (±.000) (±.000)

1082 COVID time points in our data. Root Mean Squared Error (RMSE) and Pearson’s Correlation
(PCC) are used to evaluate the forecasting performance.

Implementation For the base GNN model, we adopt the same hyperparameter setting with that in [5].
The attention matrix B and M are learned following the same method in [5]. We set horizon h as 1,
3, 5 for ILI and 1, 7, 14 for COVID. All results are an average of 3 randomized trials using random
seeds 41, 42, 43. λ for Lg is set to 1.5 through cross validation.

4 Forecasting Performance and Analysis

In Table 2, we show forecasting performance on ILI and COVID datasets. We will analyze the results
from multiple dimensions aligned with the ablation study design in Section 3.2. Our observations are:

(I) The performance of GS outperforms GR. This indicates that geographical information is useful
when constructing a sparse graph compared with a random graph topology.

(II) Comparing dense graphs GV and GD with sparse graphs GS and GR, we observe that GR

performs the worst while GS performs the best for most cases. Based on the definition, GS represents
a sparse graph and edges are sampled by geographical information, we call it geo-based sampling.
GR is a sparse graph with random sampling. The results imply that a sparse graph with proper
sampling can improve GNN performance. This is consistent with the theoretical analysis from [19].
Model-generated graph structure decreases model performance compared with the baseline GS.

(III) Dynamic graph GC outperforms static graph GS for horizon=1, while it does not perform well
for long horizons. Similar observations also found by comparing dynamic graphs GB/GM with
static graphs GD/GV. This implies that given the same graph topology, the edges weighted by
learned attention coefficients can improve forecasting performance in short-term predictions, but is
not helpful in long-term predictions. The learned attention coefficients can capture hidden spatial
patterns for the input time series. However, the learned pattern is not generalizable to future time
points. This finding is different with the empirical results in the previous work.

(IV) Comparing geo-attention graphs GM, GC with single geographical graph GS, single attention
graph GB, it is observable that the geo-attention graphs perform no better than single ones particularly
for large horizons. This indicates that attention matrix incorporating geographical information cannot
capture spatial patterns that are generalizable to future time points.

(V) Comparing geo-regularized attention graphs GM +Lg/GB +Lg with no regularization attention
grapsh GM/GB, we observe that GM + Lg surpasses GM in performance on both datasets, while
GB + Lg is inferior to GB on both tasks. A possible reason is that the hyperparameter λ value
is not proper for GB + Lg. The observation indicates that through delicate tuning of λ value, the
forecasting performance can be improved using a geo-based regularization term to penalize on the
learned attention-based matrix. However, the performance is sensitive to hyperparameter values.
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Overall, for multiple horizons and multiple datasets, using geographical information to construct a
sparse graph is the most stable and efficient method in GNN models for epidemic forecasting. It incor-
porates actual geographical knowledge without adding extra training parameters, leading to improved
forecasting performance and superior generalization capabilities among different forecasting tasks. If
attention mechanism is applied, a combination of geographical adjacency and attention coefficients
should be considered. Adding a geo-based regularization to penalize attention-based coefficients can
lead to improved performance. Nevertheless, this approach is hyperparameter-sensitive and lacks
generalizability across different forecasting tasks.

5 Conclusion

In this work, we explore different graph structures in GNNs for epidemic forecasting. By adopting a
pre-existing GNN model, we build multiple graph structures of different density (dense or sparse) and
state (static or dynamic) levels. Geographical information, model-generated gravity, and attention
mechanism are considered for constructing graph edge weights. We conduct detailed ablation study on
two real-world epidemic datasets. The results indicate that leveraging simple geographical adjacency
to build sparse graphs can enhance GNN forecasting performance and is more generalizable among
different tasks compared with more complex attention-based dense adjacency matrices.
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