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ABSTRACT

Conference peer review aims to accurately assess paper quality while minimizing
review load. This paper explores optimal conference protocols — rules for de-
signing review tasks to reviewers and inferring paper quality based on the noisy
review. The widely used direct review protocol assigns multiple independent re-
viewers to each paper in an isolated and parallel manner. However, as submission
volumes grow, more complex protocols have developed, e.g., two-phase review
and meta-review.
In this paper, we investigate whether and when these more complex joint and
adaptive protocols can reduce the review load ratio, the number of review tasks
per paper. Using tools from information theory and coding theory, we establish
the following results:

• We prove that the optimal load ratio for isolated protocols is Θ(lnn/ϵ),
where n is the number of papers and ϵ is the error probability indicating
that the review load ratio increases as the number of papers grows.

• We prove that the optimal load ratio of joint protocols is a constant dependent
on the agents’ noise levels and independent of both n and ϵ. This suggests
that joint protocols—including two-phase review—can dramatically reduce
the review burden.

• We empirically explore the design of two-phase review protocols and find
that selecting the borderline (ambiguous) papers for the second phase review
can significantly increase the accuracy compared to the conventional selec-
tion of a better fraction of promising papers for the second phase.

1 INTRODUCTION

Peer review, the process of evaluating scientific research by volunteer experts, is critical in ensur-
ing the quality of accepted papers. However, the rapid growth of submissions has placed growing
pressure on the peer review system. Sculley et al. (2018); Shah (2019) Conferences face two often
competing objectives: minimizing estimation error in inferring paper quality while reducing review
load. Despite a growing body of research on conference design, relatively little work has focused on
designing review tasks to optimize these two objectives. This work initiates the study of conference
review protocols—rules for designing review tasks for reviewers (review protocol) and inferring pa-
per quality based on the noisy review (inference protocol)—with the goal of minimizing review load
while ensuring a given accuracy guarantee.

Traditional conferences assign multiple agents to directly review each paper to ensure an accurate
assessment of paper quality. Recently, many alternative protocols have emerged. These include
meta-review tasks, where senior reviewers aggregate multiple reviews into a single review; two-
phase protocols Leyton-Brown et al. (2022), where second-phase reviews depend on the first phase;
and comparison-based tasks, where reviewers compare multiple papers. Or even protocols that
consist of multiple different review tasks. These examples raise a fundamental question: What is the
optimal conference review protocol?

To answer these questions, we first classify conference review protocols based on two key
attributes—isolation and adaptivity—illustrated in Fig. 1. First, isolation captures whether a re-
view task depends solely on a single paper. Examples of isolated protocols include direct review
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(a) Direct Protocol (b) Meta Protocol (c) Comparison Protocol (d) Two-phase Protocol

Figure 1: Examples of review protocols and tasks: In the direct protocol Fig. 1a (isolated and
nonadaptive), each paper receives three direct reviews. In the meta-review protocol Fig. 1b (isolated
and adaptive), each paper receives two direct reviews plus one meta-review (light green) that depends
on the direct reviews. In the comparison protocol Fig. 1c (joint and nonadaptive), each task depends
on multiple papers. In the two-phase protocol Fig. 1d (joint and nonadaptive), each paper receives
two direct reviews in Phase 1, and the Phase 2 review (light green) depends on all first-phase reviews
and on multiple papers.

or naive meta-reviews which only depends on reviews of a single paper. On the other hand, joint
protocols (non-isolated) contain two-phase reviews or comparison-based reviews. In particular, in
a two-phase protocol, if only the top 50% of the first phase paper can enter the second phase, the
review tasks in the second phase inherently depend on the rankings from the first phase. Kozyrakis &
Berger (2021) One of our main results shows that joint review protocols can significantly outperform
isolated review protocols to reduce error probability under the same review load.

The second attribute—adaptivity—refers to whether a review task depends on the outcomes of other
review tasks. Examples of parallel (non-adaptive) protocols include direct review and comparison-
based tasks, while adaptive protocols, such as meta-reviews and two-phase protocols, assign reviews
based on previous evaluations. We show that that adaptive review protocols do not necessarily
reduce error probability under the same review load compared to parallel ones in both isolated or
joint settings.

Technical contributions Given n papers, ϵ > 0, and known noise levelsDq , we study the optimal
conference review protocol that minimizes the review load ratio, the number of review tasks per
paper, while ensuring that the final estimation’s error probability is at most ϵ. Leveraging concepts
from information theory and coding theory, we establish a strong connection between coding theory
and the conference review problem. Through this connection, we derive the following key results:

• We prove that the optimal load ratio for isolated protocols is Θ(lnn/ϵ) in Theorem 4.1,
where n is the number of papers and ϵ is the error probability. To prove Theorem 4.1, we
show that direct review protocols Blackwell dominate any other isolated adaptive protocol
in Lemma 4.2.

• We prove that the optimal load ratio of joint protocols is a constant λ∗ in Eq. (2) dependent
on the agents’ noise levels and independent of both n and ϵ. Interestingly, Theorem 4.5
can be viewed as a non-asymptotic version of the celebrated Shannon’s noisy channel the-
orem. Additionally, Theorem 4.5 shows that parallel protocols are sufficient to minimize
the review load ratio.

• Two-phase Review Protocols: In Section 5, we illustrate with empirical results that adaptive
protocols can potentially reduce the load ratio in joint review processes. We show this by
comparing simulation results of two-phase adaptive reviews and single-stage baselines.

Conceptual contributions One notable aspect of our model is the explicit separation between re-
view protocols and inference protocols. This distinction highlights an agent’s contribution can be
informational and computational. For example, most Program Committee (PC) members primar-
ily provide informational contributions by directly reviewing papers. Senior Program Committee
(SPC) members, Area Chairs (ACs), and Program Chairs also contribute computationally by de-
signing review tasks (paper assignments, deciding PC and SPC) and summarizing reviews rather
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than accessing new information. This distinction provides insight into how responsibilities could be
allocated more effectively.

Another key result from our work is that joint protocols can outperform isolated protocols, under-
scoring the value of leveraging information across multiple papers. For example, as demonstrated
in the empirical section, two-phase review protocols use early-stage information across submissions
to improve the load ratio. This finding also suggests that, rather than merely summarizing individ-
ual reviews, SPCs or ACs could play a more impactful role by synthesizing and communicating a
broader perspective across submissions—facilitating more effective comparisons between papers.

2 RELATED WORKS

Our work is primarily relevant to the papers that try to understand the conference design problem.

Several conference review protocols have been introduced to improve efficiency and decision ac-
curacy. Prominent examples include two-phase review Kozyrakis & Berger (2021); Leyton-Brown
et al. (2022) or summary or desk rejects Yuan (2020). Xie & Lui (2012) present a mathematical
model to analyze various factors that may influence the accuracy of peer review systems. Their
model predicts that three reviews per paper are sufficient for a high-accuracy decision, while this
number increases to more than seven for prestigious conferences. Furthermore, a two-phase mixed
design of reviewer assignment is proposed to reduce the review workload and improve the decision
accuracy. In addition, there is a stream of literature studying using author’s comparison among their
papers to improve conference design Su (2021); Wu et al. (2023); Zhang et al. (2024). Our review
protocol provide a mathematical formulation for the above protocols.

Our study is also relevant to studies on reviewer assignment problem Taylor (2008). Our conference
protocol can be seen as generalization, where reviewer assignments can be seen as direct review
protocols. The reviewer assignment problem considers the noise level when evaluating different pa-
pers, and focuses on developing novel assignment algorithms to better match qualified reviewers to
papers. However, we assume the noise level is independent of assigned review tasks. This line of re-
search usually considers maximizing an objective, such as the welfare, subject to fairness constraints
Stelmakh et al. (2019); Payan & Zick (2021); Aziz et al. (2024), or mitigating manipulations Jec-
men et al. (2020); Stelmakh et al. (2021a); Cohen et al. (2016). Furthermore, a substantial amount
of theoretical and empirical studies aim to improve peer the quality of peer review by understanding
and mitigating review bias Lee et al. (2013); Haffar et al. (2019); Tomkins et al. (2017); Stelmakh
et al. (2021b).

Different from the above discussions, our paper aims to develop theoretical insights with a focus on
comparing the design of the review structure, i.e. how to distribute the review workload to various
types of review tasks.

Ductor et al. (2020) present a model of journals as platforms to understand the publication trends
across time and disciplines. Under their model, the authors observe that whether the field-specific
journals or the general journal can publish the best papers depends on the number of fields and
readership of the general journal. For example, one of their results suggests that the general journal
attracts the best papers in equilibrium when the product of the number of fields times the readership
of the general journal is large. Zhang et al. (2022) consider the interactions between a prestigious
conference and a large group of strategic authors as a Stackelberg game, where authors decide
whether to submit their papers to the conference. They show that the conference can achieve a
better trade-off between its quality and the review burden when the review quality improves, the
conference becomes less attractive, and the authors become more patient.

From the perspective of using coding theory to understand the task assignment on multi-agent plat-
forms, the most relevant work is given by Vempaty et al. (2014). Their work uses error-control
codes and decoding algorithms to design crowdsourcing systems for reliable classification given
noisy crowds. Their proposed coding-base crowdsouring schemes are shown to outperform the clas-
sic majority vote method. We emphasize that our work sharply deviates from the above work as
we consider much more general applications of review protocols. In particular, our main focus is
on comparing the direct review protocol with the more complex adaptive review protocol, while
Vempaty et al. (2014) only consider several special types of crowdsourcing models.
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3 CONFERENCE REVIEW PROBLEM

We study how to infer the quality of n papers from m review tasks. We introduce our model for con-
ference problems and protocols in Section 3, and discuss extension in Section 6. Given a collection
of papers and the noise levels in the agents’ reports, a conference protocol consists of a review pro-
tocol and an inference protocol (defined in Section 3.1) to estimate paper quality. The performance
is measured by load ratio and error probability.

We will use normal text to denote random objects and boldface to represent vectors. For example,
x and x denote a random variable and a random vector, respectively, while x and x represent their
corresponding outcomes. Let [n] := {1, . . . , n}.
A conference review problem is defined by the parameters (n,Dq) where n is the number of papers
and Dq is the distribution over agents’ noise levels. Each paper j ∈ [n] has a binary true state
zj ∈ {−1, 1} with uniform prior. The goal is to infer these true qualities from the agents’ reports.

Agents are assigned review tasks, which serve as the basic unit of work in our model. For example,
if 100 papers each requires 10 reviews, this results in m = 1000 tasks. We call m as review load
and λ := m

n as review load ratio, quantifying the average review resources per paper. Each review
task i ∈ [m] consists of a binary question fi with a true answer xi ∈ {−1, 1} and an assigned agent
submits a report yi ∈ {−1, 1} submitted by an agent. The reliability of the submitted report on task
i depends on the agent’s noise level qi ∈ [0, 1/2] which models the probability of the agent’s report
disagreeing with the true answer. In particular, for all xi ∈ {−1, 1},

yi =
{
xi with probability 1− qi
−xi otherwise,

(1)

where the noise is mutually independent for all i ∈ [m]. We denote these processes as xi
qi−→ yi. We

use q = (q1, . . . , qm) to denote the noise levels of all tasks and use the histogram Dq to denote the
distribution such that m Dq(q) is the number of tasks with a noise level of q. Here we assume that
the minimum and maximum of noise levels exist and separated from boundary, 0 < minq∈supp(Dq)

and maxq∈supp(Dq) < 1/2. Note that the ordering of q is irrelevant to the design of the optimal
protocol, as tasks can be permuted. The noise level can also be interpreted as the probability of
shirking, and agents who put in effort on a given task are correspondingly more likely to report the
true answer.

Given a conference review problem (n,Dq), a conference protocol with load ratio λ operates
through two steps: a review protocol f and an inference protocol g:

• Review protocol: Design m = λn review tasks f = (f1, . . . , fm), and agents submit
reports y = (y1, . . . , ym) ∈ {−1, 1}m based on the noise levels from the histogram Dq .

• Inference protocol: Infer the quality of n papers, g(y) = ẑ = (ẑ1, . . . , ẑn) ∈ {−1, 1}n,
using the collected reports y.

The conference cares about the error probability, denoted as Pe = Pr[ẑ ̸= z], where the random-
ness arises from z, which is uniformly distributed, and the reviewer’s noise. Our goal is to design
a conference protocol (f , g) that minimizes the load ratio λ while ensuring an almost zero error
probability. Given Dq and n, a conference protocol (f , g) is a (λ, ϵ)-protocol if the load ratio is
upper bounded by λ and error probability is upper bounded by ϵ. We further empirically investigate
different metric, e.g., average accuracy and calibration in Section 5.

3.1 REVIEW AND INFERENCE PROTOCOLS

A review protocol specifies the design of review tasks. We classify the review protocols based on
two key attributes: isolation and adaptiveness. A protocol is isolated if each review task pertains to a
single paper. Most common review protocols are isolated. This includes the direct review protocol,
where each reviewer evaluates a paper independently, and the meta-review protocol, where a meta-
reviewer assesses multiple reviewers’ judgments of the same paper. A protocol is non-adaptive (or
parallel) if review tasks are independent of each other and the reports are simultaneously collected.
For example, the direct review protocol is parallel while the meta-review protocol is isolated but
adaptive. Fig. 1 illustrate examples of each class of review protocols.
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Isolated review protocols One of the simplest tasks is to directly evaluate whether a paper is of
good quality. Specifically, if task i is a direct review task of paper j, the report is a noisy estimate of
paper j’s quality

yi

qi←− fi(z) = zj
and the true answer is xi = zj . A review protocol that consists entirely of direct review tasks
is called the direct review protocol. Each direct review protocol can be represented as a function
σ : [m] → [n] where task i is a direct review of paper σ(i), with xi = zσ(i). This setup aligns
with the common reviewer assignment problem Jovanovic & Bagheri (2023), where each reviewer
evaluates a subset of papers and reports their evaluations for all papers in the subset.

Another example is to design a task that checks whether a previous report is correct. Consider the
review of a single paper n = 1 whose true quality is z. The first task is a direct review task f1(z) = z
and the (i+ 1)-th task checks the correctness of the i-th report yi for i > 1,

yi+1

qi+1←−−− fi+1(z, y1, . . . , yi) =

{
1 if fi(z, y1, . . . , yi−1) ̸= yi,

−1 if fi(z, y1, . . . , yi−1) = yi.

We refer to such tasks as successive review tasks Abramowitz et al. (2023), and a review protocol
is called a successive review protocol if it consists entirely of chains of successive review tasks for
each paper. Notably, a successive review protocol is isolated, as each task pertains to a single paper,
and adaptive, as the design of each task may depend on the outcomes of previous tasks in the chain.
Most conference designs adopt a meta-review structure, where a paper typically receives several
direct reviews followed by a meta-review that summarizes these reviews. Specifically, a paper gets
i direct reviews and the i+ 1-th task aggregates these direct reviews into a unified evaluation:

f1(z) = · · · = fi(z) = z, and fi+1(z, y1, . . . , yi).

More generally, for a single paper, the review protocol can form an arbitrary chain of m′ tasks
x1 = f1(z)

q1−→ y1, x2 = f2(z, y1)
q2−→ y2, ..., and xm′ = fm′(z, y1, . . . , ym′−1)

qm′−−→ ym′ . We call
a review protocol isolated if the review tasks can be partitioned into independent chains, with each
chain corresponding to a single paper. All the above examples are isolated review protocols.

Joint Review Protocol A review protocol and its tasks do not need to be isolated. For example,
a review task may require reviewers to compare multiple papers. More generally, an adaptive and
joint review protocol (fi)i∈[m] consists of a sequence of tasks ordered by input dependencies. The
reports y are generated through the following process:

z ∼u {−1, 1}n, x1 = f1(z)
q1−→ y1, . . . , xm = fm(z, y1, . . . , ym−1)

qm−−→ ym
Similarly, a review protocol can be parallel and joint if each review task is independent of the out-
comes of other tasks.

Compared with the isolated protocol, the main difference here is that the review tasks can depend on
the ground state of all papers z instead of a single paper. Examples of parallel tasks include deciding
whether one paper is more likely to be accepted than another (Shah et al., 2017), determining if the
number of high-quality papers within a subset is even, or whether all papers in a subset are good.
The second is called an XOR review task on a subset of papers S ⊆ [n], where the answer is given by
x = ⊕j∈Szj , with ⊕ denotes the XOR operator. The third is called an AND review task Mazumdar
& Pal (2017); Pang et al. (2019). These examples are parallel but joint.

Finally, the two-phase review protocol is adaptive and joint. The idea is to assign additional reviews
to a paper if it is flagged for further evaluation after receiving borderline or conflicting reviews in
the first phase. This protocol can be both adaptive and joint because the decision to assign additional
reviews depends on the first-phase reviews of multiple papers.1

A conference protocol (f , g) is deterministic if f and g are deterministic. We note that the optimal
inference protocol can be deterministic. Given a review protocol f , an inference protocol that min-
imizes the error probability Pe is the maximum a posteriori estimator, or equivalently the maximal
likelihood estimator (MLE) as the prior of paper is uniform.

1A two-phase protocol can be joint if only the top 50% of the first phase paper can enter the second phase
as in Kozyrakis & Berger (2021), but can also be isolated if a paper can enter the second phase only depends
on its own reviews in the first phase as in Leyton-Brown et al. (2022)
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The following remarks a natural correspondence between designing codes on a channel and con-
ference protocol on a conference problem. We provide a brief introduction to coding theory in the
appendix.

Remark 3.1 (Conference design as a coding problem). Consider w as the underlying quality of
n papers, corresponding to the original message in coding theory. The conference cannot access
the underlying quality directly, but can obtain information on it via m review tasks. Each review
task i has a true answer xi and the reviewer’s report on that task is yi, which is a potentially
distorted version of xi. The reviewer noise can thus be interpreted as the channel noise. Finally, the
conference aims to recover w as accurately as possible using the inference protocol, which maps to
the decoder in coding theory.

4 OPTIMIZING THE LOAD RATIO

We first show a tight bound on the optimal load ratio for isolated protocols. Specifically, the optimal
load ratio of isolated protocols for small error probability Pe = ϵ is Θ(ln n

ϵ ).

Theorem 4.1. Given a conference problem (n,Dq) and small enough ϵ > 0, the optimal isolated
protocol (f , g) with error probability Pe = ϵ requires load ratio λ = Θ

(
ln n

ϵ

)
.

The proof consists of two parts. We first show that the direct protocol is the optimal isolated protocol
in the Blackwell sense in Lemma 4.2 and provide a tight bound on the optimal load ratio of direct
review protocols in Lemma 4.4.

We say a protocol (f , g) Blackwell dominates (f ′, g′) if the reports y generated by the former
Blackwell dominate those of the latter y′. The formal definition of Blackwell dominance is in the
appendix. Intuitively, the report y from f can simulate report y′ from f ′ via a garbling. Hence, if
one protocol Blackwell dominates another, its error probability is always less than or equal to that
of the other.

Lemma 4.2. Given any conference review problem (n,Dq), for any isolated review protocol f ,
there exists a direct review protocol f ′ with the same review load ratio that Blackwell dominates the
isolated review protocol.

Lemma 4.2 suggests that direct protocols are sufficient when the noise levels are task-independent.
However, a more complex review protocol may suffer from higher noise levels. For instance, a
meta-review task summarizing multiple conflicting reviews may have a higher noise level than a
direct review.

To account for this factor, we further provide a complementary result showing that the Blackwell
dominance relationship between two protocols is monotone with respect to review noise. In other
words, if a review protocol f that is Blackwell dominated by another protocol f ′ under the same
noise levels, then f remains dominated by f ′ as long as the noise in f decreases across all tasks.
With Proposition 4.3, we establish a stronger result: if noise levels is non-decreasing in an adaptive
protocol, our conclusion in Lemma 4.2 still holds.

Proposition 4.3. Given m and two conference problems (n,Dq) and (n,D′
q) if qi ≤ q′i for all

i ∈ [m], then for any review protocol f with load m there exists a review protocol f ′ with the same
review load so that the reports y from protocol f under (n,Dq) Blackwell dominates the reports y′

from protocol f ′ under (n,D′
q).

Lemma 4.4. Given a conference problem (n,Dq) where Dq = q1 for some constant 0 < q < 1/2
and ϵ > 0, the optimal isolated protocol (f , g) with error probability Pe = ϵ has load ratio λ =

1
ln(1/4q(1−q)) ln

n
ϵ +O(1) as ϵ→ 0.

Given the characterization of the optimal load ratio of isolated protocols, we show that the optimal
load ratios of (parallel or adaptive) joint protocols are approximately equal to a constant

λ∗ :=

1−
∑

q∈supp(Dq)

Dq(q)h(q)

−1

. (2)
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where h(q) := q log2
1
q + (1− q) log2

1
1−q is the entropy function. In other word, λ∗ is the average

channel capacity of the conference review problem. Formally, for any δ, ϵ > 0, there is no (λ∗−δ, ϵ)-
adaptive protocol, but there exists a (λ∗ + δ, ϵ)-nonadaptive conference protocol, when the number
of papers n is sufficiently large. In other word, the optimal load ratio with and without feedback
converges to λ∗ as n increases. This result contrasts with the isolated setting in Theorem 4.1, where
the optimal load ratio increases as the number of papers grows.

Theorem 4.5. Given any conference review problem with (n,Dq), let λ∗ defined in Eq. (2) and V =

maxq∈suppDq log2
1−q
q . For all ϵ > 0, any (λ, ϵ)-adaptive protocol has λ ≥ λ∗

(
1− ϵ− h(ϵ)

n

)
.

Conversely, for all δ > 0 there exists a parallel ((1 + 2δ)λ∗, Pe)-conference protocol where error

probability Pe ≤ exp
(
− 2δ2

(1+2δ)λ∗V 2n
)
+ exp(−δn).

To prove Theorem 4.5, we use information theory to show that no protocol can achieve an error
probability of ϵ and load much smaller than λ∗. The key idea is to first bound the mutual information
between the paper quality z and the reports y. Then we apply Fano’s inequality Theorem A.2
to lower bound the error probability. Conversely, we show the existence of joint parallel review
protocol with error probability ϵ and load around λ∗ using Theorem A.3. The proof structure closely
follow the proof of Shannon’s noise channel theorem in Polyanskiy & Wu (2014).

The above results show the existence of parallel conference protocols that perform similarly as any
adaptive ones for each n. This result can be seen as a restatement of Shannon’s noisy channel
theorem, which shows that the capacity of the channel decides the maximum size of message that
a protocol can reliably transmit. Our optimal load ratio λ∗ corresponds to the average capacity
of channel ⊗iBSC(qi). Finally, although our proof does not provide an explicit construction, we
can leverage existing optimal codes to design near-optimal review protocols, using the connections
in Remark 3.1. For example, we may use the low density parity checking code (LDPC) Gallager
(1962) to design review protocol where each task fi is an XOR task with subset of papers Si ⊆ [n].
Additionally, these sets Si are low density, |Si| = o(n) as n→∞MacKay (1999).

5 EXPERIMENTS: TWO-PHASE REVIEW PROTOCOLS

This section empirically demonstrates the potential of adaptive protocols to reduce the load ratio in
joint review processes. We focus on the design of two-phase review protocols and their performance
compared to parallel baselines under multiple scenarios. We find that two-phase review protocols
can achieve better performance with appropriate sets of parameters and assignment strategies.

5.1 UNIFORM NOISE LEVELS

In previous sections we discussed joint review protocols with known noise levels. Here we explore
the influence of λ and n on the performance of two-phase reviews as well as the direct review
baselines. Given λ, n, the design of two-phase reviews (also as two-stage reviews) involves three
aspects: the fraction of papers entering the second stage η, the assignment of workloads in the 2
stages λ1, λ2, and the paper selection methods. In our experiment, the number of papers is set to
100, with the same number of reviewers who have a uniform noise level r = 0.3. We tested η from
0.1 to 0.9. As for the workload assignment, we develop a set of assignment strategies depending on
the selection of η while keeping the overall λ (the ratio of all review tasks over all reviewers) stable.

In the first stage, we aggregate the reviewers’ ratings through belief propagation (Liu et al., 2012).
We then pick papers for Stage 2 based on the BP scores yBP where a positive large yBP means the
paper’s expected quality is large and is rated as acceptable and yBP < −1 indicates the paper should
be rejected. We design two strategies for paper selection:

• The Ambiguous strategy picks papers with smallest |yBP | as these papers have higher risks
of being misclassified.

• The Promising strategy picks papers with highest yBP as most two-phase reviews in reality
currently do: the first stage filters out a fraction of the worst papers.
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After reviewers in the second stage completed their tasks, we aggregate the opinions of both stages
with belief propagation for the final decision.

The total workload for all experimental groups was fixed at λ = 8. We evaluated performance
using calibration error, a metric that quantifies the divergence between the predicted distribution
of paper qualities and the true underlying distribution. Our results show that optimal performance is
achieved with η = 0.4 when using the Ambiguous selection strategy. This optimum occurred under
the Original Strategy for workload allocation, which sets λ1 = 4.8 and λ2 = 8.0. The details of this
and other allocation strategies are provided in Appendix D.

(a) (b)

Figure 2: (a)Simulations comparing Two-phase Ambiguous reviews with direct baselines. Different
curves represent diverse workload assignment strategies. (b)The optimal performance is marked by
the yellow pentagon, achieved by two-phase Ambiguous strategy with η = 0.4.

Using the optimal set of parameters identified in the previous experiment, we next investigate the
influence of the total workload, λ, on review performance. We evaluate performance using two
metrics: calibration error and accuracy, where accuracy is defined as the fraction of correctly clas-
sified papers: Acc = #Correctly Classified Papers

#All Papers Our empirical results show a clear positive trend: as λ
increases, performance measured by both metrics consistently improves.

(a) (b)

Figure 3: Simulation results illustrating better review performances with higher workloads. As λ
increases, the accuracy of all methods exhibits a rising trend and the calibration error decreases. The
Ambiguous strategy dominates the other 2 strategies for every selection of λ.

The recent surge in submissions to academic conferences has raised significant concerns about main-
taining review quality at scale. Motivated by this trend, we investigate how review performance is
affected by an increasing number of papers, n. In these simulations, we scale the number of re-
viewers to match the number of papers, maintaining a one-to-one ratio. The total workload is held
constant at λ = 8, and we employ the optimal parameter set for η, λ1, and λ2 as determined in the
preceding experiment.

Our results, detailed in Appendix E, reveal a decline in the accuracy of the two-phase review process
as the number of papers increases. This finding highlights the negative impact that a larger scale has
on overall review performance.
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5.2 UNKNOWN NOISE LEVELS

We now extend our analysis to a more realistic setting where the specific noise level of each reviewer
is unknown. We adopt the well-known spammer-hammer framework Karger et al. (2011). The
reviewer pool is assumed to consist of two distinct groups: 50% are expert ”hammers” with a low
noise level (r1 = 0.1), and the remaining 50% are non-expert ”spammers” with a high noise level
(r2 = 0.5). While individual reviewer types are unknown, we assume the prior distribution of
these types is accessible to the belief propagation algorithm. Our objective is twofold: first, to
determine whether the two-phase review process remains beneficial, and second, to identify the
optimal configuration of η, λ1, and λ2.

Using accuracy as the evaluation metric, our results show that the Ambiguous strategy outperforms
direct reviews across most values of η. Furthermore, the optimal performance is achieved at η = 0.3
when employing the Ambiguous strategy.

(a) (b)

Figure 4: (a)Simulation results showing higher accuracies of the Ambiguous strategy compared to
direct review baselines. (b)The green dot marks the optimal performance of two-phase reviews,
achieved by the Ambiguous strategy with η = 0.3.

6 CONCLUSION AND DISCUSSION

We initiate the conference protocol design problem. By viewing peer review through an information
theoretic lens, we prove that in an isolated protocol, direct review is Blackwell optimal and any
protocol needs a load ratio Θ(lnn/ϵ), and a joint protocol can achieve a constant load ratio. We
further empirically explore two-phase review protocols and show that focusing on ambiguous papers
can outperform single-stage baselines.

We assume an agent’s noise level is task-agnostic—it does not vary with the complexity of the as-
signed task. This is plausible for protocols in which each task is a single-paper judgment (e.g., direct
review, naive meta-review, and two-phase schemes where each task still evaluates a single paper).
However, if the noise level in adaptive protocols is higher than in parallel ones, by Proposition 4.3,
our results in Lemma 4.2 and Theorem 4.5 for both isolated and joint protocols still hold. Addition-
ally, research on paper assignment problems has considered scenarios where reviewers have different
areas of expertise, leading to various noise levels when evaluating different papers. Investigating the
interplay between expertise-based assignment and task-dependent noise could be an exciting future
work.

Finally, our analysis can be extended beyond the assumptions of binary paper quality and reports
and the symmetric noise model. While the Blackwell dominance result in Lemma 4.2 may no longer
hold, Theorem 4.5 can naturally accommodate general report and paper quality states by leveraging
coding theory for non-binary settings. As a joint protocol is equivalent to an isolated setting with one
paper, the above argument implies the direct review protocol is also optimal in the non-binary case.
Our results also generalize beyond the uniform prior assumption using techniques from joint source
channel coding. Similarly, different accuracy guarantees—such as minimizing the average number
of errors, which is well-studied in coding theory—can also be explored within this framework.

9
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A PRELIMINARY

The first half of Appendix A.1 provides basic nomenclature for coding theory and highlights an
interesting analogy between conference problems and coding problems, as discussed in Remark 3.1.
The second half defines essential notations from information theory needed for our proofs.

A.1 CODING THEORY AND INFORMATION THEORY

A channel consists of an input space Xm, an output space Ym, and a transition matrix Py|x = Q.
For any input x ∈ Xm the channel distorts x to a random y ∈ Ym according to an independent

sample drawn according to Q(· | x) denoted as x
Q−→ y. For instance, given m = 1, X =

Y = {−1, 1}, and q ∈ [0, 1] , the binary symmetric channel BSC(q) takes x and outputs y
q←− x.

This paper will mostly consider composition of binary symmetric channels with transition kernel
Q = ⊗m

i=1BSC(qi) where each yi

q←− xi independently and ⊗ denotes the direct product of those
transition matrices.

Given a channel (Xm,Ym,Q), an N -code for Q is an encoder/decoder pair (f , g) of (randomized)
functions

• encoder f = (f1, . . . , fm) : [N ]→ Xm

• decoder g : Ym → [N ].

The underlying probability space for channel coding problem is

w
f−→ x

Q−→ y
g−→ ŵ

where w is the original message, x is channel input, y is channel output, and ŵ is the decoded
message. The average error probability is Pe := Pr[w ̸= ŵ] where w is uniformly sampled from
[N ].

A code (f , g) is an (N, ϵ)-code for Q if the message space is [N ] and Pe ≤ ϵ, and (m,N, ϵ)-code
if the input space of the channel is product space Xm.

This equivalence also extends to adaptive protocols and codes with feedback. An (m,N, ϵ)-code
with feedback is specified by the encoder-decoder pair (f , g) as follows:

• Encoder:

f1 : [N ]→ X
f2 : [N ]× Y → X
. . .

fm : [N ] : ×Ym−1 → X
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• Decoder g : Ym → [N ]

such that error probability Pe ≤ ϵ. Here the symbol transmitted at round i depends on both the
message w and the history of received symbols xi = fi(m,y1:i−1). Again, a code with feedback
corresponds to an adaptive review and inference protocol.

Primer on information theory After establish the analogy between coding theory and conference
problem, we introduce some necessary notations and results for our proofs. These results are stan-
dard and can be found in textbooks such as Thomas & Joy (2006); Polyanskiy & Wu (2014). Given
a joint distribution Px,y for (x, y) ∈ X × Y , the information density on (x, y) ∈ X ×Y is

JPx,y(x; y) := log
Px,y(x, y)

Px(x)Py(y)

where Px and Py are marginal distributions. We will drop subscript when the joint distribution is
clear in context. The (Shannon) mutual information is

I(x; y) := E[J(x; y)].

Equivalently, given two distributions P and Q on a discrete space Ω, the KL divergence is
DKL(P ||Q) :=

∑
w∈Ω P (w) log P (w)

Q(w) , and the mutual information is I(x; y) = DKL(Px,y||Px ⊗
Py) where Px ⊗ Py is the direct product the marginal distributions. For brevity, we also write them
as PxPy.

Additionally, given a transition matrix Py|x = Q, the capacity of Q is
C := sup

Px

I(x; y) (3)

which is the maximum mutual information under all possible marginal distribution of x, Px, and

y
Q←− x.

The following lemma gives basic properties of mutual information and capacity. Let entropy func-
tion be h(q) := q log2

1
q +(1− q) log2

1
1−q for any q ∈ [0, 1] where log2 denotes the logarithm with

base 2.
Lemma A.1. If Q = ⊗iQi, for all m ∈ N>0

sup
Pxm

I(xm;ym) =

m∑
i=1

sup
Pxi

I(xi; yi).

For binary symmetric channel BSC(q)

sup
Px

I(x; y) = 1− h(q)

and the optimal of Eq. (3) happens when x is uniformly distributed.

Note that h(q) ∈ [0, 1] as we are using 2 as the base, and 1− h(q) achieve minimum when q = 1/2
which corresponds to large noise level setting.

The following inequality lower bounds the error probability through mutual information.
Theorem A.2 (Fano’s inequality). Let (x, y) be a random variable on [N ]2 with joint distribution
Px,y, and let Qx,y = PxPy be the product of marginal distributions

I(x; y) ≥ Px,y[x = y] log2
1

Qx,y[x = y]
− h(Px,y[x = y])

Additionally if Px or Py is uniform distribution
I(x; y) ≥ (1− Px,y[x ̸= y]) log2 N − h(Px,y[x ̸= y])

We introduce Shannon’s achievability bound Theorem A.3, which shows the existence of a code
whose error probability is bounded by the tail probability of the information density J . Because the
expectation of J is the mutual information, we can have a small error probability when the message
size N is of the order 2C , establishing one side of the renowned Shannon’s Noisy Channel Theorem.
Theorem A.3 (Shannon’s achievability bound). Given Py|x = Q, for any Px, τ > 0, there exists a
(N, ϵ)-code without feedback such that

ϵ ≤ Pr[J(x; y) ≤ log2 N + τ ] + e−τ .
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A.2 BLACKWELL DOMINANCE

Given a finite state of the world Ω, an experiment (S, (Pω)ω∈Ω) consists of a signal space S, and a
collection of probability measures (Pω)ω∈Ω with the interpretation that Pω(y) is the probability of
observing y ∈ Y in state ω ∈ Ω. In our setting, paper quality corresponds to the state, reports serve
as signals, and each review protocol represents a different experiment.

Definition A.4 (Blackwell et al. (1951)). Given two experiments P = (S, (Pω)ω∈Ω) and Q =
(S, (Qω)ω∈Ω), we say P Blackwell dominates Q if there exists a measurable kernel (known as
garbling) π : S → ∆S where ∆S is the set of probability measures over S such that for any ω and
s ∈ S

Qω(s) =

∫
π(s′, s)dPω(s

′)

In other words, there is a possibly random simulation h : S → S so that for all ω, if S′ is distributed
according to Pω then S = h(S′) is distributed according to Qω .

B PROOFS AND DETAILS FOR SECTION 3

Because the optimal inference protocol can be MLE, we will term conference protocol and review
protocol interchangeably. For example, a direct protocol refers to a conference protocol that uses
a direct review protocol along with the MLE inference protocol. The following proposition further
shows that we only need to focus on deterministic review protocols.

Proposition B.1. Given any conference problem (n,Dq), there exists a deterministic conference
protocol (f , g) that minimizes error Pe.

Proof of Proposition B.1. Any randomized review protocol f with an inference protocol g can be
represented as a deterministic review protocol fr with external randomness r = r. Let Pe(r) be
the error probability when the r = r under the inference protocol g. Because Pe = Pr[z ̸= ẑ] =
Er[Pr[z ̸= ẑ] | r] = Er[Pe(r)], there exists r∗ so that Pe(r

∗) ≤ Pe. Therefore, a deterministic review
protocol fr∗ with an MLE inference protocol must have a smaller or equal error probability.

C PROOFS AND DETAILS IN SECTION 4

C.1 BLACKWELL DOMINANCE OF DIRECT REVIEW PROTOCOLS

We prove Lemma 4.2 by direct construction of a direct protocol that Blackwell dominates f . Since
f is an isolated review protocol, each task is associated with at most one paper. We construct f ′ as
a direct review protocol by assigning each task to directly evaluate its associated paper. Formally,
let Γj ⊆ [m] be the set of tasks assigned to paper j. Because f is isolated, the sets Γj are disjoint.
Therefore, we can define a direct protocol f ′ via a mapping σ : [m] → [n] such that σ(i) = j and
task i reviews paper j for all i ∈ Γj . Because the distributions of reports across different Γj are
mutually independent, it is sufficient to show Blackwell dominance under the single-paper setting
n = 1 as shown in Lemma C.1, to complete the proof of Lemma 4.2.

Lemma C.1. Given any conference review problem (1,Dq), the direct review protocol f ′ Blackwell
dominates any review protocol f with the same review load ratio.

Proof of Lemma C.1. We construct a function from direct review protocol with y′ = y′ where
y′i

qi←− f ′
i(z) = z for all i to ỹ to simulate the reports from isolated review protocol y.

Our function iteratively construct ỹ from i = 1 to i = m. Given y′ = y′ and f , there are four cases
for each i.

1. We set ỹi = y′i, if fi(z, ỹ1:i−1) = z for z ∈ {−1, 1}.

2. We set ỹi = −y′i, if fi(z, ỹ1:i−1) = −z for z ∈ {−1, 1}.

3. We set ỹi
qi←− 1, if fi(z, ỹ1:i−1) = 1 for z ∈ {−1, 1}.

14
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4. We set ỹi
qi←− −1, if fi(z, ỹ1:i−1) = −1 for z ∈ {−1, 1}.

Now we use induction to show that ỹ and the reports from the isolated review protocol y are equal in
distribution for all z ∈ {−1, 1}. This shows that y′ Blackwell dominates y. Consider the base case,
i = 1. For the first case, f1(z) = z for all z ∈ {−1, 1}, y1 is also a direct review task y1

q1←− z, and
by definition ỹ1 = y1

q1←− z. For the second case, y1 is the flipped direct review, because y1
q1←− −z

is equivalent to −y1

q1←− z. The third and fourth hold analogously. Therefore, the random variables
are equal in distribution,

y1|z
d
= ỹ1|z

for all z. For inductive steps, suppose y1:i−1|z
d
= ỹ1:i−1|z. By the above arguments,

yi|z,y1:i−1 = y1:i−1
d
= ỹi|z, ỹ1:i−1 = y1:i−1

for all z and any partial realization ỹ1:i−1 = y1:i−1 = y1:i−1. Therefore, y1:i|z
d
= ỹ1:i|z which

completes the proof.

Proposition C.2. Given any conference review problem (n,Dq) and m, successive review protocols
with load ratio m

n and direct review protocols with load ratio m
n are Blackwell equivalent.

Proof of Proposition C.2. Similar to Lemma 4.2, as the protocol is isolated, we only need to con-
sider single paper n = 1, f1 is a direct review and fi+1 checks if the i-th report is correct. Hence,
x1 = z, and

fi+1(z, y1, . . . , yi) = fi(z, y1, . . . , yi−1)⊕ yi = z ⊕ y1 ⊕ · · · ⊕ yi. (4)

Given reports y1, . . . , ym for the above successive protocol, we set ỹi = ⊕i
j=1yj for all i. By Eq. (4),

ỹi
qi←− z ⊕

(
⊕i

j=1yj
)
⊕

(
⊕i

j=1yj
)
= z, so the distribution of ỹ = (ỹ1, . . . , ỹm) is identical to the

distribution of m direct review protocol. For the other direction, given reports y′1, . . . , y
′
m from

the direct review protocol, by above derivation, (⊕i
j=1y

′
j)i=1,...,m has the same distribution as the

successive protocol.

Note that in the proof of Proposition C.2, our reduction does not require the knowledge of histogram
of noise level Dq , and is applicable in the unknown noise levels.

Proof of Lemma 4.4. Given λ and m = λn, we provide upper and lower bounds of any direct review
protocols. Let Bin(k, p) denote Binomial random variables with parameter k ∈ N and p ∈ [0, 1] so
that Pr[Bin(k, p) = l] =

(
k
l

)
pl(1− p)k−l for all 0 ≤ l ≤ k.

First note that if the noise level is homogeneous, we can specify a direct review by the number of
review each paper j gets aj and

∑
j aj = m. Additionally, the optimal inference protocol is the

majority vote, and the error probability of a single paper is

Pr[ẑj ̸= zj ] = Pr

[
Bin(aj , q) ≥

⌊
aj + 1

2

⌋]
where we ignore tie breaking term. Let aj = 2k be even. By Klar (2000) we can bound the above
using the probability mass function Pr[Bin(2k, q) = k],

1 ≤ Pr [Bin(2k, q) ≥ k]

Pr[Bin(2k, q) = k]
≤ (k + 1)(1− q)

k + 1− (2k + 1)q
≤ 1− q

1− 2q
(5)

By Stirling formula 4k

2
√
πk

<
(
2k
k

)
< 4k√

πk
, (https://math.stackexchange.com/users/14812/robert-

william hanks)
Pr[Bin(2k, q) = k]

4k√
πk

qk(1− q)k
=

(
2k
k

)
4k√
πk

∈ [1/2, 1] (6)
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Combining Eqs. (5) and (6), we have 1
2 ≤

Pr[Bin(2k,q)≥k]
4k√
πk

qk(1−q)k
≤ 1−q

1−2q . The error probability of a single

paper with 2k direct reviews can be approximated by a convex function

p(2k, q) :=
1√
πk

(4q(1− q))k.

Now we give a lower bound on error probability Pe. Because the error probability of each paper
is independent, the error probability is Pe ≥ 1 −

∏n
j=1(1 −

1
2p(aj , q)). By AM-GM inequality,∏n

j=1(1 −
1
2p(aj , q)) ≤ (1 − 1

n

∑
j

1
2p(aj , q))

n. Because p(aj , q) is convex, 1
n

∑
j p(aj , q) ≥

p( 1n
∑

j aj , q) = p(mn , q) = p(λ, q). Therefore,

Pe ≥ 1− (1− 1

n

∑
j

1

2
p(aj , q))

n ≥ 1−
(
1− 1

2
p(λ, q)

)n

.

Therefore, if Pe ≤ ϵ,

(1− ϵ)1/n ≤1− 1

2
p(λ, q)

1

2
p(λ, q) =O(ϵ/n) (Taylor expansion)

1√
πλ/2

(4q(1− q))λ/2 =O(ϵ/n)

λ =Ω(ln
n

ϵ
) (4q(1− q) < 1)

Similar, by assigning the same number of direct review to each paper, we have upper bound

Pe ≤ 1−
(
1− 1− q

1− 2q
p(λ, q)

)n

,

and λ = Ω(ln n
ϵ ) is sufficient for Pe ≤ ϵ.

Proof of Theorem 4.1. First we consider direct protocols on homogeneous noise level where every
task has noise level q. Lemma 4.4 shows that under the homogeneous setting a symmetric direct
protocol is optimal and provides an upper bound of the load ratio. Second, it directly provide a
lower bound on any possible direct protocol.

For upper bound in the heterogeneous setting, we take the largest noise level q = max{q ∈
supp(Dq)}, and compute the load ratio of the symmetric direct protocol under a homogeneous
setting (n, q1). By Proposition 4.3, there exist a (direct) protocol under (n,Dq) that Blackwell
dominates the symmetric direct protocol and thus has the same load ratio O(lnn/ϵ) with error prob-
ability Pe ≤ ϵ.

For lower bound, we take the smallest noise level q = min{q ∈ supp(Dq)}. Since by Lemma 4.2
and Proposition 4.3 the reports from any adaptive protocols are Blackwell dominated by the reports
from some direct protocol under (n, q1). Additionally, any direct protocol under (n, q1) has load
ratio at least Ω(lnn/ϵ) by Lemma 4.4 which completes the proof.
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C.2 JOINT REVIEW PROTOCOL

Proof of Theorem 4.5. For the first part, we lower bound the load ratio for error probability ϵ. For
any adaptive protocol with m = λn review tasks, we have
−h(ϵ) + (1− ϵ) log2 2

n ≤I(z; ẑ) (by Fano’s inequality Theorem A.2)
≤I(z;y) (data processing inequality)

=

m∑
i=1

I(z; yi | yi−1) (Chain rule)

≤
m∑
i=1

I(z,yi−1; yi) (I(z; yi | yi−1) = I(z,yi−1; yi)− I(yi−1; yi))

≤
m∑
i=1

I(xi; yi) (data processing inequality)

≤
m∑
i=1

(1− h(qi)) =
m

λ∗ (Lemma A.1)

Therefore,

λ =
m

n
≥ λ∗

(
(1− ϵ)− h(ϵ)

n

)
.

For the second part, consider (x,y) where xi ∈ {−1, 1} is uniformly distributed and yi

qi←− xi
independently for all i ∈ [m]. For any δ > 0, λ = (1 + 2δ)λ∗ > λ∗ > 1, and τ = δn, by
Theorem A.3 there exists (λn, 2n, ϵ)-code such that

ϵ ≤ Pr[J(x;y) ≤ log2 2
n + δn] + e−δn.

Because each coordinate of (x,y) is independent, we can define random variables zi := J(xi, yi)
with i ∈ [m] which are mutually independent with expectation Ezi = I(xi; yi) = supPxi

I(xi; yi) =

1− h(qi) by Lemma A.1 and J(x;y) =
∑

i zi. Hence,

E[J(x;y)] =
m∑
i=1

E[zi] =
m∑
i=1

1− h(qi) =
m

λ∗ = (1 + 2δ)n > n.

Because log2 2qi ≤ zi ≤ log2 2(1− qi), by Hoeffding’s inequality,

Pr[J(x;y) ≤ log2 2
n + δλ∗n] = Pr

[∑
i

(zi − Ezi) ≤ −δn

]
≤ exp

(
−2δ2n2

mV 2

)
= exp

(
− 2δ2

λV 2
n

)
which completes the proof.

D ASSIGNMENT STRATEGY

In this section we introduce assignment strategies used in Section 5, where λtot is the overall λ, i.e.,
λtot = λ1(η) + ηλ2(η).

Strategy λ1(η) λ2(η)
Original Strategy λtot(1− η) λtot

Constant L2 λtot − 6η 6
Moderate L2 λtot − 8η 8
Low L2 λtot − 3η 3
Fixed Stage1-4 4 (λtot − 4)/η
Fixed Stage1-3 3 (λtot − 3)/η

E SUPPLEMENTARY RESULTS

In this section we display the supplementary results for Section 5.1.
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(a) (b)

Figure 5: Simulation results illustrating the influence of paper numbers on review performances.
n ranges from 50 to 5000. As n increases, the accuracy of two-phase reviews shows a downward
trend and the calibration error increases. The negative effect is possibly mitigated by the belief
propagation based on a larger reviewer population. The Ambiguous strategy dominates the other 2
strategies for every selection of n.

18


	Introduction
	Related works
	Conference Review Problem
	Review and Inference protocols

	Optimizing the Load Ratio
	Experiments: Two-phase Review Protocols
	Uniform Noise Levels
	Unknown Noise Levels

	Conclusion and Discussion
	Preliminary
	Coding theory and information theory
	Blackwell dominance

	Proofs and details for sec:model
	Proofs and details in sec:fromto
	Blackwell dominance of direct review protocols
	Joint review protocol

	Assignment Strategy
	Supplementary Results

