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Abstract
The implicit regularization effect of Stochastic Gradient Descent (SGD) is known to enhance

the generalization of deep neural networks and becomes stronger with higher learning rates and
smaller batch sizes. However, its role in improving group robustness, defined as a model’s abil-
ity to perform well on underrepresented subpopulations, remains underexplored. In this work, we
study the impact of SGD’s implicit regularization under group imbalance characterized by spu-
rious correlations. Through extensive experiments on various datasets, we show that increasing
the strength of implicit regularization improves worst-group accuracy (WGA). Crucially, this im-
provement is not merely a byproduct of better overall generalization, but a targeted enhancement
in robustness to spurious features. Moreover, our analysis reveals that this phenomenon also con-
tributes to improved feature learning in deep networks. These findings offer a new perspective on
the role of SGD’s implicit regularization, showing that it not only supports generalization but also
plays a central role in achieving robustness to spurious correlations.

1. Introduction

Distribution shifts pose significant challenges to model robustness, particularly when minority groups
that were underrepresented during training become more prevalent at test time [29, 30]. A critical
factor that undermines generalization in these scenarios is the presence of spurious correlations,
i.e., correlations between labels and easily learnable but non-causal patterns that models exploit
during training but that cause them to fail to generalize at test time [1, 5]. Reliance on such spu-
rious attributes disproportionately harms the performance of minority groups, leading to reduced
worst-group accuracy (WGA) despite high overall accuracy [13, 24, 29].

Previous works have demonstrated that certain optimization hyperparameters, which govern the
dynamics of the training process, can influence robustness to group shifts. Idrissi et al. [10] showed
that careful tuning of hyperparameters, including learning rate and batch size, enables standard
Empirical Risk Minimization (ERM) to achieve worst-group accuracy comparable to more sophis-
ticated two-stage methods such as Just Train Twice (JTT) [18]. Building on this insight, Puli et al.
[22] found that simply increasing the learning rate during vanilla training can reduce susceptibility
to shortcut learning.

In this work, we are, to the best of our knowledge, the first to establish a connection between the
implicit regularization behavior of Stochastic Gradient Descent (SGD) and robustness to correlation
shifts. While prior work has shown that increasing the learning rate or decreasing the batch size
amplifies implicit regularization and improves generalization in standard settings [26], its role in
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robustness under subpopulation shifts—particularly those involving spurious correlations—remains
underexplored.

We investigate this connection by studying how SGD’s implicit regularization behaves on datasets
exhibiting spurious features. Our findings suggest that the implicit regularization of SGD does in-
deed improve group robustness, and this improvement goes beyond general accuracy gains. Specif-
ically, it enhances the model’s ability to learn and rely on core, invariant features, leading to better
performance on minority groups and, as a result, improving WGA.

2. Related Work

2.1. Group Robustness and the Role of Hyperparameters

In the context of robustness to correlation shifts [30], numerous approaches have been proposed [13,
15, 18, 23, 24]. A key limitation of many such methods is their reliance on group annotations—i.e.,
knowing which data points exhibit spurious (non-causal) patterns. This reliance restricts their ap-
plicability in real-world scenarios, where such annotations are often unavailable. To address this,
recent works have explored methods that improve robustness to correlation shifts without requiring
group annotations by leveraging implicit group identification [4, 6, 28].

Improving empirical risk minimization (ERM) to maximize WGA is thus a critical objective.
Gulrajani and Lopez-Paz [7] observe that ERM could outperform other domain generalization meth-
ods with proper tuning. Notably, careful tuning of training hyperparameters such as batch size and
learning rate can significantly affect worst-group performance [10]. For instance, Li et al. [17]
showed that low learning rates lead models to memorize spurious shortcuts, harming generalization.
In contrast, higher learning rates delay shortcut reliance, encouraging more robust, generalizable
learning. While separate from spurious correlation, recent work has shown that batch size matters
under class imbalance, smaller batches often perform better [25]. However, its specific impact in
group-imbalanced settings remains underexplored, highlighting a key gap in the literature.

2.2. Implicit Regularization of SGD and Its Impact on Group Robustness

Stochastic Gradient Descent (SGD) often demonstrates superior generalization that traditional con-
vergence rate analyses do not fully capture [20, 31]. For example, models trained using moderately
high learning rates or small batch sizes frequently achieve improved accuracy in test datasets [12,
16]. A well-established explanation attributes this behavior to the discrete update steps of SGD,
which deviate from the continuous gradient flow that directly minimizes the loss function [3]. In-
stead, SGD implicitly follows a modified trajectory, approximating gradient descent on an altered
cost function that includes an implicit regularization term proportional to the ratio of the learning
rate to the batch size [26]. Formally, let the empirical risk be defined over a data distribution D:

C(ω) = E(x,y)∼D [ℓ(fω(x), y)] ,

where ω denotes the model parameters, ℓ is the per-example loss function, and fω(x) represents the
model’s prediction for input x. While full-batch gradient descent directly minimizes this objective
via deterministic updates, SGD, with its inherent stochasticity from mini-batch, implicitly optimizes
a modified cost function. As shown by Smith et al. [27], the average iterate of SGD after one epoch
with a small learning rate closely follows the dynamics of gradient flow with respect to a perturbed
objective:
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C̃SGD(ω) = C(ω) +
ϵ
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where Ĉk(ω) is the k-th minibatch cost, Γ(ω) = 1
N

∑N
i=1 ∥∇Ci(ω) − ∇C(ω)∥2, ϵ is the learn-

ing rate, m is the number of batches, B is the batch size, N is the total number of samples, and
∇Ci(ω) denotes the gradient computed on the i-th datapoint. Focusing on the last expression, the
first additional term, ϵ

4∥∇C(ω)∥2, penalizes regions with large gradient magnitudes, discouraging
convergence to sharp minima. The second term, N−B

N−1
ϵ
4BΓ(ω), suppresses parameter directions

exhibiting high variance across individual datapoints.
Reducing gradient variance across samples encourages the learning of more stable features The

added regularization term promotes the discovery of feature representations that capture structure
shared across groups, rather than those specific to the majority. This helps prevent the optimizer
from converging to solutions that overfit the majority group while ignoring minority groups, even
when the overall training loss appears low. As a result, stochastic gradient descent (SGD) is guided
toward solutions that perform more uniformly across groups, thereby enhancing generalization un-
der group imbalance.

3. Results

3.1. Experimental Setups

We evaluate our methods on a diverse set of synthetic datasets, Waterbirds [24], Colored MNIST [2],
CIFAR-10 [19], and Domino [21]. These datasets introduce controlled spurious features (e.g., back-
ground, color, or patch) that correlate with labels during training but not at test time (Supp 5.1).

3.2. Robustness to Spurious Correlation
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Figure 1: Effect of Batch Size on Worst-Group Accuracy (WGA). Decreasing the batch size consistently
improves WGA across Waterbirds, CMNIST, and Domino datasets, suggesting enhanced group robustness.

We observe that the implicit regularization of SGD can significantly improve worst-group ac-
curacy under spurious correlations. As shown in Figure 1, reducing the batch size consistently en-
hances worst-group accuracy across datasets. A similar trend is observed in Figure 2 for increasing
the learning rate, except in cases where very large learning rates prevent the model from converging
on some datasets.
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Figure 2: Effect of Learning Rate on Worst-Group Accuracy. Increasing the learning rate also leads to
higher WGA, up to a point. Large learning rates (e.g., 0.1) result in a decline in WGA in Waterbirds dataset,
reflecting findings in implicit regularization literature that overly high learning rates can harm generalization.

This effect is substantially stronger than what has been previously reported in standard training
scenarios [27]. In Tables 1 and 2, we compare improvements in overall accuracy and worst-group
accuracy on the test set across two settings: small versus large batch sizes, and high versus low
learning rates. As shown, worst-group accuracy consistently improves and, notably, its improve-
ment exceeds that of overall accuracy in all cases.

Table 1: Test WGA and Accuracy under Small vs. Large Batch Sizes.

Dataset
WGA Accuracy

Small Large ∆ Small Large ∆

Waterbirds 80.1±0.8 70.8±0.9 +9.3 90.7±0.8 87.4±0.2 +3.3

CMNIST 69.1±0.8 68.1±0.3 +1.0 79.6±0.1 79.0±0.1 +0.6

Domino 54.4±3.3 23.5±2.9 +30.9 77.2±0.4 62.7±0.7 +14.5

Table 2: Test WGA and Accuracy under High vs. Low Learning Rates.

Dataset
WGA Accuracy

High Low ∆ High Low ∆

Waterbirds 75.7±1.4 59.6±1.8 +16.1 88.3±0.2 83.3±0.8 +5.0

CMNIST 68.1±0.3 14.5±1.3 +53.6 79.0±0.1 38.9±1.1 +40.1

Domino 28.5±3.9 16.6±1.8 +11.9 64.1±1.9 59.3±0.9 +4.8

3.2.1. EXPLICITLY PROMOTING THE IMPLICIT REGULARIZATION OF SGD

Following Smith et al. [27], to isolate the effect of SGD’s implicit regularization, we augment the
loss with a controlled explicit term: the ℓ2 norm of the mini-batch gradient, scaled by a positive
coefficient. This modification amplifies the regularization effect during training. We evaluate its
impact on CMNIST and CIFAR-10 (with 95% spurious correlation), using a fixed learning rate of
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0.001 and a batch size of 128. As shown in Table 3, explicitly encouraging the implicit bias of SGD
leads to improvements in WGA.

Table 3: Effect of Explicit Regularization on Test WGA

Dataset WGA (w/o Reg) WGA (w/ Reg) ∆ WGA

CMNIST 66.5±0.01 70.9±0.03 +4.4

CIFAR-10 47.8±0.01 56.7±0.04 +8.9

3.3. Improving Feature Learning
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Figure 3: Worst-Group Accuracy (WGA) and Decoded WGA on the CMNIST testset across batch
sizes. We observe that increasing the batch size generally leads to improved decoded WGA.

We have investigated how does implicit regularization of SGD affect the quality of learned
features? While neural networks learn core and spurious features during training, empirical evidence
shows they preferentially rely on spurious features for prediction when such features are present in
the input [13]. We employ decoded WGA [9] as our primary metric for evaluating feature quality.
This measure amount of information about the core (non-spurious) features that can be decoded
from the representations learned by standard ERM [11] (see details of experiments in Supp 5.4).

In Figure 3, we plot both the worst-group accuracy (WGA) of standard ERM and the decoded
WGA on the CMNIST test set across different batch sizes. Overall, decoded test WGA tends to
improve as the batch size decreases, with this improvement being much more pronounced in settings
with high spurious correlation. While decoded WGA decreases slightly as the spurious correlation
increases, standard ERM’s WGA drops significantly when the spurious correlation reaches 0.95 or
higher. These patterns remain consistent across all training batch sizes, with smaller batch sizes
(i.e., stronger implicit regularization) producing higher WGA in both ERM and decoded settings.

Moreover, the variations observed in test WGA are more pronounced than those in decoded test
WGA, especially under stronger spurious correlations. This suggests that reducing batch size shifts
the model’s reliance from spurious features toward core features.

4. Conclusion

We investigate how the implicit regularization of SGD influences group robustness and find that its
variance reducing dynamics systematically enhance worst group accuracy under group imbalance,
more than overall accuracy. Our analysis further reveals that implicit regularization encourages
reliance on core, invariant features. Finally, we show that explicitly promoting this regularization
term can reproduce similar robustness gains even under standard batch size and learning rate.
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5. Supplementary Materials

5.1. Datasets

In our experiments, we evaluate models on a diverse set of datasets that are specifically designed to
test robustness against spurious correlations. Each dataset introduces a known, controllable spurious
feature that can confound standard training methods. Below, we briefly describe the datasets used
in our experiments:

• Waterbirds [24] is a synthetic dataset constructed by overlaying bird images from the CUB
dataset onto backgrounds from the Places dataset. It defines a binary classification task:
waterbird versus landbird, where the background (water or land) is spuriously correlated with
the bird type. This results in a strong dataset bias: the majority of waterbirds appear over
water backgrounds, and most landbirds over land. As a consequence, models trained with
standard techniques often learn to rely on the background rather than bird-specific features,
leading to poor generalization to minority groups where this correlation is broken.

• Colored-MNIST [2] is a synthetic variant of the MNIST dataset, designed to study the re-
liance of the model on spurious correlations in simple visual settings. Each grayscale digit
from the original MNIST dataset is colorized based on its label: with high probability, a fixed
color is assigned to each digit class (e.g., all 0s are red, all 1s are green, etc.). To introduce
some variation, a small proportion of samples are assigned colors uniformly at random from
the remaining color set. This creates a controlled correlation between digit class and color,
where color serves as a spurious attribute. Although the shape of the digits is the true predic-
tive feature, models trained with standard techniques often exploit the more easily learnable
color signal, leading to degraded performance when this correlation is broken at the test time.
Colored MNIST thus provides a clean and interpretable setting for evaluating methods aimed
at mitigating spurious correlations.

• CIFAR-10 (Car vs. Truck) [19] is a binary classification data set derived from the CIFAR-10
dataset [14], where only two classes are selected, car and truck. To introduce a spurious cor-
relation, each image is augmented with a small colored square (cue) in the top left corner. The
color of this square (e.g., red or blue) is highly correlated with the label: for example, most
cars may have a red square and most trucks a blue one. This synthetic cue serves as a spurious
attribute that a model might learn to exploit, rather than relying on shape-based features of
the main object. A small subset of training samples breaks this correlation by assigning the
opposite color or a random color, encouraging robustness evaluation under distribution shift.
This setup enables systematic analysis of model reliance on spurious features and robustness
to such correlations.

• Domino [21] is a synthetic dataset created to study model behavior in the presence of mul-
tiple potentially spurious features. It is constructed by concatenating CIFAR-10 images with
Fashion-MNIST images such that each pair shares the same class label (e.g., a CIFAR-10
”cat” image is paired with a Fashion-MNIST ”pullover”). This results in composite images
where the CIFAR-10 object represents the primary visual cue, while the Fashion-MNIST
segment introduces a structured but potentially spurious feature. Since both segments are
class-consistent, a model can use either or both to make predictions. However, during train-
ing, the model may learn to rely disproportionately on the simpler-to-learn Fashion-MNIST
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portion, which serves as a shortcut or spurious signal. Domino allows for controlled in-
terventions such as removing, randomizing, or altering the Fashion-MNIST side, making it
well-suited for studying the dynamics of spurious feature learning and evaluating robustness
to such correlations.

dSpritesWaterBirdsDomino CIFAR10-MNIST

Figure 4: Illustration of three datasets—Domino CIFAR10-MNIST, and Waterbirds, used in our
experiments. Each dataset exhibits spurious correlations, where the majority groups are highlighted
in red and blue, while the minority groups are shown in green and orange.

5.2. Architectures

We select architectures based on common practical choices aligned with dataset complexity and in-
put resolution. For Waterbirds, we adopt a ResNet-50 backbone [8]. For CIFAR-10 and Domino,
we use ResNet-18. For Colored MNIST, we use a lightweight two-layer MLP, which suffices due
to the dataset’s simplicity and lower resolution.

5.3. Hyperparameters

All models are trained using SGD with no learning rate scheduler, and a standard weight decay of
1 × 10−5. These settings are kept constant across experiments to isolate the effect of batch size,
learning rate, and spurious correlation on generalization and robustness.

5.4. Decoded Accuracy

In line with Izmailov et al. [11], we first train a neural network and then freeze all layers except the
final one. Next, we retrain only this last layer with L1 regularization to its weights using a group-
balanced dataset. This ensures that the learned representations remain fixed, and only the decision
boundary is adapted to rely more on core-related features. A higher decoded WGA implies that the
learned representations contain more useful core features, as the retrained classifier can generalize
better across groups.

All models were trained for 500 epochs using various batch sizes, and the final checkpoint from
each run was selected for a second-stage training on group-balanced data. During this second stage,
the L1 regularization strength λ was tuned over the range 10−5 to 0.1, with the batch size fixed at
128 for all models.
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