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Abstract

Improving user experience and providing per-001
sonalized search results in E-commerce plat-002
forms heavily rely on understanding purchase003
intention. However, existing methods for ac-004
quiring large-scale intentions bank on distilling005
large language models with human annotation006
for verification. Such an approach tends to gen-007
erate product-centric intentions, overlook valu-008
able visual information from product images,009
and incurs high costs for scalability. To ad-010
dress these issues, we introduce MIND, a mul-011
timodal framework that allows Large Vision-012
Language Models (LVLMs) to infer purchase013
intentions from multimodal product metadata014
and prioritize human-centric ones. Using Ama-015
zon Review data, we apply MIND and cre-016
ate a multimodal intention knowledge base,017
which contains 1,264,441 intentions derived018
from 126,142 co-buy shopping records across019
107,215 products. Extensive human evalu-020
ations demonstrate the high plausibility and021
typicality of our obtained intentions and vali-022
date the effectiveness of our distillation frame-023
work and filtering mechanism. Further experi-024
ments reveal the positive downstream benefits025
that MIND brings to intention comprehension026
tasks and highlight the importance of multi-027
modal generation and role-aware filtering. Ad-028
ditionally, MIND shows robustness to different029
prompts and superior generation quality com-030
pared to previous methods.031

1 Introduction032

Understanding customers’ intentions behind their033

purchase behaviors remains crucial in E-commerce034

as it potentially benefits several downstream tasks,035

such as product recommendation (Grbovic et al.,036

2015; Zhao et al., 2014; Li et al., 2020) and search037

query answering (Zhao et al., 2019; Hirsch et al.,038

2020). Unlike traditional factual knowledge related039

to products, intentions are implicit mental states of040

customers, which typically require commonsense041
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Figure 1: Examples showing the process of distilling
purchase intentions from large language models and
large vision-language models. Without product images,
large language models tend to generate intentions with
low typicality and hallucinated facts, while leveraging
large vision-language models resolve such issue.

knowledge to understand and reason upon (Brat- 042

man, 1984). For example, in Figure 1, the inten- 043

tions of purchasing a mouse and a keyboard can 044

be they are very useful to computer users, which 045

is not mentioned either in the customer’s query or 046

products’ metadata. Thus, due to such implicitness, 047

it is infeasible to perform large-scale automatic 048

extraction from text to obtain them. 049

To combat this, Yu et al. (2023) proposed to dis- 050

till purchase intentions from large language mod- 051

els, such as OPT (Zhang et al., 2022), by prompt- 052

ing them with real purchasing records and relevant 053

product metadata. Human-in-the-loop annotations 054

are also carried out to verify the plausibility and 055

typicality of the generated intentions and train a dis- 056

criminator for large-scale critic filtering. Yu et al. 057

(2024) further entangled human annotations with 058

instruction tuning to align the distilled intentions 059

with a human-centric perspective. While these 060

works provide a straightforward approach to in- 061
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tention acquisition, several limitations still persist.062

First, previous works on E-commerce intention063

knowledge base construction have solely focused064

on the text modality, thereby sacrificing significant065

supervision signals from visual modalities, such as066

product images. This oversight hinders the model067

from obtaining a more comprehensive understand-068

ing of the product, consequently compromising the069

quality of the generated intentions, as demonstrated070

in the left lower part of Figure 1. Furthermore, re-071

cent work has shown that intentions derived using072

current distillation methods exhibit bias towards073

product-centric aspects, excessively emphasizing074

product properties and metadata (Zhou et al., 2024).075

Consequently, interactions between the products076

and customers, including potential use cases and077

features of interest to customers, are absent from078

the derived intentions, despite being fundamental079

in facilitating customers’ shopping experience. Fi-080

nally, human annotations are heavily deployed in081

current intention collection methods, which serve082

as a critical step in controlling the quality of the083

generated results. This poses a challenge towards084

constructing scalable yet diverse intention knowl-085

edge bases with minimum human supervision cost.086

To address these issues, we propose MIND, a087

Multimodal Shopping IntentioN Distillation frame-088

work. MIND instructs Large Vision-Language089

Models (LVLMs) to generate purchase intentions090

in a three-step manner, based on real user co-buy091

records and product metadata. Specifically, we092

select LLaVa (Liu et al., 2023a) as a representa-093

tive LVLM and incorporate both visual informa-094

tion from the product images and text information095

from the product name into the generation pro-096

cess. To better align the generated raw intentions097

with human preferences and alleviate human an-098

notation costs for further quality control, we pro-099

pose a human-centric role-aware mechanism. This100

mechanism first instructs LLaVa to discover simi-101

lar features between the products and then imitates102

a customer agent to decide whether the products103

would be bought together under previously gener-104

ated intentions.105

By applying MIND to a subset of the Amazon106

Review Dataset (Ni et al., 2019), we construct a107

multimodal intention knowledge base. It features108

1.26 million of intentions over 126,142 co-buy109

shopping records across 107,215 products. Hu-110

man evaluations further confirm: (1) the excep-111

tional quality of our generated intentions, which112

have higher plausibility and typicality than previ-113

ous generation methods, and (2) the effectiveness 114

of our proposed human-centric role-aware mecha- 115

nism. Furthermore, we apply our generated inten- 116

tions to two downstream tasks in the IntentionQA 117

benchmark (Ding et al., 2024), which evaluates a 118

language model’s abilities to discriminate and uti- 119

lize purchase intentions. Extensive experiments 120

show that distilling our generated intentions into 121

large language models’ provide substantial benefits 122

on both tasks via fine-tuning. Further ablation stud- 123

ies reveal the importance of incorporating visual 124

cues of products in MIND and the necessity of inte- 125

grating our proposed role-aware filter mechanism. 126

Moreover, analyses demonstrate the remarkable di- 127

versity of MIND’s intentions and the exceptional 128

robustness of MIND when dealing with different 129

prompts. Our code, data, and models will be re- 130

leased upon acceptance. 131

2 Related Works 132

2.1 Shopping Intention in E-commerce 133

Shopping intention is an implicit mental state that 134

motivates purchase-related behaviors from the cus- 135

tomer’s perspective (Koo and Ju, 2010). Various 136

studies have been conducted to examine the impact 137

of consumer shopping intentions on downstream 138

applications (Dai et al., 2006; Zhang et al., 2016; 139

Hao et al., 2022). Recently, Ni et al. (2019) sug- 140

gested using customer reviews to investigate the un- 141

derlying purchase intentions in consumer purchase 142

behavior and created a large-scale review dataset 143

based on Amazon. Building upon this, Yu et al. 144

(2023) proposed FolkScope, which aims to guide 145

LLMs in generating user co-buy intentions for dif- 146

ferent product pairs by grounding them in Concept- 147

Net relations (Speer et al., 2017). While human 148

evaluations confirmed its effectiveness, Zhou et al. 149

(2024) argued that it not only remains expensive to 150

scale up but also fails to align the resulting shop- 151

ping intentions with human preferences, which en- 152

compass a wide range of factors beyond product 153

properties and similarities. To tackle these issues, 154

in our work, we propose MIND, a framework that 155

undermines online co-buy intentions and aligns bet- 156

ter with human perceptions. 157

2.2 Multimodal Knowledge Distillation 158

Since VLMs have yield significant advance re- 159

cently (Liu et al., 2023d; Li et al., 2023; Zhu et al., 160

2023), distilling domain-specific knowledge from 161

them has become an effective yet cost-friendly 162
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Figure 2: An overview of MIND. We first extract features from products in real-world co-buy records, generate
intentions multimodally, and apply a human-centric role-aware filter for quality optimization.

trend in multimodal studies (Liu et al., 2023c; Lu163

et al., 2024; Jin et al., 2021). Liu et al. (2023c)164

proposed a framework that applies self-distillation165

to stimulate the pre-train process of BERT to im-166

prove its performance in E-commerce product un-167

derstanding tasks. Lu et al. (2024) similarly in-168

structed MiniGPT4 (Zhu et al., 2023) to generate169

user intention form social media posts text and its170

associated images. Jin et al. (2021) also designed a171

framework to instruct the student model to imitate172

teacher model’s behavior, which successfully pre-173

served the teacher model’s capabilities with fewer174

parameters. In our work, we share the same aspi-175

ration and leverage distillation as a tool for data176

collection that provides downstream benefits in the177

E-commerce domain. Specifically, we designed a178

framework to distill E-commerce intentions from179

LLaVa (Liu et al., 2023a) and construct a com-180

prehensive intention knowledge base based on the181

resulted generations.182

3 The MIND Framework183

3.1 Overview of MIND184

Following Yu et al. (2023), the objective of MIND185

is formulated as a text generation task. Given a186

record that shows a customer’s co-buy (purchasing187

together) of two products, along with the detailed188

metadata of both products, MIND aims to generate189

the intentions behind such purchase behaviors that190

best align with the customer’s mental state during191

the purchase, which includes their beliefs, desires,192

and intents (Georgeff et al., 1999).193

Formally, for a given co-buy record, we define194

the two products as p1 and p2, along with their195

associated images {p1i , p2i }, and features and at-196

tributes {p1f , p2f}. MIND aims to leverage a LVLM 197

F to generate the intentions I(p1, p2) of purchas- 198

ing both products based on a pre-defined com- 199

monsense relation r, denoted as I(p1, p2, r) = 200

F (p1f , p
2
f , p

1
i , p

2
i , r). In this paper, we follow Yu 201

et al. (2023, 2024) and use relations from Concept- 202

Net (Speer et al., 2017) to model the intentions. 203

LLaVa-1.5-13b (Liu et al., 2023a) is used as the 204

LVLM F . 205

To achieve this objective, we design three se- 206

quentially connected steps within MIND, which 207

are shown in Figure 2. These steps are termed as: 208

(1) product feature extraction; (2) co-buy intention 209

generation; (3) human-centric role-aware filtering. 210

Together, they form a collective pipeline for sys- 211

tematic intention acquisition without the need for 212

human supervision and quality filtering. 213

3.2 Source Data Collection 214

We utilize the Amazon Review Data released by Ni 215

et al. (2019), which contains millions of products 216

from 18 domains. Each product is accompanied 217

by detailed reviews, co-buy records, and metadata, 218

including its product title, features, attributes, and 219

images provided by the retailer. Following Yu et al. 220

(2023), we select products from the Electronics 221

and Clothing, Shoes and Jewelry domains as repre- 222

sentative products to demonstrate the effectiveness 223

of MIND. To fit our framework, we filter out prod- 224

ucts without accessible images that may have been 225

removed from the Amazon platform. 226

3.3 Product Feature Extraction 227

We begin processing the collected products by first 228

extracting key features with the aid of LVLMs. 229

This is motivated by our observations that prod- 230
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uct descriptions and attributes, inputed by retailers,231

tend to be noisy and unorganized, probably for232

promotion and style organization purposes. Thus,233

we explicitly instructs LVLMs to augment source234

product metadata by extracting implicit features235

from each product’s image and title by leveraging236

a zero-shot prompt:237

Prompt Template for Product Feature Extraction

Visual Input: pi

Textual Input: <Instruction>. Given the product
shown in the image: pf , generate additional features
by focusing on the product’s attribute, design, and
quality.

238

where <Instruction> is a detailed task instruc-239

tion, and pi, pf are the respective image and details240

(title, descriptions, etc.) of the product. This en-241

ables LVLM to comprehend the product from both242

visual and textual modalities, thereby providing us243

with a richer set of features that complements those244

provided by the retailers.245

3.4 Co-buy Intention Generation246

Then, for each co-buy pair of products (p1, p2), we247

provide LVLM with the acquired features together248

with all details of both products, and instructs it249

again to reason the intentions for purchasing them250

simultaneously. Specifically, we follow Yu et al.251

(2023) and leverage 20 commonsense relations252

from ConceptNet (Speer et al., 2017) as waymarks253

to lead LVLM in generating purchase intentions254

with controllable commonsense groundings. Simi-255

lar to the previous step, a zero-shot prompt is used:256

Prompt Template for Intention Generation

Visual Input: p1i , p2i

Textual Input: <Instruction>. A customer pur-
chased a pair of products, as shown in the images.
They are: p1f , p

2
f . Act as the customer and infer a

potential intention behind such purchase. Start the
intention with <Relation>.

257

Where <Instruction> is a detailed task instruc-258

tion and <Relation> is the corresponding text tem-259

plate of a commonsense relation from ConceptNet.260

For every relation, we generate only one intention261

per pair of products due to the large amount of262

products and co-buy records. However, this is not263

restricted and can easily scale up.264

3.5 Human-centric Role-aware Filtering 265

To effectively manage a large amount of purchase 266

intentions, quality control measures have become 267

imperative. While previous works relied on human 268

annotaions for this purpose, recent works (Zhou 269

et al., 2024) show that co-buy intentions generated 270

by LLMs, despite undergoing human filtering, still 271

fail in capturing the customers’ mental states but 272

rather focus on factual similarities of the products, 273

as demonstrated in Figure 1. This phenomenon, ref- 274

ered to as “product-centric,” restricts the potential 275

downstream applications of the generated inten- 276

tions. To address both issues, inspired by recent 277

works on theory-of-mind (Kosinski, 2023), we pro- 278

pose to incorporate a filtering module, powered by 279

a LVLM, after the generation process. We instruct 280

the LVLM to assume the role of an E-commerce 281

customer and provide it with a generated inten- 282

tion as the objective in the customer’s mental state. 283

Based on this intention, we present the LVLM with 284

a pair of products and ask it to first determine 285

whether the intention successfully motivates the 286

purchase behavior and then generate a rationale 287

to support its decision. This process simulates a 288

real-world scenario where the LVLM functions as 289

a customer, making purchase decisions. By filter- 290

ing intentions that result in a positive response for 291

purchasing, we obtain intentions that are “human- 292

centric” in the sense that they satisfy the mental 293

state of an agent that is aware of its role as a cus- 294

tomer. We term this approach as human-centric 295

role-aware filtering, which serves as an automatic 296

filter to replace manual annotations. We apply this 297

module to all the intentions we collected in previ- 298

ous steps and select the product-intention pairs that 299

are accepted by the module as the final outcomes 300

of our framework. Detailed prompts are provided 301

in Appendix A. 302

4 Intrinsic Evaluations 303

By applying MIND to products we collected from 304

Amazon Reviews (Ni et al., 2019), we construct a 305

multimodal intention knowledge base, with statis- 306

tics shown in Table 1. In total, 1.26 million inten- 307

tions are preserved after applying our proposed fil- 308

tering module, spanning across 20 relations. There- 309

fore, in this section, we first evaluate MIND intrin- 310

sically by examining the quality of the generated 311

intentions and the effectiveness of our proposed 312

filter module through human annotation. 313
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4.1 Annotation Setup314

We hire human annotators from the Amazon Me-315

chanical Turk platform to evaluate the generated316

intentions. For a generated intention, we task each317

worker to evaluate four aspects:318

• Plausibility refers to the degree to which an319

intention of a co-buy purchase appears correct and320

reasonable given both products.321

• Typicality evaluates how well the intention322

reflects a specific feature that causes the user be-323

havior, which emphasizes on informativeness and324

causality (Yu et al., 2023).325

• Human-centric evaluates the extent to which326

the intention considers and aligns with the mental327

state and preferences of a human customer.328

• Filter rationale evaluates the correctness of329

the reasoning or justification provided by the fil-330

tering module for accepting or rejecting a product-331

intention pair.332

For each aspect, we ask the annotators to rate333

them as a binary classification task. A random334

sample of 5,000 generated intentions are annotated,335

and the final vote is determined by the majority336

vote from three annotators. The requirement for337

the annotators could be found in Appendix B.338

4.2 Annotation Results339

The results of the annotations are presented in Ta-340

ble 1. The annotators achieved a pairwise agree-341

ment of 73.1% and a Fleiss’s κ (Fleiss, 1971) of342

0.56, indicating satisfactory internal agreement.343

The results reveal that MIND effectively generates344

purchase intentions that are both highly plausible345

(94% on average) and typical (90% on average)346

across all relations. This indicates the strong prod-347

uct understanding and intention reasoning capabili-348

ties of MIND. Additionally, our proposed human-349

centric role-aware filter correctly identifies 82% of350

intentions on average, with 80% of them having351

appropriate justifications for filtering. These high352

percentages further validate the effectiveness of our353

proposed method, which serves as a cost-efficient354

and highly reliable quality control measure, replac-355

ing the need for human annotations. More details356

and analysis regarding the filtered out intentions357

are attached in Appendix C358

5 Experiments and Analyses359

In this section, we first study the downstream ben-360

efits brought by intentions generated by MIND.361

Then, we conduct in-depth analyses to demonstrate362

Relation #Int. Pla. Typ. Fil. Rat.

Effect 97,047 0.90 0.83 0.73 0.70
MannerOf 50,563 0.93 0.89 0.83 0.82
isA 62,069 0.94 0.88 0.82 0.80
Other 545 0.94 0.90 0.79 0.75
MadeOf 40,593 0.95 0.92 0.85 0.82
SimilarTo 63,558 0.94 0.87 0.83 0.80
UsedFor 52,383 0.94 0.88 0.81 0.79
Can 90,392 0.95 0.91 0.82 0.78
CauseDesire 95,097 0.94 0.90 0.82 0.80
RelatedTo 64,152 0.93 0.89 0.81 0.79
PartOf 81,230 0.92 0.87 0.79 0.77
Open 122,296 0.93 0.89 0.83 0.82
CreatedBy 35,723 0.94 0.88 0.78 0.76
DeriveFrom 60,347 0.95 0.89 0.80 0.77
DefinedAs 51,680 0.96 0.92 0.84 0.84
PropertyOf 57,947 0.97 0.90 0.83 0.82
CapableOf 86,772 0.95 0.90 0.82 0.82
Cause 61,860 0.95 0.92 0.83 0.82
SymbolOf 64,477 0.95 0.92 0.84 0.82
DistinctFrom 27,710 0.94 0.89 0.84 0.83

Total 1,264,441 0.94 0.90 0.82 0.80

Table 1: Statistics of the intention knowledge base con-
structed via MIND and human annotation results.

the advantages of multimodal generation in MIND 363

compared to generating only with textual informa- 364

tion, the superior capability of the human-centric 365

role-aware filter in comparison to other filtering 366

measures, knowledge diversity in MIND genera- 367

tions, and its robustness when generating with dif- 368

ferent prompts. 369

5.1 Evaluation Setup 370

We explore the effectiveness of MIND on the Inten- 371

tionQA benchmark (Ding et al., 2024), a compre- 372

hensive multiple-choice question answering dataset 373

comprising two challenging subtasks that require 374

language models to comprehend and utilize inten- 375

tions in E-commerce scenarios accurately. The first 376

task assesses LLMs’ capability in accurately in- 377

ferring the intention given a co-buy product pair 378

together with 3 distractors sampled from other prod- 379

uct pairs, while the second task evaluates LLMs’ 380

capability in utilizing purchase intention to make 381

reasonable product recommendation by selecting 382

the product that best aligns with the user’s intention 383

from four choices. 384

While existing results show that language mod- 385

els struggle with both tasks, we aim to examine 386

whether MIND can enhance LLMs’ intention under- 387

standing capabilities through fine-tuning. Specifi- 388

cally, from all intentions generated by MIND, we 389

transform them into instruction-following format 390

via natural language templates following Zhou 391

et al. (2023). Then, we fine-tune LLAMA2-7B- 392
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Methods Backbone INTENTIONUNDERSTANDING INTENTIONUTILIZATION

Easy Medium Hard Avg. Easy Medium Hard Avg.

Random - 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00
Majority Vote - 26.37 25.24 26.27 26.15 25.97 28.57 28.57 26.60

PTLM

RoBERTa-Large 214M 41.46 41.98 38.98 41.43 54.95 35.06 30.08 49.84
DeBERTa-v3-Large 435M 36.40 38.72 37.62 36.90 26.52 29.35 32.33 27.39
T5-v1.1-xxl 11B 24.84 25.47 25.42 24.99 26.71 26.23 25.56 26.55
Flan-T5-xxl 11B 75.98 73.58 63.56 74.88 79.26 81.82 81.95 79.89
T0-pp 11B 71.70 68.87 64.41 70.78 77.11 76.10 78.20 76.99

Commonsense

HyKAS 435M 71.81 67.17 46.69 69.61 47.02 45.97 48.12 46.90
CAR 435M 73.69 71.46 54.38 72.20 36.18 43.12 44.36 37.94
CANDLE 435M 74.34 70.75 52.54 72.52 35.94 43.90 43.61 37.84
VERA 11B 69.82 70.52 61.02 69.49 59.20 58.18 64.66 59.36
VERA-CANDLE 11B 70.59 71.33 63.41 70.02 62.18 60.13 66.13 61.81

Open LLM

LLAMA2-7B-chat 64.98 66.54 53.85 64.61 59.90 54.86 47.37 58.04
LLAMA2-13B-chat 69.63 63.96 60.78 68.06 45.53 41.95 39.71 44.52
Gemma-2B-instruct 48.77 47.23 48.21 48.45 39.45 39.15 38.17 39.32
Gemma-7B-instruct 65.55 64.31 52.04 64.61 33.18 36.01 41.51 34.20
Mistral-7B-Instruct-v0.2 76.57 74.53 63.56 75.50 59.78 62.60 65.41 60.64
Falcon-7B-instruct 24.54 22.17 28.26 24.25 26.15 28.05 26.32 26.50
Vicuna-7B-v1.5 57.13 57.08 55.43 57.05 27.88 30.13 23.31 28.00

MIND Distilled LLAMA2-7B-chat 65.78 64.61 55.75 66.15 59.43 57.13 60.03 59.04
Mistral-7B-Instruct-v0.2 78.57 74.31 80.89 76.97 61.14 65.42 62.16 62.02

LLM API

ChatGPT 75.06 73.76 68.64 74.48 80.74 76.62 68.42 79.23
ChatGPT (CoT) 76.07 74.53 63.56 75.12 78.89 75.32 78.20 78.21
ChatGPT (CoT-SC) 76.51 73.82 63.56 75.32 85.72 77.14 82.71 83.99
GPT 4 78.12 75.41 66.10 76.97 86.03 82.34 84.96 85.30
GPT 4 (CoT) 78.12 75.41 66.10 76.97 86.03 82.34 84.96 85.30
GPT 4 (CoT-SC) 78.80 72.88 65.25 76.97 84.00 80.78 84.96 83.48

Human - 89.96 90.00 80.96 89.33 95.50 85.19 100.0 94.00

Table 2: Evaluation results (Accuracy%) of various language models on both tasks of the IntentionQA benchmark.

chat (Jiang et al., 2023) and Mistral-7B-Instruct-393

v0.2 (Touvron et al., 2023) on the retrieved data as394

a type of knowledge injection. They are then eval-395

uated in a zero-shot manner by being prompted to396

select the most plausible choice for every QA pair397

in IntentionQA. Accuracy is used as the evaluation398

metric. More information about the baselines can399

be found in Appendix D400

5.2 Results401

The results are presented in Table 2, demonstrating402

significant improvements in both tasks when LLMs403

are fine-tuned on intentions generated by MIND.404

For instance, LLAMA2 achieves accuracy gains of405

1.54% and 1.00% for both tasks, respectively. No-406

tably, Mistral yields a remarkable performance gain407

that even becomes comparable to GPT-4, despite408

having a significantly lower number of parameters.409

However, for the intention utilization task, while410

both fine-tuned LLMs show performance improve-411

ments, they still fall behind GPT-4. One potential412

reason for this gap could be the misalignment be-413

tween the fine-tuning objective and the evaluated414

ability of the task, which involves generating inten- 415

tions for a pair of products and selecting a product 416

based on a given intention. Nevertheless, these 417

results underscore the effectiveness and efficiency 418

of MIND in enhancing LLMs’ capabilities in E- 419

commerce intention comprehension and utilization. 420

5.3 Analyses 421

In this section, we study the superiority of MIND 422

by examining three aspects. First, we demonstrate 423

the positive impact of acquiring intentions in a mul- 424

timodal manner instead of relying solely on textual 425

hints. Next, we show that our proposed human- 426

centric filtering leads to better downstream results 427

and is more effective than traditional critic filtering 428

based on a supervised scoring discriminator. Fi- 429

nally, we illustrate the robustness of MIND when 430

using different prompts and its superior quality 431

compared to FolkScope. 432

5.3.1 Multimodal vs. Unimodal Generation 433

We first study the ablation of incorporating vi- 434

sual information in MIND by comparing the down- 435

stream benefits of intentions generated in mul- 436

6



personac
ce

ss
or

y

part

occasion

event

style

party

ac
tiv

ity term
purpose

property

design

jewelry
type

comfort

child
doctor

elderlyfamily memberfrie
ndpa

ren
t

tea
ch

er

yo
un

g 
ch

ild
ba

g

ba
tte

rybe
lt

gl
ov

e
ha

nd
ba

ghat
jew

elry

scarf
shoe
bearing

beltboltengine

gearmotor

springvalvewheelanniversary
birthdaychristmaseaster

holiday
party
wedding
birthday

concert

sales event

school event

school social event

sports e
vent

wedding

contemporary

hip hop

jaz
z

po
p

ro
ck

bi
rth

da
y

cr
ed

ito
r

fa
m

ily
 m

em
be

r
go

ve
rn

m
en

t
gr

ee
n 

pa
rty

gr
ee

ns
la

w
 e

nf
or

ce
m

en
t

su
pp

lie
r

w
ed

di
ng

fis
hi

ng
hi

ki
ng

sp
or

t

sw
im

m
ing

yoga
front

intersexuality
left

organization listing

psychologic herm
aphroditism

top
upper

logo
poster

t shirt

wedding invitation
work

density

hardness

size

solubility

strength

tensile strength

viscosity

flower

heart

logo

stripe

bracelet

earring

necklace
ring

watch

integer
string

air conditioning

Figure 3: Distribution of hypernyms sourced from
Probase in MIND with top frequencies.

timodal versus unimodal (text-only) paradigms.437

For a fair comparison, we exclude visual input in438

LLaVa when generating in a unimodal manner and439

instruct it to generate intentions for the same pur-440

chasing records as in MIND with prompts that are441

as identical as possible. We then fine-tune LLMs442

on the collected intentions, evaluate the resulting443

models on the IntentionQA benchmark, and com-444

pare the performance of the two types of distilled445

models. The results are shown in Table 3. We446

observe that fine-tuning LLMs on intentions gen-447

erated with textual information can only merely448

improve their performances on downstream tasks,449

certifying the need of additional visual signals.450

5.3.2 Diversity of MIND451

Moreover, the semantic diversity of the generated452

intentions are another flag of the quality as fea-453

turing intentions that cover a diverse collection of454

topics, events, and even mental states makes it more455

possible to model purchase intentions comprehen-456

sively. Thus, following Wang et al. (2024), we sam-457

ple 30,000 intentions from MIND, extract the nouns458

in them via dependency parsing, and plot the distri-459

bution of the hypernyms of these nouns, matched460

against Probase (Wu et al., 2012), according to their461

number of occurences. The resulting plot is shown462

in Figure 3. Remarkably, the intentions generated463

by MIND display elevated levels of diversity, which464

signifies the broad semantic coverage of purchas-465

ing different products in the generated intentions.466

We posit that such high semantic diversity may pro-467

vide implicit benefits to downstream tasks when468
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Figure 4: Ablation results on IntentionQA tasks by
Mistral-7B distilled on intentions generated by MIND
with/without filtering.

employing MIND in E-commerce applications. 469

5.3.3 Impact of Role-Aware Filter 470

Ablation Study on IntentionQA. We then study 471

the ablation of MIND by focusing on the role of 472

our proposed human-centric role-aware filter mech- 473

anism in its impact toward quality control of the 474

generated intentions. Specifically, we leverage the 475

IntentionQA (Ding et al., 2024) as the evaluation 476

benchmark and separately train two models on (1) 477

intentions that are filtered by our proposed mecha- 478

nism (w. filter) and (2) intentions without filtering 479

(w.o. filter). All setups follow the same as de- 480

scribed in Section 5.1, and we use Mistral-instruct- 481

7B-v0.2 as the backbone and train it using a unified 482

hyper-parameter setting. The results are plotted in 483

Figure 4. We observe that, without filtering, per- 484

formances on both tasks across all difficulty levels 485

drop significantly, which is possibly due to the in- 486

clusion of more noisy intentions in the training data. 487

This shows that our proposed filtering module is 488

indeed functioning well in controlling high-quality 489

intentions and is beneficial to downstream tasks. 490

Critic Filter v.s. Role-Aware Filter. Afterward, 491

we validate the effectiveness of our role-aware fil- 492

ter by comparing it against a traditional critic filter 493

provided by Yu et al. (2023). The critic filter is 494

obtained by training a language model with a re- 495

gression objective to predict the typicality of gen- 496

erated intentions in the range of 0 to 1. We adopt 497

the released critic scorer, pre-trained on annotated 498

intentions in FolkScope, and use it to score inten- 499

tions in MIND under identical settings. By setting 500

a critic threshold to 0.8 and discarding intentions 501

below this threshold, we obtain a sibling subset 502

of MIND. LLMs are then fine-tuned on this sibling 503

subset and evaluated on the testing sets of Inten- 504

tionQA. The results are presented in Table 3. It 505

can be observed that LLMs exhibit inferior perfor- 506

mance when using the critic filtering mechanism. 507
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Backbones Training Recipe INTENTIONUNDERSTANDING INTENTIONUTILIZATION

Easy Medium Hard Avg. Easy Medium Hard Avg.

LLAMA-7B-chat

Zero-shot 64.98 66.54 53.85 64.61 59.90 54.86 47.37 58.04
w. Unimodal 65.03 65.49 56.71 64.99 59.08 54.71 45.59 57.34
w. Critic Filter 61.88 64.56 51.22 61.67 59.27 54.13 46.89 57.88
MIND Distilled 65.78 64.61 55.75 66.15 59.43 57.13 60.03 59.04

Mistral-7B-Instruct-v0.2

Zero-shot 76.57 74.53 63.56 75.50 59.78 62.60 65.41 60.64
w. Unimodal 75.02 72.33 62.17 73.72 58.35 61.48 62.81 58.51
w. Critic Filter 74.78 71.23 62.87 72.29 58.32 61.09 58.98 57.63
MIND Distilled 78.57 74.31 80.89 76.97 61.14 65.42 62.16 62.02

Table 3: Ablation experiment results (Accuracy%) on IntentionQA benchmark.

One possible reason is that the pre-trained critic508

filter only captures the pattern of intentions at dif-509

ferent levels of typicality without considering their510

relation to the products. This further verifies the511

need for a role-aware filtering mechanism.512

5.3.4 Robustness of MIND513

According to Chang et al. (2024), generations by514

LLMs can be significantly impacted by even slight515

changes in the prompts. This warrants a potential516

weakness of MIND which heavily relies on prompt-517

ing in collecting intentions. Hence, we aim to over-518

come this by proving that intentions generated with519

modified prompts are generally semantically con-520

sistent at high quality. Specifically, we exclude the521

prompts which explicitly instructing the LVLMs to522

rely on visual cues from the product images and523

only retain the prompts that require the LVLMs524

to generate intentions. Then, 100 product pairs525

are randomly sampled from MIND to generate in-526

tentions utilizing the modified prompts. Finally,527

the sentence embedding are calculated using Sen-528

tenceBERT (Reimers and Gurevych, 2019), and the529

cosine similarity between each modified intention530

and its corresponding original intention generated531

by MIND is derived. The results revealed an aver-532

age cosine similarity of 0.85 between the intentions533

generated with modified prompts and those gener-534

ated by MIND. This high similarity indicates the535

robustness of intention generation process. Inter-536

relation intention comparison examples are provide537

in Appendix E538

5.3.5 Comparisons Against FolkScope539

We then compare MIND against FolkScope, the540

previous state-of-the-art method for large-scale in-541

tention acquisition, by analyzing the typicality dis-542

tribution of intentions across all relations. Specifi-543

cally, we adopt the same annotation protocols de-544

signed by Yu et al. (2023); Wang and Song (2024);545

Wang et al. (2023b) and transfer our annotation546

results into a four-point Likert scale (Joshi et al.,547
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Figure 5: Relation-wise comparison of typicality scores
across all relations between MIND and FolkScope.

2015). Then, for each relation, we compute the 548

average typicality scores among all intentions and 549

plot them for comparison, as shown in Figure 5. 550

From the plot, we observe that intentions generated 551

by MIND exhibit higher typicality scores across 552

nearly all relations compared to those generated by 553

FolkScope, which further demonstrates the superi- 554

ority of MIND. More exemplar-based case compar- 555

isons are presented in Appendix F and a relation- 556

wise filter result analysis is attached in Appendix G. 557

6 Conclusions 558

In this work, we present MIND, a multimodal distil- 559

lation framework for enhancing E-commerce pur- 560

chase understanding by automating the pipeline 561

of intention generation and quality filtering via 562

multiple-step instructions over LVLMs. By ap- 563

plying MIND to real-world E-commerce data, we 564

construct the very first multimodal purchase in- 565

tention knowledge base featuring over 1.2 million 566

intentions. These intentions have been proven to be 567

invaluable in distilling student models that exhibit 568

improved performance in E-commerce intention 569

comprehension and utilization tasks. Further analy- 570

ses reveal the effectiveness of MIND by validating 571

the proposed filtering mechanism and highlighting 572

the strengths of MIND in comparison to FolkScope. 573

Our work sheds light on improving large-scale E- 574

commerce intention acquisition and application. 575
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Limitations576

First, MIND generates intention by leveraging sev-577

eral zero-shot prompts without additional exem-578

plars. This decision is made as we observe that579

few-shot prompts may “guide” LVLM to generate580

intentions that tend to be similar to the provided581

exemplars, which harms diversity. However, it re-582

mains an open question whether more advanced583

prompting methods (Song et al., 2023; Parnami584

and Lee, 2022) would help in the generation pro-585

cess. It’s also worth noting that the LVLM used in586

our work may be outdated as new products show587

up on E-commerce platforms. However, switch-588

ing LLaVa to more up-to-date LVLMs, preferably589

pre-trained on E-commerce data, can address this590

concern. Finally, MIND utilizes an automatically591

functioning filter as quality control. While we have592

shown its effectiveness, it remains challenging to ef-593

fectively regulate the filter mechanism to be either594

lenient or strict. Further investigation is required595

to provide insights into the alignment between the596

values of VLMs and the real world, enhancing our597

understanding of them.598

Ethics Statement599

To avoid generating harmful intentions and toxic600

filter rationales in MIND, we recruit 4 expert an-601

notators who are graduate students specializing in602

multilmodality and natural language processing to603

evaluate the generated intentions and rationales.604

We ask all experts to go through 200 sampled data605

and no harmful contents are reported. The crowd-606

sourced annotators are paid a wage that complies607

with the local law. The expert annotators involved608

in this research are knowledgeable about the an-609

notation protocol and the intended utilization of610

their annotations. They are willingly to contribute611

without expecting any compensation. The training612

and evaluation datasets utilized in this study are613

publicly available, anonymized, and shared under614

open-access licenses for research purposes, adher-615

ing to their intended usage. Thus, we believe this616

paper does not yield any ethical issue.617
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Appendices 986

A Prompts 987

In this section we show the instructions used in 988

feature extraction, intention generation, and human- 989

centric role-aware filtering stages. The prompts are 990

shown in Table 4. 991

B Annotator Requirement 992

For strict quality control, we only invite workers 993

satisfying the following requirements: 1) at least 994

1K HITs approved, and 2) at least 95% approval 995

rate. Then, we conduct two rounds of qualification 996

rounds using a qualification question set crafted by 997

authors of this paper, which includes both straight- 998

forward and tricky questions. Over 600 workers 999

participated and only 90 (15%) of them are deemed 1000

qualified by achieving over 87% accuracy. 1001

C Error Analysis of Filtered Intentions 1002

While human annotation results in Section 4.2 show 1003

that, after filtering, most of the remaining intentions 1004

are highly plausible and typical, we observe that 1005

only 46.7% generations passed our proposed fil- 1006

tering module as the last step of MIND. Thus, in 1007

this section, we first study the role of such human- 1008

centric filtering by looking into the causes of why 1009

the intentions get discarded, and further seek in- 1010

sights to resolve such a high filtering loss. To 1011

achieve this, we randomly sample 200 intentions 1012

that are abandoned by MIND during the last step 1013

and manually annotate the reasons behind based on 1014

the rationale provided by the LVLM. Three types 1015

of errors are observed and they are categorized as: 1016
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Task Prompt

Feature Extraction The [IMAGE_1, IMAGE_2] contains a product and name of it is
[PROD_NAME]. Please analyze the product image, together with the
product name, provide a detailed description focusing on the product’s
features, design, and apparent quality. Highlight any unique characteristics
or visible elements that distinguish this product from similar items. Addi-
tionally, speculate on the potential uses and benefits of this product for a
consumer, based on its appearance or any information in the image and the
name.

Intention Generation The two [Image_1, Image_2] are two different products. The product
name of the upper image is [Prod_A_Name]. The product detail and
the potential purchase intention is Prod_A_Desc. The product name of
the lower image is Prod_B_Name. The product detail and the potential
purchase intention is Prod_B_Desc. Based on information provided,
together with the product images, what could be the potential intention for
people buying these two products in one purchase simultaneously based
on the relation of [Relation_Prompt[Relation], take the image features
into consideration, limit your word count within 120 words. Start with the
potential co-buy intention could be Relation_Prompt[Relation]

Human-centric Role-aware Filtering The two images [Image_1, Image_2 are two different products. The
product name of the upper image is [Prod_A_Name. The product detail
and the potential purchase intention is [Prod_A_Desc]. The product
name of the lower image is [Prod_B_Name. The product detail and the
potential purchase intention is [Prod_B_Name]. Under the relation of
[Relation_Prompt[Relation], the potential co-buy intention would be
[Intention]. If you are a consumer who are eager to buy product a or
product b, would this intention encourage you to buy the two products
simultaneously? be critical on your choice, output yes or no together with
the reason for your answer. For example, the output should be Yes, ... or
No, ...

Table 4: Prompts used for evaluating LLM baselines across various tasks in a zero-shot scenario.

• 81.0% of the filtered intentions, while plausi-1017

ble, do not provide strong enough evidence to1018

motivate a LVLM agent to execute the purchase1019

behavior for two products. For example, the in-1020

tention “they both are related to home audio sys-1021

tems” for purchasing a pair of audio adapters1022

lacks customer interaction and solely focuses on1023

the products themselves. A more appropriate1024

intention, for example, “they both are able to1025

help in connecting audio devices,” would retain1026

a stronger bond between the products and cus-1027

tomers by aligning with their functionalities.1028

• 13.0% of the intentions result from misjudgment1029

by the LVLM, where the agent fails to make the1030

correct decision despite the intention being suffi-1031

ciently plausible and typical. This highlights the1032

need for future improvements, including a more1033

refined filter to enhance our framework.1034

• 6.0% of the intentions are discarded due to being1035

implausible or containing factual errors that do1036

not align with the products.1037

Overall, 87% of intentions are being properly dis-1038

carded, which is considerably high for an automatic1039

filter without human supervision. 1040

D Baseline Backbone 1041

For both tasks, we first incorporate random and 1042

majority voting to reflect the characteristics of 1043

the benchmark. Five Pre-Trained Language Mod- 1044

els (PTLMs) are included: RoBERTa (Liu et al., 1045

2019) DeBERTa-v3 (He et al., 2023), T0 (Sanh 1046

et al., 2022), T5 (Raffel et al., 2020), and Flan- 1047

T5 (Chung et al., 2022). Then, performances 1048

by five commonsense-injected PTLMs are also 1049

reported, including HyKAS (Ma et al., 2021), 1050

CAR (Wang et al., 2023a), VERA (Liu et al., 1051

2023b), CANDLE (Wang et al., 2024), and VERA- 1052

CANDLE. We also report the performances of sev- 1053

eral LLMs, such as LLaMA2 (Touvron et al., 2023), 1054

Gemma (Mesnard et al., 2024), Mistral (Jiang et al., 1055

2023), ChatGPT (OpenAI, 2022), and GPT-4 (Ope- 1056

nAI, 2023). For the latter two, we also adopt Chain- 1057

of-Thought (COT; Wei et al., 2022) and CoT with 1058

Self-Consistency (COT-SC; Wang et al., 2023c) 1059

prompting. 1060
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Girls Prewalker Toddler
Cute Flower Bowtie Antiskid

Shoes Sneaker

Fisher-Price Brilliant
Basics Rock-a-Stack

Rubies 18th Century Colonial
Man Wig Adult One Size

Pirate Boot Toppers
- Fun Costume Accessory

Item 1 Item 2 Relation Intention

symbolOf

can

capableOf

cause

isA

They both represent the early stages of a 
child's development.
They both help to develop explore and 
develop children's skills.
They both provide young children with a 
safe and engaging environment.
The person wants to purchase both 
products as gifts for a young child.
They both cater to the needs of young 
children.

usedFor

symbolOf

isA

cause

They are both used for costume or theatrical 
performances.

They both symbolize a pirate or colonial 
theme.

They are both costume accessories for a 
pirate-themed outfit.

The person wants to create a complete and 
authentic pirate costume.

Figure 6: MIND co-buy intentions generated under different relations.

E MIND Inter-relation Case Study1061

In this section, we showcase various co-buy inten-1062

tions for the same product pairs generated under1063

different relations. The examples are provided in1064

Figure 7.1065

It is evident from the table that the intentions1066

consistently capture the key aspect of the co-buy1067

intention. i.e., for young kids, for costume, pirate.1068

Though for certain relations the intention doesn’t1069

follow the instruction strictly in terms of format,1070

the quality of the intention remains reasonable and1071

informative. The content of these intentions is still1072

aligned with the intended purpose of the designed1073

relation.1074

F MIND Against FolkScope Case Study1075

Aside from empirical analyses, we also show1076

the advantages of MIND over FolkScope through1077

additional case studies to highlight key benefits1078

of MIND. To this end, we randomly selected 71079

pairs of co-buy products and compared the inten-1080

tions generated by both frameworks, as shown1081

in Table 5. Our findings from the table indicate1082

that MIND-generated intentions exhibit a stronger1083

focus on the usage and functionalities that poten-1084

tially fulfill customers’ needs and intentions when1085

purchasing these products. Conversely, intentions1086

generated by FolkScope tend to be biased towards1087

properties and features that can be easily inferred1088

from the product titles, which are of lesser interest 1089

to customers’ shopping intentions. Take the sec- 1090

ond row in Table 5 as an example. The intentions 1091

both are “Women’s Shoes” and “Women’s Hand- 1092

bags” generated by FolkScope merely represent 1093

an aggregation of the product categories for the 1094

two items. In contrast, MIND produces intentions 1095

such as looking for stylish and functional combi- 1096

nation for daily activities , which better captures a 1097

customer’s intention when shopping for both prod- 1098

ucts. This example further reinforces our previous 1099

conclusions that MIND can generate intentions that 1100

are more human-centric and better reflect the cus- 1101

tomers’ intentions as mental states. 1102

G Relation-wise Filter Analysis 1103

In this section, we present the Relation-wise Filter 1104

Preserve Rate (RFP Rate) of MIND, which repre- 1105

sents the proportion of intentions that are retained 1106

among all intentions for every relation. We report 1107

our result in Figure 7. 1108

Our observations indicate that the open relation 1109

has the lowest RFP Rate at 0.17 yet other relations 1110

demonstrate RFP Rates ranging from 0.2 to 0.4. 1111

We hypothesize that the under-performance of 1112

open relation generation could be attributed to its 1113

less specific instruction adopted in generation pro- 1114

cess. The lack of specific information in the in- 1115

struction may hinder the LVLM’s ability to gener- 1116

ate persuasive and informative intentions for the 1117
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Item1 Item2 Intentions

Samsung SmartCam HD Pro Samsung SmartThings Smart
Home Hub

They are designed to work together in a smart
home system
They are derived from the same category.

Clarks Women’s Ankle Bootie The Sak Kendra Hobo Shoul-
der Bag

The consumer is looking for a stylish and func-
tional combination for their daily activities.
They both are a manner of ’Women’s Shoes’ and
’Women’s Handbags’ respectively.

Western Party Mustaches Forum Novelties Adult
Cowboy Costume Vest

They are both part of a costume or a themed party.
They both are a part of the ’Adult Costume’ cate-
gory.

Columbia Women’s Loveland
Shorty Omni-Heat Snow Boot

Columbia Sportswear
Women’s Thermarator Glove

They are designed to keep the wearer warm and
comfortable during cold weather conditions
They both are a part of the Columbia brand.

Banded Arc Welded Waterproof
Backpack Polyester

Banded Deluxe UFS Fleece
Face Mask

They are both used for outdoor activities and pro-
tection from harsh weather conditions.
They are both used for outdoor activities.

Novelty Video Games Sarcastic
Mens Very Funny T Shirt

Super Mario All Over Charac-
ter 100 Score Print Socks

They both appeal to gamers and video game en-
thusiasts.
They both are of high quality and are really cool.

Women’s Exaggerative Vintage
Leafs Shape Necklace Sets

Plated Oil Drip Rhinestone
Flower Necklace Earring Sets

They both have a vintage-inspired design and fea-
ture colorful flowers and beads
They both have a property of ’High Quality’.

Xbox 360 4gb Kinect Bundle Controller Charger - Xbox 360 They both cater to the needs of Xbox 360 gamers.
They both are made of plastic.

Table 5: Case studies of purchase intentions generated by MIND and FolkScope. Intentions generated by MIND are
highlighted in blue and those generated by FolkScope are marked in green.
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Figure 7: The rate of preserved intentions after filtering
under different relations.

filter LVLM, resulting in the low preserve rate.1118

This finding emphasizes the importance of fu-1119

ture intention mining research. It suggests that1120

solely relying on the expressive power of LVLMs1121

to undermine potential intentions is not feasible.1122

Instead, a meticulous instruction constraint aligns1123

with research purpose is required. Specifically, in-1124

corporating detailed relation information during1125

intention mining is indispensable in E-commerce 1126

co-buy behavior understanding domain. This could 1127

improve the intention mining process, leading to a 1128

better construction of a credible and comprehensive 1129

intention knowledge base. 1130
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