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Abstract

Operator learning for Partial Differential Equa-
tions (PDEs) is rapidly emerging as a promis-
ing approach for surrogate modeling of intricate
systems. Transformers with the self-attention
mechanism—a powerful tool originally designed
for natural language processing—have recently
been adapted for operator learning. However,
they confront challenges, including high com-
putational demands and limited interpretability.
This raises a critical question: Is there a more
efficient attention mechanism for Transformer-
based operator learning? This paper proposes the
Position-induced Transformer (PiT), built on an
innovative position-attention mechanism, which
demonstrates significant advantages over the clas-
sical self-attention in operator learning. Position-
attention draws inspiration from numerical meth-
ods for PDEs. Different from self-attention,
position-attention is induced by only the spatial
interrelations of sampling positions for input func-
tions of the operators, and does not rely on the
input function values themselves, thereby greatly
boosting efficiency. PiT exhibits superior perfor-
mance over current state-of-the-art neural oper-
ators in a variety of complex operator learning
tasks across diverse PDE benchmarks. Addition-
ally, PiT possesses an enhanced discretization con-
vergence feature, compared to the widely-used
Fourier neural operator.
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1. Introduction
Partial Differential Equations (PDEs) are essential in mod-
eling a vast array of phenomena across various fields in-
cluding physics, engineering, biology, and finance. They
are the foundation for predicting and understanding many
complex dynamics in natural and engineered systems. Over
the past century, traditional numerical methods, such as fi-
nite element, finite difference, and spectral methods, have
been well established for solving many PDEs. However,
these methods often face challenges for complex nonlinear
systems with complicated geometries or in high dimensions.

The advent of machine learning has shifted the paradigm
in addressing these challenges in PDEs. Key developments
include but are not limited to PINN (Raissi et al., 2019),
Deep-Galerkin (Sirignano & Spiliopoulos, 2018), and Deep-
Ritz (Yu et al., 2018). These methods are typically solution-
learners, i.e., learning a solution of PDEs. They closely
resemble traditional approaches such as finite elements, re-
placing local basis functions with neural networks. While
advantageous for high-dimensional problems and complex
geometries, solution-learners are usually limited to a sin-
gle instance, i.e., solving one solution of the PDEs with a
fixed initial/boundary condition. To get solution for every
new condition, retraining a new neural network is required,
which can be very costly.

Solution-learners usually focus on a given PDE. However,
for many complex systems the governing equations remain
unclear due to uncertain mechanisms, yet identifying under-
lying PDEs is very challenging without sufficient domain
knowledge. Data-driven approaches have emerged as a
powerful tool for discovering unknown PDEs or surrogate
modeling of known yet complex PDEs. Early strategies
include sparse-promoting regression (Rudy et al., 2017;
Schaeffer, 2017); however, even after learning the under-
lying PDEs, numerical solving is still necessary to obtain
their solutions. Other techniques, such as PDE-Net (Long
et al., 2018; 2019), can learn both the underlying PDE and
its solution dynamics.

Another data-driven approach is Flow Map Learning (FML)
(Qin et al., 2019; Wu & Xiu, 2020; Chen et al., 2022b;
Churchill & Xiu, 2023). Unlike solution-learners, FML is an
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operator-learner, which approximates the evolution operator
of time-dependent systems with varying initial conditions.
Once learned, the flow map or evolution operator can be
recursively utilized to predict long-term solution behaviors
of the equations for any new initial condition without the
need for retraining.

Recently, more versatile operator-learners have been system-
atically developed for learning mappings between infinite-
dimensional function spaces. Existing frameworks include,
but are not limited to, the neural operators (Anandkumar
et al., 2020; Li et al., 2020; 2021; Kovachki et al., 2023),
DeepONets (Lu et al., 2021b; Jin et al., 2022; Lanthaler
et al., 2023), principal component analysis-based methods
(Bhattacharya et al., 2021), and attention-based methods
(Cao, 2021; Kissas et al., 2022; Hao et al., 2023), etc. These
operator-learners are applicable to learn the solution oper-
ators of parametric PDEs, including mappings from initial
conditions to solutions at specific future times, or from
boundary conditions, source terms, and model parameters
to steady-state solutions.

Transformers, a powerful tool initially designed for natu-
ral language processing (Vaswani et al., 2017), have also
been adapted for learning operators in PDEs, e.g., Liu et al.
(2022); Hao et al. (2023); Xiao et al. (2023). The core
of Transformers is the self-attention mechanism. How-
ever, conventional self-attention lacks positional aware-
ness, which is found crucial in natural language processing
(Vaswani et al., 2017; Shaw et al., 2018) and graph represen-
tation (Dwivedi & Bresson, 2020), thus sparking significant
research interest (Dai et al., 2019; Dufter et al., 2022). In
PDE operator learning, there exist few studies on integrat-
ing positional knowledge with self-attention. Cao (2021);
Lee (2022) concatenate the coordinates of sampling points
with input function values, while Li et al. (2022b) adopt
the rotary position embedding technique (Su et al., 2024) to
enhance self-attention. Self-attention in operator learning is
content-based and relies heavily on the values of input func-
tions. This necessitates distinct attention calculations for
each training batch instance, resulting in significant mem-
ory usage and high computational costs, especially when
compared to the neural operators in Kovachki et al. (2023).
This raises critical questions: Is self-attention indispensable
for Transformer-based operator learning? What key posi-
tional information is necessary, and how can it be efficiently
encoded into Transformer-based neural operators?

To overcome the challenges of self-attention in operator
learning, we propose a novel attention mechanism, termed
position-attention, from a numerical mathematics perspec-
tive. This mechanism is induced by only spatial relations
without relying on input function values, marking a signifi-
cant difference from classical content-based self-attention.
Position-attention greatly enhances computational efficiency

and effectively integrates positional knowledge. It also res-
onates with the principles of numerically solving PDEs, of-
fering an interpretable approach to operator learning. Build-
ing upon position-attention and its variants, we develop a
novel deep learning architecture, termed Position-induced
Transformer (PiT), for operator learning. Compared to cur-
rent state-of-the-art neural operators, PiT exhibits superior
performance across various benchmarks from elliptic to
hyperbolic PDEs, even in challenging cases where the so-
lutions contain discontinuities. Like many neural operators
(Azizzadenesheli et al., 2024), PiT features a remarkable
discretization convergence property (also called discretiza-
tion/mesh invariance in the literature (Kovachki et al., 2023;
Li et al., 2021)), enabling effective generalization to new
meshes which are unseen during training.

The main contributions of this work include:

• We find the importance of positional knowledge, specifi-
cally the spatial interrelations of the nodal points where
the input functions are sampled, in operator learning. We
propose the novel position-attention mechanism and its
two variants to effectively incorporate such positional
knowledge. Compared to self-attention, position-attention
is interpretable from a numerical mathematics perspective
and is more efficient for operator learning.

• Based on position-attention and its two variants, we con-
struct PiT, a lightweight Transformer whose training time
scales only sub-linearly with the sampling mesh resolution
of input/output functions. Moreover, PiT is discretization-
convergent, offering consistent and convergent predictions
as the testing meshes are refined.

• We conduct numerical experiments on various PDE
benchmarks, showcasing the remarkable performance
of PiT, and demonstrate its greater robustness in dis-
cretization convergence (with 48% smaller prediction
error for the Darcy2D benchmark) compared to the
Fourier neural operator (FNO). Our code is accessi-
ble at github.com/junfeng-chen/position_
induced_transformer.

2. Approach
2.1. Preliminaries

Operator Learning. Consider generic parametric PDEs:

Lau = f, (1)

where a ∈ A(Ωa;Rda), u ∈ U(Ωu;Rdu) are functions de-
fined on the bounded domains Ωa and Ωu, respectively;
La : U → F is a partial differential operator; f ∈ F ; A
and U are Banach spaces of functions over Ωa and Ωu,
respectively. As in Li et al. (2021); Anandkumar et al.
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Figure 1. Discretization convergence test for neural operators.

(2020); Li et al. (2020); Kovachki et al. (2023), we assume
Ωa = Ωu = Ω ⊂ Rd in this paper. Denote the operator that
maps a to u by Φ, which can be the evolution operator that
maps the initial condition to the solution at a specific future
time, or the solution operator that maps the source term
or model parameters to the steady-state solution. Operator
learning aims to construct a neural operator Φθ, as surrogate
model of Φ, from sampling data pairs {aj , uj}Jj=1. The
data are usually sampled on two (possibly different) meshes
Xa = {xi}Na

i=1 ⊂ Ω and Xu = {x̂i}Nu
i=1 ⊂ Ω:

aj =
{
aj(xi)

}Na

i=1
, uj =

{
uj(x̂i)

}Nu

i=1
, j = 1, 2, ..., J.

Assume that the input data {aj}Jj=1 are drawn from a proba-
bility measure µA supported on A, and the sampling points
Xa are i.i.d. drawn from a measure µΩ on Ω, denoted as
Xa ∼ µΩ. After training the parameters θ on the data pairs
{aj , uj}Jj=1, we expect that the trained neural operator Φθ

exhibits small generalization error defined as

Ea∼µA

(
∥u− Φθ(a|X)∥2U

)
, ∀X ∼ µΩ, (2)

where the norm ∥ · ∥U is in practice replaced with a vector
norm of the output function values queried on a new mesh
Xnew. The formulation (2) indicates that the learned operator
Φθ can accept any mesh points in the domain of a and
predict u at any queried mesh Xnew.

It is often desirable to achieve a reliable neural operator
that is trained with merely inexpensive data on a coarse
mesh and yet generalizes well to finer meshes without the
need for retraining, as illustrated in Figure 1. In particular,
one expects consistent and convergent predictions as the
testing meshes are refined (Azizzadenesheli et al., 2024). A
common method for assessing this is the zero-shot super-
resolution evaluation.

A neural operator typically adopts an Encoder-Processor-
Decoder architecture:

Φθ = Decoder ◦ LAYERL ◦ · · · ◦ LAYER1 ◦ Encoder,

where the Encoder lifts the input function from Rda to a
higher-dimensional feature space Rd1 , and the Decoder
projects the hidden features from RdL to Rdu . The En-
coder and Decoder are usually implemented by linear layers,

and can include nonlinearities if necessary. In the Proces-
sor, let the function vℓ : Ω → Rdℓ be the continuum of
the feature map Uℓ of LAYERℓ. Then, the forward pass
Uℓ+1 = LAYERℓ+1(Uℓ) approximates the transform

vℓ+1(x) = σ

(∫
Ω

κℓ(x, y, vℓ(x), vℓ(y)) vℓ(y) dy + vℓ(x)Wℓ

)
,

where the integral kernel κℓ needs to be parametrized and
trained, Wℓ ∈ Rdℓ×dℓ+1 is a trainable matrix, and σ is
a nonlinear activation function. Various parametrization
methods for κℓ have been explored, including but not limited
to message passing on graphs (Anandkumar et al., 2020;
Li et al., 2020), Fourier transform (Li et al., 2021), and
multiwavelet transform (Gupta et al., 2021).

Transformer and Self-attention. Transformers, proposed
by Vaswani et al. (2017), are fundamental in natural lan-
guage processing and form the basis of major advanced
language models including GPT and BERT. Their essence
lies in the self-attention mechanism. Recently, Kovachki
et al. (2023) observed the connections between attention and
neural operators, highlighting the potential of Transform-
ers in operator learning. Various specialized and effective
Transformers have been developed for operator learning,
using Galerkin-type attention (Cao, 2021), hierarchical at-
tention (Liu et al., 2022), cross-attention (Lee, 2022; Li
et al., 2022b), mixture of experts (Hao et al., 2023), and
orthogonal regularization (Xiao et al., 2023).

Consider U ∈ RNv×dℓ as the input sequence comprising
Nv elements, each represented by a dℓ-dimensional feature
vector. Self-attention can be expressed as

SelfAtt(U) = Softmax

(
UWQ(UWK)T√

dℓ+1

)
UWV , (3)

where WQ,WK ,WV ∈ Rdℓ×dℓ+1 are trainable matrices.
Self-attention is content-based, and it heavily depends on in-
put function values in operator learning. This demands sepa-
rate attention computations for each training batch instance,
leading to intensive memory and computational costs, com-
pared to the neural operators in Kovachki et al. (2023).

2.2. Novel Position-attention and Its Variants

We find the positional knowledge, specifically the spatial
interrelations of the sampling points, is essential for opera-
tor learning. We propose the position-attention mechanism
and its two variants, which effectively incorporate such po-
sitional knowledge. In contrast to classical self-attention,
position-attention does not rely on the input function values
themselves, thereby greatly boosting efficiency. Further-
more, position-attention is consistent with the changes of
mesh resolution and converges as the meshes are refined.

Position-attention. Let U ∈ RNv×dℓ be the values of a
generic function v sampled on a mesh Xv of Nv nodal
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Figure 2. Overview of Position-induced Transformer for operator learning. Top left: A trained neural operator can serve as a surrogate
model to specific parametric PDEs. Bottom left: Cross position-attention provides learnable downsampling/unsampling between meshes
at different resolutions, and local position-attention supports customizable receptive field. Right: The Encoder-Processor-Decoder
architecture of PiT.

points. Define the pairwise-distance matrix D ∈ RNv×Nv :

Dij = ∥xi − xj∥22. (4)

Let λ > 0 and WV ∈ Rdℓ×dℓ+1 be trainable parameters.
The position-attention mechanism is defined by

PosAtt(U ;D) := Softmax(−λD)UWV , (5)

which is linear with respect to U . Here, Softmax(−λD)U
can be understood as a global linear convolution, with the
kernel weights adjusted according to the relative distances
between sampling points. This design is motivated by the
concept of domain of dependence in PDEs, reflecting how
the solution at a point is influenced by the local neighboring
information. Specifically, the ith row of the output is

PosAtt(U ;D)i =

Nv∑
k=1

exp(−λDik)∑Nv

j=1 exp(−λDij)
(UWV )k. (6)

Theorem 2.1. Let {Xn}+∞
n=1 be a sequence of refined

meshes on Ω with Xn ∼ µΩ. Denote by Dn the pairwise-
distance matrix (4) corresponding to Xn. Assume that v(x)
is bounded on Ω, and denote by Un the function values of v
on Xn. As n → +∞, the position-attention (5) converges
to an integral operator: specifically, for any ε > 0,

lim
n→+∞

Pr

{
1

|Xn|

∥∥∥PosAtt(Un;Dn)−F|Xn

∥∥∥ ≤ ε

}
= 1,

where |Xn| denotes the number of nodal points in Xn,

F(x) :=

∫
Ω

κλ (x− y) v(y)WV dµΩ(y), (7)

and

κλ (x− y) =
exp(−λ∥x− y∥22)∫

Ω
exp(−λ∥x− y′∥22) dµΩ(y′)

(8)

is the integral kernel induced by position-attention.

The proof of Theorem 2.1 is put in Appendix B. The fixed
measure µΩ and the row-wise Softmax normalization play
crucial roles in the convergence, which implies that position-
attention is discretization-convergent, eliminating the need
for nested mesh refinement as required in Kovachki et al.
(2023). If one replaces the Softmax normalization with
element-wise exponentiation, then κλ becomes a Gaussian
kernel, which is, however, sensitive to mesh resolution.

The kernel (8) induced by position-attention is independent
of the input functions. This is a notable difference from clas-
sical self-attention, which is content-based and heavily relies
on the input function values themselves. Indeed, position-
attention draws inspiration from numerical schemes solving
PDEs. For instance, consider the upwind scheme for the
advection equation vt + svx = 0 with a constant speed s:

vn+1
j = vnj − c

2
(vnj+1 − vnj−1) +

|c|
2
(vnj+1 − 2vnj + vnj−1)

=: Hc(v
n
j−1, v

n
j , v

n
j+1),

where vnj is the numerical solution at the jth grid point and
time tn. Here, the operator Hc is discretization-convergent,
depending only on a fixed Courant–Friedrichs–Lewy (CFL)
number c := s∆t/∆x, and is independent of the input
function values {vnj−1, v

n
j , v

n
j+1}. This scheme can be in-

terpreted as a local linear convolution. Position-attention
shares a similar concept but employs a global linear convo-
lution, with the kernel reflecting a stronger dependence on
local neighboring regions. Indeed, the value of λ in position-
attention is interpretable, as most attention at a queried point
x is directed towards points y with the distance to x smaller
than 1/

√
λ; see Appendix D for detailed discussions.

Cross Position-attention. We further propose a novel in-
terpretable variant, cross position-attention, for downsam-
pling/upsampling unstructured data. It interpolates U from
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a mesh X1 onto another mesh X2 by

CroPosAtt(U ;D) := Softmax(−λDT
1→2)UW

V , (9)

where D1→2 is the pairwise-distance matrix between X1

and X2. As X1 is refined, cross position-attention also
approximates the integral operator defined in equation
(7). This property allows us to construct a discretization-
convergent Encoder that downsamples the input function
values on any mesh Xa to a pre-fixed coarser latent mesh
Xv, on which the Processor is inexpensive. Analogously,
a discretization-convergent Decoder can be constructed to
upsample the processed features onto any output mesh Xu.
Remark 2.2. While Xa, Xv ∼ µΩ are important for dis-
cretization convergence, we do not require any structure
in the output mesh Xu. The output function values can be
queried at any point in the domain Ω. The whole model
architecture and computational complexity will be detailed
in Section 2.3.

Local Position-attention.

The position-attention mechanism naturally captures global
dependencies. However, local patterns are often crucial in
the solutions of various PDEs, especially those of hyperbolic
nature or dominated by convection. To address this, we
introduce a local variant of position-attention:

LocPosAtt(U ;D)i =
∑

Dik≤r2i

exp(−λDik)∑
Dij≤r2i

exp(−λDij)
(UWV )k.

(10)
Similar to Theorem 2.1, as the mesh is refined, local
position-attention approximates the integral operator∫

Bri
(xi)

κλrxi
(xi − y)u(y)WV µΩ(dy)

with the induced compact kernel

kλrx (x− y) =
exp(−λ∥x− y∥22)∫

Brx (x)
exp(−λ∥x− y′∥22) dµΩ(y′)

, (11)

where Brx(x), usually termed receptive field, is a ball with
radius rx and center x. We take the radius rx as a quantile
of the row values in the pairwise-distance matrix, adapting
the receptive field to the local density of nodal points. This
design enables local position-attention to effectively han-
dle functions exhibiting multiscale features. The value of
quantile is left as a hyperparameter; see Section 4.6.

2.3. Position-induced Transformer

We now design our novel Transformer architecture, PiT,
which is primarily composed of the proposed global, cross,
and local position-attention mechanisms for mixing features

over the domain Ω. A sketch of the PiT architecture is
depicted in Figure 2.

Encoder. The Encoder comprises lifting and downsampling
operations using both local and cross position-attention
mechanisms:

Encoder = σ ◦ LocPosAttin( · ;DT
a→v) ◦ σ ◦ LINEAR,

where Da→v is the pairwise-distance matrix between the
input and latent meshes, Xa and Xv; LINEAR refers to
a fully connected layer applied row-wisely to the feature
matrix. This design allows us to embed the inputs on a
coarse mesh into a higher-dimensional feature space, while
the local position-attention effectively extracts the local fea-
tures of the inputs. The dimension dv of the lifted features
is termed the encoding dimension, which is an important
hyperparameter for the model’s expressive capacity.

Processor. The Processor consists of a sequence of global
position-attention modules. To address the nonlinearity in
general operators, we propose the following module as the
building block to construct the Processor:

hℓ = σ (PosAttℓ(Uℓ−1;Dv)) ,

Uℓ = σ (MLPℓ(h) + LINEARℓ(Uℓ−1)) ,

where Dv is the pairwise-distance matrix of Xv; U0 is the
output of Encoder; MLPℓ refers to a multilayer perceptron
applied row-wisely to hℓ. Throughout our experiments, we
stack four global attention modules (L = 4) in the Processor
with two layers in MLP, and take dℓ = dv for all 1 ≤ ℓ ≤ L.

Decoder. In the Decoder, we firstly upsample the feature
map UL from the Processor to the queried nodal points Xu,
and then apply an MLP row-wisely to project the features
back to the range space of the output functions.

Decoder = MLP ◦ σ ◦ LocPosAttout( · ;DT
u→v).

High Efficiency: Linear Computational Complexity.
Due to the kernel matrix multiplication, the forward compu-
tation of global position-attention has a quadratic complex-
ity of O(N2

v ). To accelerate large-scale operator learning
tasks, we adopt a downsampling-processing-upsampling
network architecture. Denote the numbers of nodal points
in the meshes Xa, Xv, and Xu by Na, Nv, and Nu, re-
spectively. We take Nv relatively small for efficiency. The
computational complexities in the Encoder and Decoder
are O(NaNvdv +Nad

2
v) and O(NuNvdv +Nud

2
v), respec-

tively, which are both linear to the numbers of input and
output mesh points. This is confirmed by our experiments,
where we observe that the training time of PiT scales only
sub-linearly with Na and Nu (see Appendix F.3).

We treat Nv as a hyperparameter of PiT for balancing com-
putational efficiency and information retention on the coarse
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latent mesh; see Section 4.6. For training data on structured
meshes, we obtain a coarser latent mesh via pooling. For
unstructured data, if the distribution is known, one can gen-
erate an appropriate latent mesh by sampling; if unknown,
one can use farthest point sampling (Zhou et al., 2018) to
preserve spatial distribution in the latent mesh.

3. Related Work
Operator Learning. This area is actively researched with
numerous related contributions. Chen & Chen (1995) estab-
lished a universal approximation theorem for approximating
nonlinear operators using neural networks. Motivated by
this theorem, the DeepONet framework (Lu et al., 2021b),
comprising a trunk-net and a branch-net, was proposed for
operator learning. The branch-net inputs discretized func-
tion values, while the trunk-net inputs coordinates in the
domain of the output function. They combine to predict
the output function values at specified coordinates. This
framework has motivated various extensions, e.g., Jin et al.
(2022), Seidman et al. (2022), Lanthaler et al. (2023), Lee
et al. (2023), and Patel et al. (2024), etc.

Another pioneering framework is the neural operators based
on iterative kernel integration (Anandkumar et al., 2020;
Li et al., 2021; Kovachki et al., 2023). Unlike the trunk-
branch architecture in DeepONet, this framework typically
relies on composing linear integral operators with nonlinear
activation functions. The graph neural operator (Anand-
kumar et al., 2020) leverages message passing to approx-
imate linear kernels in the form κ(x, y). FNO (Li et al.,
2021) is related to a shift-invariant kernel κ(x− y), facili-
tating operator learning in a frequency domain via discrete
Fourier transform. This renders FNO efficient for problems
with periodic features. As FNO is limited to uniformly dis-
tributed data, various new variants have emerged to handle
more complex data structures and geometries, e.g, Geo-
FNO (Li et al., 2022a), the non-equispaced Fourier solver
(Lin et al., 2022), and the Vandermonde neural operator
(Lingsch et al., 2023). Researchers have also developed
other related approaches for learning operators in frequency
or modal spaces with generalized Fourier projections (Wu
& Xiu, 2020), multi-wavelet basis (Gupta et al., 2021), and
Laplacian eigenfunctions (Chen et al., 2023).

Transformer-based Neural Operators. Recently, Trans-
formers have been extended to operator learning, including
Galerkin and Fourier Transformers (Cao, 2021), HT-net (Liu
et al., 2022), MINO (Lee, 2022), OFormer (Li et al., 2022b),
GNOT (Hao et al., 2023), and ONO (Xiao et al., 2023).
These Transformers are built on self-attention, which relies
on the input function values to compute attention weights.
This results in distinct attention calculations for each train-
ing batch instance, making the Transformer-based neural
operators computationally expensive. In contrast, position-

attention only rely on the pre-defined pairwise-distance ma-
trix of the sampling points and does not depend on the
input function values. This new mechanism notably reduces
memory usage and accelerates training.

Cross position-attention, which downsamples the input func-
tions onto coarse latent meshes, also contributes to the high
efficiency of PiT. Related ideas include content-based cross-
attention used in MINO (Lee, 2022), and bilinear interpola-
tion employed by Galerkin Transformer (Cao, 2021). PiT
combines the advantages of both, simultaneously possess-
ing the applicability to irregular point clouds, similar to
MINO, and the interpretability, akin to the interpolation in
Galerkin Transformer. There are also many other efforts
reducing the computational costs of Transformers, such as
random feature approximation (Choromanski et al., 2020;
Peng et al., 2021), low-rank approximation (Lu et al., 2021a;
Xiong et al., 2021), Softmax-free normalization (Cao, 2021),
linear cross-attention (Li et al., 2022b; Hao et al., 2023),
etc. These techniques may potentially be combined with
position-attention to further enhance its efficiency.

Positional/Structural Encoding in Transformers. Trans-
formers, following their success in large language models,
have found broad applications in fields such as imaging
(Dosovitskiy et al., 2020) and graph modeling (Veličković
et al., 2018; Yun et al., 2019). In these models, self-attention
is content-based and requires positional encoding. Position
information typically falls into two categories: absolute and
relative. Vaswani et al. (2017) used sinusoidal functions to
encode the absolute positions of words in a sentence. In con-
trast, Yang et al. (2018) and Guo et al. (2019) focused on the
localness of text by adjusting self-attention scores based on
word distances. Trainable relative positional encoding was
proposed by Shaw et al. (2018); Dai et al. (2019). For graph
applications, topological information is as important as po-
sition. Structural and positional information in graphs is
represented by the graph’s Laplacian spectrum (Dwivedi &
Bresson, 2020; Kreuzer et al., 2021), shortest-path distance
(Ying et al., 2021), and kernel-based sub-graph (Mialon
et al., 2021; Chen et al., 2022a), etc.

4. Numerical Experiments
This section presents the experimental results from a vari-
ety of PDE benchmarks, demonstrating the superior perfor-
mance of PiT compared to many other operator learning
methods. We also validate the discretization convergence
property of PiT in Section 4.3. Section 4.4 presents rigorous
comparative studies between self-attention and position-
attention. In Section 4.5, we provide some insights on
combining self-attention and position-attention. The im-
pacts of hyperparameters are explored in Section 4.6. More
experimental results are presented in Appendix F.
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4.1. Benchmarks and Baselines

Our tests encompass a diverse range of operator learn-
ing benchmarks: InviscidBurgers (Lanthaler et al., 2023),
ShockTube (Lanthaler et al., 2023), Darcy2D (Li et al.,
2021), Vorticity (Li et al., 2021), Elasticity (Li et al.,
2022a), and NACA (Li et al., 2022a). These problems cover
elliptic, parabolic, and hyperbolic PDEs, including challeng-
ing equations whose solutions exhibit discontinuities. Data
for these problems are collected on either structured meshes
or irregular point clouds. Due to page limitations, we put
the detailed setups of these problems in Appendix A.

We compare PiT with various strong baselines in operator
learning: DeepONet (Lu et al., 2021b); shift-DeepONet
(Lanthaler et al., 2023); FNO (Li et al., 2021) and FNO++,
the newest implementation (NeuralOperator, 2023) of FNO
using GELU activation and a two-layer MLP after each
Fourier layer; Geo-FNO (Li et al., 2022a); Galerkin Trans-
former (Cao, 2021); OFormer (Li et al., 2022b); GNOT
(Hao et al., 2023); ONO (Xiao et al., 2023). The latter four
baselines are all Transformer-based neural operators. Be-
sides the results presented in the following sections, we put
more comprehensive comparisons between PiT and the base-
lines in the appendices; see parameter counts in Appendix
E.3; see training speed and memory usage in Appendix E.4.

4.2. Main Results

Table 1 presents the prediction errors of our method and the
nine baselines for the six benchmarks. The results for the
baselines are directly cited from those original papers, if
applicable, and are marked as “−” otherwise. The results of
FNO++ are produced using the network hyper-parameters
suggested in the references (Li et al., 2021; Lanthaler et al.,
2023). Details about the network architectures and training
configurations can be found in Appendix E.

In InviscidBurgers and ShockTube, PiT exhibits excellent
performance, comparable to FNO/FNO++, and significant
superiority over DeepONet and shift-DeepONet. Both tasks
pose notable challenges due to the discontinuous target func-
tions in the solution operators (see Figures 5 and 6), which
are inherently difficult for neural networks to learn. As Lan-
thaler et al. (2023) pointed out, DeepONet fails to effectively
address such difficulties, while shift-DeepONet enhances
the performance by incorporating shift-net. PiT overcomes
the challenges thanks to its nonlinear Transformer architec-
ture with position-attention. In the InviscidBurgers bench-
mark, PiT’s prediction error is remarkably lower, at just 17%
of shift-DeepONet’s error and a mere 4.8% of DeepONet’s
error. In the ShockTube benchmark, PiT’s prediction error
is about 45% of shift-DeepONet’s and 29% of DeepONet’s.

Furthermore, in both the Darcy2D and Vorticity benchmarks,
PiT achieves the lowest prediction errors, outperforming all

tested baselines. In the Darcy2D task, PiT’s prediction error
is only 38% to 57% of those of OFormer, FNO, and Galerkin
Transformer. PiT also demonstrates the best performance in
the Vorticity benchmark, representing a challenging operator
learning task due to data scarcity and the complex patterns
of turbulent flow. These results indicate that leveraging
spatial interrelations of mesh points is highly beneficial for
the attention mechanism in learning these operators.

In the Elasticity and NACA tasks, the PDEs are defined in
irregular domains with complex geometries, and the data are
sampled on unstructured point clouds for Elasticity and on a
deformed mesh for NACA. The complexity of the data and
geometry presents significant challenges for operator learn-
ing. Again, PiT, with its position-attention mechanism, ex-
hibits superior accuracy over all the baselines, including the
other four Transformers (OFormer, Galerkin Transformer,
GNOT, and ONO) based on self-attention. This suggests
that position-attention is crucial, while self-attention might
be unnecessary for Transformer-based operator learning.

In addition to its outstanding accuracy, PiT also exhibits high
efficiency in terms of training costs. For example, Table 16
displays the training times of PiT with data on various mesh
resolutions. These results validate PiT’s sub-linear scaling
of training time with mesh resolution, consistent with our
computational complexity analysis in Section 2.3.

4.3. Discretization Convergence Tests

The Darcy2D dataset, originally collected on a 4212 Carte-
sian grid, is downscaled onto a sequence of coarser meshes
to serve as reference solutions. This enables the assess-
ment of PiT’s discretization convergence via zero-shot super-
resolution evaluation. To this end, we train neural operators
with data on a coarse mesh. After training, the learned oper-
ators are tested on a sequence of refined meshes: 432, 612,
712, 852, 1062, 1412, 2112, 4212, respectively. The testing
errors on these meshes are illustrated in Figure 3, where PiT
and FNO++ trained on the 432 mesh (resp. the 852 mesh)
are denoted as PiT43 and FNO++43 (resp. PiT85 and
FNO++85).
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Figure 3. Discretization convergence tests on Darcy2D.
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Table 1. Relative errors on the test sets of six benchmarks. The results of InviscidBurgers and ShockTube are reported with the relative l1
errors. Other benchmarks are evaluated with the relative l2 errors. The best result of each task is bolded, and the second best result is
underlined. The data of Darcy2D are represented on a 211× 211 uniform grid. The results of Galerkin Transformer and OFormer for
Elasticity and NACA are cited from Hao et al. (2023). The results of FNO for Elasticity and NACA are cited from Li et al. (2022a).

InviscidBurgers ShockTube Darcy2D Vorticity Elasticity NACA

DeepONet 0.285 0.0422 − − − −
shift-DeepONet 0.0783 0.0276 − − − −
FNO++ 0.00995 0.0194 0.00509 0.1315 − −
FNO 0.0157 0.0156 0.0109 0.1559 0.0508 0.0421
OFormer − − 0.0128 0.1755 0.0183 0.0183
Galerkin Transformer − − 0.00844 0.1399 0.0201 0.0161
GNOT − − − 0.138 0.00865 0.00757
ONO − − − 0.1195 0.0118 0.0056
Geo-FNO − − − − 0.0229 0.0138

PiT 0.0136 0.0122 0.00485 0.1140 0.00649 0.00480

As seen from Figure 3, for operator learning on the 432

mesh, FNO++’s prediction error surges from 0.95% to
8.67% as the testing mesh resolution increases to 4212,
while PiT’s prediction error rises from 0.97% to only 4.50%
(which is 48% lower than that of FNO++). The greater
robustness and accuracy of PiT compared to FNO++ are
also observed in Figure 3 for the operators trained with 852

mesh data. These results demonstrate PiT’s superiority over
FNO++ in terms of discretization convergence.

4.4. Comparative Ablation Study

We have demonstrated that PiT with position-attention deliv-
ers superior performance compared to existing Transformer-
based neural operators that utilize self-attention. This sug-
gests that self-attention might not be necessary for operator
learning. In this section, we provide a more rigorous ab-
lation study to compare position-attention and vanilla self-
attention for operator learning in PDEs. We test two vanilla
self-attention models:

SelfAtt A: All PosAtt layers in PiT are replaced with the
vanilla self-attention. Three out of six benchmarks en-
counter an “out of memory” (OOM) issue with a single
24GB RTX-3090 GPU.

SelfAtt B: Only PosAtt layers in Processor are replaced
with self-attention, and this avoids the OOM issue.

Table 2 presents the testing errors, parameter counts, and
training time. These results validate that PiT is consistently
more accurate than Transformers built upon vanilla self-
attention, without trade-offs in efficiency.

4.5. Can Self-attention Enhance PiT?

In this section, we aim to answer to such a question: Does
combining self-attention and position-attention enhance

PiT? To address this, let us consider a Transformer, termed
Self-PiT, based on a combined attention mechanism:

SelfPosAtt(U ;D)

= Softmax

(
−λD +

UWQ(UWK)T√
dℓ+1

)
UWV .

(12)

We have tested Self-PiT on the InviscidBurgers and Shock-
Tube benchmarks, for which the prediction errors are
0.00816 and 0.0179, respectively. By comparing them with
the results of PiT in Table 1, we conclude that Self-PiT does
not consistently outperform PiT in terms of accuracy, yet it
requires more computational complexities.

4.6. Hyperparameter Study

Figure 4 illustrates the impacts of the following three impor-
tant hyperparameters in PiT.

Quantile in LocPosAtt. A smaller quantile means a more
compact receptive field in local position-attention, resulting
in a stronger focus on local features. The results in Figure 4
indicate that PiT’s performance on ShockTube is sensitive to
the quantile in the Encoder but not sensitive to the quantile
in the Decoder. Using a small quantile in the Encoder is
critical; otherwise, PiT may yield a large prediction error.

Latent Mesh Resolution Nv. This hyperparameter bal-
ances computational efficiency and information retention on
coarse latent meshes. Choosing a relatively large Nv is cru-
cial to retain essential information in PiT’s Processor. Figure
4 shows that the prediction error decreases as Nv increases,
as expected. However, this benefit diminishes rapidly as
Nv reaches 64. On latent mesh of merely 64 points, PiT is
efficient and sufficiently accurate for InviscidBurgers and
ShockTube, even though the input data for these tasks is
sampled on 1,024 and 2,048 grid points, respectively.
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Table 2. Comparisons of position-attention and vanilla self-attention on all benchmark problems. The best result of each task is bolded.

Model InviscidBurgers ShockTube Darcy2D Vorticity Elasticity NACA

Testing errors
SelfAtt A 0.016 0.0259 OOM OOM 0.0295 OOM
SelfAtt B 0.0235 0.016 0.0072 0.156 0.169 0.0164
PiT 0.0136 0.0122 0.00485 0.114 0.00649 0.0048

Parameter counts
SelfAtt A 152, 833 152, 961 OOM OOM 9, 732, 609 OOM
SelfAtt B 128, 263 128, 391 444, 677 1, 776, 387 8, 684, 049 1, 774, 341
PiT 95,503 95,631 313,613 1,252,103 6,586,929 1,250,061

Training time
second/epoch

SelfAtt A 1.73 5.51 OOM OOM 7.13 OOM
SelfAtt B 1.47 1.73 15.3 18.7 9.30 21.1
PiT 0.938 1.04 14.7 16.3 7.69 15.3
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Figure 4. Impacts of the three hyperparameters in PiT.

Encoding Dimension dv (Network Width). dv affects
the model’s expressive capacity. As expected, Figure 4
shows a consistent decrease in relative errors as dv in-
creases. For Darcy2D, the PiT model with dv = 32 has
only 20, 000 trainable parameters, yet its prediction error is
merely 0.00808, which is already lower than the errors of
FNO, OFormer, and Galerkin Transformer in Table 1. While
the latter three methods all have over 2, 000, 000 trainable
parameters, PiT achieves superior performance with only
20, 000 parameters, demonstrating its parsimonious nature.

5. Conclusions
Inspired by numerical mathematics, we propose position-
attention (and two variants) and Position-induced Trans-
former (PiT) for operator learning in PDEs. PiT exhibits
outstanding performance across various PDE benchmarks,
surpassing many operator learning baselines. Notably, PiT
is discretization-convergent, enabling effective generaliza-
tion to new meshes with different resolutions. We conclude
that the position-attention mechanism is highly efficient
for learning nonlinear operators, even in challenging hyper-
bolic PDEs with discontinuous solutions. Unlike classical
self-attention, our position-attention is induced solely by
the spatial interrelations of sampling points, without re-
lying on input function values. Position-attention greatly
enhances computational efficiency and effectively integrates
positional knowledge. Our results demonstrate that position-

attention is crucial for operator learning, and positional
knowledge is all you need.

Impact Statement
PiT emerges as a versatile operator learning framework,
applicable to both the surrogate modeling of known para-
metric PDEs and the data-driven learning of unknown PDEs.
It may broadly influence various PDE-related fields such
as physics, engineering, biology, and finance, marking an
important advancement in AI for science.

Incorporating human insights, which encompass physical
and numerical knowledge, is recognized as pivotal in data-
driven modeling. Our work not only highlights this inte-
gration but also facilitates the development of new operator
learning frameworks and the enhancement of existing neu-
ral operators. This fosters growth in the realm of scientific
machine learning.

One possible negative impact relates to the computational
cost of PiT for high-dimensional, large-scale PDEs. To re-
tain essential information of the operators, the latent mesh
in PiT may require a large number of nodal points, which
notably increases the computational cost. This directs future
research endeavors toward further enhancing the current
position-attention framework through sparse approxima-
tions, low-rank approximations, or Softmax-free variants.
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A. Datasets and Setups of Benchmarks
We briefly present the datasets of the benchmarks considered in this work.

The datasets for InviscidBurgers and ShockTube are obtained from Lanthaler et al. (2023) and are available for download at
https://zenodo.org/records/7118642.

The datasets for Darcy2D and Vorticity are obtained from Li et al. (2021) and can be downloaded from https://drive.
google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-.

The datasets of Elasticity and NACA are obtained from Li et al. (2022a) and are accessible for download at https:
//drive.google.com/drive/folders/1YBuaoTdOSr_qzaow-G-iwvbUI7fiUzu8.

More detailed descriptions about these datasets and setups are provided as follows. All our codes can be found in the
Supplementary Material.

A.1. Data and Setup for Benchmark 1: Inviscid Burgers

In this benchmark, we consider a nonlinear hyperbolic PDE, namely, the 1D inviscid Burgers’ equation (Lanthaler et al.,
2023):

∂tu+ ∂x

(
u2

2

)
= 0, (x, t) ∈ [0, 1]× R+,

u( · , 0) = ū(x), x ∈ [0, 1],

(13)

where the initial condition ū(x) is sampled from a Gaussian random field. Our objective is to learn the operator that maps
various initial conditions to the corresponding entropy solutions at T = 0.1. Due to the nonlinear hyperbolic nature of this
PDE, its solution can develop discontinuities, even if the initial condition is smooth. This feature makes the task of learning
the operator challenging. The solution data at T = 0.1 were obtained using a high-order finite volume scheme on a uniform
mesh of 1,024 cells (Lanthaler et al., 2023). The full dataset in Lanthaler et al. (2023) comprises 1,024 input-output pairs for
training and validation, and 128 pairs for testing. Since we employ a training-testing setup, the validation set with 74 pairs is
excluded from our experiments for PiT. In other words, we use only the 950 data pairs as our training set to ensure a fair
comparison with the baselines.

A.2. Data and Setup for Benchmark 2: ShockTube

The ShockTube benchmark also involves a nonlinear hyperbolic system of PDEs, whose solutions contain discontinuities.
Specifically, we consider the shock tube problem of the 1D compressible Euler equations (Lanthaler et al., 2023):

∂tU + F(U)x = 0, (x, t) ∈ [−5, 5]× R+, (14)

where the conservative vector and flux are respectively given by

U =

 ρ
ρu
E

 , F(U) =

 ρu
ρu2

(E + p)u

 .

Here, ρ, u, and p denote the fluid density, velocity, and pressure, respectively. The total energy, E, consists of the kinetic
and internal energies, expressed as E = 1

2ρu
2 + p

γ−1 , with the constant adiabatic index γ = 1.4.

The objective is to learn the operator that maps the initial conservative function U0(x) to the total energy function E(x, t)
at t = 1.5. The data for the target total energy function E(x, t = 1.5) are obtained on a uniform grid with 2,048 cells
(Lanthaler et al., 2023). The full dataset in Lanthaler et al. (2023) consists of 1,024 and 128 input-output pairs for training
and testing, respectively.

A.3. Data and Setup for Benchmark 3: Darcy2D

In the Darcy2D benchmark, we consider an elliptic equation with the Dirichlet boundary condition (Anandkumar et al.,
2020; Li et al., 2020; 2021):

−∇ · (a∇u) = f, x ∈ (0, 1)2,

u = 0, x ∈ ∂(0, 1)2,
(15)

13

https://zenodo.org/records/7118642
https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-
https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-
https://drive.google.com/drive/folders/1YBuaoTdOSr_qzaow-G-iwvbUI7fiUzu8
https://drive.google.com/drive/folders/1YBuaoTdOSr_qzaow-G-iwvbUI7fiUzu8
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where f = 1 is the forcing term. Our objective is to learn the operator that maps the permeability a(x) to the pressure field
u(x). The dataset comprises 1,024 and 100 input-output pairs for training and testing, respectively. These pairs are obtained
by solving the PDE (15) on a 421 × 421 grid. The permeabilities a are random piecewise constant functions generated
according to a = ψ(µ), where ψ takes 12 for positive realizations of µ and 3 for negative ones, while µ itself is a Gaussian
random field with the Neumann boundary condition.

It is worth noting that the input functions of Darcy2D’s solution operator, characterized by piecewise constants with jumps
at interfaces (see Figure 7), pose difficulties in detecting discontinuities from relatively coarse data.

A.4. Data and Setup for Benchmark 4: Vorticity

This benchmark is related to the two-dimensional incompressible Navier–Stokes equations in the vorticity form (Li et al.,
2021):

∂tω + u · ∇ω = ν∆ω + f, x ∈ (0, 1)2, t > 0,

∇ · u = 0, x ∈ (0, 1)2, t > 0,

ω( · , t = 0) = ω0, x ∈ (0, 1)2,

(16)

where u(x, t) is the velocity field, ω = ∇× u is the vorticity, ν = 10−4 denotes the viscosity, and f(x) = 0.1(sin(2π(x1 +
x2))+cos(2π(x1+x2))) represents a periodic external force. The initial condition, ω0(x), is generated by Gaussian random
fields. All the data are generated on a 256× 256 Cartesian grid and collected with a time lag ∆ = 1, then downsampled to a
64× 64 grid. The objective is to learn the operator that maps the vorticity snapshots in the time period t ∈ [1, 10] to the
future vorticity snapshots up to T = 30. The dataset consists of 1,000 samples for training and 200 samples for testing.

A.5. Data and Setup for Benchmark 5: Elasticity

We consider a hyper-elastic material in a unit cell with a cavity of random shape at the center (Li et al., 2022a). The material
is clamped at the bottom side and stretched with a force applied at the upper side. The displacement field for a solid body is
governed by the following PDEs (Li et al., 2022a):

ρ
∂2u
∂t2

+∇ · σ = 0 (17)

with ρ being the density, u the displacement, and σ the stress tensor. This system is closed by constitutive models relating
the strain and stress tensors.

The objective is to learn the solution operator that maps mesh point locations to the displacement field. The dataset in Li
et al. (2022a) consists of 1,000 samples for training and 200 samples for testing. Each sample is represented by a point
cloud with 972 nodal points. The locations of these points vary across different samples, as the shapes of the cavities are
different. See Li et al. (2022a) for more details.

A.6. Data and Setup for Benchmark 6: NACA

This task is related to the transonic flow over airfoils described by the 2D compressible Euler equations (Li et al., 2022a):

∂tU +∇ · F(U) = 0, (18)

where the conservative vector and flux are respectively

U =

 ρ
ρv
E

 , F(U) =

 ρv
ρv ⊗ v + pI
(E + p)v

 .

Here, ρ represents the density, v denotes the velocity field, and p is the pressure. The total energy is given by E =
1
2ρ|v|

2 + p
γ−1 , with γ = 1.4 being the constant adiabatic index.

The objective is to learn the operator that maps mesh point locations to the Mach number function defined on these mesh
points. The dataset in Li et al. (2022a) consists of 1,000 samples for training and 200 samples for testing. Each sample
corresponds to a different airfoil shape and is represented on a C-grid mesh refined near the airfoil’s surface. The dataset has
been transformed onto a regular 221× 51 grid.
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B. Proof of Theorem 2.1
In this section, we present the proof Theorem 2.1.

Proof. For any x ∈ Ω, define

Gn(x) :=
1

|Xn|

|Xn|∑
k=1

exp(−λ∥x− xk∥2)(UWV )k,

Hn(x) :=
1

|Xn|

|Xn|∑
k=1

exp(−λ∥x− xk∥2).

Then we have

PosAtt(Un;Dn)i =

|Xn|∑
k=1

exp(−λDik)∑|Xn|
j=1 exp(−λDij)

(UWV )k

=

1

|Xn|

|Xn|∑
k=1

exp(−λDik)(UW
V )k

1

|Xn|

|Xn|∑
j=1

exp(−λDij)

=
Gn(xi)

Hn(xi)
=: Fn(xi).

Note that Gn(x) and Hn(x) are the Monte–Carlo integration approximations to

G(x) :=
∫
Ω

exp(−λ∥x− y∥22)v(y)WV dµΩ(y)

and
H(x) :=

∫
Ω

exp(−λ∥x− y∥22)dµΩ(y),

respectively. By the strong law of large numbers, we know that

Pr
{

lim
n→∞

Gn(x) = G(x)
}
= 1,

and
Pr
{

lim
n→∞

Hn(x) = H(x)
}
= 1.

It follows that

Fn(x)−F(x) =
Gn(x)

Hn(x)
− G(x)

H(x)

a.s.−−→ 0. (19)

Define

An :=

∫
Ω

∣∣∣∣ Gn(x)

Hn(x)
− G(x)

H(x)

∣∣∣∣ dµΩ(x) =

∫
Ω

|Fn(x)−F(x)| dµΩ(x).

Then, for any ε > 0, we have

Pr
{

lim
n→∞

An = 0
}
= 1, lim

n→∞
Pr
{
An ≤ ε

2

}
= 1. (20)

Using the Chebychev inequality and the elementary inequality (p− q)2 ≤ p2 + q2 for non-negative p and q, we have

Pr


∣∣∣∣∣∣ 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣−An

∣∣∣∣∣∣ > ε

2

 ≤ 4

|Xn|ε2

∫
Ω

(
|Fn(x)−F(x)| −An

)2
dµΩ(x)

≤ 4

|Xn|ε2

(
A2

n +

∫
Ω

(
Fn(x)−F(x)

)2
dµΩ(x)

)
,
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which further yields

Pr


∣∣∣∣∣∣ 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣−An

∣∣∣∣∣∣ ≤ ε

2

 ≥ 1− 4

|Xn|ε2

(
A2

n +

∫
Ω

(
Fn(x)−F(x)

)2
dµΩ(x)

)
.

Because

Pr

 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣ ≤ An +

ε

2

 ≥ Pr


∣∣∣∣∣∣ 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣−An

∣∣∣∣∣∣ ≤ ε

2

 ,

we obtain

Pr

 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣ ≤ An +

ε

2

 ≥ 1− 4

|Xn|ε2

(
A2

n +

∫
Ω

(
Fn(x)−F(x)

)2
dµΩ(x)

)
. (21)

Notice that if

1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣ ≤ An +

ε

2
and An ≤ ε

2
,

then

1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣ ≤ ε.

This implies

Pr

 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣ ≤ ε

 ≥ Pr

 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣ ≤ An +

ε

2
and An ≤ ε

2


≥ Pr

 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣ ≤ An +

ε

2

+ Pr
{
An ≤ ε

2

}
− 1,

where the second step follows from the probability inequality Pr(a ∩ b) ≥ Pr(a) + Pr(b)− 1. Combing it with (21), we
obtain

Pr

 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣ ≤ ε

 ≥ Pr
{
An ≤ ε

2

}
− 4

|Xn|ε2

(
A2

n +

∫
Ω

(
Fn(x)−F(x)

)2
dµΩ(x)

)
.

Taking n→ +∞ and using (19)–(20), we obtain

1 ≥ lim
n→+∞

Pr

 1

|Xn|

|Xn|∑
i=1

∣∣Fn(xi)−F(xi)
∣∣ ≤ ε

 ≥ 1.

Therefore,

lim
n→+∞

Pr

{
1

|Xn|

∥∥∥PosAtt(Un;Dn)−F|Xn

∥∥∥ ≤ ε

}
= 1,

for any ε > 0. This means the position-attention (5) converges in probability to the integral operator (7). The proof is
completed.
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C. Technical Aspects of Position-attention
C.1. Ensuring Non-negativity of λ

Ensuring the non-negativity of λ is crucial for position-attention (as well as the cross and local variants) to be well-
defined. There are several methods to maintain the non-negativity of during training, including training PiT via constrained
optimization or transforming into a positive function of itself (e.g., λ2). These methods can result in varying performance
of the trained neural operator. While replacing λ with λ2 is an intuitive and straightforward choice, we have empirically
observed higher prediction errors in PiT models constructed this way. Conversely, using tan(λ) and training PiTs under the
constraint 0 ≤ λ < π

2 has proven to be more advantageous in certain benchmark cases. This is demonstrated by the results
in Table 3.

Table 3. Prediction errors of PiT with two different methods for ensuring non-negativity of λ.

InviscidBurgers ShockTube Darcy2D Vorticity Elasticity NACA

Replace λ with λ2 0.0273 0.0122 0.0102 0.1169 0.00649 0.162
Use tan(λ) and

constrained optimization 0.0136 0.0154 0.00485 0.5757949 0.00701 0.00480

C.2. Multi-head Implementation for Position-attention

In Transformers, the multi-head technique for self-attention is widely used to enhance performance. In parallel, we can
formulate the multi-head implementation for position-attention as:

MultiHeadPosAtt(U ;D) = Concat(head1, . . . , headh),

where headi = Softmax(−λiD)UW i.
(22)

Here, h, which divides dv evenly, represents the number of heads; λi > 0 and W i ∈ Rdv× dv
h are the training parameters

for the ith head; the Concat operation in (22) concatenates the outputs of all the heads, which are matrices in RN× dv
h , to

produce the output of MultiHeadPosAtt in RN×dv . This implementation also applies to cross and local position-attention.

The multi-head implementation for position-attention defined above performs h independent convolutions with trainable λi.
With a larger λi, the attention decays more rapidly as the pairwise distance increases, indicating a stronger focus on local
features. Therefore, multi-head position-attention is trained to provide a balanced view of both local and global aspects of
the underlying operator, thereby enhancing the expressive capacity of PiT.

This is corroborated by the results presented in Table 4. Generally, using 2-head implementation in all position-attention
layers leads to lower prediction errors than using single-head. Note that 2-head implementation leads to a total of 4 heads for
the local position-attention layers in the Encoder and Decoder, and a total of 8 heads for the global position-attention layers
in the Processor. We find using more than 2 heads in all position-attention layers hardly improve the performance of PiT.

Table 4. PiT’s prediction errors in the six benchmarks when using different number of heads in position-attention and its variants.

InviscidBurgers ShockTube Darcy2D Vorticity Elasticity NACA

h = 1 0.998 0.251 0.00627 0.1140 0.00794 0.00553
h = 2 0.0136 0.0122 0.00485 0.1169 0.00691 0.00480
h = 4 0.0162 0.0161 0.00502 0.1205 0.00708 0.00507
h = 8 0.0157 0.0158 0.00530 0.1186 0.00649 0.00545

D. Interpretability of Position-attention
The position-attention mechanism is designed to be interpretable, drawing inspiration from the numerical methods for PDEs,
as it has been claimed in Section 2.2. Position-attention shares a similar concept with the upwind scheme and employs
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a linear convolution, with the kernel exhibiting a strong dependence on local neighbouring regions, resonating with the
principle of domain of dependence in PDEs and numerical methods. This insight greatly supports the interpretablility of our
method from a theoretical point of view.

We take Darcy2D as an example, where tan(λ) has been used in position-attention as stated in Appendix C. Table 5 shows
the values of 1/

√
tan(λ) of all the attention heads (i.e. all the convolutions) in the trained PiT model. These values are

indeed interpretable, as most attention at a queried point x is directed towards points y with the distance to x smaller than
1/
√
tan(λ).

Table 5. Values of 1/
√

tan(λ) in each attention head. These values are taken from the trained PiT model for the Darcy2D benchmark.
This model adopts a 2-head implementation for all the attention layers.

Layer Attention Head 1 Head 2

Encoder LocPosAtt 0.0483 0.0155
Processor 1 PosAtt 2.44 0.840
Processor 2 PosAtt 0.232 0.827
Processor 3 PosAtt 0.382 0.0752
Processor 4 PosAtt 0.588 0.167
Decoder LocPosAtt 0.0206 0.0498

E. Details of Numerical Experiments
In this section, we outline the training configurations and the neural network architectures to enable easy reproduction of the
reported results by readers. All codes and datasets are available through our GitHub repository.

E.1. Training Configurations

As in Li et al. (2021), our experiments are conducted in a train-test setting. We use the mean of the relative l2 error to train
and evaluate models on Darcy2D, Vorticity, Elasticity, and NACA, as in Li et al. (2021; 2022a). For InviscidBurgers and
ShockTube, the mean of the relative l1 error is used for training, while performance is assessed using the median of the
relative l1 error on the testing set, following Lanthaler et al. (2023). The models are trained using the Adam optimizer
and a cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016). The initial learning rate is set to 0.001, and
the training lasts for 500 epochs. The batch sizes adopted in the experiments are shown in Table 6. All the experiments
are performed on an NVIDIA GTX 3090 GPU card. PiT employs an Encoder-Processor-Decoder architecture. Detailed

Table 6. Batch size.

InviscidBurgers ShockTube Darcy2D Vorticity Elasticity NACA

# Training samples 950 1, 024 1, 024 1, 000 1, 000 1, 000
Batch size 5 8 8 8 10 8

network architectures for the six benchmark problems are presented in Table 9. We begin by introducing some abbreviations
representing the basic computational layers:

• PosAtt(w, h): A global position-attention layer followed by the GELU activation, where w is the encoding dimension
and h is the number of attention heads.

• LocPosAtt(w, h, down (or up)): A local position-attention layer followed by the GELU activation, with w as the
encoding dimension and h as the number of attention heads. This layer’s locality parameter is indicated by a quantile
value, defining the compactness of the receptive field. Downsampling or upsampling is integrated with the local
position-attention. The quantile value and the latent resolution within PiT are detailed in Table 7 and Table 8,
respectively.
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• LINEAR(w, activate): A fully connected layer with w neurons. This layer applies pointwisely to feature vectors. It
can be optionally activated by the GELU function.

• MLP(w1, w2): two stacked Linear layers with respectively w1 and w2 neurons. The first layer is activated by the
GELU function.

Table 7. Quantile value for each benchmark task. In local position-attention, smaller value means more compact recptive field.

InviscidBurgers ShockTube Darcy2D Vorticity Elasticity NACA

Quantile in Encoder 1% 4% 2% 1% 2% 0.5%
Quantile in Decoder 8% 2% 5% 8% 2% 2%

Table 8. Input and latent mesh resolutions for each task. (*) The data of Elasticity are sampled on irregular point clouds.

InviscidBurgers ShockTube Darcy2D Vorticity Elasticity* NACA

Input resolution 1, 024× 1 2, 048× 1 211× 211 64× 64 972 221× 51
Latent resolution 1, 024× 1 1, 024× 1 32× 32 16× 16 972 111× 26

Table 9. Details of the PiT architectures for all six benchmarks.

InviscidBurgers ShockTube Darcy2D Vorticity Elasticity NACA

Encoder
Linear(64, activate)
LocPosAtt(64, 2, down)

Linear(64, activate)
LocPosAtt(64, 2, down)

Linear(128, activate)
LocPosAtt(128, 2, down)

Linear(256, activate)
LocPosAtt(256, 1, down)

Linear(512)
LocPosAtt(512, 8)

Linear(256, activate)
LocPosAtt(256, 2, down)

Processor

4×
[

PosAtt(64, 2)
MLP(64, 64)
LINEAR(64)
GELU]

4×
[

PosAtt(64, 2)
MLP(64, 64)
LINEAR(64)
GELU]

4×
[

PosAtt(128, 2)
MLP(128, 128)
LINEAR(128)
GELU]

4×
[

PosAtt(256, 1)
MLP(256, 256)
Linear(256)
GELU]

4×
[

PosAtt(512, 8)
MLP(512, 512)
LINEAR(512)
GELU]

4×
[

PosAtt(256, 2)
MLP(256, 256)
LINEAR(256)
GELU]

Decoder

LocPosAtt(64, 2, up)[
PosAtt(64, 2)

MLP(64, 64)
LINEAR(64)
GELU

]
MLP(64,1)

LocPosAtt(64, 2, up)[
PosAtt(64, 2)

MLP(64, 64)
LINEAR(64)
GELU

]
MLP(64,1)

LocPosAtt(128, 2, up)
MLP(128, 1)

LocPosAtt(256, 1, up)
MLP(256, 1)

LocPosAtt(512, 8)
MLP(512, 1)

LocPosAtt(256, 2, up)
MLP(256, 1)

# Parameters 95, 503 95, 631 313, 613 1, 252, 103 6, 586, 929 1, 250, 061

Training time
(seconds/epoch) 0.938 1.04 14.7 16.3 7.69 15.3

We present the details of FNO++1 in Table 10. For datasets on regular grids, FNO++ shows outstanding training speed
thanks to the fast discrete Fourier transform.

Table 10. Architecture details and training times of FNO++.

InviscidBurgers ShockTube Darcy2D Vorticity

Modes 19 7 12 12
Width 32 32 32 20

# Parameters 170, 593 72, 353 2, 376, 449 928, 661

Training time
(seconds/epoch) 0.434 0.671 5.64 11.5

1https://github.com/neuraloperator/neuraloperator/tree/master
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E.2. Insights on Hyper-parameter Calibration

Tuning the hyper-parameters (quantile, latent resolution Nv, and encoding dimension dv) in PiT models is not a difficult
process. We recommend beginning with a small quantile value (for instance, 1%) for the Encoder and Decoder, using a
coarse latent mesh, and setting the encoding dimension to 64. These initial settings typically allow a PiT model to deliver
comparable performance to baseline models for all our tested cases.

Should there be a need for further refinement to attain higher accuracy, we proceed with localized tuning. This involves
increasing the encoding dimension dv first. If the desired accuracy is not met through this adjustment, we then refine the
latent resolution Nv and, as a final step, modify the quantile. This stepwise approach helps in efficiently reaching the optimal
performance without exhaustive search.

E.3. Comparison of Parameter Counts with Baselines Models

For further benchmark purpose, we provide the parameter count for each of the models in Table 1.

• For the InviscidBurgers and ShockTube benchmarks, we have gathered parameter counts of DeepONet, shift-DeepONet,
FNO and FNO++ in Table 11:

Table 11. Parameter counts of PiT and the baseline models in the InviscidBurgers and ShockTube benchmarks. The smallest model in
each task is bolded, and the second smallest model is underlined.

Model InviscidBurgers ShockTube

DeepONet 618, 085 3, 190, 673
shift-DeepONet 1, 835, 297 6, 047, 633
FNO 90,593 41,505
FNO++ 170, 593 72, 353

PiT 95, 503 95, 631

• For the Darcy2D and Vorticity benchmarks, we have gathered parameter counts for Galerkin Transformer, OFormer,
FNO, and FNO++ in Table 12:

Table 12. Parameter counts of PiT and the baseline models in the Darcy2D and Vorticity benchmarks.

Model Darcy2D Vorticity

Galerkin Transformer 2.22 Million 1.56 Million
OFormer 2.51 Million 1.85 Million
FNO 2, 368, 001 926,517
FNO++ 2, 376, 449 928, 661

PiT 313,613 1, 252, 103

• For the Elasticity and NACA benchmarks, we have gathered the parameter counts for FNO and Geo-FNO in Table 13.
It is worth noting that, for the Elasticity benchmark, we can reduce the encoding dimension of PiT from 512 to 256,
yielding a model with only 1,655,053 parameters (less than those of FNO and Geo-FNO). While this adjustment
increases the testing error of PiT from 0.00649 to 0.00829 (as shown in Table 1 and Figure 4), it still remains lower
than the testing errors of all baseline models. This further demonstrates the efficiency and accuracy of PiT.

E.4. Comparison of Training Costs with Baseline Transformer-based Neural Operators

To validate the superior efficiency of our PiT model over other Transformer architectures, we have acquired the following
runtime and memory results:
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Table 13. Parameter counts of PiT and the baseline models in the Elasticity and NACA benchmarks.

Model Elasticity NACA

FNO 2,368,001 2, 368, 001
Geo-FNO 3, 020, 963 4, 727, 329

PiT 6, 586, 929 1,250,061

• In the Darcy2D benchmark, Cao (2021) reported a training time of 0.61 hours for 100 epochs using the 211 × 211
dataset, equating to 22 seconds/epoch or 5.83 iterations/second (with 128 iterations/epoch at a batch size of 8), with a
Galerkin Transformer comprising 2.22 million parameters. In contrast, our PiT model required only 14.7 seconds/epoch,
with a significantly lower parameter count of 0.31 million, using the same dataset and GPU.

• For the Vorticity test case with ν = 10−4 employing 10, 000 training samples, Li et al. (2022b) detailed the training
costs for OFomer and the Galerkin Transformer. Our experiments with PiT, adhering to the same batch size and GPU,
demonstrated significantly greater efficiency over these two Transformer architectures, as shown in Table 14

Table 14. Iteration per second and memory usage during model training. The best results are bolded, and the second best results are
underlined.

Model Iters/sec Memory (GB) params #(Million)

Galerkin Transformer 1.79 16.65 1.56
OFormer 1.89 15.93 1.85

PiT 6.71 4.4 1.25

F. Additional Experimental Results
In this section, we present additional experimental results to support our findings and demonstrate the effectiveness of the
proposed PiT for complex operator learning tasks.

F.1. Additional Experimental Results on Benchmark 1: InviscidBurgers

In Figure 5, we present some predicted solutions of the inviscid Burgers’ equation obtained using the Self-PiT. Due to
the nonlinear hyperbolic nature of the PDE, many discontinuities are developed in the solutions, even though the initial
conditions are smooth. We observe an excellent agreement between the predicted and reference solutions.

In Table 15, we display the 25% and 75% quantiles of the relative l1 errors computed over the testing data for PiT compared
with the baselines. It is evident that PiT and Self-PiT achieve outstanding results compared to the baselines, although
Self-PiT does not consistently outperform PiT.

Table 15. 25% and 75% quantiles of relative l1 errors (×10−2) on the testing dataset.

DeepONet shift-DeepONet FNO FNO++ PiT Self-PiT

InviscidBurgers 25.4− 32.4 6.7− 9.6 1.3− 1.9 0.842− 1.26 1.1− 1.61 0.651− 0.974

ShockTube 3.4− 5.4 2.0− 3.75 1.2− 2.1 1.48− 2.68 0.9− 1.82 1.4− 2.64

F.2. Additional Experimental Results on Benchmark 2: ShockTube

In this operator learning task, the initial density, momentum and energy are step-shaped functions. The 1D compressible
Euler equations evolve these initial conditions into various wave structures with discontinuities at t = 1.5 (see Figure 6).
The results predicted by PiT show good agreement with the reference solutions.
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Figure 5. InviscidBurgers: Predictions given by Self-PiT for four different input functions.

In Table 15, we present the 25% and 75% quantiles of the relative l1 errors over the testing data for PiT in comparison with
the baselines. For this benchmark, PiT achieves the lowest prediction error, surpassing all tested baselines.

F.3. Additional Experimental Results on Benchmark 3: Darcy2D

We have shown that PiT demonstrates exceptional efficiency in approximating the solution operator for the Darcy2D
benchmark. Remarkably, a PiT trained on downscaled 432 data can accurately predict solutions on the full 4212 grid,
achieving only a 4.50% relative error.

The latent resolution of PiT is fixed at 322, regardless of the mesh resolution of the input functions. When trained with data
at a finer resolution, PiT shows enhanced performance. We document the prediction error and the training cost for different
datasets in Table 16. Notably, the training time per epoch scales sub-linearly with the number of mesh points, denoted by N .
Furthermore, the prediction error rapidly reduces as N increases. These results highlight PiT’s effectiveness in learning
large-scale operators and its remarkable discretization-convergent property under zero-shot super-resolution evaluation (see
Figure 7).

F.4. More Experimental Results on Benchmark 4: Vorticity

In Figure 8, the growth of prediction error is plotted. We observe approximately an exponential trend, which is normal for
data-driven evolution operators. In Figure 9, we present the evolution of the vorticity field. Although Vorticity is a hard task
with turbulent flow pattern and scarce data, our method correctly captures the evolution pattern.

F.5. Additional Experimental Results on Benchmark 5: Elasticity

The Elasticity benchmark presents a unique challenge as it comprises samples with cavities of varying shapes. Unlike other
tasks that use a fixed grid for all data samples, the sampling points in the Elasticity dataset are body-fitted to the cavities.
This feature makes Elasticity distinct. As further demonstrated in Figure 10, PiT effectively captures the stress concentration
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Figure 6. ShockTube: Predictions of the total energy functions at t = 1.5 given by PiT for four different input functions, compared to the
reference solutions. The initial conditions for density, momentum and energy are all step functions.

Table 16. Darcy2D: Results of discretization-convergent experiments. Four PiT models are trained with data on different mesh resolutions,
and then evaluated using the testing data on either the same mesh or the finer 4212 mesh. The prediction errors are measured by average
relative l2 errors.

Training resolution 432 852 1412 2112

Training time
(seconds/epoch) 1.11 2.41 4.37 14.7

Prediction error on
training resolution 0.00974 0.00578 0.00558 0.00485

Prediction error on
421× 421 resolution 0.0450 0.0209 0.0117 0.00715

resulting from the irregular geometries of the cavities.

We have found that the parametrization of the cavity’s shape is crucial for learning the target operator. Each sample in the
dataset is characterized by a 42-dimensional vector, which is utilized to parametrize the shape of the cavity. We concatenate
this vector with the mesh point coordinates to serve as the input for our model. In other words, the input is a tensor with
44 channels, of which 42 are constants across the domain. To improve the performance, we apply the transformation
g(r) = 5r − 1 to each channel of the shape parameters, effectively normalizing their values to the interval [0, 1]. This
normalization ensures that the shape features are comparable to the coordinate features, considering that the problem is
defined within the unit square [0, 1]2.
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Figure 7. Darcy2D: The input functions (permeability), the referential and predicted pressure fields, and the absolute error (from left to
right). The model is trained on 432 mesh resolution, and then tested on 4212 mesh resolution. From top to bottom: four testing examples
with different input functions.

F.6. Additional Experimental Results on Benchmark 6: NACA

The data for the NACA benchmark are sampled on C-grid meshes, which are locally refined near the surfaces of the airfoils.
The mesh points cover a large domain encompassing the airfoil, where the chord length is set to 1.

Figure 11 displays a close-up view of the Mach field around the airfoils, produced by the learned operator of PiT. One can
see that PiT accurately predicts the Mach field and effectively captures the shock wave structures. The predicted solutions
are in good agreement with the reference solutions.
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Figure 8. Vorticity: Evolution of prediction errors over time.
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Figure 9. Vorticity benchmark: Evolution of the vorticity field at t = 11, 20, and 30 (from top to bottom). Left: reference. Middle:
prediction. Right: absolute error.
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Figure 10. Stress field for elasticity. Left: reference. Middle: prediction by PiT. Right: absolute error.
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Figure 11. Fluid Mach numbers for NACA. Left: reference. Middle: prediction by PiT. Right: absolute error.
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