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ABSTRACT

Many AI applications of interest require specialized multi-modal models. Yet,
relevant data for training these models is inherently scarce. Human annotation is
prohibitively expensive, error-prone, and time-consuming. Meanwhile, existing
synthetic data generation methods often rely on manual prompts, evolutionary al-
gorithms, or extensive seed data from the target distribution — limiting scalability
and control. In this paper, we introduce Simula: a novel, seedless framework that
balances global and local reasoning to generate synthetic datasets. We utilize tax-
onomies to capture a global coverage space and use a series of agentic refinements
to promote local diversity and complexity. Our approach allows users to define
desired dataset characteristics through an explainable and controllable process,
without relying on seed data. This unlocks new opportunities for developing and
deploying AI in domains where data scarcity or privacy concerns are paramount.

1 INTRODUCTION

Data availability and access have been central to advances in artificial intelligence research. Recently,
the abundance of highly diverse internet data enabled the development of increasingly capable
generalist models (Gemini et al., 2023; OpenAI et al., 2023; Anthropic, 2024; Touvron et al., 2023).
Despite these models’ impressive versatility, widespread integration will require them to quickly
specialize on novel, uncommon, and critical applications (e.g., medicine, finance, law). Unfortunately,
specialized data in these areas is often scarce or inaccessible due to cost or privacy concerns. Creating
such datasets manually is expensive, time-consuming, and error-prone (Chen et al., 2023; Gilardi
et al., 2023). Synthetic data offers a promising, scalable alternative (Singh et al., 2024a; Abdin et al.,
2024; Guo et al., 2025). Nevertheless, how to best balance its various desiderata is an open question.

To optimize generalist models for specific tasks, practitioners typically use techniques such as fine-
tuning (Ziegler et al., 2019; Hu et al., 2022; Chung et al., 2024), distillation (Hinton et al., 2015),
reinforcement learning (Christiano et al., 2017; Jaech et al., 2024; Guo et al., 2025), and few-shot
prompting (Brown et al., 2020). Each of these approaches relies on the availability of relevant
example data. Developing scalable methods that can reliably deliver specialized data on-demand is
thus vital to accelerate broader AI adoption. Furthermore, synthetic data can increase control and
source-attribution, enabling more targeted optimization (Ruis et al., 2024).

Yet, characterizing “good” synthetic data is intrinsically challenging. Generally, “good” is discussed
in terms of quality, diversity, and complexity (Havrilla et al., 2024). However, the precise definitions
of these terms is contentious. Instead of describing the usefulness of data (Swayamdipta et al., 2020;
Marion et al., 2023a), “quality” commonly refers to how well data points fit specific requirements.
For example, if the intention is to generate “an image of a red cat”, does the resulting image have a
cat in it, and, is that cat indeed red? Meanwhile “complexity” can refer to how confusing or elaborate
a specific data point is (Ethayarajh et al., 2022; Shao et al., 2023), but is often equated with the
relative concept of “difficulty”. In the case of our red-cat image, a complex example might be a
partially obscured cat, or one lying in the shadows. Finally, “diversity” offers both a global and local
perspective: does the generated data globally cover the main factors of interest, and does it locally
exhibit sufficient variety within specific factors?

Existing synthetic data generation methods generally optimize only a subset of the above desiderata
(Havrilla et al., 2024). They often rely on elaborate custom prompts (Gupta et al., 2024; Xu et al.,
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Figure 1: Synthetic coverage examples. (a) characterizes “random” sampling behavior; (b) perfect global
planning at increasing granularity; (c) global planning with progressive coverage loss.

2024; Yu et al., 2023), or stochastic, evolutionary algorithms (Mehrotra et al., 2024; Fernando
et al., 2024). The former generalizes poorly, while the latter lacks explainability and control. Many
approaches further require a large number of “seed examples” drawn from the target dataset, which
presents an unrealistic assumption in many real-world cases and might hurt global coverage.

In this work we propose Simula: a holistic approach to synthetic data generation that balances global
and local reasoning. Given a target dataset description, Simula maps out a global coverage space using
synthetic taxonomies. Then, it applies a series of agentic refinements to promote local diversity and
complexity. Finally, it performs double-critic rejection sampling to optimize quality. Our approach is
seedless and provides clear notions of explainability and control, essential for optimal data curation.
We rigorously test the core reasoning assumptions underlying our approach and demonstrate its
efficacy on a series of carefully designed experiments.

2 ORCHESTRATING SYNTHETIC DATA WITH REASONING

Imagine we are interested in creating a dataset with the description y := “A dataset of stories about
cats”. Due to the under-specification of y, it is infeasible to exhaustively describe the space of
all datasets Y , that fit the description. This is problematic as it prevents us from developing an
explainable notion of global coverage, i.e., given a dataset Dy ∼ Y , what area of Y does it represent?

2.1 APPROXIMATING GLOBAL COVERAGE USING SYNTHETIC TAXONOMIES

To regain control, we formulate a first order approximation of Y by disentangling our target dataset
into its prime factors of variation. 1 For example, a dataset that fits the description above might
consist of data points considering, e.g., “cat type”, “story format”, and “intended audience”. In
Simula, a multi-modal model (M3) is prompted to propose factors based on a set of human-provided
instructions, e.g., a description like y, and/or a sample S of existing data. These factors can be
accepted or rejected by a human (or M3). Given factors fi, an M3 is used to expand them breadth-first
into taxonomies, Ti, of a (user-) specified depth di:

g(M3, y,S, (d0, f0), · · · , (dK , fK)) = {Ti}Ki=0 = T y (1)

Using taxonomies provides granular explainability and control of Y compared to random sampling
(Figure 1.a). Intuitively, as we increase the number of factors and taxonomy depths, we sharpen our
coverage control (Figure 1.b). However, this granular control comes at a potential cost: with every
taxonomy expansion we risk “missing” nodes of interest, resulting in the progressive coverage loss
depicted in Figure 1.c.

To mitigate potential coverage loss resulting from missing nodes, we generate factor taxonomies by
alternating between three steps: (1) Given a node, its ancestors and its siblings, an M3 is prompted N
times to propose children nodes. This sampling strategy is inspired by the “Best-of-N” literature to
increase the proposal distribution and cover edge cases. (2) In a separate call, an M3 is prompted
to locally critique the generated nodes, e.g., on completeness, soundness, and specificity, taking
advantage of M3s’ observed generator-critic gap (Huang et al., 2024). Finally, (3) after generating all
nodes of a specific level, an M3 is prompted to generate a “plan” for the next level. This last step

1Note that perfect disentanglement is of course not always possible (Locatello et al., 2019).
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Figure 2: Schematic of Simula Framework. Given user instructions y and/or a data sample S, we
first determine factors of interest (a), which are expanded into taxonomies (b). Next, nodes of the
taxonomies are sampled to obtain mixes (c), and turned into “meta prompts” (d). A user-defined
fraction, c, of meta prompts is “complexified”. Meta prompts are used to generate data proposals by
the Generator model, and iteratively refined using a Critic model (e).

is necessary to enable consistent and fast parallel generation, e.g., by ensuring a similar degree of
granularity at different node expansions on the same level. At each step, the M3 also has access to
the user-provided input y, and/or a sample S , from the target distribution. We will empirically show
that this alternating generator-critic approach improves over simple 0-shot expansion.

2.2 GENERATING CONTROLLABLE AND EXPLAINABLE SYNTHETIC DATA AT SCALE

To generate a synthetic dataset that fits our requirements, we distinguish between two phases:
taxonomic sampling (Figure 2.c) and agentic refinement (Figure 2.d-e). Initially, an M3 formulates a
plan composed of sampling strategies. A strategy defines which taxonomies can be combined together,
and with which weights. This is important, as not all sub-taxonomies make sense to combine (e.g.,
writing a horror novel about a troubled cat for toddlers seems ill-advised). A practical application of
strategies could involve aiming for an equal split between kid and adult audiences, where the M3
might propose two strategies, filtering inappropriate formats like “horror” from the kids’ strategy. The
generation pipeline then samples a strategy and nodes from the corresponding taxonomies Tj . These
sampled “requirements”, along with the original dataset instructions y, guide an M3 to construct
one or more “meta prompts”. For example, M3(y, {house cat, poem, travel enthusiast}), becomes
“Compose an exciting haiku about a house cat who goes on an adventure”. Finally, these meta
prompts direct an M3 to generate the data outputs.

Optimizing Local Diversity and Complexity. Imagine we want to construct a dataset of size
N = 100, and our factor and strategy selection has yielded T = 200 unique node-pairs. Since
N < T , our sampling budget allows for at most 100 unique node-pairs with a single meta prompt
each, resulting in a global coverage rate of 100/200 = 0.5. Conversely, for N > T , e.g, N = 800,
we can sample up to four meta prompts for each requirement set. As the number of meta prompts per
node-pair grows, we increase local diversity. However, asN/T grows, independently generating meta
prompts from fixed requirements can lead to mode collapse, i.e., meta prompts that are increasingly
similar. This is mitigated by generating multiple meta prompts simultaneously, prompting for
maximum sample diversity, then sub-sampling the required fraction. We call this approach “semantic
expansion”. Next, we expand the complexity of a fraction of the samples, by prompting the M3 to
increase the complexity of the generated meta-prompts and outputs while maintaining our semantic
requirements. We refer to this later as “complexity expansion. Optimizing local diversity and
complexity this way works well for smaller sample sizes, but degrades as N/T grows very large.
Instead, for large N/T , Simula can be configured to iteratively prompt for more diverse or complex
meta prompts with previous attempts in context. This allows an M3 to reflect on previous generations.
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Enhancing Sample Quality with Critics. Next, the system performs a series of agentic refinement
steps to optimize sample output quality. It starts with point-wise checks to ensure the generated
samples pass the specified semantic and synthetic requirements. This involves prompting the M3 to
“critique” the generated samples by providing the meta prompt used for generation and requesting
an explanation and a binary verdict. For example, given the generated sample for the adventurous
house-cat haiku above, the M3 checks if the cat in the story is indeed a house cat, if the output is a
haiku, and if adventures were had. For tasks requiring outputs with a defined notion of correctness
(e.g., classification or multiple-choice questions), the system employs an additional “double critic”
step, which independently assesses correctness and incorrectness to mitigate sycophancy bias (Sharma
et al., 2024). Following these “critic refinement” steps, if the M3 responds with a negative verdict,
the system either rejects the sample or applies automated modifications based on the explanation,
then repeats the critique step.

2.3 UNDERSTANDING DATA COVERAGE AND COMPLEXITY

Taxonomic Data Coverage. The importance of data selection during both M3 training and inference
time is emphasized by a growing body of research (Swayamdipta et al., 2020; Marion et al., 2023b;
Ye et al., 2024; Xia et al., 2024; Hu et al., 2024; Hübotter et al., 2024), inter alia. Access to training
data that accurately reflects test time conditions further is essential to assess model performance and
preparedness. Despite their vital role, most datasets are sparsely labeled, e.g., “math”, “harmful”,
“customer complaint”, etc., or not labeled at all. This complicates efforts to curate optimal corpora,
allocate resources (Qian et al., 2024), and catch potential misalignment between train and test sets
(van Breugel et al., 2024). Using taxonomy mixtures offers a way forward not only for generating
synthetic data, but also for better understanding existing data. Given a dataset, we can generate
taxonomies and query an M3 to assign nodes of the taxonomies to each data point. This provides a
fine-grained view into data composition and actionable insights to expand coverage. Additionally, this
opens up the possibility of “taxonomic nearest-neighbor” (TNN) retrieval, alleviating the dependency
on limited embedding-based alternatives (Ethayarajh, 2019; Kashyap et al., 2023).

Evaluating Sample Complexity. Depending on the task at hand, more or less complex data samples
might be desired. This presents a challenge, as most real data is not annotated for complexity and
synthetic data generation is unsupervised. To nevertheless partition data based on complexity, we
propose a “batch-wise” comparative evaluation approach: Firstly, batches of data points are sampled
such that each data point appears K times. Secondly, an M3 assigns scores to each sample in each
batch reflecting their complexity, optionally using a dataset description y. Using batches to score
individual points provides more context, reducing noise resulting from per-sample overconfidence
or poor calibration (Zheng et al., 2023; Xiong et al., 2024). Finally, to further improve our relative
scoring signal, we compute ELO scores (Elo & Sloan, 1978) from the score assignments. This method
(1) enables complexity comparisons of data points across different datasets and (2) can be used to
sample more complex data on demand. We further use this in our evaluation to assess the efficacy of
Simula’s complexity expansion component. Additional discussion can be found in Appendix D.

3 EXPERIMENTAL SETUP

We conduct experiments using Gemini 1.5 Pro as our teacher model (Gemini et al., 2024) and both
the pre-trained and instruction-tuned versions of Gemma 2B (Gemma et al., 2024) as our student
models. We report confidence intervals as the standard error over three runs when applicable.

3.1 VERIFYING CORE METHOD ASSUMPTIONS

Our approach primarily relies on three core assumptions about M3 reasoning capabilities: M3s can
(i) generate high-quality taxonomies; (ii) function as effective “critics” of their own outputs; and (iii)
distinguish between more and less complex examples. We test each of these assumptions as follows:

M3s Generate High-quality Taxonomies. Evaluating the quality of taxonomies is inherently
challenging due to the lack of standardized criteria and methods (Szopinski et al., 2020; Kaplan et al.,
2022). We differentiate between grounded taxonomies, e.g., phylogenetic trees, and conceptual ones,
e.g., types of harmfulness. Given an expert taxonomy, TE , we compare to an M3-generated taxonomy
for the same topic, TM3. Structurally, we care about completeness (does TM3 cover TE?), soundness
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(does TM3 contain irrelevant or unnecessary nodes?), and novelty (does TM3 contain relevant nodes
not in TE?). We evaluate both the Simula generator-critic approach and 0-shot expansion on six
real-world taxonomies. Additional experimental details are available in Appendix B.

M3s Are Effective Critics We take a dataset with ground-truth labels Dtrue and create a corrupt
copy by prompting an M3 to subtly change the ground-truth labels. We independently prompt a
critic model if (1) a label is correct and (2) if it is incorrect. Because generating synthetic data
is unsupervised, we won’t know if the critic is judging a correct or incorrect sample at inference
time. Hence, for effective critic-based rejection sampling, we need P (correct|xi,do(yi = correct))
to be high and P (correct|xi,do(yi = incorrect)) low. We further test if a critic’s efficacy in the
controlled setting transfers to the empirical setting of model-generated labels. We compare the
controlled critic to the empirical one on free-form math problems (MATH, Hendrycks et al. (2021)),
and multiple-choice questions in selected languages (MMLU, Singh et al. (2024b)).

M3s Can Distinguish Complexity We investigate if model-assigned complexity (1) agrees with
human annotators and (2) how well-calibrated it is to their generative and critic capabilities, We
evaluate on the MATH dataset, as each question comes with a 1-5 annotated complexity rating, and
selected MMLU subjects with multiple levels of education (elementary, high school, and college).

3.2 INTRINSIC METRICS OF SYNTHETIC DATA

We generate synthetic datasets for a subset of SuperGLUE (Wang et al., 2019), and multilingual
subsets of MMLU (Singh et al., 2024b). We ablate four versions of Simula: (i) Taxonomies only (TO)
with meta prompting, but no expansion, (ii) with semantic expansion only (TS), (iii) with complexity
expansion only (TC), and (iv) full (TSC) with both expansion types and critic refinement. As a
baseline (B), we sample data from the train/validation sets and iteratively prompt an M3 to expand.

Global Diversity. Following Yu et al. (2023), we evaluate average pairwise cosine similarity on the
real and generated datasets using embeddings from Lee et al. (2024b).

Local Diversity. We first group data by taking the k = 10 closest points to each data point in
embedding space to ensure semantically meaningful clusters. We then analyze the average pairwise
cosine similarity across these clusters.

Complexity. We use our batch-wise evaluation approach described in Section 2.3, mixing synthetic
with real data for valid comparisons. After instructing the M3 to assign scores between 0-100, we
report the delta to the real data. For example, if real data has an average complexity of 50, and
synthetic 55, we report +5.

3.3 DOWNSTREAM METRICS OF SYNTHETIC DATA

We LoRA fine-tune pre-trained student models (Hu et al., 2022) on the explanation (chain of thought
generated by the teacher) and the final answer, varying the sample size for multilingual subsets of
MMLU . Data is generated using the full version (TSC) and one without critic refinement (TSC\c),
as well as the baseline (B). We also include comparisons to a 5-shot setup with pre-trained Gemma
2B and a 5-shot with instruction-tuned Gemma 2B. We report the macro average F1-score over the 4
choices as well as the “Performance Gap Recovery” (PGR) metric from Kim et al. (2024).

4 RESULTS

4.1 TESTING CORE ASSUMPTIONS

Quality of Taxonomies. Table 1 suggests Simula taxonomies approximately cover those created
by human experts (γ). For conceptual taxonomies, almost all generated nodes are sound (σ), with
many novel expansions (ν) resulting in increased total coverage (τ ). For both taxonomy types, Simula
clearly outperforms 0-shot generation. These results support our approach of approximating a global
coverage space using taxonomies. Appendix B contains expanded results, analysis, and examples.

Critic and Complexity. Shown left in Table 2, the probability of our double critic recognizing a
correct answer is slightly higher than generating it, p(y) ≥ µgen, while the probability of accepting
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Table 1: Taxonomy evaluation. Average completeness (γ), soundness (σ), novelty (ν), and total coverage (τ ).

Source Grounded Conceptual

γ σ γ σ ν τ

Simula 0.74 0.75 0.78 0.97 0.94 1.72
0-shot 0.52 0.70 0.50 0.97 0.32 0.83

an incorrect answer, p(ycorrupt), is much lower than rejecting it. Thus, after a rejection-sampling step
on the generated outputs, the mean accuracy is expected to increase:

µgen · p(y) + (1− µgen) · p(ycorrupt) = E[µcritic] > µgen (2)

Lastly, the percentage of rejected samples |Dreject| is expected to grow as the complexity increases.

Right of Table 2, we observe critic-rejection sampling on model outputs empirically increases the
remaining accuracy of model outputs, P (µgen|X) > P (µgen|×). Further note that, stratified by
Complexity, the average ELO score of rejected outputs is consistently higher than those of accepted
ones. Taken together, these results provide strong evidence that our critic refinement improves overall
sample quality. Additional critic and complexity results are available in Appendices C and D.

Table 2: Critic-rejection sampling results for MATH test set stratified by complexity. The controlled critic
probabilities of accepting a correct answer p(y), or an incorrect one p(ycorrupt). Applying rejection sampling
gives the expected change in accuracy E[µcritic] over the generative performance µgen and the percentage of
rejected samples. The right side of the table shows the empirical change in accuracy, µgen of following critic
rejections. Also shown are the average ELO complexity score and the size of the rejected and accepted subsets.

Controlled Rejection Sampling (SE < 0.01) Empirical Rejection Sampling

Complexity p(y) p(ycorrupt) µgen E[µcritic] |Dreject| Critic µgen ELO |D|

Level 1 0.97 0.24 0.97 0.99 0.04 × 0.33 ±0.21 373 ±19 6
X 0.98 ±0.01 328 ±2 431

Level 2 0.95 0.24 0.95 0.99 0.06 × 0.56 ±0.12 410 ±12 18
X 0.96 ±0.01 364 ±2 875

Level 3 0.93 0.28 0.93 0.98 0.08 × 0.30 ±0.09 435 ±7 30
X 0.95 ±0.01 389 ±2 1101

Level 4 0.89 0.30 0.85 0.94 0.14 × 0.27 ±0.05 453 ±4 90
X 0.89 ±0.01 413 ±1 1124

Level 5 0.81 0.36 0.72 0.86 0.23 × 0.17 ±0.03 470 ±2 189
X 0.81 ±0.01 436 ±1 1134

4.2 INTRINSIC RESULTS

A subset of the intrinsic results is shown in Table 3. We note that the full system (TSC) consistently
improves over the baseline (B) and the minimal system (TO). Compared to the real data (R), our
system is capable of generating more complex data while boasting comparable to better diversity
in most cases. Note that, as the diversity metrics are based on embeddings, they do not necessarily
capture important control details. Additional results can be found in Appendix E.

4.3 DOWNSTREAM RESULTS

Figure 3 showcases the macro average F1-score across languages and subjects of pre-trained (PT)
and instruction-tuned (IT) models. We observe the value of increasing the training data volume on
performance, which is a unique advantage of synthetic data. We observe the utility of the critic step,
evidenced by the gap between TSC and TSC\c. We further note the consistent performance gain
compared to the baseline PT 5-shot COT variant and the synthetic baseline (B) across the various
combinations. As the fine-tuning data size increases, the models fine-tuned on TSC get closer to or
exceed the IT variant. In Appendix F, we show the results of the Performance Gap Recovery metric.
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Table 3: Intrinsic evaluation results. Global and local diversity (∆global, ∆local) and global complexity (φ).
Diversity values have SE < 0.001. For complexity, we report the lift over real data (R) with SE < 1.

boolq rte MMLU (English) MMLU (Nepali)

Method ∆global ↓ ∆local ↓ φ ↑ ∆global ↓ ∆local ↓ φ ↑ ∆global ↓ ∆local ↓ φ ↑ ∆global ↓ ∆local ↓ φ ↑

R 0.30 0.62 20 0.51 0.66 28 0.36 0.64 40 0.64 0.85 43

B 0.40 0.92 +1 0.52 0.74 +8 0.39 0.82 +2 0.69 0.93 0

TO 0.36 0.71 +5 0.55 0.73 -2 0.36 0.70 +9 0.65 0.87 +8

TSC 0.37 0.66 +17 0.52 0.70 +5 0.36 0.68 +15 0.53 0.80 +14
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Figure 3: Performance on MMLU Global. Split by language (top) and subject (bottom), of synthetic data
variants vs. PT & IT 5-shot with COT. The numbers in the legend indicate the data size used per variant.

5 CONCLUSION

AI is at a junction: just as its potential is becoming evident, the data needed to realize it is unlikely to
be generated by humans (Villalobos et al., 2024). With Simula, we address this important need, by
providing a scalable synthetic data process built around reasoning. We carefully validated its efficacy
across diverse tasks and languages, demonstrating control and explainability. We thus believe our
work represents a promising step toward more widespread and equitable access to advanced AI.
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A RELATED WORK

A.1 SYNTHETIC DATASET EVALUATION.

Early Evaluation Methods. When evaluating a synthetic dataset, we can differentiate between
comparative and intrinsic evaluation. The former expects the availability of a reference dataset. In the
case of “closed” tasks that allow for narrow comparisons, we can directly compare model-generated
outputs to reference solutions, e.g., single-word answers, translations, or summaries. Originally,
these were done directly on the observed outputs, e.g., by comparing overlapping words or n-grams
(Papineni et al., 2002; Lin, 2004; Lavie & Agarwal, 2007), inter alia.

Rise of Semantic Metrics. As tasks might have multiple different, but semantically equivalent
solutions, evaluations shifted to embedding-based approaches (Patil et al., 2023). Such approaches
can even be used in the absence of one-to-one reference mappings, by comparing output distributions
on a dataset level (Heusel et al., 2017; Pillutla et al., 2021). Although embedding-based approaches
allow for automated evaluation, they can struggle in specialized domains and miss semantic subtleties
(Ethayarajh, 2019; Kashyap et al., 2023).

Auto-Verifiable Tasks. Then, we have a class of problems that allow for many trajectories ending in
a final solution whose correctness can be automatically verified quickly, e.g., program synthesis and
mathematical reasoning (Song et al., 2024), or negotiation games (Davidson et al., 2024b).

The Challenge of Open Tasks. What remains is a large class of “open” tasks, for which there are no
well-defined criteria of correctness, e.g., creative writing, advice, and most visual media. For these,
we largely rely on the reasoning capabilities of human annotators to provide quality references and to
obtain pairwise preference labels (Christiano et al., 2017; Bai et al., 2022). However, creating such
datasets manually is expensive, time-consuming, and error-prone (Chen et al., 2023; Gilardi et al.,
2023; Hosking et al., 2024).

Emergence of LLM Judges. Recently, the growing capabilities of frontier models have opened
up the possibility of model-based reasoning (Lee et al., 2024a; Zheng et al., 2023; Li et al., 2024a;
Saunders et al., 2022; Wang et al., 2023; Madaan et al., 2024), inter alia. As humans and AI start to
prefer AI-generated text (Zhang & Gosline, 2023; Panickssery et al., 2024), and AI prefers text by the
strongest AI models (Davidson et al., 2024a), model-based evaluation is set to become increasingly
prevalent.

Intrinsic Evaluation Metrics. In the absence of reference data, one must rely on intrinsic evaluation.
As described in the introduction, we typically focus on the axes of quality, diversity, and complexity.
When we treat quality as how well a set of data points meets stated requirements, we are quickly
forced to rely on reasoning-based evaluation. Instead, if understood as the utility of a dataset
for a specific downstream task, we can directly measure the lift in downstream performance, e.g.,
through classification accuracy. Diversity is often approximated using pairwise cosine similarity after
embedding outputs into a higher dimensional space (Yu et al., 2023; Gupta et al., 2024). Without
grouping the data using an appropriate clustering step, e.g., semantic clusters, average statistics
are sensitive to outliers and fail to differentiate between global and local diversity. Crucially, such
diversity statistics provide few semantic, actionable insights. Attempts to automate complexity
scoring range from measuring the length of outputs (Shao et al., 2023), or the relative entropy over
output alternatives (Ethayarajh et al., 2022; Lu et al., 2023), to generating a large solution set and
using a reward model to estimate correctness (Snell et al., 2024). Reasoning-based approaches instead
directly query a model to provide a “difficulty” score (Li et al., 2024a). Because models are generally
poorly calibrated (Zheng et al., 2023; Tian et al., 2023; Xiong et al., 2024), and difficulty is a relative
concept, such absolute scores can be noisy.

Our Reasoning-Based Approach. Our work continues the trend of incorporating model-based
reasoning to evaluate data. Instead of using approximate statistics based on output embeddings,
reasoning-based approaches provide explainable traces that can be audited and controlled. Mapping
out a global coverage space using taxonomies allows end-users to quickly evaluate if their generated
data meets the appropriate global diversity requirements (Sections 2.1, 2.3). We further carefully
tested popular assumptions about the use of model-based critics through a series of controlled ex-
periments. On the evaluated datasets, we find that critic-rejection sampling of synthetic outputs
consistently succeeds in increasing average sample quality (Sections 2.2, 3.1, 4.1) across different
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datasets and complexity levels. We also found that model-assigned complexity scores are promis-
ing proxies for human notions of difficulty, and correlate well with models’ critic and generation
capabilities (Sections 2.3, 4.1, and Appendix D).

A.2 SYNTHETIC DATASET GENERATION.

Seed-Based Expansion Methods. Popular synthetic data methods generally only account for a
subset of the quality, diversity, and complexity axes (Havrilla et al., 2024). For example, Wang et al.
(2023) start with a set of seed examples and iteratively expand them using hand-crafted semantic
diversity prompts. Xu et al. (2024) similarly expand seed examples, but focus on both diversity and
complexity. The main quality check performed is to ensure that these expanded examples do not
become degenerative. An attempt at increasing global diversity is done by maximizing pairwise
cosine similarity through rejection sampling. The authors note that expanding semantic diversity and
complexity are both positively correlated with downstream performance after fine-tuning.

Factor Identification Approaches. Reif et al. (2024); Chen et al. (2024); Viswanathan et al. (2024);
Lu et al. (2024) use seed examples to automatically detect relevant factors through iterative sampling
of the target dataset, after which factors are extracted using reasoning modules. Other approaches
side-step the need for seed examples by manually inspecting or reasoning about a target dataset to
find globally relevant factors of variation (Yu et al., 2023; Gupta et al., 2024; Samvelyan et al., 2024).
They then sample from these factors for conditional generation. Relevant to our framework is work
done by Li et al. (2024b), who attempt to generate a single, large taxonomy to cover a variety of
topics. Inspired by curriculum-based learning in human education systems, the authors generate a
variety of learning modules to implicitly vary complexity.

Leveraging the Critic Gap. Many have by now pointed out the apparent gap between current
models’ generative and verification capabilities (Huang et al., 2024). This gap allows models to act
as critics of their own outputs (Saunders et al., 2022; Madaan et al., 2024) and has been successfully
used by many of the above methods (Lee et al., 2024c; Gupta et al., 2024; Samvelyan et al., 2024;
Chen et al., 2024), inter alia.

Scaling Test-Time Compute. Recent efforts in scaling test-time computation show that models are
capable of generating correct outputs even for complex questions, given enough attempts (Song et al.,
2024; Brown et al., 2024). Yet, how to best scale such a test-time computation budget depends on
the complexity of the particular problem (Snell et al., 2024). The authors suggest that “easier” tasks
most benefit from exploiting an existing output attempt through iterative refinement, whereas more
“difficult” tasks benefit more from exploring a larger proposal distribution.

Our Orchestration Approach. With Simula, we build on many of the existing insights into the
merits of optimizing quality, diversity, and complexity for downstream performance. In contrast to
existing methods, we explicitly orchestrate the generative process on a dataset level to increase global
control and explainability. We carefully split the data generation process into separate steps, i.e.,
global diversity, local diversity, complexity, and correctness, allowing end users to tailor datasets to
their specific requirements (Section 2). In doing so, it becomes possible to allocate computational
resources where they are most desired, e.g., by generating more meta prompts to increase the proposal
distribution of complex samples or adding additional critic steps to refine the outputs.
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B SUPPLEMENTARY: TAXONOMY EVALUATION

To address the inherent challenges of assessing taxonomy quality and completeness, we use a critic-
model based framework for evaluation. Traditional taxonomy evaluation often relies on manual
expert review, which is time-consuming, expensive, and often difficult to attain. Our proposed
framework leverages the capabilities of multi-modal models (M3s) as “critic models” to provide a
more automated, scalable, and reproducible evaluation alternative.

B.1 DEFINING TAXONOMY EVALUATION METRICS

First, a hierarchical representation for each expert taxonomy TE , TM3 is provided and the critic model
classifies each node into the following category.

• Good and Overlapping: The node is good (well-defined, relevant to its parent node, and
fits appropriately within the overall taxonomy) AND overlapping (there is a semantically
equivalent node in the other taxonomy which represents the same concept).

• Good and Exclusive: The node is good (well-defined, relevant to its parent node, and
fits appropriately within the overall taxonomy) AND NOT overlapping (there is a no
semantically equivalent node in the other taxonomy which represents the same concept; this
concept appears uniquely in this taxonomy).

• Redundant: The node is a duplicate within its own taxonomy, there is another node in the
same taxonomy representing the same concept.

• Bad: The node is irrelevant, poorly defined, misclassified, or otherwise inappropriate for its
position in the taxonomy.

Based on the critic model’s classifications, we compute several quantitative metrics to evaluate each
taxonomy:

• Completeness: This metric measures the extent to which TM3 covers the concepts present
in TE . The M3 critic assesses, for each node (concept) in TE , whether a semantically
equivalent node exists in TM3. This serves as a measure of coverage and recall, quantified
by the ratio (Good and Overlapping) / (Total Good) in TE . Here, Total Good = Good and
Overlapping + Good and Exclusive.

• Soundness: This metric assesses the proportion of relevant and correct nodes within TM3.
The M3 critic examines each node in TM3 to judge its relevance to the topic and whether
it constitutes a non-redundant entry. Fewer irrelevant or incorrect nodes result in greater
soundness. This serves as a measure of precision, quantified by the ratio (Total Good) /
(Total Nodes) in TM3. Here, Total Good = Good and Overlapping + Good and Exclusive.

It is worth noting here, that there are different taxonomy types in practice. Grounded taxonomies are
typically revised over time as new empirical evidence is gathered through the scientific method. A
recently accepted version in the literature can be considered closer to a ground truth than a conceptual
taxonomy, in that it offers less scope for an M3 to generate new terms absent new evidence. We
use the following grounded taxonomies for evaluation: “Animal Phylogenetic Classes” (Bánki et al.,
2025), “Periodic Chemical Elements” (International Union of Pure and Applied Chemistry (IUPAC),
2022), and “Mineral Classification” (Gaines et al., 1997).

Conceptual taxonomies are more subjective than grounded ones; even the definitions and usage of
terminology can vary across the literature (Usman et al., 2017; Szopinski et al., 2020; Kundisch et al.,
2021; Kaplan et al., 2022). We use the following conceptual taxonomies for evaluation: “Risk of
Language Models” (Weidinger et al., 2022), “Online Harmful Content” (Banko et al., 2020), and
“Logical Fallacies” (Curtis, 2023)).

Because of this subjectivity, we additionally compute the following metrics for conceptual tax-
onomies:

• Novelty: This metric assesses whether TM3 contains relevant nodes that are not present in
TE . The M3 critic identifies nodes in TM3 that are not semantically equivalent to any node in
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TE and then judges the relevance of these novel nodes. A higher number of relevant novel
nodes indicates greater novelty. We define this as the ratio (Good and Exclusive in TM3) /
(Total Good in TE).

• Coverage: This represents the total number of ”good” items in TM3 relative to the total
number of ”good” items in TE . Coverage is equivalent to Completeness + Novelty and
provides a comparative metric of the number of sound items. It follows that a coverage
value greater than 1.0 indicates that TM3 covers more relevant and correct items than TE
within the global space for the given taxonomy.

A more elaborate description of the grounded and conceptual taxonomies used can be found in B.2.

B.2 TAXONOMY EVALUATION RESULTS

Table 4: Performance metrics for different taxonomies.

Type Topic Method Completeness (γ) Soundness (σ) Novelty (ν) Coverage (τ )

Conceptual

Online Harmful Content Simula 0.749 0.980 0.865 1.614
0-shot 0.588 0.957 0.412 1.000

Logical Fallacies Simula 0.726 0.919 1.679 2.405
0-shot 0.458 0.966 0.193 0.651

Risks of Language Models Simula 0.867 1.000 0.267 1.134
0-shot 0.467 1.000 0.367 0.834

Grounded

Animal Phylogenetic Classes Simula 0.458 0.926 —-0-shot 0.349 0.918

Periodic Chemical Elements Simula 0.993 0.987 —-0-shot 0.775 0.864

Mineral Classification Simula 0.762 0.340 —-0-shot 0.442 0.329

Description of the taxonomies from Table 4:

• [Conceptual] Online Harmful Content: This taxonomy aims to provide a unified classifi-
cation of harmful content found online. It synthesizes common abuse types described by
industry content policies, policy recommendations, community standards, and health expert
guidelines. The goal is to create readily usable categories for content moderation, encourage
the development of accurate datasets for model training, and raise awareness of less-studied
abuse types to improve online safety. This taxonomy categorizes different types of harmful
content found online into four main groups: Hate and Harassment; Self-Inflicted Harm;
Ideological Harm; and Exploitation — and further branches each into a set of more specific
types. (Banko et al., 2020).

• [Conceptual] Logical Fallacies: This taxonomy classifies types of logical fallacies into a
hierarchical structure. It divides fallacies into two main branches: Formal Fallacies (errors
in the structure of the argument) and Informal Fallacies (errors in the content or context
of the argument). These main categories are further subdivided into numerous specific
types of fallacies, such as Propositional Fallacies, Quantificational Fallacies, and various
informal fallacies like Appeal to Ignorance, and Red Herring, and then branching down to
increasingly specific types (Curtis, 2023).

• [Conceptual] Risks of Language Models: This taxonomy identifies ethical and social
risks associated with large-scale language models (LMs). It categorizes these risks into six
areas: Discrimination, Hate speech and Exclusion; Information Hazards; Misinformation
Harms, Malicious Uses, Human-Computer Interaction Harms, and Environmental and
Socioeconomic harms. The taxonomy distinguishes between “observed” risks (already
evidenced in LMs) and “anticipated” risks (considered likely but not yet observed). The goal
is to provide a comprehensive framework for understanding and mitigating the potential
negative consequences of LMs. (Weidinger et al., 2022).
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• [Grounded] Animal Phylogenetic Classes: This taxonomy represents the hierarchical
classification of animals based on their evolutionary relationships. It is truncated to two
levels deeper into the animal kingdom, encompassing its phyla and classes (Bánki et al.,
2025).
• [Grounded] Periodic Chemical Elements: This taxonomy organizes chemical elements

into a hierarchical structure based on their atomic number, electron configuration, and
recurring chemical properties, primarily reflecting their placement in the periodic table. It
positions elements into groups from Group 1 - Alkali Metals through Group 18 - Noble
Gases, as well as the Lanthanides and Actinides. Each group further lists individual elements
like Sodium (Na) or Gold (Au). The structure represents the periodic trends and shared
characteristics within groups, enabling chemists to understand relationships and predict
elemental behavior (International Union of Pure and Applied Chemistry (IUPAC), 2022).
• [Grounded] Mineral Classification: Presented in Dana’s New Mineralogy, Eighth Edition,

this taxonomy is a hierarchical classification system for minerals, employing a four-part
numerical code to categorize each species (Gaines et al., 1997). This system, analogous
to the Linnaean taxonomy for biology, organizes minerals based on both their chemical
composition and crystal structure. The first number denotes the mineral’s class (e.g.,
anhydrous carbonates), reflecting broad compositional categories or dominant structural
features (especially in silicates). The second number signifies the mineral’s type, sometimes
based on atomic properties, or formula. The third number groups minerals with similar
structural arrangements. Finally, the fourth number uniquely identifies the individual mineral
species, such as Calcite or Magnesite within the Calcite Group. This numerical system offers
a structured and expandable framework, allowing new minerals to be easily integrated while
highlighting the chemical and structural relationships between different mineral species.

B.3 LIMITATIONS

• Preference Bias. As discussed in the Related Work Section A, there is evidence that M3s
prefer model-generated text over text generated by humans. In our case, we do not prompt
the M3 to express a preference. Rather, we ask if certain nodes semantically approximate
other nodes, or if certain nodes are appropriate given the context. However, we did use
models from the same model family for both the generation and the evaluation. Thus, future
work might want to repeat this experiment with separate generator and critic models.
• Stochastic Sensitivity. We did not optimize prompts for each separate taxonomy. As such,

the reported metrics likely represent lower bounds.
• Downstream Application. While we performed a comparative evaluation of synthetic

and real taxonomies, it is not directly clear which are better suited for certain downstream
applications.
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B.4 QUALITATIVE EXAMPLES
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Figure 4: Comparison of Online Harmful Content Taxonomy (Simula vs. Expert).
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Figure 5: Comparison of Chemical Element Taxonomy (Simula vs. Expert).
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C SUPPLEMENTARY: VERIFICATION VS. GENERATION

C.1 MULTILINGUAL MMLU

In Table 5 we show empirical critic-rejection sampling results for a subset of MMLU questions on
Mathematics, Computer Science, and Physics. We use the subjects’ education levels (elementary,
high-school, and college) as ground truth complexity categories. We evaluate performance on
languages with different resource categories, e.g., “Low”, “Mid”, and “High”, according to their
recorded, written, and catalogued NLP resources per Singh et al. (2024b). We observe that our
critic-rejection sampling strategy is effective for each language under each complexity condition.

Table 5: Critic-Rejection Sampling on Multilingual MMLU Questions. We evaluate our critic-rejection
sampling method for MMLU questions on Mathematics, Physics, and Computer Science. We use the subject
education level (elementary, high-school, and college) as the ground-truth Complexity. We display the realized
change in accuracy, µgen of following critic rejections. Also shown are the average ELO complexity score and
the size of the rejected and accepted subsets.

English (High) Korean (Mid) Nepali (Low)

Complexity Critic µgen ELO |D| µgen ELO |D| µgen ELO |D|

Level 1 × 0.93 ±0.07 290 ±8 14 0.86 ±0.07 306 ±7 29 0.76 ±0.07 308 ±7 41
X 0.98 ±0.01 303 ±2 364 0.97 ±0.01 301 ±2 349 0.97 ±0.01 304 ±2 337

Level 2 × 0.52 ±0.07 427 ±7 46 0.64 ±0.06 428 ±5 53 0.58 ±0.06 431 ±6 60
X 0.94 ±0.01 427 ±2 578 0.92 ±0.01 426 ±2 571 0.93 ±0.01 425 ±2 564

Level 3 × 0.67 ±0.10 473 ±5 24 0.54 ±0.10 471 ±5 26 0.41 ±0.09 473 ±4 34
X 0.89 ±0.02 467 ±2 278 0.88 ±0.02 468 ±2 276 0.86 ±0.02 465 ±2 268

D SUPPLEMENTARY: COMPLEXITY ANALYSIS

We compare model-assigned complexity scores against the ground-truth human annotations. We
ablate model-assigned complexity scores varying the number of times each sample is scored (N) and
the batch size (BS) of questions being scored simultaneously. Importantly, for fixed N, the number
of samples being scored simultaneously (BS) increases the context length but reduces the number
of inference passes. For example, for |D| = 1000, N=10 and BS=1, we require 10, 000 inference
passes. Setting BS to 5 instead reduces this to 10, 000/5 = 2, 000. All things equal, in practice we
would thus like to see a higher BS to have similar or better performance than a lower BS.

D.1 OPEN GENERATION: MATH

In Figure 6, we show results of comparing model-assigned complexity scores to the human-annotated
ground truth (Levels 1-5). To enable side-by-side comparison, we scale both the raw average scores
(Score) and the computed ELO rankings (ELO) to lie between 0 and 100 for each {BS, N} grouping.
As we increase the number of samples, N, clusters become better separated. Increasing BS > 1
enables the use of latent skill methods like ELO to increase consistency. We found BS = N = 5 to
strike an appropriate balance between separation and inference cost.

D.2 MULTIPLE-CHOICE GENERATIONS: MMLU GLOBAL

In Table 6, we compare model-assigned complexity scores for a subset of MMLU questions on
Mathematics, Computer Science, and Physics. We use the subjects’ education levels (elementary,
high-school, and college) as ground truth complexity categories. We evaluate performance on
languages with different resource categories, e.g., “Low”, “Mid”, and “High”, according to their
recorded, written, and catalogued NLP resources per Singh et al. (2024b). After running KMeans on
the model-assigned complexity scores, we compute the Normalized Mutual Information (NMI) and
the Adjusted Rand Index (ARI) to evaluate cluster approximation of the ground truth complexity.
Finally, we train a logistic regression on model-assigned complexity scores to evaluate them as
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Figure 6: Complexity score ablation MATH test set. The MATH dataset comes with ground truth
complexity levels ranging from 1-5. We group by the ground truth complexity level and plot the
model-assigned complexity scores for each group. We compare using average raw scores (Score)
against using ELO rankings (ELO) and ablate the batch size (BS) of question scored simultaneously
and the number of times each question is scored (N). All results are scaled per (BS, N)-grouping to
lie between 0 and 100. For BS = 1, no pairwise rankings are done, so ELO rankings do not apply.

an estimator for the model’s generative performance, reporting the Area Under the Curve (AUC).
Similar to our findings in Section C.1, we find model-assigned complexity scoring robust across
several languages. Choosing BS = N = 5 again emerge as reasonable hyperparameters.

Table 6: Multilingual MMLU Complexity Scoring. We use exam questions for the topics Mathematics,
Physics, and Computer Science, on education levels elementary (Mathematics only), high-school, and college.
Taking the education level as our ground-truth complexity level (1-3), we run KMeans on the complexity scores
generated by the model and compute the Normalized Mutual Information (NMI) and the Adjusted Rand Index
(ARI). Finally, we compute the Area Under the Curve (AUC) of using the complexity scores as an estimator for
the model’s generative performance. We ablate the batch size (BS) of exam questions scored simultaneously and
the number of times each exam question is scored (N).

Enlish (High) Arabic (High) Dutch (High) Korean (Mid) Nepali (Low)
BS N NMI ARI AUC NMI ARI AUC NMI ARI AUC NMI ARI AUC NMI ARI AUC

1 1 0.27 0.23 0.61 0.32 0.27 0.60 0.32 0.28 0.59 0.32 0.27 0.59 0.32 0.27 0.56
5 0.27 0.24 0.62 0.33 0.28 0.61 0.34 0.30 0.59 0.34 0.29 0.59 0.33 0.29 0.56

5 1 0.36 0.31 0.63 0.38 0.32 0.60 0.37 0.31 0.59 0.38 0.33 0.59 0.37 0.32 0.57
5 0.42 0.36 0.64 0.42 0.35 0.62 0.41 0.35 0.59 0.40 0.34 0.60 0.41 0.35 0.57

10 1 0.38 0.33 0.64 0.39 0.34 0.61 0.37 0.32 0.60 0.40 0.35 0.61 0.39 0.33 0.57
5 0.42 0.37 0.63 0.41 0.36 0.62 0.40 0.34 0.60 0.43 0.38 0.61 0.43 0.37 0.57
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E SUPPLEMENTARY: INTRINSIC EVALUATION RESULTS

Table 7 and Table 8 display intrinsic evaluation results for the various synthetic data method and
the real target datasets. We first note that the various Simula components generally improve over
the baseline, with the exception of the complexity score on rte. We further note that combining
optimizations towards diversity (TS) and complexity (TC), results in both better diversity and
complexity metrics (TSC). As expected, the “expansion baseline” (B) has poor local diversity metrics
on most datasets. However, this lack of diversity is less clear from the global metric ∆global. Because
each method is given the same sample budget, i.e., the size of the real data (R), this is a clear
indication that average cosine similarity is a limited metric for fine-grained diversity evaluation.

Table 7: Intrinsic evaluation on Multilingual MMLU. We compare intrinsic metric for various data generation
methods to real data (R) on MMLU questions (Mathematics, Physics, and Computer Science). Here ∆global is
the global average pairwise cosine similarity, ∆local the local average pairwise cosine similarity of the k = 10
nearest neighbors, and φ the global dataset complexity. ∆global and ∆local are diversity measures, so values scores
are better. All reported diversity values have SE < 0.001. Complexity values are assigned between 0-100, after
which we report the lift (if any) over the real data. Reported complexity values have SE < 1.

English (High) Korean (Mid) Nepali (Low)

Method ∆global ∆local φ ∆global ∆local φ ∆global ∆local φ

R 0.36 0.64 40 0.59 0.83 41 0.64 0.85 43

B 0.39 0.82 +2 0.58 0.90 +2 0.69 0.93 0

TO 0.36 0.70 +9 0.55 0.82 +13 0.65 0.87 +8

TS 0.36 0.68 +12 0.57 0.81 +13 0.65 0.86 +10

TC 0.36 0.70 +14 0.53 0.80 +15 0.56 0.82 +13

TSC 0.36 0.68 +15 0.54 0.78 +17 0.53 0.80 +14

Table 8: Intrinsic evaluation on SuperGLUE subsets. We compare intrinsic metric for various data generation
methods to real data (R) on a subset of the SuperGLUE tasks (boolq, rte, copa). Here ∆global is the global
average pairwise cosine similarity, ∆local the local average pairwise cosine similarity of the k = 10 nearest
neighbors, and φ the global dataset complexity. ∆global and ∆local are diversity measures, so values scores are
better. All reported diversity values have SE < 0.001. Complexity values are assigned between 0-100, after
which we report the lift (if any) over the real data. Reported complexity values have SE < 1.

boolq rte copa

Method ∆global ∆local φ ∆global ∆local φ ∆global ∆local φ

R 0.30 0.62 20 0.51 0.66 28 0.61 0.76 16

B 0.40 0.92 +1 0.52 0.74 +8 0.59 0.82 +4

TO 0.36 0.71 +5 0.55 0.73 -2 0.53 0.71 +12

TS 0.35 0.66 +5 0.55 0.71 0 0.53 0.70 +13

TC 0.37 0.70 +17 0.55 0.73 +2 0.53 0.71 +19

TSC 0.37 0.66 +17 0.52 0.70 +5 0.53 0.70 +19
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F SUPPLEMENTARY: DOWNSTREAM RESULTS

In Figure 7 we show the “Performance Gap Recovery” (PGR) metric from Kim et al. (2024),
complementing the results in Section 4.3. The metric is computed as:

PGR = (µD − µ∅)/(µref − µ∅), (3)

where µref represents 5-shot Gemma 2B IT with COT, µ∅ 5-shot PT Gemma 2B with COT, and
µD our fine-tuned models on synthetic data. To interpret this metric, we note that a PGR value
of +50% means that synthetic data generation has recovered 50% of the improvement achieved by
the reference instruction tuned model relative to a baseline pre-trained model. A negative value
indicates that the training degraded pre-training performance. The PGR results further solidify our
design choices around using critic refinement and avoiding the use of simple few-shot data expansion.
Simula consistently allows recovering a large percentage of the performance gap across the various
combinations of MMLU subjects and languages.
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Figure 7: Performance Gap Recovery (PGR) on subsets of MMLU Global. Higher PGR implies
that the synthetic data generation has been able to recover the gap between the pre-trained model and
the instruction-tuned model. The numbers in the legend indicate the data size used per variant.
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