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Abstract

Programmatic Weak Supervision (PWS) enables supervised model training without
direct access to ground truth labels, utilizing weak labels from heuristics, crowd-
sourcing, or pre-trained models. However, the absence of ground truth complicates
model evaluation, as traditional metrics such as accuracy, precision, and recall can-
not be directly calculated. In this work, we present a novel method to address this
challenge by framing model evaluation as a partial identification problem and esti-
mating performance bounds using Fréchet bounds. Our approach derives reliable
bounds on key metrics without requiring labeled data, overcoming core limitations
in current weak supervision evaluation techniques. Through scalable convex op-
timization, we obtain accurate and computationally efficient bounds for metrics
including accuracy, precision, recall, and F1-score, even in high-dimensional set-
tings. This framework offers a robust approach to assessing model quality without
ground truth labels, enhancing the practicality of weakly supervised learning for
real-world applications.2

1 Introduction

Programmatic weak supervision (PWS) is a modern learning paradigm that allows practitioners to
train their supervised models without the immediate need for ground truth labels Y [50, 48, 47, 49,
58, 64]. In PWS, practitioners first acquire cheap and abundant weak labels Z through heuristics,
crowdsourcing, external APIs, and pretrained models, which serve as proxies for Y . Then, they fit
a label model, i.e., a graphical model for PY,Z [50, 49, 22, 17], which, under appropriate modeling
assumptions, can be fitted without requiring Y ’s. Finally, a predictor h : X → Y is trained using
samples (Xi, Zi)’s and a noise-aware loss constructed using this fitted label model [50].

One major unsolved issue with the weak supervision approach is that even if we knew PY,Z , evaluation
metrics such as accuracy, recall, precision, or F1 cannot be estimated for model validation without
any ground truth labels. In fact, these quantities are not identifiable (not uniquely determined) since
we only have partial information about the joint distribution PX,Y through the marginals PX,Z and
PY,Z . As a consequence, any performance metric based on h cannot be estimated without making
extra strong assumptions, e.g., X ⊥⊥ Y | Z. Unfortunately, these conditions are unlikely to arise in
many situations. A recent work [66] investigated the role and importance of ground truth labels on
model evaluation in the weak supervision literature. They determined that, under the current situation,
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the good performance and applicability of weakly supervised classifiers heavily rely on the presence
of at least some high-quality labels, which undermines the purpose of using weak supervision since
models can be directly fine-tuned on those labels and achieve similar performance. Therefore, in
this work, we develop new evaluation methods that can be used without any ground truth labels and
show that the performance of weakly supervised models can be accurately estimated in many cases,
even permitting successful model selection. Our solution relies on partial identification by estimating
Fréchet bounds for bounding performance metrics such as accuracy, precision, recall, and F1 score of
classifiers trained with weak supervision.

Fréchet bounds: Consider a random vector (X,Y, Z) ∈ X × Y × Z is drawn from an unknown
distribution P . We assume X ⊂ Rd is arbitrary while Y and Z are finite. In this work, we develop
and analyze the statistical properties of a method for estimating Fréchet bounds [53, 54] of the form

L ≜ inf
π∈Π

Eπ[g(X,Y, Z)] and U ≜ sup
π∈Π

Eπ[g(X,Y, Z)] (1.1)

when g is a fixed bounded function, with Π being the set of distributions π for (X,Y, Z) such
that the marginal πX,Z (resp. πY,Z) is identical to the prescribed marginal PX,Z (resp. PY,Z).
Our proposed method can efficiently obtain estimates for the bounds by solving convex programs,
with the significant advantage that the computational complexity of our algorithm does not scale
with the dimensionality of X , making it well-suited for applications dealing with high-dimensional
data. In previous work, for example, Fréchet bounds were studied in the financial context (e.g., see
Rüschendorf [55], Bartl et al. [7]). However, our focus is on applying our methods of estimating
Fréchet bounds to the problem of assessing predictors trained using programmatic weak supervision
(PWS). For example, the upper and lower bounds for the accuracy of a classifier h can be estimated
using our method simply by letting g(x, y, z) = 1[h(x) = y] in (1.1). At a high level, our method
replaces PY,Z with the fitted label model, and PX,Z with its empirical version in the Fréchet bounds
in (1.1), and reformulates the problem in terms of a convex optimization problem.

Contributions: Our contributions are

1. Developing a practical algorithm for estimating the Fréchet bounds in (1.1). Our algorithm can be
summarized as solving convex programs and is scalable to high-dimensional distributions.

2. Quantifying the uncertainty in the computed bounds due to uncertainty in the prescribed marginals
by deriving the asymptotic distribution for our estimators.

3. Applying our method to bounding the accuracy, precision, recall, and F1 score of classifiers trained
with weak supervision. This enables practitioners to evaluate classifiers in weak supervision
settings without access to ground truth labels.

1.1 Related work
Weak supervision: With the emergence of data-hungry models, the lack of properly labeled datasets
has become a major bottleneck in the development of supervised models. One approach to overcome
this problem is using programmatic weak supervision (PWS) to train predictors in the absence of
high-quality labels Y [50, 48, 47, 49, 58, 64]. PWS has shown the potential to solve a variety of
tasks in different fields with satisfactory performance. For example, some works have applied weak
supervision to named-entity recognition [32, 21, 57], video frame classification [22], bone and breast
tumor classification [61]. More recently, Smith et al. [59] proposed a new approach to integrating
weak supervision and pre-trained large language models (LLMs). Rather than applying LLMs in
the usual zero/few-shot fashion, they treat those large models as weak labelers that can be used
through prompting to obtain weak signals instead of using hand-crafted heuristics. Recently, Zhu
et al. [66] showed that in many situations, the success of weakly supervised classifiers depends on
the availability of ground truth validation samples, undermining the purpose of weak supervision.
Then, we develop a new method for model evaluation that does not depend on the availability of any
ground truth labels.

A relevant line of research within the realm of weak supervision that is closely related to this work is
adversarial learning [4, 5, 42, 41]. Often, adversarial learning aims to learn predictors that perform
well in worst-case scenarios. For example, Mazzetto et al. [41] develops a method to learn weakly
supervised classifiers in the absence of a good label model. In their work, the authors use a small set
of labeled data points to constrain the space of possible data distributions and then find a predictor
that performs well in the worst-case scenario. Our work relates to this literature in the sense that we
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are interested in the worst and best-case scenarios over a set of distributions. However, we focus on
developing an evaluation method instead of another adversarial learning strategy.

Partial identification: It is often the case that the distributions of interest cannot be fully observed,
which is generally due to missing or noisy data [43, 23]. In cases where practitioners can only
observe some aspects of those distributions, e.g., marginal distributions or moments, parameters of
interest may not be identifiable without strong assumptions due to ambiguity in the observable data.
Partial identification deals with the problem without imposing extra assumptions. This framework
allows estimating a set of potential values for the parameters of interest (usually given by non-trivial
bounds) and has been frequently considered in many areas such as microeconometrics [38–40, 43],
causal inference [25, 23], algorithmic fairness [20, 46]. Our work is most related to Rüschendorf
[53, 54, 55], Bartl et al. [7], which study bounds for the uncertainty of a quantity of interest for a joint
distribution that is only partially identified through its marginals, i.e., Fréchet bounds. Compared
to the aforementioned works, the novelty of our contribution is proposing a convex optimization
algorithm that accurately estimates the Fréchet bounds with proven performance guarantees in a setup
that is realized in numerous weak-supervision applications.

1.2 Notation
We write EQ and VarQ for the expectation and variance of statistics computed using i.i.d. copies of a
random vector W ∼ Q. Consequently, PQ(A) = EQ1A, where 1A is the indicator of an event A. If
the distribution is clear by the context, we omit the subscript. If (am)m∈N and (bm)m∈N are sequences
of scalars, then am = o(bm) is equivalent to am/bm → 0 as m→∞ and am = bm + o(1) means
am−bm = o(1). If (V (m))m∈N is a sequence of random variables, then (i) V (m) = oP (1) means that
for every ε > 0 we have P(|V (m)| > ε)→ 0 as m→∞, (ii) V (m) = OP (1) means that for every
ε > 0 there exists a M > 0 such that supm∈N P(|V (m)| > M) < ε, (iii) V (m) = am+ oP (1) means
V (m) − am = oP (1), (iv) V (m) = oP (am) means V (m)/am = oP (1), and (v) V (m) = OP (am)
means V (m)/am = OP (1).

2 Estimating Fréchet bounds
A roadmap to our approach follows. We first reformulate the Fréchet bounds in (1.1) into their dual
problems, which we discuss in (2.1). Then, we replace the non-smooth dual problems with their
appropriate smooth approximations, as discussed in (2.2). Finally, we propose estimators for the
smooth approximations (2.3) and derive their asymptotic distributions in Theorem 2.5.

2.1 Dual formulations of the bounds and their approximations
This section presents a result that allows us to efficiently solve the optimization problems in (1.1)
by deriving their dual formulations as finite-dimensional convex programs. Before we dive into the
result, let us define a family of matrices denoted by

A ≜
{
a ∈ R|Y|×|Z| :

∑
y∈Y ayz = 0 for every z ∈ Z

}
.

With this definition in place, we introduce the dual formulation in Theorem 2.1.

Theorem 2.1. Let g : X × Y × Z → R be a bounded measurable function. Then,

L = sup
a∈A

E[fl(X,Z, a)] and U = inf
a∈A

E[fu(X,Z, a)] (2.1)

where
fl(x, z, a) ≜min

ȳ∈Y
[g(x, ȳ, z) + aȳz]− EPY |Z [aY z|Z = z]

fu(x, z, a) ≜max
ȳ∈Y

[g(x, ȳ, z) + aȳz]− EPY |Z [aY z|Z = z] .

Moreover, L and U are attained by some optimizers in A.

Theorem 2.1 remains valid if we maximize/minimize over R|Y|×|Z| instead ofA. However, this is not
necessary because the values of fl and fu remain identical for the following shifts in a: a·z ← a·z+bz
where bz ∈ R. By constraining the set of optimizers to A, we eliminate the possibility of having
multiple optimal points. The proof of Theorem 2.1 is placed in Appendix B and is inspired by ideas
from Optimal Transport; see Appendix A.
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The computation of these bounds entails finding a minimum or maximum over a discrete set, meaning
that straightforward application of their empirical versions could result in optimizing non-smooth
functions, which is often challenging. To mitigate this, we consider a smooth approximation of
the problem that is found to be useful in handling non-smooth optimization problems [3, 6]. We
approximate the max and min operators with their “soft” counterparts:

softmin{b1, · · · , bK} ≜ −ε log[ 1K
∑

k exp(
−bk
ε )], softmax{b1, · · · , bK} ≜ ε log[ 1K

∑
k exp(

bk
ε )] ,

where ε > 0 is a small constant that dictates the level of smoothness. As ε nears zero, these soft
versions of max and min converge to their original non-smooth forms. Using these approximations,
we reformulate our dual optimization in (2.1) into smooth optimization problems:

Lε ≜ sup
a∈A

E[fl,ε(X,Z, a)] and Uε ≜ inf
a∈A

E[fu,ε(X,Z, a)] (2.2)

where
fl,ε(x, z, a) ≜− ε log

[
1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

−ε

)]
− EPY |Z [aY z | Z = z]

fu,ε(x, z, a) ≜ ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
− EPY |Z [aY z | Z = z]

and ε > 0 is kept fixed at an appropriate value. As a consequence of Lemma 5 of An et al. [3], we
know that Lε and Uε are no more than ε log |Y| units from L and U . Thus, that distance can be
regulated by adjusting ε. For example, if we are comfortable with an approximation error of 10−2

units when |Y| = 2, we will set ε = 10−2/ log(2) ≈ .014.

2.2 Estimating the bounds
In practice, it is not usually possible to solve the optimization problems in (2.2), because we may not
have direct access to the distributions PX,Z and PY |Z . We overcome this problem by assuming that
we can estimate the distributions using an available dataset.

To this end, let us assume that we have a sample {(Xi, Zi)}ni=1
iid∼ PX,Z , and thus we replace

the relevant expectations with PX,Z by its empirical version. Additionally, we have a sequence
{P̂ (m)

Y |Z ,m ∈ N} that estimates PY |Z with greater precision as m increases. Here, m can be viewed
as the size of a sample to estimate PY |Z . Although the exact procedure for estimating the conditional
distribution is not relevant to this section, we have discussed in our introductory section that this can
be estimated using a label model [49, 22] in applications with weak supervision or in a variety of
other ways for applications beyond weak supervision. Later in this section, we will formalize the
precision required for the estimates. To simplify our notation, we omit the superscript m in P̂

(m)
Y |Z ,

whenever it is convenient to do so.

Thus, the Fréchet bounds are estimated as

L̂ε = sup
a∈A

1
n

∑n
i=1 f̂l,ε(Xi, Zi, a) and Ûε = inf

a∈A
1
n

∑n
i=1 f̂u,ε(Xi, Zi, a) (2.3)

where
f̂l,ε(x, z, a) ≜− ε log

[
1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

−ε

)]
− EP̂Y |Z

[aY z | Z = z]

f̂u,ε(x, z, a) ≜ ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
− EP̂Y |Z

[aY z | Z = z]

In our practical implementations we eliminate the constraint that
∑

y ayz = 0 for all z ∈ Z by adding
a penalty term

∑
z∈Z(

∑
y∈Y ayz)

2 to Ûε (and its negative to L̂ε) and then solve unconstrained
convex programs using the L-BFGS algorithm [33]. Since the penalty term vanishes only when∑

y ayz = 0 for all z ∈ Z , we guarantee that the optimal solution is in A.

2.3 Asymptotic properties of the estimated bounds
In the following, we state the assumptions required for our asymptotic analysis of L̂ε and Ûε. We
start with some regularity assumptions.
Assumption 2.2. Lε and Uε are attained by some optimizers in A (2.2).
Assumption 2.3. Let â represent the optimizer for any problem in (2.3), which is assumed to exist.
Suppose ∥â∥∞ = OP (1) as m→∞.
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We show in Lemmas C.4, C.5, and C.6 that Assumptions 2.2 and 2.3 can be derived in the binary
classification case (|Y| = 2) if P(Y = y | Z = z) is bounded away from both zero and one, i.e.
κ < P(Y = y | Z = z) < 1− κ for some κ > 0 for every y ∈ Y and z ∈ Z .

In our next assumption, we formalize the degree of precision for the sequence {P̂ (m)
Y |Z ,m ∈ N} of

estimators that we require for desired performances of the bound estimates.
Assumption 2.4. Denote the total variation distance (TV) between probability measures as dTV. For
every z ∈ Z , for some λ > 0, we have that dTV

(
P̂

(m)
Y |Z=z, PY |Z=z

)
= OP (m

−λ).

From Ratner et al. [49]’s Theorem 2 and a Lipschitz property of the label model3, we can conclude
λ = 1/2 for a popular label model used in the PWS literature. The asymptotic distributions for the
estimated bounds follow.
Theorem 2.5. Assume 2.2, 2.3, and 2.4, and let n be a function of m such that n → ∞ and
n = o(m2λ) when m→∞. Then, as m→∞

√
n(L̂ε − Lε)⇒ N(0, σ2

l,ε) and
√
n(Ûε − Uε)⇒ N(0, σ2

u,ε)

where σ2
l,ε ≜ Varfl,ε(X,Z, a∗l,ε), σ

2
u,ε ≜ Varfu,ε(X,Z, a∗u,ε), and a∗l,ε and a∗u,ε are the unique

optimizers to attain Lε and Uε (2.2).

Theorem 2.5 tells us that, if the label model is consistent (Assumption 2.4), under some mild
regularity conditions (Assumption 2.2 and 2.3), our estimators and will be asymptotically Gaussian
with means Lε and Uε and variances σ2

l,ε/n and σ2
u,ε/n. The above theorem requires m2λ to grow

faster than n implying that, through assumption 2.4, PY |Z is estimated with a precision greater than
the approximation error when we replace PX,Z with 1

n

∑
i δXi,Zi

. In the case which λ = 1/2, this
condition translates to n/m → 0 as n → ∞. This allows us to derive the asymptotic distribution
when combined with classical results from M-estimation (see proof in Appendix C).

Construction of confidence bounds: One interesting use of Theorem 2.5 is that we can construct an
approximate confidence interval for the estimates of the bounds. For example, an approximate 1− γ
confidence interval for Lε can is constructed as

Î =
[
L̂ε −

τγ σ̂l,ε√
n

, L̂ε +
τγ σ̂l,ε√

n

]
,

where τγ = Φ−1(1− γ/2) and σ̂l,ε is the empirical standard deviation of fl,ε(X,Z, ·), substituting
the estimate â (solution for the problem in 2.3). For such interval, it holds P

(
Lε ∈ Î

)
≈ 1− γ, i.e.,

with approximately 1− γ confidence we can say that the true Lε is in the interval above. An interval
for Uε can be constructed similarly.

3 Evaluation of model performance in weak supervision
In this section, we describe how to use the ideas presented in Section 2 to estimate non-trivial bounds
for the evaluation metrics of a weakly supervised classifier h when no high-quality labels are available.
In the standard weak supervision setup, only unlabeled data (X) is available, but the practitioner
can extract weak labels (Z) from the available data. More specifically, we assume access to the
dataset {(Xi, Zi)}mi=1, i.i.d. with distribution PX,Z , used in its entirety to estimate a label model
P̂Y |Z [49, 22] and where part of it, e.g., a random subset of size n, is used to estimate bounds4. To
simplify the exposition, we assume the classifier h is fixed5.

3.1 Risk and accuracy
Let ℓ be a generic classification loss function. The risk of a classifier h is defined as R(h) =
E[ℓ(h(X), Y )], which cannot be promptly estimated in a weak supervision problem, where we do not
observe any Y . In this situation, we can make use of our bound estimators in Section 2.2, where we
set g(x, y, z) = ℓ(h(x), y) to obtain bounds for R(h). Furthermore, we can estimate an uncertainty
set for the accuracy of the classification simply by letting g(x, y, z) = 1[h(x) = y].

3Ratner et al. [49] derive that in page 24 of their arXiv paper version.
4It is also possible to use distinct datasets for estimating the label model and the bounds as long as the dataset

to estimate the label is much bigger. This is our approach in the experiments.
5In practice, it can be obtained using all the data not used to estimate bounds.
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3.2 Precision, recall, and F1 score
For a binary classification problem, where Y = {0, 1}, the precision, recall, and F1 score of a
classifier h are defined as

p ≜ P(Y = 1 | h(X) = 1) = P(h(X)=1,Y=1)
P(h(X)=1) , r ≜ P(h(X) = 1 | Y = 1) = P(h(X)=1,Y=1)

P(Y=1) ,

F ≜ 2
r−1+p−1 = 2P(h(X)=1,Y=1)

P(h(X)=1)+P(Y=1) .

The quantities P(h(X) = 1) and P(Y = 1) in the above definitions are identified, since the marginals
PX,Z and PY,Z are specified in the Fréchet problem in (1.1). The P(h(X) = 1) can be estimated
from the full dataset {(Xi, Zi)}mi=1 simply using P̂(h(X) = 1) ≜ 1

m

∑m
i=1 1[h(Xi) = 1]. On the

other hand, in most weak supervision applications, P(Y = 1) is assumed to be known from some
prior knowledge or can be estimated from an auxiliary dataset, e.g., using the method described in
the appendix of Ratner et al. [49]. Estimating or knowing P(Y = 1) is required to fit the label model
[49, 22] in the first place, so it is beyond our scope of discussion. Then, we assume we have an
accurate estimate P̂(Y = 1).

The probability P(h(X) = 1, Y = 1), which is the final ingredient in the definition of precision,
recall, and F1 score is not identifiable as PX,Y is unknown. The uncertainty bounds for this quantity
can be estimated using our method simply by letting g(x, y, z) = 1[h(x) = 1 and y = 1]. Let L̂ε

and Ûε denote the estimated lower and upper bounds for P(h(X) = 1, Y = 1) obtained using (2.3).
Naturally, the lower bound estimators for precision, recall, and F1 score are

p̂l,ε ≜
L̂ε

P̂(h(X)=1)
, r̂l,ε ≜

L̂ε

P̂(Y=1)
, and F̂l,ε ≜

2L̂ε

P̂(h(X)=1)+P̂(Y=1)
,

while the upper bound estimators p̂u,ε, r̂u,ε, and F̂u,ε are given by substituting L̂ε by Ûε above. In
the following corollary, we show that the bounds converge asymptotically to normal distributions,
which we use for calculating their coverage bounds presented in our applications.

Corollary 3.1. Let n be a function of m such that n → ∞ and n = o
(
m(2λ)∧1

)
when m → ∞.

Assume the conditions of Theorem 2.5 hold. Then as m→∞

◦
√
n
(
p̂l,ε − pl,ε

)
⇒ N(0, σ2

p,l,ε) with pl,ε =
Lε

P(h(X)=1) , σ
2
p,l,ε ≜

σ2
l,ε

P(h(X)=1)2 ,

◦
√
n
(
r̂l,ε − rl,ε

)
⇒ N(0, σ2

r,l,ε) with rl,ε =
Lε

P(Y=1) , σ
2
r,l,ε ≜

σ2
l,ε

P(Y=1)2 ,

◦
√
n
(
F̂l,ε − Fl,ε

)
⇒ N(0, σ2

F,l,ε) with Fl,ε =
2Lε

P(h(X)=1)+P(Y=1) & σ2
F,l,ε ≜

4σ2
l,ε

[P(h(X)=1)+P(Y=1)]2 ,

where Lε, σ2
l,ε are defined in Theorem 2.5. Asymptotic distributions for

√
n
(
p̂u,ε− pu,ε

)
,
√
n
(
r̂u,ε−

ru,ε
)
, and

√
n
(
F̂u,ε − Fu,ε

)
are obtained in a similar way by changing Lε to Uε and σ2

l,ε to σ2
u,ε.

Reiterating our discussion in the final paragraph in Section 2.2, asymptotic distributions are important
for constructing confidence intervals for the bounds, which can be done in a similar manner.

4 Experiments
All experiments are structured to emulate conditions where high-quality labels are inaccessible during
training, validation, and testing phases, and all weakly-supervised classifiers are trained using the
noise-aware loss [50]. To fit the label models, we assume PY is known (computed using the training
set). Unless stated, we use l2-regularized logistic regressors as classifiers, where the regularization
strength is determined according to the validation noise-aware loss.

Wrench datasets: To carry out realistic experiments within the weak supervision setup and study
accuracy/F1 score estimation, we utilize datasets incorporated in Wrench (Weak Supervision
Benchmark) [63]. This standardized benchmark platform features real-world datasets and pre-
generated weak labels for evaluating weak supervision methodologies. Most of Wrench’s datasets
are designed for classification tasks, encompassing diverse data types such as tabular, text, and
image; all contain their pre-computed weak labels. Specifically, we utilize Census [27], YouTube
[1], SMS [2], IMDB [37], Yelp [65], AGNews [65], TREC [31], Spouse [12], SemEval [24], CDR
[14], ChemProt [29], Commercial [22], Tennis Rally [22], Basketball [22]. For text datasets, we
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Figure 1: We apply our method to bound test metrics such as accuracy and F1 score (in green) when no true
labels are used to estimate performance. In the first row (“Oracle”), we use true labels to estimate the conditional
distribution PY |Z , thus approximating a scenario in which the label model is reasonably specified. On the second
row (“Snorkel”), we use a label model to estimate PY |Z without access to any true labels. Despite potential
misspecification in Snorkel’s label model, it performs comparably to using labels to estimate PY |Z , giving
approximate but meaningful bounds.

employ the paraphrase-MiniLM-L6-v2 model from the sentence-transformers6 library for feature
extraction [51]. Features were extracted for the image datasets before their inclusion in Wrench.

Hate Speech Dataset [15]: This dataset contains sentence-level annotations for hate speech in
English, sourced from posts from white supremacy forums. It encompasses thousands of sentences
classified into either Hate (1) or noHate (0) categories. This dataset provides an ideal ground for
examining recall and precision estimation. Social media moderators aim to maximize the filtering
of hate posts, i.e., increasing recall, while ensuring that non-hate content is rarely misclassified
as offensive, maintaining high precision. Analogously to the Wrench text datasets, we utilize
paraphrase-MiniLM-L6-v2 for feature extraction.

4.1 Bounding the performance of weakly supervised classifiers
In this section, we conduct an empirical study using some of the Wrench and Hate Speech datasets
to verify the validity and usefulness of our methodology. We compare results for which PY |Z is
estimated using the true labels Y (“Oracle”) and those derived using Snorkel’s [48, 47] default label
model with no hyperparameter tuning and a thousand epochs. Such a comparison facilitates an
evaluation of our method’s efficacy, especially in cases where the label model could be incorrectly
specified. Results for other Wrench datasets and one extra label model (FlyingSquid, [22]) are
presented in Appendix F.

Table 1: Bounding accuracy in multinomial classification.

Dataset Lab. model Lo. bound Up. bound Test acc

agnews
Oracle 0.46±0.01 0.95±0.01 0.80±0.01

Snorkel 0.42±0.01 0.9±0.01 0.76±0.01

semeval
Oracle 0.54±0.04 0.78±0.03 0.72±0.04

Snorkel 0.36±0.03 0.70±0.03 0.56±0.04

In Figure 1, we demonstrate our approaches
for bounding test metrics, such as accuracy
and F1 score (shown in green), when no true
labels are available to estimate performance
at various classification thresholds for binary
classification tasks on Wrench datasets. In
the first row (“Oracle”), true labels are used
to estimate the conditional distribution PY |Z ,
representing a (close to) ideal scenario with a
well-specified label model. In the second row (“Snorkel”), however, we use a label model to estimate
PY |Z without relying on any true labels. Despite potential inaccuracies in Snorkel’s label model,
it achieves results close to those obtained using true labels to estimate PY |Z , yielding approximate
but useful bounds. This indicates that even if Snorkel’s label model is imperfectly specified, its
effectiveness in estimating bounds remains similar to that of the “Oracle” approach, underscoring
the value of bounding metrics regardless of label model accuracy. Delving deeper into Figure 1,
results for “youtube”, “commercial”, and “tennis” highlight that our uncertainty about out-of-sample
performance is small, even without labeled samples. However, there is a noticeable increase in
uncertainty for “imdb” and “cdr”, making weakly supervised models deployment riskier without

6Accessible at https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2.
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additional validation. Yet, the bounds retain their informative nature. For instance, for those willing
to accept the risk, the “imdb” classifier’s ideal threshold stands at .5. This is deduced from the
flat worst-case and peaking best-case accuracy at this threshold. Table 1 presents some results for
“agnews” (4 classes) and “semeval” (9 classes). From Table 1, we can see that both “Oracle” and
“Snorkel” approaches produce valid bounds.

Figure 2: Precision and recall bounds for hate speech
detection.

Now, we present bounds on the classifiers’ pre-
cision and recall across different classification
thresholds for the hate speech dataset. This
dataset did not provide weak labels, so we
needed to generate them. We employed four
distinct weak labelers. The initial weak labeler
functions are based on keywords and terms.
Should words or phrases match those identified
as hate speech in the lexicon created by David-
son et al. [13], we categorize the sentence as
1; if not, it’s designated 0. The second weak
labeler is based on TextBlob’s sentiment ana-
lyzer [36]: a negative text polarity results in a
1 classification, while other cases are labeled
0. Our final pair of weak labelers are language
models, specifically BERT [16] and RoBERTa [34], that have undergone fine-tuning for detecting
toxic language or hate speech [35, 28]. Figure 2 presents both recall and precision bounds and test
estimates for the weakly-supervised hate speech classifier. Mirroring observations from Figure 1,
Snorkel’s standard label model gives valuable bounds analogous to scenarios where we employ labels
to estimate PY |Z . If used by practitioners, Figure 2 could help trade-off recall and precision by
choosing an appropriate classification threshold in the absence of high-quality labels.

4.2 Choosing a set of weak labels
In this experiment, we examine how our approach performs under the influence of highly informative
weak labels as opposed to scenarios with less informative weak labels. Using the YouTube dataset
provided by Wrench, we attempt to classify YouTube comments into categories of SPAM or HAM,
leveraging Snorkel to estimate PY |Z . Inspired by Smith et al. [59], we craft three few-shot weak
labelers by prompting7 the large language model (LLM) Llama-2-13b-chat-hf [60]. For each
dataset entry, we pose three distinct queries to the LLM. Initially, we inquire if the comment is SPAM
or HAM. Next, we provide clear definitions of SPAM and HAM, then seek the classification from LLM. In
the third prompt, leveraging in-context learning ideas [17], we provide five representative comments
labeled as SPAM/HAM prior to requesting the LLM’s verdict on the comment in question. In cases
where LLM’s response diverges from SPAM or HAM, we interpret it as LLM’s abstention.

After obtaining this triad of weak labels, we analyze two situations. Initially, we integrate the top
five8 weak labels (“high-quality” labels) from Wrench. In the subsequent scenario, we synthetically
generate weak labels (“low-quality” labels) that do not correlate with Y . The first plot in Figure 3
depicts the bounds of our classifier based solely on weak few-shot labels, which unfortunately do
not provide substantial insights. Enhancing the bounds requires the inclusion of additional weak
labels. Yet, as indicated by the subsequent pair of plots, it becomes evident that only the incorporation
of “high-quality” weak labels results in significant shrinkage and upward shift of the bounds. As
confirmed by the test accuracy, if a practitioner had used our method to select the set of weak labels,
that would have led to a significant boost in performance.

4.3 Model selection strategies using the Fréchet bounds
In Sections 4.1 and 4.2, we implicitly touched on the topic of model selection when discussing the
classification threshold and weak label selection. Here, we explicitly discuss the use of our Fréchet
bounds for model selection purposes. Consider a set of possible models H ≜ {h1, · · · , hK} from
which we wish to find the best model according to a specific metric, e.g., accuracy, or F1 score. We
consider three approaches for model selection using the Fréchet bounds: choosing the model with
the best possible (i) lower bound, (ii) upper bound, and (iii) average of lower and upper bounds on
the metric of interest. Strategy (i) works well for the worst-case scenario and can be seen as the

7More details regarding the prompts can be found in Appendix G.1.
8The most informative weak labels are determined based on their alignment with the true label.
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Figure 3: Performance bounds for classifiers on the YouTube dataset, initially relying solely on few-shot
weak labels obtained via prompts to the LLM Llama-2-13b-chat-hf. The progression of plots illustrates the
comparative impact of integrating “high-quality” labels from Wrench versus synthetically generated “low-quality”
labels. Evidently, the addition of “high-quality” labels significantly enhances the bounds, underscoring their
superior utility over “low-quality” labels for optimal classification of SPAM and HAM comments.

distributionally robust optimization (DRO) [9] solution when the uncertainty set is given by Π in
(1.1), while (ii) is suitable for an optimistic scenario, and (iii) is suggested when one wants to balance
between the worst- and best-case scenarios. Please check Appendix E for more details.

In this experiment, we select multilayer-perceptrons (MLPs). The considered MLPs have one
hidden layer with a possible number of neurons in {50, 100}. Training is carried out with Adam
[26], with possible learning rates in {.1, .001} and weight decay (l2 regularization parameter) in
{.1, .001}. For those datasets that use the F1 score as the evaluation metric, we also tune the
classification threshold in {.2, .4, .5, .6, .8} (otherwise, they return the most probable class as a
prediction). In total, H is composed of 8 trained models when evaluating accuracy and 40 models
when evaluating the F1 score. We also consider directly using the label model (Snorkel [47]) to
select models. For example, when the metric considered is accuracy, i.e., we use select the model
argmaxhk∈H

1
n

∑n
i=1 EP̂Y |Z

1[hk(X) = Y | Z = Zi], which is a natural choice when X ⊥⊥ Y | Z.
As baselines, we consider having a few labeled samples.

Table 2: Performance of selected models
metric Lower bound Bounds avg Label model Labeled (n = 100)

agnews acc 0.77±0.00 0.78±0.00 0.77±0.00 0.77±0.00

imdb acc 0.72±0.00 0.73±0.00 0.73±0.00 0.72±0.01

yelp acc 0.81±0.00 0.81±0.00 0.81±0.00 0.82±0.01

tennis F1 0.76±0.01 0.76±0.01 0.75±0.01 0.71±0.02

commercial F1 0.96±0.00 0.96±0.00 0.96±0.00 0.91±0.01

In Table 2, we report a sub-
set of our results (please
check Appendix E for the
full set of results). In this
table, we report the aver-
age test scores of the cho-
sen models over 10 repeti-
tions for different random
seeds (standard deviation re-
port as subscript). We can extract some lessons from the table. First, using metrics derived from
the Fréchet bounds is most useful when our uncertainty about the model performance is low, e.g.,
“‘commercial” and “tennis” in Figure 1. In those cases, using our metrics for model selection gives
better results even when compared to a labeled validation set of size n = 100. Moreover, once the
practitioner knows that the uncertainty is low, using the label model approach also does well.

5 Discussion

5.1 Extensions

An extension we do not address in the main text is the evaluation of end-to-end weak supervision
methods [62, 56, 52], where the separation between the label model and the final predictor is less
clear than in our primary setting. Our approach remains compatible with these methods as long as we
can fit a label model (e.g., Snorkel) separately and utilize it solely for the evaluation step. Another
possible extension is the application of the ideas presented in this work in different fields of machine
learning or statistics. One could consider applying our ideas to the problem of “statistical matching”
(SM) [18, 10, 19, 30, 11], for example. The classic formulation of SM involves observing two distinct
datasets that contain replications of (X,Z) and (Y,Z), but the triplet (X,Y, Z) is never observed.
The primary goal is to make inferences about the relationship between X and Y . For instance, if
our focus is on bounding P((X,Y ) ∈ B) = E[1B(X,Y )] for a certain event B, we could define
g(x, y, z) = 1B(x, y) and apply our method.
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5.2 Limitations
We discuss some limitations of our methods. Firstly, our method and theoretical results are only
applicable to cases where Y and Z are finite sets, such as in classification problems. Extending
the dual formulation in Theorem 2.1 to general Y and Z is possible but would require optimizing
over function spaces, which is computationally and theoretically challenging. Additionally, if |Z| is
large, convergence may be slow, necessitating a large unlabeled dataset for accurate bounds. Using a
smaller, curated set of weak labels, may be more effective for bounds estimation and performance.
We end this subsection with two other limitations related to misspecification in the label model and
informativeness of the bounds. The proofs of the results introduced in this section are placed in
Appendix D.

Label model misspecification: In our asymptotic results we assumed that the label models are
well-specified, i.e., the estimates {P̂ (m)

Y |Z ,m ∈ N} converge to the true label model PY |Z at m →
∞. To understand the qualities of our bound when this assumption is violated, we introduce the
misspecification: P̂ (m)

Y |Z → QY |Z and QY |Z ̸= PY |Z . In our investigation on the misspecification
of the label model, we control the level of misspecification as dTV(QY |Z=z, PY |Z=z) ≤ δ and then
study the subsequent errors in our Fréchet bounds. The following theorem formalizes the result.
Theorem 5.1. Recall from equation (2.2) that Lϵ and Uϵ are the smoothened upper and lower
Fréchet bounds with the true PY |Z=z . Additionally, let us define similar Ľϵ and Ǔϵ bounds, but with
a misspecified QY |Z=z , i.e.

Ľϵ ≜ sup
a∈A

E[f̌l,ε(X,Z, a)] and Ǔϵ ≜ inf
a∈A

E[f̌u,ε(X,Z, a)] ,

f̌l,ε(x, z, a) ≜ −ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

−ε

)]
− EQY |Z [aY z | Z = z]

f̌u,ε(x, z, a) ≜ ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
− EQY |Z [aY z | Z = z]

(5.1)

Assume QY |Z is in a set of conditional distributions such that the optimizers for (5.1), which are
assumed to exist, are uniformly bounded. If dTV

(
QY |Z=z, PY |Z=z

)
≤ δ, then for some C > 0 which

is independent of δ > 0, we have
max

(
|Ľϵ − Lϵ|, |Ǔϵ − Uϵ|

)
≤ Cδ . (5.2)

The above theorem reveals how misspecification translates to the errors in subsequent Fréchet bounds.
In an ideal scenario, with access to an {(Yi, Zi)}mi=1 sample we can consistently estimate PY |Z ,
leading to δ = 0. In situations when this {(Yi, Zi)}mi=1 sample is not accessible and we have to rely
on a label model, we require the misspecification in this model to be small.

Informativeness of the bounds: The bounds L and U are especially useful when their difference
U − L is small because in that case, we obtain a tight bound for E[g(X,Y, Z)] and narrow it down
with high precision even if the joint random vector (X,Y, Z) is never observed. But when is this
bound small? In the next theorem, we provide an upper bound on this difference.
Theorem 5.2. Let L and U be defined as in equation (1.1). Then

U − L ≤
√
8 ∥g∥2∞ min{H(X | Z), H(Y | Z)}

where H(X | Z) (resp. H(Y | Z)) denotes the conditional entropy of X (resp. Y ) given Z.

To understand the result better, recall our setting: we do not observe the joint distribution PX,Y,Z and
only observe the marginals PY,Z and PX,Z . The only way we can infer about the joint distribution
is by connecting these two marginals through Z. So, readers can guess that it is more favorable
when Z is informative for either X or Y . For example, take the extreme case when Y = h(Z) for a
function h : Y → Z . In this case the PX,Y,Z = PX,g(Z),Z is precisely known from the PX,Z and
we can exactly pinpoint the E[g(X,Y, Z)] as E[g(X,h(Z), Z)]. In this case, H(Y | Z) = 0, leading
to U − L = 0, i.e., its Fréchet bounds can precisely pinpoint it as well; ideally at least one of the
H(X | Z) and H(Y | Z) is small.
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A Connection to optimal transport

The optimizations in the Frechet bounds (1.1) can be connected to an optimization problem [45].
We only explain this connection for the lower bound, but the connection to the upper bound is quite
similar. The optimization lower bound is

infπX,Z=PX,Z

πY |Z=PY |Z

Eπ[g(X,Y, Z)] =

= infπX,Z=PX,Z

πY |Z=PY |Z

∑
z P(Z = z)Eπ[g(X,Y, Z) | Z = z]

=
∑

z P(Z = z)

{
infπX|Z=z=PX|Z=z

πY |Z=z=PY |Z=z

EπX,Y |Z=z
[g(X,Y, z)]

}
where we notice that the inner minimization is an optimal transport problem between the probability
distributions PX|Z=z and PY |Z=z with the cost function dz(x, y) = g(x, y, z).

15



B A proof for the duality result

Proof of Theorem 2.1. We start proving the result for L. See that
L = inf

π∈Π
Eπ[g(X,Y, Z)]

= inf
{πz∈Πz}z∈Z

∑
z∈Z

P(Z = z) · Eπz
[g(X,Y, Z) | Z = z]

=
∑
z∈Z

P(Z = z) · inf
πz∈Πz

Eπz [g(X,Y, Z) | Z = z]

with Πz , is defined as
Πz ≜ {πz ∈ ∆(X × Y) : πz ◦ ρ−1

X = PX|Z=z and πz ◦ ρ−1
Y = PY |Z=z}

That is, for each z ∈ Z , Πz represents the set of couplings such that marginals are given by PX|Z=z

and PY |Z=z . We can represent the problem in this way since the marginal distribution of Z is fixed
and, given that distribution, {Πz} specifies the same set of distributions as Π.

Realize that we have broken down our initial maximization problem in |Z| smaller minimization
problems. Each of those minimization problems can be treated as an optimal transportation problem.
Consequently, by Beiglböck and Schachermayer [8, Theorem 1], for each z ∈ Z , we get the following
duality result

infπz∈Πz
Eπz

[g(X,Y, Z) | Z = z] = sup(βz,αz)∈Ψz
E[βz(X) + αz(Y ) | Z = z]

with

Ψz ≜

{
(βz, αz) :

βz : X → [−∞,∞), αz : Y → [−∞,∞)
E[|βz(X)| | Z = z] <∞,E[|αz(Y )| | Z = z] <∞
βz(x) + αz(y) ≤ g(x, y, z) for all (x, y) ∈ X × Y

}
Moreover, partially optimizing on βz(x), we can set β∗

z (x) = miny∈Y [g(x, y, z)− αz(y)] and then
infπz∈Πz

Eπz
[g(X,Y, Z) | Z = z] =

= supαz
E [miny∈Y [g(X, y, Z) + αz(y)]− αz(Y ) | Z = z]

where αz is a simple function taking values in the real line.

Consequently,

L =
∑
z∈Z

P(Z = z) · sup
αz

E
[
min
y∈Y

[g(X, y, Z) + αz(y)]− αz(Y ) | Z = z

]
= sup

{αz}z∈Z

∑
z∈Z

P(Z = z) · E
[
min
y∈Y

[g(X, y, Z) + αz(y)]− αz(Y ) | Z = z

]
= sup

{αz}z∈Z

E
[
min
y∈Y

[g(X, y, Z) + αZ(y)]− αZ(Y )

]
Because each αz is a function assuming at most |Y| values and we have |Z| functions (one for each
value of z), we can equivalently solve an optimization problem on R|Y|×|Z|. Adjusting the notation,

L = sup
a∈R|Y|×|Z|

E
[
min
ȳ∈Y

[g(X, ȳ, Z) + aȳZ ]
]
− E [aY Z ]

From Beiglböck and Schachermayer [8, Theorem 2], we know that the maximum is attained by some
a∗ ∈ R|Y|×|Z|. To show that there is a maximizer in A, we need to update the solution

a∗·z ← a∗·z −
∑

y∈Y a∗yz (shift sub-vector by a constant) (B.1)

for every z ∈ Z . The objective function is not affected by such translations.

To prove the result for U , first realize that because g is bounded, with no loss of generality, we can
assume its range is a subset of [0, 1]. Define c(x, y, z) = 1− g(x, y, z) and see that

U = sup
π∈Π

Eπ[1− c(X,Y, Z)] = 1− inf
π∈Π

Eπ[c(X,Y, Z)]

Proceeding as before, we can obtain the final result by finding the dual formulation for
infπ∈Π Eπ[c(X,Y, Z)].
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C Proofs for the estimation results

We will analyze the estimator for U (results for the estimator of L can be obtained analogously).

For the next results, we define

f̃u,ε(x, z, a) ≜ fu,ε(x, z, a) +
∑

z′∈Z

(∑
y∈Y ayz′

)2
.

Proof of Theorem 2.5. By Assumption 2.2 and Lemmas C.1 and C.2, we can guarantee that
E[f̃u,ε(X,Z, a)] is minimized by a unique a∗u,ε (equalling it to Uε) and that∇2

aE[f̃u,ε(X,Z, a∗u,ε)]

is positive definite. Also, from the proof of Lemma C.2, we can see that f̃u,ε is convex in a (because
its Hessian is positive semidefinite). It is also true that the second moment of f̃u,ε(X,Z, a) is well
defined (exists and finite) for each a since g is bounded. Define

Ũε ≜ inf
a∈R|Y|×|Z|

1
n

∑n
i=1 f̃u,ε(Xi, Zi, a)

and let ãε denote a value that attains that minimum; from Niemiro [44, Theorem 4] and the conditions
discussed above, we know that

√
n(ãε−a∗u,ε) = OP (1). The existence of ãε is discussed by Niemiro

[44]. Then

√
n(Ũε − Uε)

=
1√
n

(∑
i

f̃u,ε(Xi, Zi, ãε)−
∑
i

f̃u,ε(Xi, Zi, a
∗
u,ε)

)
+
√
n

(
1

n

∑
i

f̃u,ε(Xi, Zi, a
∗
u,ε)− Uε

)

=
1√
n

(
[
√
n(ãε − a∗u,ε)]

⊤[
1

n

∑
i

∇2
af̃u,ε(Xi, Zi, ā)][

√
n(ãε − a∗u,ε)]

)
+

+
√
n

(
1

n

∑
i

f̃u,ε(Xi, Zi, a
∗
u,ε)− Uε

)
+ oP (1)

(C.1)
where the first term is obtained by a second-order Taylor expansion of the summing functions around
ãε (ā is some random vector). Also, from the standard central limit theorem, we know that

√
n
(

1
n

∑
i f̃u,ε(Xi, Zi, a

∗
u,ε)− Uε

)
⇒ N(0,Varf̃u,ε(X,Z, a∗u,ε))

Given that
√
n(ãε − a∗u,ε) = OP (1) and that the Hessian has bounded entries (then OP (1) as well),

the first term in C.1 is oP (1). Because a∗u,ε ∈ A, we have that fu,ε(X,Z, a∗u,ε) = f̃u,ε(X,Z, a∗u,ε)
and then

√
n(Ũε − Uε)⇒ N(0,Varfu,ε(X,Z, a∗u,ε))

by Slutsky’s theorem. Since

√
n(Ûε − U) =

√
n(Ûε − Ũε) +

√
n(Ũε − Uε),

if we can show that
√
n(Ũε − Ûε) = oP (1)

we are done.
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Let â be solution for the problem in 2.3 and see that

|Ũε − Ûε| =

=
∣∣∣ 1n ∑n

i=1 f̃u,ε(Xi, Zi, ãε)− 1
n

∑n
i=1 ε log

[
1
|Y|
∑

y∈Y exp
(

g(Xi,y,Zi)+âyZi

ε

)]
+ EP̂Y |Z

[âY Z | Z = Zi]
∣∣∣

≤
∣∣∣ 1n ∑n

i=1 f̃u,ε(Xi, Zi, ãε)− 1
n

∑n
i=1 f̃u,ε(Xi, Zi, â)

∣∣∣+
+
∣∣∣ 1n ∑n

i=1 f̃u,ε(Xi, Zi, â)− 1
n

∑n
i=1 ε log

[
1
|Y|
∑

y∈Y exp
(

g(Xi,y,Zi)+âyZi

ε

)]
+ EP̂Y |Z

[âY Z | Z = Zi]
∣∣∣

= ( 1n
∑n

i=1 f̃u,ε(Xi, Zi, â)− 1
n

∑n
i=1 f̃u,ε(Xi, Zi, ãε))+

+
∣∣∣ 1n ∑n

i=1

∑
y[P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)]âyZi

∣∣∣
≤
(

1
n

∑n
i=1 f̃u,ε(Xi, Zi, â)− 1

n

∑n
i=1 ε log

[
1
|Y|
∑

y∈Y exp
(

g(Xi,y,Zi)+âyZi

ε

)]
+ EP̂Y |Z

[âY Z | Z = Zi]
)

+

(
1
n

∑n
i=1 ε log

[
1
|Y|
∑

y∈Y exp

(
g(Xi,y,Zi)+ãεyZi

ε

)]
− EP̂Y |Z

[ãεY Z
| Z = Zi]− 1

n

∑n
i=1 f̃u,ε(Xi, Zi, ãε)

)
+
∣∣∣ 1n ∑n

i=1

∑
y[P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)]âyZi

∣∣∣
=
(

1
n

∑n
i=1

∑
y[P̂(Y = y | Z = Zi)− P(Y = y | Z = Zi)]âyZi

)
+
(

1
n

∑n
i=1

∑
y[P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)]ãεyZi

)
+
∣∣∣ 1n ∑n

i=1

∑
y[P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)]âyZi

∣∣∣
≤ 2 ∥â∥∞

1
n

∑n
i=1

∑
y |P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)|+

+ ∥ãε∥∞
1
n

∑n
i=1

∑
y |P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)|

≤ 2 ∥â∥∞
∑

z

∑
y |P(Y = y | Z = z)− P̂(Y = y | Z = z)|+

+ ∥ãε∥∞
∑

z

∑
y |P(Y = y | Z = z)− P̂(Y = y | Z = z)|

≤ 4 ∥â∥∞
∑

z dTV

(
P̂Y |Z=z, PY |Z=z

)
+ 2 ∥ãε∥∞

∑
z dTV

(
P̂Y |Z=z, PY |Z=z

)
= OP (m

−λ)

where the last equality is obtained using Assumptions 2.3 and 2.4, and the fact that ∥ãε∥∞ is tight
(derived from

√
n(ãε − a∗u,ε) = OP (1)). Consequently,

√
n(Ũε − Ûε) =

√
nOP (m

−λ) = o(mλ)OP (m
−λ) = oP (1)

Finally, using Slutsky’s theorem,

√
n(Ûε − U) =

√
n(Ûε − Ũε) +

√
n(Ũε − U)⇒ N(0,Varfu,ε(X,Z, a∗u,ε))

Proof of Corollary 3.1. We prove the asymptotic distribution of
√
n
(
p̂u,ε − pu,ε

)
. The result for the

lower bound can be obtained analogously.

First, note that

P̂(h(X) = 1)− P(h(X) = 1) = OP (m
−1/2) (C.2)

by the standard central limit theorem.
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Next, see that

√
n (p̂u,ε − pu,ε) =

=
√
n
(

Ûε

P̂(h(X)=1)
− Uε

P(h(X)=1)

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − P̂(h(X)=1)

P(h(X)=1)Uε

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − Uε

)
+ 1

P̂(h(X)=1)

√
n
(
Uε − P̂(h(X)=1)

P(h(X)=1)Uε

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − Uε

)
+ Uε

√
n
(

1
P̂(h(X)=1)

− 1
P(h(X)=1)

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − Uε

)
+ Uε

√
n
(
P̂(h(X) = 1)− P(h(X) = 1)

)(
−1

P(h(X)=1)2

)
+ oP

(
m−1/2

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − Uε

)
+ oP (1)

⇒ N(0, σ2
p,u,ε)

where the (i) fifth and sixth lines equality is obtained using Taylor’s theorem, (ii) sixth and seventh
lines equality is obtained using observation C.2 and the fact that n = o(m(2λ)∧1), and (iii) seventh to
eighth lines equality is obtained using observation C.2, Theorem 2.5, and Slutsky’s theorem.

We prove the asymptotic distribution of
√
n
(
r̂u,ε − ru,ε

)
. The result for the lower bound can be

obtained analogously. From Lemma C.3, we know that there is an estimator P̂(Y = 1) such that
P̂(Y = 1)− P(Y = 1) = OP (m

−(λ∧1/2)), i.e., it has enough precision. We use that estimator.

Next, see that

√
n (r̂u,ε − ru,ε) =

=
√
n
(

Ûε

P̂(Y=1)
− Uε

P(Y=1)

)
= 1

P̂(Y=1)

√
n
(
Ûε − P̂(Y=1)

P(Y=1)Uε

)
= 1

P̂(Y=1)

√
n
(
Ûε − Uε

)
+ 1

P̂(Y=1)

√
n
(
Uε − P̂(Y=1)

P(Y=1)Uε

)
= 1

P̂(Y=1)

√
n
(
Ûε − Uε

)
+ Uε

√
n
(

1
P̂(Y=1)

− 1
P(Y=1)

)
= 1

P̂(Y=1)

√
n
(
Ûε − Uε

)
+ Uε

√
n
(
P̂(Y = 1)− P(Y = 1)

)(
−1

P(Y=1)2

)
+ oP

(
m−1/2

)
= 1

P̂(Y=1)

√
n
(
Ûε − Uε

)
+ oP (1)

⇒ N(0, σ2
r,u,ε)

Finally, we prove the asymptotic distribution of
√
n
(
F̂u,ε − Fu,ε

)
. The result for the lower bound

can be obtained analogously. From the facts stated above, we know that

P̂(h(X) = 1) + P̂(Y = 1)− [P(h(X) = 1) + P(Y = 1)] =

= [P̂(h(X) = 1)− P(h(X) = 1)] + [P̂(Y = 1)− P(Y = 1)] =

= OP (m
−(λ∧1/2))
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Then,
√
n
(
F̂u,ε − Fu,ε

)
=

=
√
n
(

2Ûε

[P̂(h(X)=1)+P̂(Y=1)]
− 2Uε

[P(h(X)=1)+P(Y=1)]

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − [P̂(h(X)=1)+P̂(Y=1)]

[P(h(X)=1)+P(Y=1)]Uε

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − Uε

)
+ 1

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
2Uε − [P̂(h(X)=1)+P̂(Y=1)]

[P(h(X)=1)+P(Y=1)]2Uε

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − Uε

)
+ 2Uε

√
n
(

1
[P̂(h(X)=1)+P̂(Y=1)]

− 1
[P(h(X)=1)+P(Y=1)]

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − Uε

)
+

+ 2Uε
√
n
(
[P̂(h(X) = 1) + P̂(Y = 1)]− [P(h(X) = 1) + P(Y = 1)]

)(
−1

[P(h(X)=1)+P(Y=1)]2

)
+ oP

(
m−1/2

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − Uε

)
+ oP (1)

⇒ N(0, σ2
F,u,ε)

where all the steps are justified as before.

C.1 Auxiliary lemmas

Lemma C.1. Define

f̃u,ε(x, z, a) ≜ fu,ε(x, z, a) +
∑

z′∈Z

(∑
y∈Y ayz′

)2
Then

inf
a∈R|Y|×|Z|

E[f̃u,ε(X,Z, a)] = inf
a∈A

E[fu,ε(X,Z, a)]

Proof. First, see that
E[f̃u,ε(X,Z, a)] ≥ E[fu,ε(X,Z, a)]

From Assumption 2.2, we know that there exists some a∗u,ε ∈ R|Y|×|Z| such that

inf
a∈A

E[fu,ε(X,Z, a)] = E[fu,ε(X,Z, a∗u,ε)]

For that specific a∗u,ε, we have that

E[f̃u,ε(X,Z, a∗u,ε)] = E[fu,ε(X,Z, a∗u,ε)]

Consequently,

inf
a∈R|Y|×|Z|

E[f̃u,ε(X,Z, a)] = E[f̃u,ε(X,Z, a∗u,ε)] = E[fu,ε(X,Z, a∗u,ε)] = inf
a∈A

E[fu,ε(X,Z, a)]

Lemma C.2. The function of a given by E[f̃u,ε(X,Z, a)] has positive definite Hessian, i.e.,

Hε(a) = ∇2
aE[f̃u,ε(X,Z, a)] ≻ 0

and, consequently, it is strictly convex.

Proof. See that

Hε(a) = ∇2
aE[fu,ε(X,Z, a)] +∇2

a

[∑
z′∈Z

(∑
y∈Y ayz′

)2]
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We start computing the first term in the sum.

First, for an arbitrary pair (k, l) ∈ Y × Z , define

skl(x) ≜
exp

(
g(x,k,l)+akl

ε

)
∑

y exp
(

g(x,y,l)+ayl
ε

)
Now, see that

∂
∂akl

fu,ε(x, z, a) = 1{l}(z)

[
skl(x)− P(Y = k | Z = l)

]

and

∂2

∂apl∂akl
fu,ε(x, z, a) =

1
ε1{l}(z)

[
1{k}(p)skl(x)− skl(x)spl(x)

]

See that ∂2

∂apb∂akl
fu,ε(x, z, a) = 0 if b ̸= l. Consequently, the Hessian ∇2

a fu,ε(x, z, a) is block
diagonal.

Consequently, because the second derivatives are bounded, we can push them inside the expectations
and get

∂2

∂apl∂akl
E [fu,ε(X,Z, a)] =

= E
[

∂2

∂apl∂akl
fu,ε(X,Z, a)

]
= 1

εE
[
1{l}(Z)

[
1{k}(p)skl(X)− skl(X)spl(X)

]]
= 1

ε1{k}(p) · E [P(Z = l | X)skl(X)]− 1
εE [P(Z = l | X)skl(X)spl(X)]

Because ∇2
a fu,ε(x, z, a) is block diagonal, we know that the Hessian

∇2
a E [fu,ε(X,Z, a)]

is block diagonal (one block for each segment a·z of the vector a). Now, realize that

∇2
a

[∑
z′∈Z

(∑
y∈Y ayz′

)2]
is also block diagonal, with each block being matrices of ones. In this case, we also have one block
for each segment a·z of the vector a. Consequently, Hε(a) is block diagonal, and it is positive definite
if and only if all of its blocks are positive definite. Let us analyse an arbitrary block of Hε(a), e.g.,
∇2

a·l
E
[
f̃u,ε(X,Z, a)

]
. Let s·l(x) be the vector composed of skl(x) for all k. If 1 ∈ R|Y| denotes a

vector of ones, then,

∇2
a·l

E
[
f̃u,ε(X,Z, a)

]
=

= 1
εdiag

(
E [P(Z = l | X)s·l(X)]

)
− 1

εE
[
P(Z = l | X)s·l(X)s·l(X)⊤

]
+ 11⊤

= E

{
1
εP(Z = l | X)

[
diag

(
s·l(X)

)
− s·l(X)s·l(X)⊤ + ε

P(Z=l)11
⊤
]}

= E

{
1
εP(Z = l | X)

[
diag

(
s·l(X)

)
− s·l(X)s·l(X)⊤ + 1̃1̃⊤

]}
where 1̃ =

√
ε

P(Z=l)1. See that diag
(
s·l(x)

)
has rank |Y| (full rank) while s·l(x)s·l(x)⊤ is rank one

for every x ∈ RdX . Consequently, the rank of the difference

D(x) = diag
(
s·l(x)

)
− s·l(x)s·l(x)

⊤

21



is greater or equal |Y| − 1. It is the case that rank(D(x)) = |Y| − 1 because 1̃ is in the null space of
D:

D(x)1̃ =
[
diag

(
s·l(x)

)
− s·l(x)s·l(x)

⊤
]
1̃ =

√
ε

P(Z=l) (s·l(x)− s·l(x)) = 0

Moreover, the range of D(x) and 1̃1̃⊤ are orthogonal. For any two vectors v,u ∈ R|Y|, we have that

(D(x)v)⊤(1̃1̃⊤u) = v⊤D(x)⊤1̃1̃⊤u = v⊤D(x)1̃1̃⊤u = v⊤01̃⊤u = 0

That implies D(x) + 1̃1̃⊤ is full rank. To see that, let v ∈ R|Y| be arbitrary and see

(D(x) + 1̃1̃⊤)v = 0⇒ D(x)v = 1̃1̃⊤v = 0

Because D(x)v = 0, it means that v = θ1̃ for some constant θ. If θ ̸= 0, then 1̃1̃⊤v = θ|Y|1̃ ̸= 0.
Therefore, θ = 0 and v = 0.

Now, let u ∈ R|Y| be arbitrary non-null vector and see

u⊤D(x)u = u⊤diag
(
s·l(x)

)
u− u⊤s·l(x)s·l(x)

⊤u

=
∑

y u
2
ysyl(x)−

(∑
y uysyl(x)

)2
=
(∑

y syl(x)
)(∑

y u
2
ysyl(x)

)
−
(∑

y uysyl(x)
)2

=
(∑

y

√
syl(x)

√
syl(x)

)(∑
y

√
u2
ysyl(x)

√
u2
ysyl(x)

)
−
(∑

y uysyl(x)
)2

≥
(∑

y uysyl(x)
)2
−
(∑

y uysyl(x)
)2

= 0

by the Cauchy–Schwarz inequality. Then, D(x) is positive semidefinite, and because 1̃1̃⊤ is also
positive semidefinite, their sum needs to be positive definite for all x (that matrix is full rank). Each
block of Hε(a) is positive definite; consequently, Hε(a) is positive definite.

Lemma C.3. Assume Assumption 2.4 holds. Let

P̂(Y = 1) = 1
m

∑m
i=1 EP̂Y |Z

[Y | Z = Zi]

Then

P̂(Y = 1)− P(Y = 1) = OP (m
−(λ∧1/2))

Proof. To derive this result, see that

|P̂(Y = 1)− P(Y = 1)| =

=
∣∣∣ 1m ∑m

i=1 EPY |Z [Y | Z = Zi]− P(Y = 1) + 1
m

∑m
i=1 EP̂Y |Z

[Y | Z = Zi]− EPY |Z [Y | Z = Zi]
∣∣∣

≤
∣∣ 1
m

∑m
i=1 EPY |Z [Y | Z = Zi]− P(Y = 1)

∣∣+ 1
m

∑m
i=1

∣∣∣EP̂Y |Z
[Y | Z = Zi]− EPY |Z [Y | Z = Zi]

∣∣∣
= OP (m

−1/2) + 1
m

∑m
i=1

∣∣∣PP̂Y |Z
[Y = 1 | Z = Zi]− PPY |Z [Y = 1 | Z = Zi]

∣∣∣
≤ OP (m

−1/2) +
∑

z∈Z

∣∣∣PP̂Y |Z
[Y = 1 | Z = z]− PPY |Z [Y = 1 | Z = z]

∣∣∣
≤ OP (m

−1/2) +
∑

y∈{0,1}
∑

z∈Z

∣∣∣PP̂Y |Z
[Y = y | Z = z]− PPY |Z [Y = y | Z = z]

∣∣∣
= OP (m

−1/2) + 2
∑

z∈Z dTV

(
P̂Y |Z=z, PY |Z=z

)
= OP (m

−1/2) +OP (m
−λ)

= OP (m
−(λ∧1/2))

where the standard central limit theorem obtains the third step, the sixth step is obtained by the
formula of the total variation distance for discrete measures, and the seventh step is obtained by
Assumption 2.4.
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Lemma C.4. For some κ > 0 and any y ∈ Y assume that κ ≤ py ≤ 1− κ. Define A = {ay ∈ R :∑
y ay = 0}. Then the optima of the following problems

infa∈A fu(a), fu(a) ≜ E
[
ϵ log

{
1
|Y|
∑

y exp
( g(X,y)+ay

ϵ

)}]
−
∑

y pyay ,

supa∈A fl(a), fl(a) ≜ E
[
− ϵ log

{
1
|Y|
∑

y exp
( g(X,y)+ay

−ϵ

)}]
−
∑

y pyay

(C.3)

are attained in a compact set K(κ, L) ⊂ A where ∥g∥∞ ≤ L.

Proof of lemma C.4. We shall only prove this for the minimization problem. The conclusion for the
maximization problem follows in a similar way.

Strict convexity: The second derivation of fu is

∇ay,ay′ fu(a) =
1
ϵE
[
p(X, y, a){δy,y′ − p(X, y′, a)}

]
(C.4)

where p(x, y, a) ≜
exp
(

g(X,y)+ay
ϵ

)
∑

i∈Y exp
(

g(X,i)+ai
ϵ

) . For any u ∈ RY we have

u⊤∇2fu(a)u =
∑

i,j∈Y uiuj∇ai,aj
fu(a)

= 1
ϵ

∑
i,j∈Y uiujE

[
p(X, i, a){δi,j − p(X, j, a)}

]
= 1

ϵE
[∑

i u
2
i p(X, i, a)−

{∑
i uip(X, i, a)

}2]
= 1

ϵE[σ
2(X,u, a)] ≥ 0

(C.5)

where σ2(x, u, a) is the variance of a categorical random variable taking the value ui with probability
p(x, i, a). This leads to the conclusion that the function is convex.

To establish strict convexity, we fix a ∈ A and notice that 0 < p(x, y, a) < 1 (because ∥g∥∞ ≤ L).
Therefore, the σ2(x, u, a) can be zero only when the ui’s are all equal. Since A = {a ∈ RY :∑

y ay = 0}, such u belongs to the space A in the unique case ui = 0. This leads to the conclusion
that for any u ∈ A and u ̸= 0

u⊤∇2fu(a)u = 1
ϵE[σ

2(X,u, a)] > 0 .

Therefore, fu is strictly convex and has a unique minimizer in A. In the remaining part of the proof,
we focus on the first-order condition.

First order condition: The first-order condition is

h(a, y) = py for all y ∈ Y, where h(a, y) ≜ E[p(X, y, a)] (C.6)

To show that (C.6) has a solution in a compact ball K(ϵ, κ, L) ≜ {a ∈ A : ∥a∥2 ≤ M(ϵ, κ, L)}
we construct an M(ϵ, κ, L) > 0 such that miny h(a, y) < κ whenever ∥a∥2 > M(ϵ, κ, L). Since
κ ≤ py ≤ 1− κ for all y ∈ Y this concludes that the solution to (C.6) must be inside the K(ϵ, κ, L).

Construction of the compact set: Let us define ymin ≜ argminyay and ymax ≜ argmaxyay . To
construct M(κ, L, ϵ) (we shall write it simply as M whenever it is convenient to do so) we notice that

h(a, ymin) = E[p(X, ymin, a)]

= E
[

exp
(

g(X,1)+aymin
ϵ

)
∑

i∈Y exp
(

g(X,i)+ai
ϵ

)]
≤ exp

(
L+aymin

ϵ

)
exp
(

L+aymin
ϵ

)
+
∑

i≥2 exp
(

−L+ai
ϵ

)
=

exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+
∑

i≥2 exp
(

ai−aymin
ϵ

)
≤ exp

(
2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
aymax−aymin

ϵ

) ≤ exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
R
ϵ

) ,

(C.7)

where
R ≜ min{maxy ay −miny ay :

∑
i ai = 0,

∑
i a

2
i > M2} .
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We rewrite the constraints of the optimization as:

R ≜ min
{
maxy ay −miny ay : mean{ai} = 0, var{ai} > M2

|Y|
}
.

where we use the Popoviciu’s inequality on variance to obtain
M2

|Y| < var{ai} ≤ (maxy ay−miny ay)
2

4 , or maxy ay −miny ay > 2M√
|Y|

,

Thus R ≥ 2M√
|Y|

whenever ∥a∥2 > M . We use this inequality in (C.7) and obtain

h(a, ymin) ≤
exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
R
ϵ

) ≤ exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
2M

ϵ
√

|Y|

) .
Finally, we choose M = M(ϵ, κ, L) > 0 large enough such that

h(a, ymin) ≤
exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
2M

ϵ
√

|Y|

) < κ .

For such an M we concludes that h(a, ymin) < κ whenever ∥a∥2 > M .

Lemma C.5. Lε and Uε are attained by some optimizers in a compact set K(ϵ, κz, z ∈ Z;L) ⊃ A
((2.2)), where κz = min{py|z, 1− py|z : y ∈ Y}.

Proof of lemma C.5. We shall only prove the case of the minimization problem. The proof for the
maximization problem uses a similar argument.

A decomposition of the minimization problem according to the values of Z follows.

mina∈A E
[
ϵ log

{
1
|Y|
∑

y∈Y exp
( g(X,y,Z)+aY,Z

ϵ

)}
− E [aY,Z | Z]

]
=
∑

z pz

 min
a·,z∈RY∑
y ay,z=0

E
[
ϵ log

{
1
|Y|
∑

y∈Y exp
( g(X,y,z)+aY,z

ϵ

)}
| Z = z

]
− E[aY,z | Z = z]


=
∑

z pz

 min
a·,z∈RY∑
y ay,z=0

E
[
ϵ log

{
1
|Y|
∑

y∈Y exp
( g(X,y,z)+aY,z

ϵ

)}
| Z = z

]
−
∑

y ay,zpy|z


(C.8)

where pz = P (Z = z) and py|z = P (Y = y | Z = z). We fix a z and consider the corresponding
optimization problem in the decomposition. Then according to lemma C.4 the optimal point is in
a compact set K(ϵ, κz, L). Thus the optimal point of the full problem is in the Cartesian product∏

z K(ϵ, κz, L) ⊂ A, which a compact set. Thus we let K(ϵ, κz, z ∈ Z;L) =
∏

z K(ϵ, κz, L).

Lemma C.6. The optimizers for the problems in (2.3) are tight with respect to m,n→∞.

Proof of the lemma C.6. Let py|z = P (Y = y | Z = z) and p̂
(m)
y|z = P̂

(m)
Y |Z=z(y). Since

1
2

∑
y

∣∣p̂(m)
y|z − py|z

∣∣ = dTV

(
P̂

(m)
Y |Z=z, PY |Z=z

)
= OP (m

−λ)

according to the assumption 2.4, for sufficiently large m with high probability p(m) (p(m)→ 1 as
m→∞) κz

2 ≤ p̂
(m)
y|z ≤ 1− κz

2 for all y. Fix such an m and p̂
(m)
y|z . In lemma C.5 we replace PX,Z

with
∑n

i=1 δXi,Zi
and py|z with p̂

(m)
y|z to reach the conclusion that the optimizer is in the compact set

K(ϵ, κz/2, z ∈ Z;L). Thus, for sufficiently large m and any n

P
(
optimizer is in K(ϵ, κz/2, z ∈ Z;L)

)
≥ p(m) .

This establishes that the optimizers are tight.
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D Proof of extra results

Proof of Theorem 5.1. We only prove the theorem for upper Fréchet bound. The proof of lower
bound is similar.

First, notice that

f̌u,ε(x, z, a)− fu,ϵ(x, z, a) =

= ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
− EQY |Z [aY z | Z = z]

− ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
+ EPY |Z [aY z | Z = z]

= EPY |Z [aY z | Z = z]− EQY |Z [aY z | Z = z]

and thus

|f̌u,ε(x, z, a)− fu,ϵ(x, z, a)| (D.1)

=
∣∣EPY |Z [aY z | Z = z]− EQY |Z [aY z | Z = z]

∣∣ (D.2)

≤ ∥a∥∞ × 2dTV
(
QY |Z=z, PY |Z=z

)
(using a⊤b ≤ ∥a∥∞∥b∥1) (D.3)

≤ 2∥a∥∞δ . (by assumption) (D.4)

Defining

a⋆ ≜ argminaE[fu,ε(X,Z, a)], ǎ ≜ argminaE[f̌u,ε(X,Z, a)] , (D.5)

we now establish that

|Ǔϵ − Uϵ| ≤ 2δmax(∥a⋆∥∞, ∥ǎ∥∞) . (D.6)

This is easily established from the following arguments:

Ǔϵ = E[f̌u,ε(X,Z, ǎ)]

≤ E[f̌u,ε(X,Z, a⋆)] (ǎ is the minimizer)
≤ E[fu,ε(X,Z, a⋆)] + 2∥a⋆∥∞δ (using eq. (D.4))
= Uϵ + 2∥a⋆∥∞δ

(D.7)

and similarly

Uϵ = E[fu,ε(X,Z, a⋆)] ≤ E[fu,ε(X,Z, ǎ)] ≤ E[f̌u,ε(X,Z, ǎ)] + 2∥ǎ∥∞δ = Ǔϵ + 2∥a⋆∥∞δ .
(D.8)

By assumption, a⋆ and ǎ are bounded. Thus, we can find a C > 0, which is independent of δ > 0,
such that

2max(∥a⋆∥∞, ∥ǎ∥∞) ≤ C

and the theorem holds for this C.

Proof of Theorem 5.2. For clarity, we shall assume X is a continuous random variable in this proof,
even though this is not strictly needed.
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Let Q(1)
X,Y,Z and Q

(2)
X,Y,Z be two distributions in Π, i.e., with marginals PX,Z and PY,Z . Let the

densities of Q(1)
X,Y,Z and Q

(2)
X,Y,Z as q(1)X,Y,Z and q

(2)
X,Y,Z . Then, see that∣∣∣∫ gdQ

(1)
X,Y,Z −

∫
gdQ

(2)
X,Y,Z

∣∣∣ =
=
∣∣∣∫ ∑y,z g(x, y, z)(q

(1)
X,Y,Z(x, y, z)− q

(2)
X,Y,Z(x, y, z))dx

∣∣∣
≤
∫ ∑

y,z |g(x, y, z)| · |q
(1)
X,Y,Z(x, y, z)− q

(2)
X,Y,Z(x, y, z)|dx

≤ 2 ∥g∥∞
∑

z pZ(z)
1
2

∫ ∑
y ·|q

(1)
X,Y |Z(x, y | z)− q

(2)
X,Y |Z(x, y | z)|dx

= 2 ∥g∥∞ E
[
dTV(Q

(1)
X,Y |Z , Q

(2)
X,Y |Z)

]
≤ 2 ∥g∥∞

{
E
[
dTV(Q

(1)
X,Y |Z , PX|ZPY |Z)

]
+ E

[
dTV(Q

(2)
X,Y |Z , PX|ZPY |Z)

]}
(D.9)

≤ 2 ∥g∥∞

{
E
[√

1
2KL(Q(1)

X,Y |Z ||PX|ZPY |Z)

]
+ E

[√
1
2KL(Q(2)

X,Y |Z ||PX|ZPY |Z)

]}
(D.10)

≤ 2 ∥g∥∞

{√
1
2E
[
KL(Q(1)

X,Y |Z ||PX|ZPY |Z)
]
+

√
1
2E
[
KL(Q(2)

X,Y |Z ||PX|ZPY |Z)
]}

(D.11)

≤ 2 ∥g∥∞
{√

1
2H(X | Z) +

√
1
2H(X | Z)

}
(D.12)

≤
√

8 ∥g∥2∞ H(X | Z)

where step D.9 is justified by triangle inequality, step D.10 is justified by Pinsker’s inequality, step
D.11 is justified by Jensen’s inequality, and step D.12 is justified by the fact that both expected KL
terms are conditional mutual information terms, which can be bounded by the conditional entropy.

Following the same idea, we can show that
∣∣∣∫ gdQ

(1)
X,Y,Z −

∫
gdQ

(2)
X,Y,Z

∣∣∣ ≤ √8 ∥g∥2∞ H(Y | Z).
Consequently,∣∣∣∫ gdQ

(1)
X,Y,Z −

∫
gdQ

(2)
X,Y,Z

∣∣∣ ≤ min

(√
8 ∥g∥2∞ H(X | Z),

√
8 ∥g∥2∞ H(Y | Z)

)
=
√
8 ∥g∥2∞ min

(
H(X | Z), H(Y | Z)

)
.

Because this statement is valid for any distributions Q(1)
X,Y,Z and Q

(2)
X,Y,Z in Π, we have that

U − L ≤
√
8 ∥g∥2∞ min

(
H(X | Z), H(Y | Z)

)
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E Model selection using performance bounds

In this section, we propose and empirically evaluate three strategies for model selection using our
estimated bounds in Equation 2.3.

E.0.1 Introducing model selection strategies

Assume, for example, g(x, y, z) = 1[h(x) = y] for a given classifier h, i.e., we conduct model
selection based on accuracy, even though we can easily extend the same idea to different choices of
metrics, such as F1 score. The model selection problem consists of choosing the best model from a
set H ≜ {h1, · · · , hK} in order to maximize out-of-sample accuracy. Define L̂ε(h) and Ûε(h) as
the estimated accuracy lower and upper bounds for a certain model h. The first strategy is to choose
the model with highest accuracy lower bound, i.e.,

h∗
lower = argmaxhk∈HL̂ε(hk)

Maximizing the accuracy lower bound approximates the distributionally robust optimization (DRO)
[9] solution when the uncertainty set is given by Π in 1.1. That is, we optimize for the worst-case
distribution in the uncertainty set. Analogously, we can choose the model that optimizes the best-case
scenario

h∗
upper = argmaxhk∈HÛε(hk).

Moreover, if we want to guarantee that both worst and best-case scenarios are not bad, we can
optimize the average of upper and lower bounds, i.e.,

h∗
avg = argmaxhk∈H

L̂ε(hk)+Ûε(hk)
2 .

E.0.2 Experiment setup

In this experiment, we select multilayer-perceptrons (MLPs). The considered MLPs have one hidden
layer with a possible number of neurons in {50, 100}. Training is carried out with Adam [26], with
possible learning rates in {.1, .001} and weight decay (l2 regularization parameter) in {.1, .001}. For
those datasets that use the F1 score as the evaluation metric, we also tune the classification threshold
in {.2, .4, .5, .6, .8} (otherwise, they return the most probable class as a prediction). In total, H is
composed of 8 trained models when evaluating accuracy and 40 models when evaluating the F1 score.
We also consider directly using the label model (Snorkel [47]) to select models. For example, when
the metric considered is accuracy, i.e., we use

h∗
label_model = argmaxhk∈H

1
n

∑n
i=1 EP̂Y |Z

1[hk(X) = Y | Z = Zi],

which is a natural choice when X ⊥⊥ Y | Z. As benchmarks, we consider having a few labeled
samples.

In Table 3, we report the average test scores of the chosen models over 10 repetitions for different
random seeds (standard deviation report as subscript). The main message here is that, for those
datasets in which our uncertainty about the score (given by the different upper and lower bounds)
is small, e.g., “‘commercial” and “tennis”, using our approaches leads to much better results when
compared to using small sample sizes.

Now, we explore a different way of comparing models. Instead of making an explicit model selection,
this experiment uses the proposed metrics, i.e., accuracy lower/upper bounds, bounds average, to rank
MLP classifiers. We rank the models using both the test set accuracy/F1 score (depending on Zhang
et al. [63]) and alternative metrics, i.e., accuracy/F1 score lower/upper bounds, bounds average, label
model, and small labeled sample sizes. Then, we calculate a Pearson correlation between rankings
and display numbers in Table 4. If the numbers are higher, it means that the proposed selection
method is capable of distinguishing good from bad models. Table 4 shows that the bounds average
and label model methods usually return the best results when no labels are used. Moreover, in some
cases using a small labeled sample for model selection can relatively hurt performance (when the
validation set is small, there is a chance all models will have the same or similar performances,
leading to smaller or null rank correlations).
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Table 3: Performance of selected models
metric Lower bound Upper bound Bounds avg Label model Labeled (n = 10) Labeled (n = 25) Labeled (n = 50) Labeled (n = 100)

agnews acc 0.77±0.00 0.78±0.00 0.78±0.00 0.77±0.00 0.75±0.02 0.75±0.02 0.75±0.03 0.77±0.00

trec acc 0.27±0.01 0.29±0.02 0.29±0.02 0.29±0.02 0.28±0.02 0.28±0.02 0.28±0.02 0.28±0.02

semeval acc 0.32±0.01 0.26±0.01 0.32±0.01 0.32±0.01 0.30±0.02 0.29±0.03 0.31±0.02 0.31±0.02

chemprot acc 0.40±0.00 0.38±0.00 0.40±0.00 0.40±0.00 0.40±0.01 0.40±0.01 0.40±0.00 0.39±0.01

youtube acc 0.89±0.02 0.84±0.05 0.87±0.01 0.89±0.02 0.90±0.02 0.90±0.02 0.90±0.02 0.91±0.02

imdb acc 0.72±0.00 0.74±0.00 0.73±0.00 0.73±0.00 0.69±0.05 0.71±0.02 0.73±0.01 0.72±0.01

yelp acc 0.81±0.00 0.81±0.00 0.81±0.00 0.81±0.00 0.81±0.04 0.81±0.03 0.81±0.01 0.82±0.01

census F1 0.49±0.00 0.18±0.00 0.49±0.00 0.49±0.00 0.49±0.00 0.49±0.00 0.49±0.00 0.50±0.00

tennis F1 0.76±0.01 0.76±0.01 0.76±0.01 0.75±0.01 0.71±0.01 0.71±0.01 0.71±0.01 0.71±0.02

sms F1 0.00±0.00 0.14±0.02 0.14±0.02 0.14±0.02 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

cdr F1 0.48±0.00 0.29±0.00 0.48±0.00 0.48±0.00 0.47±0.00 0.47±0.00 0.47±0.00 0.47±0.00

basketball F1 0.16±0.01 0.27±0.01 0.26±0.01 0.17±0.01 0.20±0.05 0.17±0.03 0.16±0.01 0.16±0.01

spouse F1 0.27±0.01 0.27±0.01 0.27±0.01 0.29±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.12

commercial F1 0.96±0.00 0.96±0.00 0.96±0.00 0.96±0.00 0.90±0.01 0.90±0.02 0.91±0.01 0.91±0.01

Table 4: Ranking correlation when ranking using test set and alternative metric
metric Lower bound Upper bound Bounds avg Label model Labeled (n = 10) Labeled (n = 25) Labeled (n = 50) Labeled (n = 100)

agnews acc 0.91±0.01 0.86±0.00 0.86±0.00 0.92±0.01 0.39±0.31 0.35±0.54 0.50±0.53 0.76±0.19

trec acc −0.32±0.36 0.37±0.32 0.19±0.34 0.44±0.39 −0.03±0.55 −0.06±0.39 −0.10±0.34 0.17±0.52

semeval acc 0.87±0.04 −0.84±0.04 0.88±0.04 0.88±0.04 0.13±0.64 0.17±0.69 0.64±0.32 0.62±0.41

chemprot acc 0.75±0.08 −0.66±0.11 0.38±0.11 0.49±0.15 −0.01±0.47 −0.12±0.45 −0.02±0.43 0.06±0.41

youtube acc 0.38±0.21 −0.42±0.19 −0.01±0.21 0.17±0.29 0.41±0.35 0.42±0.27 0.38±0.31 0.58±0.19

imdb acc 0.84±0.01 0.76±0.00 0.71±0.02 0.92±0.01 0.17±0.49 0.40±0.46 0.61±0.28 0.65±0.30

yelp acc 0.01±0.08 −0.50±0.05 −0.49±0.05 −0.31±0.10 0.08±0.65 0.09±0.53 0.14±0.45 0.45±0.30

census F1 0.85±0.00 0.94±0.00 0.96±0.00 0.98±0.00 0.00±0.00 0.00±0.00 0.03±0.09 0.18±0.17

tennis F1 0.83±0.02 0.74±0.03 0.80±0.02 0.90±0.03 0.33±0.24 0.41±0.22 0.51±0.12 0.52±0.12

sms F1 0.00±0.00 0.99±0.02 0.99±0.02 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

cdr F1 0.80±0.00 0.89±0.00 0.92±0.00 0.98±0.00 0.03±0.08 0.07±0.11 0.07±0.11 0.09±0.11

basketball F1 0.85±0.01 0.69±0.00 0.73±0.01 0.81±0.00 0.35±0.29 0.53±0.18 0.59±0.00 0.59±0.00

spouse F1 0.53±0.00 0.86±0.00 0.86±0.00 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.12

commercial F1 0.95±0.00 0.96±0.00 0.99±0.00 1.00±0.00 0.14±0.13 0.26±0.14 0.28±0.13 0.31±0.06

F More on experiments

F.1 Extra results for the Wrench experiment

Extra results for binary classification datasets can be found in Figures 4 and 5. In Table 5, we can see
the results for multinomial classification datasets.
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Figure 4: Bounds on classifier accuracies across classification thresholds for the Wrench datasets. Despite
potential misspecification in Snorkel’s and FlyingSquid’s label model, it performs comparably to using labels to
estimate PY |Z , giving approximate but meaningful bounds. .

Figure 5: Bounds on classifier accuracies and F1 scores across classification thresholds for the Wrench datasets
(using the full set of weak labels). Despite potential misspecification in Snorkel’s and FlyingSquid’s label model,
it performs comparably to using labels to estimate PY |Z , giving approximate but meaningful bounds.

F.2 Extra plots for the hate speech detection experiment

In Table 6, we can see the same results already in the main text plus the results for FlyingSquid.

G Computing resources

All experiments were conducted using a virtual machine with 32 cores. The experiments are not
computationally intensive and everything can be run within a few hours.

29



Table 5: Bounding the accuracy of classifiers in multinomial classification
Dataset Label model Lower bound Upper bound Test accuracy

ag
ne

w
s Oracle 0.46±0.01 0.95±0.01 0.80±0.01

Snorkel 0.42±0.01 0.9±0.01 0.76±0.01

FlyingSquid 0.12±0.0 0.61±0.01 0.76±0.01

tr
ec

Oracle 0.34±0.04 0.83±0.03 0.68±0.04

Snorkel 0.31±0.04 0.70±0.03 0.47±0.04

FlyingSquid 0.07±0.02 0.29±0.02 0.27±0.04

se
m

ev
al Oracle 0.54±0.04 0.78±0.03 0.72±0.04

Snorkel 0.36±0.03 0.70±0.03 0.56±0.04

FlyingSquid 0.12±0.0 0.14±0.0 0.32±0.04

ch
em

pr
ot Oracle 0.43±0.02 0.75±0.02 0.60±0.02

Snorkel 0.37±0.02 0.73±0.02 0.49±0.02

FlyingSquid 0.05±0.0 0.23±0.01 0.46±0.02

Figure 6: Precision and recall bounds for hate speech detection. These plots guide practitioners to trade off recall
and precision in the absence of high-quality labels.

G.1 Examples of prompts used in Section 4.2

Prompt 1

You s h o u l d c l a s s i f y t h e t a r g e t s e n t e n c e as " spam " or "ham " .
I f d e f i n i t i o n s o r examples a r e i n t r o d u c e d , you s h o u l d c o n s i d e r
them when c l a s s i f y i n g s e n t e n c e s . Respond wi th " spam " or "ham " .

T a r g e t s e n t e n c e : i f your l i k e drones , p l z s u b s c r i b e t o Kamal Tayara .
He t a k e s v i d e o s wi th h i s d rone t h a t a r e a b s o l u t e l y b e a u t i f u l . −− Response :

Prompt 2

You s h o u l d c l a s s i f y t h e t a r g e t s e n t e n c e as " spam " or "ham " .
I f d e f i n i t i o n s o r examples a r e i n t r o d u c e d , you s h o u l d c o n s i d e r
them when c l a s s i f y i n g s e n t e n c e s . Respond wi th " spam " or "ham " .
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D e f i n i t i o n o f spam : spam i s a te rm r e f e r e n c i n g a broad c a t e g o r y o f
p o s t i n g s which abuse web− based
forms t o p o s t u n s o l i c i t e d a d v e r t i s e m e n t s a s comments on forums ,
b logs , w i k i s and o n l i n e g u e s t b o o k .

D e f i n i t i o n o f ham : t e x t s t h a t a r e n o t spam .

T a r g e t s e n t e n c e : i f your l i k e drones , p l z s u b s c r i b e t o Kamal Tayara .
He t a k e s v i d e o s wi th h i s d rone t h a t a r e a b s o l u t e l y b e a u t i f u l . −− Response :

Prompt 3

You s h o u l d c l a s s i f y t h e t a r g e t s e n t e n c e as " spam " or "ham " .
I f d e f i n i t i o n s o r examples a r e i n t r o d u c e d ,
you s h o u l d c o n s i d e r
them when c l a s s i f y i n g s e n t e n c e s .
Respond wi th " spam " or "ham " .

Example 0 : 860 ,000 ,000 l e t s make i t f i r s t f em a le t o r e a c h
one b i l l i o n ! ! Sha re i t and r e p l a y i t ! −− Response : ham

Example 1 : Waka waka eh eh −− Response : ham

Example 2 : You guys s h o u l d check o u t t h i s EXTRAORDINARY w e b s i t e c a l l e d
ZONEPA .COM . You can make money o n l i n e and s t a r t working from home t o d a y
as I am ! I am making ove r $3 ,000+ p e r month a t ZONEPA .COM ! V i s i t
Zonepa . com and check i t o u t ! How does t h e mother app rove t h e a x i o m a t i c
i n s u r a n c e ? The f e a r a p p o i n t s t h e r o l l . When does t h e s p a c e p r e p a r e t h e
h i s t o r i c a l shame ? −− Response : spam

Example 3 : Check o u t t h e s e I r i s h guys c o v e r
o f A v i c i i &#39; s Wake Me Up ! J u s t s e a r c h . . .
&quo t ; wake me up F i d d l e Me S i l l y&quo t ; Worth a l i s t e n
f o r t h e g o r g e o u s f i d d l e p l a y e r ! −− Response : spam

Example 4 : i f you want t o win money a t hopme c l i c k h e r e
<a h r e f =" h t t p s : / / www. p a i d v e r t s . com / r e f / s ihaam01 ">
h t t p s : / / www. p a i d v e r t s . com / r e f / s ihaam01 </ a> i t &#39; s work 100/100 −− Response : spam

T a r g e t s e n t e n c e : i f your l i k e drones , p l z s u b s c r i b e t o Kamal Tayara .
He t a k e s v i d e o s wi th h i s d rone t h a t a r e a b s o l u t e l y b e a u t i f u l .
−− Response :
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: In the abstract and Introduction section, we summarize the contributions and the
scope of the paper.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a section to discuss limitations in the conclusion.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions are discussed in the statements of the theorems and the proofs are
provided in the Appendix.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a general setting of the experiments in the paper and details are provided
in the code itself submitted as supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide simulation settings that are accessible and reproducible through the
submitted zip file.
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We do specify those parameters in the paper.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide errorbars for the plots.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We include a section in the appendix about this.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we followed the NeurIPS Code of Ethics
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: Our work may have potential societal consequences, none of which we feel must be
specifically highlighted here.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We make citations when needed.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.
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• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

37


	Introduction
	Related work
	Notation

	Estimating Fréchet bounds
	Dual formulations of the bounds and their approximations
	Estimating the bounds
	Asymptotic properties of the estimated bounds

	Evaluation of model performance in weak supervision
	Risk and accuracy
	Precision, recall, and F1 score

	Experiments
	Bounding the performance of weakly supervised classifiers
	Choosing a set of weak labels
	Model selection strategies using the Fréchet bounds

	Discussion
	Extensions
	Limitations

	Acknowledgements
	Connection to optimal transport
	A proof for the duality result
	Proofs for the estimation results
	Auxiliary lemmas

	Proof of extra results
	Model selection using performance bounds
	Introducing model selection strategies
	Experiment setup


	More on experiments
	Extra results for the Wrench experiment
	Extra plots for the hate speech detection experiment

	Computing resources
	Examples of prompts used in Section 4.2


