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ABSTRACT

We study the problem of robust posterior inference when observed data are sub-
ject to adversarial contamination, such as outliers and distributional shifts. We
introduce Distributionally Robust Variational Bayes (DRVB), a robust posterior
sampling method based on solving a minimax variational Bayes problem over
Wasserstein ambiguity sets. Computationally, our approach leverages gradient
flows on probability spaces, where the choice of geometry is crucial for addressing
different forms of adversarial contamination. We design and analyze the DRVB
algorithm based on Wasserstein, Fisher-Rao, and hybrid Wasserstein-Fisher-Rao
flows, highlighting their respective strengths in handling outliers, distribution shift
and mixed global-local contamination. Our theoretical results establish robustness
guarantees and polynomial-time convergence of each discretized gradient flow to
its stationary measure. Empirical results show that DRVB outperforms the naive
Langevin Monte Carlo (LMC) in generating robust posterior samples across vari-
ous adversarial contamination settings.

1 INTRODUCTION

Variational Bayes is a foundational technique in modern representation learning and deep generative
modeling, underpinning applications ranging from topic modeling (Blei et al., 2003) to variational
autoencoders (VAE) (Kingma & Welling, 2014) and diffusion models (Song et al., 2020). However,
variational inference (VI) is highly sensitive to adversarial shifts in the data distribution, and these
failures can propagate throughout the probabilistic modeling pipeline, affecting both inference and
generation.

Common types of adversarial contamination include:

(i) Distributional shift: The data distribution at deployment may differ from the one observed
during training. This occurs in various settings, such as domain adaptation, where models
are expected to generalize to slightly different target distributions, or in adversarial attacks,
where data are manipulated specific errors—for instance, manipulating an image genera-
tion model to produce inappropriate content.

(ii) Data contamination: Many datasets contain outliers, measurement errors, or noise injected
by privacy-preserving mechanisms (Dwork, 2006; Dwork et al., 2006a;b). As a result, the
empirical distribution p̂n is a perturbed version of p0.

While outlier contamination has been extensively studied in classical robust statistics (Box, 1953;
Tukey, 1960; Huber, 1964), it is largely unexplored in Bayesian statsitics. Existing robust Bayesian
methods primarily focus on addressing model misspecification rather than adversarial contamina-
tion. Examples include the coarsened posterior (Miller & Dunson, 2018; Bernton et al., 2019), the
Wasserstein barycenter posterior (Minsker et al., 2017), and variational posteriors based on Rényi
divergence (Knoblauch et al., 2022). For Huber contamination, (Bhatia et al., 2023) introduces a
truncated Langevin Monte Carlo algorithm that provably outputs robust posterior mean estimates.

A popular framework to deal with data uncertainty problems is distributed robust optimization
(DRO) (Blanchet et al., 2019; Duchi & Namkoong, 2021; Blanchet et al., 2024). DRO casts the
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problem of learning under adversarial attacks as a minimax game. It has been used as a certificate
of adversarial robustness for methods based on empirical risk minimization, such as linear regres-
sion or neural networks (Shafieezadeh Abadeh et al., 2015; Sagawa et al., 2019; Sinha et al., 2017).
An example of DRO is the Wasserstein DRO which considers a set of pertubations based on the
Wasserstein distance Nietert et al. (2022; 2023; 2024).

In this paper, we introduce Distributionally Robust Variational Bayes (DRVB), a unified approach
to robust posterior sampling under three types of contamination studied in recent literature (Pittas &
Pensia, 2024): global contamination (Model 1), local contamination (Model 2), and mixed global-
local contamination (Model 3)1. DRVB addresses each contamination setting by formulating a
distributionally robust version of the variational Bayes problem under a suitable ambiguity set and
solving it using gradient flows over the space of probability measures.

The choice of optimization geometry is crucial for effectively targeting different types of contami-
nation. While all gradient-flow-based algorithms improve robustness compared to naive Langevin
Monte Carlo, we show that the Wasserstein-Fisher-Rao (WFR) gradient flow—which interpolates
between the Wasserstein and Fisher-Rao geometries—consistently outperforms both individual
flows and standard Langevin Monte Carlo in the presence of mixed global and local contamina-
tion (3). Such a gain comes with a computational cost, as we prove that the WFR gradient flow
algorithm takes longer to converge.

2 A VARIATIONAL REPRESENTATION OF THE BAYES POSTERIOR

Let θ ∈ Θ ⊆ Rd be a global latent variable and let xxx = x1:n denote n observations drawn from a
population distribution p0. Consider the following probabilistic model:

p(xxx,θ) =
n

∏
i=1

p(xi | θ)p(θ).

The log-joint probability decomposes additively as logp(x,θ) = ∑
n
i=1 ℓ(xi,θ), where ℓ(xi,θ) :=

logp(xi | θ)+ logp(θ).

Suppose that the posterior p(θ | xxx) has a Lebesgue density and a finite second moment, namely
E
[
∥θ∥2 | xxx

]
< ∞. Then the posterior is the unique solution to the variational Bayes problem (Blei

et al., 2017; Knoblauch et al., 2022):

q∗(θ) = argmin
q∈P2,ac(Θ)

{
−Eq(θ)

[
n

∑
i=1

ℓ(xi,θ)

]
+H(q)

}
. (1)

The problem above is equivalent to minimizing the Kullback-Leibler (KL) divergence between some
distribution q and the exact posterior:

q∗(θ) = argmin
q∈P2,ac(Θ)

DKL (q ∥ p(θ | xxx)) . (2)

Since the posterior is in the set P2,ac(Θ), the minimizer is achieved at the posterior q∗(θ) = p(θ | xxx).
But the purpose of Eq. 1 is to offer a perspective shift: it recasts the task of posterior sam-
pling—that is, generating samples from p(θ | xxx)—as the problem of solving an infinite-dimensional
KL-minimization problem for q∗(θ). The latter enables natural extensions of the posterior sampling
problem by modifying the objective to incorporate robustness constraints. Moreover, it enables us
to consider geometries on the space of probability measures and the derivation of gradient dynamics
for minimizing the KL functional under the chosen geometry.

3 DISTRIBUTIONALLY ROBUST VARIATIONAL BAYES (DRVB)

Let p̂n denote the empirical distribution of the observed data x1:n. Problem (1) can be rewritten as:

q∗(θ) = argmin
q∈P2,ac(Θ)

−nEq(θ)
[
Ep̂n(x) [ℓ(x,θ)]

]
+H(q) . (3)

1Formal definitions are provided in Appendix A. At a high level, local contamination is measured under the
p-Wasserstein distance, while global contamination is defined under the total variation (TV) distance.
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The basic assumption of Bayesian inference is that the empirical measure p̂n accurately approxi-
mates p0 so that q∗(θ) captures the uncertainty of the parameter θ under the population distribution.

However, when the observed data aree contaminated, p̂n no longer accurately represents the popu-
lation distribution p0. This lack of robustness arises because deviations of p̂n from p0 introduce an
error factor of n into (3), which leads to biased posterior inference.

To deal with adversarial contamination, the distributionally robust optimization (DRO) framework
introduces an uncertainty set to account for discrepancies between the in-sample distribution p̂n and
the out-of-sample distribution. Motivated by the DRO approach, we propose Distributionally Robust
Variational Bayes (DRVB), which minimizes the worst-case variational Bayes objective within the
uncertainty set: (

q∗
δ
(θ),p∗

δ
(x)

)
= argmin

q∈P2,ac(Θ)

max
Wp(p,p̂n)≤δ ;

p∈Pp(X )

F (q,p) , (P1)

where
F (q,p) :=−nEq(θ)

[
Ep(x) [ℓ(x,θ)]

]
+H(q) . (5)

We refer to q∗
δ
(θ) as the δ -DR posterior.

The DRVB problem is an infinite-dimensional minimax optimization problem and
(
q∗

δ
(θ),p∗

δ
(x)

)
is

the Nash equilibrium. Since the constraint set P2,ac(Θ) is a geodesically-convex subset of P2(Θ).
we could leverage Langenvin dynamics to design a sampling algorithm (Jordan et al., 1998).

4 ALGORITHMS

Let X be a subset of Rp. Consider the Lagrangian DRVB problem:

q∗
λ
(θ) = argmin

q∈P2,ac(Θ)

max
p∈Pp(X )

{
H(q)−nEq(θ)

[
Ep(x) [ℓ(x,θ)]

]
−λWp

p (p, p̂n)
}
. (6)

Since problem (4) is convex in p, the regularization weight λ in Eq. 6 is equivalent to the radius δ

of the ambiguity set up to some monotone transformation. A large δ corresponds to a small λ , and
vice versa.

To solve the min-max problem for q∗
λ
(θ), we use a Wasserstein Gradient Descent Ascent (WGDA)

algorithm. At each iteration, the algorithm performs Wasserstein gradient descent over p(xxx) and
gradient ascent over q(θ).

Take Π(p, p̂n) to be the set of all coupling of p, p̂n. We can write the adversarial cost as a semi-
discrete optimal transport problem,

Wp
p (p, p̂n) = inf

π∈Π(p,p̂n)

∫
X ×X

∥x− y∥pdπ(x,y).

The Wasserstein distance finds the optimal π in the set of couplings. But the cost could be defined
for general π ∈ Pp(X ×X ), given by

C p
p (π) :=

∫
X ×X

∥x− y∥pdπ(x,y).

We use πx,πy to denote the first and second marginals of π . In our context, πx,πy corresponds to the
perturbed and empirical distributions, respectively.

Given q and π , define the objective:

U (q,π) :=H(q)−nEq(θ)
[
Eπx(x) [ℓ(x,θ)]

]
−λC p

p (π) .

Then Eq. 6 is equivalent to the following reparametrized problem

q∗
λ
(θ) = argmin

q∈P2,ac(Θ)

max
π∈Pp(X ×X );πy=p̂n

U (q,π) . (7)

It is easy to see that the two minimizers agree in Eq. 6 and Eq. 7.
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4.1 WASSERSTEIN GRADIENT DESCENT ASCENT

Let sθ (x,θ) and sx (x,θ) be the partial gradient of the log joint ℓ(x,θ) with respect to θ and x,
respectively.

We firs take the Wassestein gradient of U (q,π) with respect to q, given by the gradient of the first
variation of U in the direction of q.

∇W2,qU (q,π) = ∇

(
d

dε
U

(
q+ ε(q′−q),π

))
=−nEπx(x) [sθ (x,θ)]+∇ logq(θ). (8)

For a given π , let (qπ
t )t≥0 be the gradient flow that evolves according to Eq. 8. Let θ π

t ∼ qπ
t be a

random variable at time t.

Using the well-known result of (Jordan et al., 1998), (θ π
t )t≥0 follows the Langevin dynamics:

dθ
π
t =−nEπx(x) [sθ (x,θ π

t )]dt +
√

2dBt . (9)

At the level of trajectory (θ π
t )t≥0, the Langevin dynamic is a stocahstic differential equation (SDE)

but at the level of measures (qπ
t )t≥0, it is a gradient flow under the Wasserstein geometry.

Now we differentiate U (q,π) with respect to π . The first step is to rewrite U (q,π) as follows,

U (q,π) = Eπ(x,y)
[
−nEq(θ) [ℓ(x,θ)]−λ∥x− y∥p]+H(q).

This shows that U (q,π) depends linearly on the optimization variable π . The Wasserstein gradient
for π is the gradient of first variation:

∇W2,πU (q,π) = ∇x,y
(
−nEq(θ) [ℓ(x,θ)]−λ∥x− y∥p)= [

−nEq(θ) [sx (x,θ)]−λ∇x(∥x− y∥p)
−λ∇y(∥x− y∥p)

]
.

(10)

where ∇x(∥x− y∥p) = p∥x− y∥p−1∇x(∥x− y∥) = p∥x− y∥p−1∥x− y∥−1x = p∥x− y∥p−2x.

The gradient flow of π evolves a trajectory (xq
t ,y

q
t )t≥0 according to a Euclidean gradient ascent flow:

dxq
t =−nEq(θ)

[
sx
(
xq

t ,θ
)]

dt −λ∇x(∥xq
t − yq

t ∥p)dt, (11)

and
dyq

t =−λ∇(∥xq
t − yq

t ∥p)dt. (12)

The joint gradient for DRVB glues together the Langevin dynamics (θ π
t )t≥0 and the bivariate flow

(xq
t ,y

q
t )t≥0. For θt ∼ qt and (xt ,yt)∼ πt , we obtain:

dθt = nEπt,x(x) [sθ (x,θt)]dt +
√

2dBt ,

dxt =−nEqt (θ)
[sx (xt ,θ)]dt −λ∇(∥xt − yt∥p)dt,

dyt =−λ∇(∥xt − yt∥p)dt.

(13)

Next, we project the unconstrained gradient flow (13) onto the subspace {π ∈ Pp(X ×X ) : πy =
p̂n}. In particular, we enforce y0 ∼ π0 := p̂n, thus dyt = 0. This results in the following flow:

(Sampling) dθt = nEπt,x(x) [sθ (x,θt)]dt +
√

2dBt ,

(Adversary) dxt =−nEqt (θ)
[sx (xt ,θ)]dt −λ∇(∥xt − y0∥p)I {(xt ,y0) ∈ supp(πt)}dt.

(14)

We refer the first flow in Eq. 14 as θ -flow and the second flow as x-flow. We briefly check the
joint flow in special cases. As λ → ∞, x-flow enforces the hard constraint xt = y0 and the θ -flow
reduces to the Langevin dynamics for posterior sampling. When p = 2, x-flow becomes dxt =
−nEqt (θ)

[sx (xt ,θ)]dt −λ p(xt − y0)I {(xt ,y0) ∈ supp(πt)}dt.
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Discretization and implementation. Our algorithm is a time-discretized version of the joint flow
in Eq. 14. To discretize the gradient flow, we use the Euler-Maruyama scheme.

The discretized θ -flow becomes the Lagevin Monte Carlo algorithm. For a step size ηk, it updates

θ(k+1)ηk
= θkηk +ηkn∇Eπkηk ,x

(x)
[
sθ

(
x,θkηk

)]
+
√

2ηkξ , ξ ∼ N (0, Id) . (15)

The discretized x-flow is the vanilla gradient ascent algorithm with step size ηk,

x(k+1)ηk
= xkηk −ηknEqkηk

(θ)

[
sx
(
xkηk ,θ

)]
dt −ηkλ p∥xkηk − y0∥p−2

p (xkηk − y0). (16)

The detailed algorithm is described in Algorithm 1.

Algorithm 1: Wasserstein Gradient Descent Ascent

Input: Initial particles θ 1
0 , · · · ,θ m

0 , Data x1
0, · · · ,xn

0, Terminal time T , Step sizes η0:(T−1)
for k = 0 to T −1 do

Set vk = 0;
Use nk Monte Carlo samples to estimate;

Eπk,x(x) [sθ (x,θk)]≈
1
nk

nk

∑
i=1

sθ

(
xi,θk

)
s.t. x1, · · · ,xnk iid∼ 1

n

n

∑
i=1

δxi
k−1∨0

.

Compute the corresponding estimator vk;

Update θ
j

k+1 = θ
j

k +
ηk
λ

nEπk,x(x)

[
sθ

(
x,θ j

k

)]
+
√

2ηkξ j, where ξ j ∼ N (0, Id);

Use mk Monte Carlo samples to estimate;

Eqk(θ)
[sx (xk,θ)]≈

1
mk

mk

∑
j=1

sx
(
xk,θ

j) s.t. θ
1, · · · ,θ mk iid∼ 1

m

m

∑
j=1

δ
θ

j
k
.

Run Sinkhorn algorithm to compute π∗
k is the optimal coupling between p̂n and pk.

∇W,pU (qk, pk)(x) = ∇δUp(qk,pk)(x) =−nEqk(θ)
[sx(x,θ)]−λ (∇x∥x− y∥p)I {(x,y) ∈ supp(π∗

k )}

Update x j
k+1 = x j

k −
ηk
λ

∇W,pU (qk, pk)(x
j
k);

return θT ,xT ;

At each iteration, we approximate the expected score in θ and x with Monte Carlo samples from
the latest updates. The sequence of samples sizes mk,nk are tuned between 1 and m,n based on
computational budget. Setting mk = nk = 1 corresponds to a full stochastic gradient approach, setting
mk = nk = n is a deterministic gradient descent ascent, setting mn,nk in between corresponds to mini-
batch optimization.

We set the stepsize according to the Robbins-Monroe sequence, i.e. ηk/λ satisfies ∑
∞
k=0 ηk = ∞ and

η2
k < ∞. Dividing by λ offsets the large discretization error to the gradient flow induced by a large

choice of λ .

5 A TOY ILLUSTRATION

Consider a bivariate normal model. The log-joint is given by ℓ(x,θ) = − 1
2∥x− θ∥2 for data x ∼

p0 := N (0, I2).

We simulate a dataset of 100 points from the bivariate normal distribution N (0, I2). We then con-
taminate this dataset by introducing 20 outliers. These outliers are generated from an Exponential(1)
distribution, and then scaled by a factor of 10.

We run the proposed Wasserstein Gradient Descent Ascent (WGDA) and Langevin Monte Carlo
(LMC) algorithms on the contaminated samples. Interestingly, the WGDA algorithm shows insta-
bility when p = 2 and λ is small. When ℓ(x,θ) =− 1

2∥x−θ∥2, higher-order regularization or a large
λ is necessary to ensure the problem is “concave” in the distribution of x. For instance, when p = 2,
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(a) Scatter plot comparing the posterior samples from
WGDA and LMC, under outlier contamination. The
blue region represents the true 95% credible region
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Figure 1: Comparing posterior samples from WGDA and LMC (left) and W2 distance between
WGDA posterior samples and clean posterior samples (right).

we need λ > 50 to make the inner problem concave. We recommend setting p > 2.5 to allow for a
relatively smaller choice of λ .

The WGDA is run with a terminal time T = 1, step size η = 0.001, mk = nk = 10, Wasserstein
power p = 3 and regularization parameter λ = 0.1. As we vary the size of λ , smaller λ makes the
result of WGDA more robust to outliers. The competing LMC algorithm runs with the same step
size η = 0.001 as WGDA.

Figure 1a shows that WGDA produces samples that closely match the posterior credible region under
the clean distribution p0, whereas LMC produces unreliable samples due to data contamination.

Figure 1b plots the discrepancy between the posterior samples generated by WGDA and those from
the target posterior. For smaller values of p, there is a more pronounced improvement in performance
as λ decreases. WGDA outperforms LMC on all (p,λ ) settings considered.

6 DISCUSSION

In this manuscript, we formulate the Distributionally Robust Variational Bayes (DRVB) problem
for posterior inference under adversarial contamination, introduce a Wasserstein Gradient Descent
Ascent (WGDA) algorithm as a robust posterior sampling method, and demonstrate its effectiveness
on a contaminated Gaussian example.

In the appendix, we present a variant of the algorithm that optimizes DRVB under the Fisher-Rao
geometry, which is particularly well-suited for robust sampling under global contamination, and
Wasserstein-Fisher-Rao (WFR) geometry, which addresses mixed global and local contamination.

Immediate future work involves establishing theoretical guarantees, including convergence analysis
and robustness properties under various contamination settings Model 1 to 3.
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José A Carrillo, Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, and Dongyi Wei. Fisher-rao
gradient flow: geodesic convexity and functional inequalities. arXiv preprint arXiv:2407.15693,
2024.

Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, and Andrew M Stuart. Sam-
pling via gradient flows in the space of probability measures. arXiv preprint arXiv:2310.03597,
2023.

Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, and Andrew M Stuart. Effi-
cient, multimodal, and derivative-free bayesian inference with fisher–rao gradient flows. Inverse
Problems, 40(12):125001, 2024.

Sinho Chewi. Log-Concave Sampling. draft, 2023.

John C. Duchi and Hongseok Namkoong. Learning models with uniform performance via dis-
tributionally robust optimization. Annals of Statistics, 49, 2021. ISSN 21688966. doi:
10.1214/20-AOS2004.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 4004 LNCS, 2006a. doi: 10.1007/11761679 29.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 3876 LNCS, 2006b. doi:
10.1007/11681878 14.

Zhou Fan, Leying Guan, Yandi Shen, and Yihong Wu. Gradient flows for empirical Bayes in high-
dimensional linear models. 12 2023. URL https://arxiv.org/abs/2312.12708v1.

Peter J Huber. Robust estimation of a location parameter. Ann. Math. Statist., 35(4):73–101, 1964.

R Jordan, D Kinderlehrer, and F Otto. The variational formulation of the fokker-planck equation.
SIAM J. Math. Anal., 29:1–17, 1 1998. ISSN 0036-1410.

Diederik P. Kingma and Max Welling. Auto-encoding variational {Bayes}. 2014. doi: 10.61603/
ceas.v2i1.33.

7

https://arxiv.org/abs/2312.12708v1


Published at Frontiers of Probabilistic Inference workshop at ICLR 2025

Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. An optimization-centric view on
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A MODELS OF CONTAMINATION

We define three models of contamination for the analysis of our algorithms:

Model 1. TV Contamination(global contamination)

Let ε ∈ (0,1/2), S be a multi-set of n points in Rd . Consider all n-sized sets in Rd that differ
in at most ε-fraction of points, i.e., O(S,ε) :=

{
S′ ⊂ Rd : |S′|= n and |S′∩S| ≥ (1− ε)n

}
. The

adversary can return any set T ∈ O(S,ε). We call points in S to be the inliers and points in T\S to
be the outliers.
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Model 2. Wasserstein-p Contamination(local contamination)

Let ρ ≥ 0, p ∈ [1,∞),S0 = {x1, · · · ,xn} be an n-sized set in Rd . Consider an adversary that perturbs
each point xi to x̃i with the average W1 perturbation(over n points) is at most ρ . Formally, we define:

W1(S0,ρ) :=

{
S = {x̃1, · · · , x̃n} |

1
n ∑

i∈[n]
∥x̃1 − xi∥ ≤ ρ

}
, p = 1

Wp(S0,ρ) :=

{
S = {x̃1, · · · , x̃n} |

1
n ∑

i∈[n]
∥x̃1 − xi∥p ≤ ρ

}
, p > 1

(17)

The adversary returns an arbitrary set S ∈ Wp(S0,ρ), p ∈ [1,∞).

Model 3. TV and Wasserstein Contamination(global and local contamination)

Let ε ∈ (0,1/2) and ρ > 0. Let S0 = {x1, · · · ,xn} be a set of n points in Rd . The adversary can
return an arbitrary set T such that T ∈ O(S,ε) for some S ∈ Wp(S0,ρ).

B TYPES OF GEOMETRIES

B.1 WASSERSTEIN GEOMETRY

Suppose x ∈ X and θ ∈ Θ. We denote Π(p,q) as the set of couplings between measures p and q,
and P(Θ) as the space of probability measures over Θ, ∥ ·∥ as the Euclidean distance in Rd . In this
paper, we work with measures with well-defined densities and we tacitly identify the measures P,Q
with the densities p,q.

For p ≥ 1, we define the (pth)-Wasserstein distance as follows

Wp(p,q) =
(

inf
π∈Π(p,q)

Eπ(x,y) [∥X −Y∥p]

)1/p

.

The Wasserstein space of order p is defined as

Pp (Θ) :=
{

µ ∈ P(Θ);
∫

Θ

d(θ0,θ)
p
µ(dθ)< ∞

}
,

where θ0 ∈ Θ is arbitrary. The Wk distance then defines a (finite) metric on Pp(Θ).

We denote by Pp,ac(Θ) the subspace of Pp(Θ) consisting of measures with Lebesgue densities.
Among them, a speical space (P2,ac(Θ),W2) is a metric space with pseudo-Riemannian geometry
(Villani, 2009).

The subspace of
(
P2,ac(Rd),W2

)
consisting of all Gaussian distributions is known as the Bures-

Wasserstein space, denoted as BW(Rd) (Bhatia et al., 2019).

See (Villani, 2003; 2009; Santambrogio, 2015) for a textbook treatment of optimal transport and
(Chewi, 2023) for log-concave sampling theory.

Let H(q) := Eq [logq(θ)] denote the Boltzmann entropy (Villani, 2003). A key result in optimal
transport is that the relative entropy functional F (q) is α-geodesically-convex in the Wasserstein
sense

F (q) := Eq [V (θ)]+H(q). (18)

provided that the function V is α-strongly convex.

We use several notions of convexity for functionals on P(X ): geodesic convexity and linear con-
vexity. Geodesic convexity is defined under geodesics under a certain geometry(for example W2
geometry), while linear convexity is defined with respect to mixtures of two distributions (see (Vil-
lani, 2009, Ch. 16 and 17)). Following the convention (Villani, 2003), we say a functional F (p) is
convex if it is convex in the linear geometry and geodesically convex otherwise.
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For any functional F (p) of a positive density p on a compact set X , we define its first variation
δF (p) : X 7→ R as the unique function, up to an additive constant, for which

d
dε

|ε=0 F (p+ εχ) =
∫

X
δF (p)dχ(x), (19)

for every signed measure dχ satisfying that
∫
X dχ(x) = 0.

The Wasserstein-2 gradient is defined as the gradient of first variation:

∇W2F (p) = ∇δF (p). (20)

B.2 FISHER-RAO GEOMETRY

The study of dynamics of probability density functions with respect to the Fisher-Rao geometry is
a newly emerging research subject across machine learning and Bayesian statistics(Carrillo et al.,
2024; Chen et al., 2023; 2024; Miyamoto et al., 2024). (Carrillo et al., 2024) studies the geodesic
convexity and functional inequalities of Fisher-Rao geometry and establishes the universal exponen-
tial convergence rate of Fisher-Rao gradient flow with minimal assumptions on the target distribu-
tion via the dual gradient dominance condition. (Chen et al., 2023) studies the Fisher-Rao metric
from the perspective of invariance, which is a desirable property for sampling highly anisotropic
target distributions. (Miyamoto et al., 2024) surveys the available closed-form expressions for the
Fisher-Rao distance of both discrete and continuous distributions. (Chen et al., 2024) applies the
Fisher-Rao gradient flow to propose efficient Bayesian inference methods in the presence of mul-
tiple modes, infeasibility of gradient of density, need for repeated evaluations. Their work focuses
mainly on gaussian Their work mainly focuses on Gaussian approximation and Gaussian mixture
approximation.

The Fisher-Rao gradient of a functional F : P(Rd) is the first variation of F :

∇FRF (p) = δF (p). (21)

B.3 WASSERSTEIN-FISHER-RAO GEOMETRY

Even though WFR metric does not have an explicit form, the WFR gradient is simply a combination
of Wasserstein gradient and Fisher-Rao gradient, which makes the implementation of Wasserstein-
Fisher-Rao gradient flow possible. Hybrid flows under combined Fisher-Rao and Wasserstein-2
gemetries were applied to statistical problems in (Yan et al., 2023; Fan et al., 2023). (Yan et al.,
2023) first introduced Wasserstein-Fisher-Rao gradient flow to statistical problems(learning gaussian
mixtures). (Fan et al., 2023) then applied the hybrid flows to Empirical Bayes by introducing another
random variable.

The Wasserstein-Fisher-Rao gradient of a functional F : P(Rd) 7→ R composes the Wasserstein
and Fisher-Rao gradient.

∇WFRF (p) = (∇W2F (p),∇FRF (p)) (22)

10
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C ADDITIONAL ALGORITHMS AND SIMULATION RESULTS

C.1 FISHER-RAO GRADIENT DESCENT ASCENT

Algorithm 2: Fisher-Rao Gradient Descent Ascent

Input: Initial particles θ 1
0 , · · · ,θ m

0 , Data x1
0, · · · ,xn

0, Weights wwwi
0 = 1/n for i ∈ [n] , Terminal

time T , p0 = ∑
n
i=1 www j

0δx j
0
, Step size ηk, Cut-off time L, Cut-off size nr

for k = 0 to T −1 do
Set vk = 0;
Use nk Monte Carlo samples to estimate;

Eπk,x(x) [sθ (x,θk)]≈
1
nk

nk

∑
i=1

sθ

(
xi,θk

)
s.t. x1, · · · ,xnk iid∼ pk =

n

∑
i=1

www j
kδxi

k
.

Compute the corresponding estimator vk;

Update θ
j

k+1 = θ
j

k +ηknEπk,x(x)

[
sθ

(
x,θ j

k

)]
+
√

2ηkξ j, where ξ j ∼ N (0, Id);

if k ≤ L then
Use mk Monte Carlo samples to estimate;

Eqk(θ)
[sx (xk,θ)]≈

1
mk

mk

∑
j=1

sx
(
xk,θ

j) s.t. θ
1, · · · ,θ mk iid∼ 1

m

m

∑
j=1

δ
θ

j
k
.

Run Sinkhorn to compute π∗
k , the optimal coupling between p0 and pk, and potential

functions φ ∗
k ()

δUp(q,p)(x) =−nEq(θ) [ℓ(θ ,x)]−λ∥x−φ
∗
k (x)∥p

Update
w̃ww j

k+1 = www j
k(1−ηkδUp(q,p)(x

j
k))

(www j
k+1) j∈[n] = reweighting(w̃ww j

k+1) j∈[n] pk+1 =
n

∑
j=1

www j
k+1δx j

k+1

if k = L+1 then
Remove samples with smallest nr weights and assign equal weights of the rest of the

samples.
else

pk+1 = pk

return θT ,xT ;

11
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C.2 WASSERSTEIN-FISHER-RAO GRADIENT DESCENT ASCENT

Algorithm 3: Wasserstein-Fisher-Rao Gradient Descent Ascent

Input: Initial particles θ 1
0 , · · · ,θ m

0 , Data x1
0, · · · ,xn

0, Weights www1
0, · · · ,wwwn

0, p0 = ∑
n
j=1 www j

0δxi
0
,

Terminal time T , Step size ηk, Cut-off time L, Cut-off number nr
for k = 0 to T −1 do

Update θ

Set vk = 0;
Use nk Monte Carlo samples to estimate;

Eπk,x(x) [sθ (x,θk)]≈
1
nk

nk

∑
i=1

sθ

(
xi,θk

)
s.t. x1, · · · ,xnk iid∼ pk =

n

∑
i=1

wwwi
kδxi

k
.

Compute the corresponding estimator vk;

θ
j

k+1 = θ
j

k +ηknEπk,x(x)

[
sθ

(
x,θ j

k

)]
+
√

2ηkξ
j,

where ξ j ∼ N (0, Id), i.i.d. j ∈ [n];

qk+1(θ) =
1
m

m

∑
j=1

δ
θ

j
k+1

Use mk Monte Carlo samples to estimate;

Eqk(θ)
[sx (xk,θ)]≈

1
mk

mk

∑
j=1

sx
(
xk,θ

j) s.t. θ
1, · · · ,θ mk iid∼ 1

m

m

∑
j=1

δ
θ

j
k
.

Update x
Run Sinkhorn algorithm to compute optimal coupling π∗

k , potential functions φ ∗
k () and first

variation:

δUp(q,p)(x) =−nEq(θ) [ℓ(θ ,x)]−λφ
∗
k (x)

∇δUp(qk,pk)(x) =−nEq(θ) [∇xℓ(θ ,x)]−λ (∇x∥x− y∥p)I {(x,y) ∈ supp(π∗
k )}

Wasserstein step ;

x j
k+1 = x j

kηk
− ηk

λ
∇δUp(qk,pk)(x

j
k)

if k ≤ L then
Fisher-Rao step ;

w̃ww j
k+1 = www j

k(1−ηkδUp(q,p)(x
j
k)

(www j
k+1) j∈[n] = reweighting(w̃ww j

k+1) j∈[n] pk+1 =
n

∑
j=1

www j
k+1δx j

k+1

if k = L+1 then
Remove samples with smallest nr weights and assign equal weights of the rest of the

samples.
else

pk+1 = pk

return θT ,xT ;

C.3 SIMULATION

We study DRVB for Bayesian Logistic Regression model under different types of contamination
including Huber contamination, added noise contamination, and a mixture of both. We generate

12
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i.i.d data from Logistic regression model and then generate synthetic contamination to features.
Then run Algorithms 1, 2 and 3 and Langevin Monte Carlo on contaminated data.

Setup: Bayesian Logistic Regression model with 5 parameters θ ∈ Rd and intercept α = 0. θ ∼
N (0, I5). Features Xi

iid∼N (0,900) for i∈ [100], Yi ∼Bernoulli(logit(X⊤
i θ)),i.i.d., where logit(x) =

1
1+ exp(−x)

.

We first apply LMC to the clean data to obtain samples from the clean posterior. This is the ”gold
standard” of our inference.

Huber contamination. In this simulation, we consider the standard Huber contamination setting
with a contamination rate of 0.1. Specifically, we randomly replace 10% of the samples with i.i.d.
Cauchy-distributed random variables at varying scales. We then apply Langevin Monte Carlo (LMC)
as well as the proposed algorithms Algorithms 1, 2 and 3 to the contaminated data to obtain pos-
terior samples. To assess robustness, we compute the Wasserstein-1 distance between the posterior
samples obtained from the contaminated data and the ground-truth posterior, approximated by L

Figures 2a, 2b, 3a, 3b, 4a and 4b present the Wasserstein-1 distance between variational posterior
samples and the ground truth for p = 3,4 across different contamination levels and varying λ .

The WGDA (W2) result follow a typical pattern: it first decreases, then increases, and may even
diverge when the contamination level is too high. In contrast, Fisher-Rao (FR) + LMC consistently
performs better than W2 and converges reliably in all settings. The Fisher-Rao gradient flow ef-
ficiently detects and removes outliers, making it particularly effective in the Huber contamination
setting. On the other hand, the Wasserstein gradient flow is less robust to extreme contamination.
Combining Fisher-Rao and W2 preserves the advantages of Fisher-Rao in handling outliers while
ensuring stability in inference.

Remark 1. In most plots, W2 shows a first decreasing and then increasing trend as λ keeps increas-
ing. Ideally, for Wasserstein Gradient Flow(step size is infinitesimally small, discretization error is
negligible), the increase of λ initially decreases the W1 distance. This occurs because bigger λ leads
to a smaller ambiguity set which further induces a variational solution with smaller bias. However,
once λ reaches the critical point where the ambiguity set shrinks to the set with smallest radius
which still contains the clean empirical measurem, further increases in λ causes the ambiguity set
to exclude the clean empirical measure, introducing significant bias.

In practice, however, for WGDA (fixed step size for varying λ ), the turning point occurs much earlier
due to the compounding effect of discretization error, which grows as λ increases.

Added noise contamination. In this simulation, we consider the Added noise contamination
setting. Contamination rate is 0.1. We randomly choose 10 percent samples and add i.i.d Laplace
noise to them with different levels. Then we run Langevin Monte Carlo and Algorithms 1, 2 and 3
separately to the contaminated data to get corresponding posterior samples. Then we compute the
Wasserstein-1 distance between the posterior samples we obtained by running algorithms on the
contaminated samples and the ground truth(LMC samples from clean data). We study the cases that
tuning parameter p = 3,4 with varying λ .

Figures 5a, 5b, 6a, 6b, 7a and 7b display the W1 distance between variational posterior samples and
ground truth for p = 3,4, varying λ and different levels.

Though Fisher-Rao is efficient to detect outliers, in the added-noise contamination setting, Fisher-
Rao is less robust especially when noise level is relatively low. See Figures 5a and 5b, when noise
level is 10, Fisher-Rao prone to take clean samples as contaminated samples leading to unstable
results. While in this case, W2 is more robust as W2 mainly perturb the features which fits the
contamination well. Fisher-Rao + W2 still preserves the robustness of W2 and performs nicely.

As the contamination level grows higher, the performance of Fisher-Rao gets a lot better since
contaminated samples are easier to detect. And Fisher-Rao + W2 slightly outperforms W2.

Mixed contamination. In this simulation, we consider a mixed contamination setting, a combi-
nation of Huber contamination and Added noise contamination. Contamination rate is still 0.1(0.05

13
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Figure 2: W1 distance between posterior samples from LMC, WGDA, WFRGDA, and FGDA and
clean posterior samples under different contamination levels.
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Figure 3: W1 distance between posterior samples from LMC, WGDA, WFRGDA, and FGDA and
clean posterior samples under different contamination levels.

for Huber and 0.05 for Added noise). We randomly choose 10 percent samples and substitute half
of them by cauchy random variables and add i.i.d Laplace noise to the other half. Then we run 4
algorithms as before separately to the contaminated data to get posterior samples and compute the
Wasserstein-1 distance between samples and the ground truth(LMC samples from clean data). We
study the cases that tuning parameter p = 3,4 with varying λ .

Figures 8a, 8b, 9a, 9b, 10a and 10b present the W1 distance between variational posterior samples
and ground truth for p = 3,4, varying λ and different levels.

At level 10, Fisher-Rao is less robust than the other two algorithms due to the presence of weak
added noise contamination. W2 and Fisher-Rao + W2 performs well in this case. And W2 with
a larger λ performs best in all these three algorithms. As the contamination level increases to 30,
Fisher-Rao performs the best and FR + W2 uniformly beats W2. W2 performs well with a relatively
large λ . At the level 50, W2 can not handle the strong contamination any more. The performance is
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Figure 4: W1 distance between posterior samples from LMC, WGDA, WFRGDA, and FGDA and
clean posterior samples under contamination level 50.
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Figure 5: W1 distance between posterior samples from LMC, WGDA, WFRGDA, and FGDA and
clean posterior samples under Added noise contamination level 10.

even worse than LMC. Fisher handles it well as it does in the single contamination case. And FR +
W2 also performs robustly.

In summary, Fisher-Rao GDA is highly effective in handling Huber contamination and added noise
contamination, particularly at high contamination levels. WGDA performs well in the presence of
added noise contamination and remains effective under Huber contamination when the contami-
nation level is low. When both types of contamination are present and contamination levels vary,
the hybrid Fisher-Rao + Wasserstein (W2) approach demonstrates the highest robustness among all
three algorithms.

While there are scenarios where either W2 or Fisher-Rao individually may fail, Fisher-Rao + W2
consistently performs well and significantly outperforms LMC when properly tuned. This property
can be interpreted as double robustness, meaning that the Fisher-Rao + W2 method remains effective
as long as at least one of the two components is successful.
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Figure 6: W1 distance betweenposterior samples from LMC, WGDA, WFRGDA, and FGDA and
clean posterior samples under Added contamination level 30.
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Figure 7: W1 distance between posterior samples from LMC, WGDA, WFRGDA, and FGDA and
clean posterior samples under contamination level 50.
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Figure 8: W1 distance between posterior samples from LMC, WGDA, WFRGDA, and FGDA and
clean posterior samples under Mixed contamination level 10.
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Figure 9: W1 distance betweenposterior samples from LMC, WGDA, WFRGDA, and FGDA and
clean posterior samples under contamination level 30.
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(a) W1 distance between LMC, WGDA,
WFRGDA,FRGDA posterior samples and clean
posterior samples for varying λ and p = 3 under
Mixed Contamination level 50
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(b) W1 distance between LMC, WGDA, WFRGDA,
and FRGDA posterior samples and clean posterior
samples for varying λ and p = 4 under Mixed Con-
tamination level 50

Figure 10: W1 distance between posterior samples from LMC, WGDA, WFRGDA, and FGDA and
clean posterior samples under Mixed contamination level 50.
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