Under review as a conference paper at ICLR 2026

OMNICODE: A BENCHMARK FOR EVALUATING SOFTWARE
DEVELOPMENT AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-powered coding agents are redefining how real-world software is developed. To
drive the research towards better coding agents, we require challenging benchmarks that
can rigorously evaluate the ability of such agents to perform various software engineering
tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus
on narrowly scoped tasks such as competition programming and patch generation. In
reality, software engineers have to handle a broader set of tasks for real-world software
development. To address this gap, we propose OmniCode, a novel software engineering
benchmark that contains a diverse set of task categories, including responding to code
reviews, test generation, fixing style violations, and program repair. Overall, OmniCode
contains 1,794 tasks spanning three programming languages—Python, Java, and C++—and
four key categories: bug fixing, test generation, code review fixing, and style fixing. In
contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually
validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated
to avoid data leakage issues, presenting a new framework for synthetically generating
diverse software tasks from limited real world data. We evaluate OmniCode with popular
agent frameworks such as SWE-Agent and show that while they may perform well on
BugFixing, they fall short on tasks such as Test Generation and in languages such as C++.
OmniCode aims to serve as a platform for generating synthetic tasks from real world
data, spurring the development of agents that can perform well across different aspects of
software development.

1 INTRODUCTION

The future impact of Al-automated software development will be far-ranging: beyond building and improving
apps, Al will help us write more comprehensive test suites, perform and respond to code review suggestions,
enforce nuanced style guidelines, and perform many other tasks that are part of the software development
life cycle. Research on Al software development demands good benchmarks, both to measure progress
and to expand the scope of problem statements. However, Al coding benchmarks today, such as SWE-
Bench (Jimenez et al.| [2024)), CodeContests (Li et al., 2022), and HumanEval (Chen et al.| [2021)), are too
narrow in scope to spur progress on automating the full spectrum of software development tasks, instead
focusing on isolated tasks such as competition programming, code repair, and generating individual patches
in isolation.

OmniCode. To address this gap, we introduce a new benchmark for generative Al coding assistants
(specifically LLMs for code), which we call OmniCode. Our new benchmark is based on the insight that
software development involves a heterogeneous range of tasks and problem-solving activities for which
generative Al can be brought to bear (see Figure[I)). We consider four such software development tasks:



Under review as a conference paper at ICLR 2026

Current Evaluation Approaches

OmniCode Evaluation

Task Horizon

o
Bl

Code Review

igl Bug Repair
A ey

=5 <>

R

Code Style Fixing

Works On
Fmmm———m
| Woy pe10snon

Task Horizon

W
i gl .__EXTEi‘Si_ | \ |

Figure 1: Omnicode synthetically builds multiple tasks out of a base dataset to holistically evaluate software
engineering agents. Four different types of tasks that we consider: Bug fixing/feature adding, test generation,
responding to code review, and enforcing style guidelines.

Test Generation

1. Addressing issues, such as bug fixes and feature requests. This is a staple of software engineering
benchmarks (Jimenez et al.l|[2024; Silva & Monperrus|, 2024; |[Rashid et al.|[2025), because it assesses
the ability of an LLM coding agent to autonomously resolve real-world repository-level issues,
provided we are given tests for validating program correctness.

2. Writing software tests. Current LLM coding agents are unreliable, requiring humans to manually
inspect and test their outputs. By having LLM coding systems write their own tests, we measure
progress toward fully closing the loop of both generating and checking repo-level patches.

3. Responding to code review. Coding agents today act in a partnership with human engineers, and
we envision a future where LLMs provide initial drafts of a patch, which a human engineer then
critiques. We compile a dataset of partly-correct patches paired with code-review feedback on how
to best correct them, and task models with completing or fixing the patch given the code review.

4. Enforcing style guidelines. Code style is important for conforming to project-specific or organization-
specific norms. Here, present the agent with a selection of coding convention violations in a file and
test the ability of an LLM to fix the style.

We build our benchmark by bootstrapping off existing benchmarks such as SWE-Bench and Multi-SWE-
Bench, along with collecting additional issues from popular open-source repositories. Using this collected
real-world data, we employ LLM-based augmentations along with language-specific tools to create different
task types. In total, our dataset comprises 494 issues from 27 repositories and 1794 benchmark tasks in total.

Results. We evaluate the widely used SWE-Agent with models spanning a range of providers and sizes

(Gemini 2.5 Flash, DeepSeek-V3.1, GPT5-mini and Qwen3-32B) on our dataset. We also evaluate Aider
Aider-Al| (2025)) with Gemini 2.5 Flash as pipeline-based agent comparison to SWE-Agent. We find that
our benchmark challenges even the most modern systems, but it is not intractable. Specifically, SWE-Agent
achieves a maximum of 25% on test generation across all three languages. On Review-Response it achieves a
maximum of 52% on Python. For Style-Fixing, while agents perform well on Python, they do not perform as
well on Java and C++. We also observe significant variations between models and agent frameworks.



Under review as a conference paper at ICLR 2026

Contributions. We wish to highlight the following contributions:

1. OmniCode, a benchmark assessing for distinct types of software engineering activities, comprising
1794 tasks total.

2. Presenting recipes for synthetically creating diverse interactive tasks to evaluate agents from collected
static real-world data.

3. Empirical evaluation of state-of-the-art LLM-agent systems on the benchmark, determining specific
areas where LLM agents fall especially short, particularly in test generation and style fixing.

2  RELATED WORK

LLM coding benchmarks. One of the earliest benchmarks for LLMs’ functional code synthesis was
HumanEval (Chen et al, 2021), which contained 164 hand-written programming problems, each with a
natural language docstring and associated unit tests. However, it was limited to single-function synthesis
without any multi-file or repository context. SWE-Bench Jimenez et al.[(2024) first introduced the paradigm
of benchmarking the ability of LLM agents to resolve real-world GitHub issues, yielding much follow-up
work (Miserendino et al.,|2025; Jain et al.; |/Aleithan et al.,[2024} [Rashid et al., [2025; |Zan et al.l [2024). These
benchmarks added support for more languages and improved data quality by including more rigorous checks.
Similar to these benchmarks, we also manually validate each base task before including it in OmniCode.
In contrast to these benchmarks, OmniCode contains three new synthetic tasks that reduce the chances
of data leakage. Recently SWE-Smith Yang et al. (2025) has shown promise in synthetically generating
bugs to create training data for coding agents. OmniCode goes beyond just new bugs, to creating new task
types that are supported by synthetically generated data, such as code reviews. Multi-SWE-Bench [Zan et al.
(2025)) extended the SWE-Bench collection paradigm beyond Python to multiple languages, but restricted to
bug-fixing. We further extend this to other tasks that are part of the software development process.

LLM coding benchmarks for other tasks. Recently, Miindler et al. proposed SWT-Bench (Miindler et al.,
2024) that transforms the instances in SWE-Bench to test generation tasks. Each task involves generating
tests such that they fail on the buggy version of code and pass with the fixed version e.g, the gold patch,
which we call Fail-to-Pass. In contrast to SWT-Bench, the test generation tasks in OmniCode are more robust.
Our tasks require not only the generated test to go from Fail-to-Pass for golden patch but also Fail-to-Fail
when presented with multiple bad patches requiring the agents to generate tests that don’t pass trivially,
resulting in more robust tests. TestEval (Wang et al.| 2024) is another recent benchmark for evaluating test
generation capabilities of LLMs. However, their benchmark is only set up for single programs instead of
entire repositories, which is more challenging.

Test case generation with LLMs. Past work has also built LLM program synthesizers organized around the
principle of self-checking through test case generation (Li et al.; |Chen et al., 2022)). Researchers have also
proposed generating unit tests using LLMs (Chen et al.| 2024; |Pan et al.| [2024)). However, these works are
either focused on using tests as a validation step or improving unit test generation for a given focal method
with a single LLM. In contrast, our work focuses on benchmarking LLM-Agents for repository-level test
generation.

3 BENCHMARK CONSTRUCTION

The creation of OmniCode involves two major steps: (1) gathering real-world software data from open
source repositories and (2) generating augmentations on these base instances to support new task types. Each
instance in our benchmark is based on a pull request that has been made to resolve an issue in a GitHub
repository. The pull request and its associated metadata (such as the issue it resolved, the patch it introduced)



Under review as a conference paper at ICLR 2026

constitute what we call a base instance. Using this base instance, we can generate the data required to support
different task types, such as generating bad patches to support test generation or code reviews to support
review fixing. Next, we describe both the data collection and task generation in detail.

3.1 COLLECTION OF REAL-WORLD DATA FROM GITHUB

We first collect a set of base instances, that is, pull requests in public GitHub repositories, from which we can
generate tasks. When curating pull requests, we follow a similar selection strategy to|Jimenez et al.| (2024)).
We consider popular projects, filtering out tutorials and other non-code repositories. From these, we collect
merged pull requests that (1) resolve an issue and (2) introduce a test. To ensure that each instance is a
meaningful task for an agent to be evaluated on, we perform manual inspection. Only instances where the
changes introduced in the pull request are within the scope of the description of the issue are kept. We also
discard issues if they only involve trivial changes to documentation or configuration files.

To enable agents to interact with an instance by executing code, we build containerized environments for
each instance. The environment is made up of the state of the repository at the time of the issue, as well as
dependencies that need to be installed so that code can be executed properly. We manually determine the
dependencies required by inspecting requirements and documentation. To verify that the correct dependencies
have been identified, we execute the test suite of the repository to check if the tests can be run without errors.

For our evaluation, we curate a multi-language dataset by filtering and selecting sane and reliable instances
from existing benchmarks such as SWE-Bench and Multi-SWE-Bench, and we supplement this with a small
number of additional repositories and hand-picked instances. This combined dataset comprises 273 Python,
112 C++, and 109 Java instances (494 in total), spanning 28 diverse repositories across machine learning
and scientific libraries (e.g., scikit-learn, sympy), systems libraries (e.g., fmt, simdjson), and large-scale
frameworks (e.g., django, logstash, jackson, mockito). By extending coverage to Java and C++ in addition to
Python, our dataset broadens evaluation beyond the Python-centric scope of SWE-Bench, providing a more
realistic and comprehensive benchmark for assessing software engineering agents across ecosystems.

3.2 TASK DETAILS

In the following, we describe the details of how each of our main four task types is set up along with the
evaluation procedures.

3.2.1 TASK: RESOLVING ISSUES

Resolving GitHub issues has become a standard approach for evaluating the capabilities of large language
models (LLMs) in the software engineering domain. A common method, first introduced by Jimenez
et al.| (2024)) is to mine resolved issues from large-scale open-source repositories. This provides a natural
environment for agents to operate in by cloning the corresponding repository state, including the issue
description, and withholding a set of tests used to validate the proposed fix. For each instance, we provide
the issue description and a set of tests that distinguish between the pre- and post-fix repository states. An
agent is tasked with generating a patch based on the issue, which is evaluated against tests that transitioned
from failing to passing due to the ground truth fix, as well as against previously passing tests to ensure
no regressions are introduced. While this task aligns closely with existing work, our benchmark expands
the range of verified projects considered to by unifying instances from SWE-Bench, Multi-SWE-Bench, as
well as 37 instances that we collect while maintaining a strong emphasis on manual validation for quality
assurance.



Under review as a conference paper at ICLR 2026

Bad Patch #3

Bad Patch #2

Gold Patch #1

Bad Patch #1

Test Patch

Figure 2: For evaluating test patches on the task of Test Generation, we evaluate the proposed test patch
against both the ground truth (gold) patch, as well as several meaningful, but incorrect, bad patches. A test is
only considered correct if it passes for the gold test, but fails for all bad patches.

3.2.2 TASK: TEST GENERATION

All previously considered pull requests included relevant tests, as this was a necessary criterion for their
selection. These tests play a crucial role in verifying that the proposed fix is valid and addresses the reported
issue. However, this requirement significantly limits the number of available instances for model evaluation.
At the same time, writing meaningful tests is itself a key aspect of software engineering. By focusing on this
underexplored skill, we aim to evaluate and improve a model’s ability to reason about code behavior and
generate effective test cases.

To assess the quality of a candidate test, we use both the ground truth test case and a set of what we define
as bad patches. A bad patch is a plausible but incorrect attempt at resolving the issue—one that contains no
obvious syntax errors and remains relevant to the problem description. This setup presents a more realistic
and challenging evaluation scenario compared to existing approaches, which typically rely only on the pre-
and post-PR repository states.

While there are usually few ways to correctly solve a problem, there are many ways to incorrectly solve it. To
ensure that generated tests can be evaluated thoroughly, it is important to have bad patches that cover a diverse
set of failure modes. We use two distinct approaches to achieve this. (1) Collecting failed attempts from less
capable agents and (2) Perturbing correct patches to introduce bugs. For approach (1), we use Agentless (Xia
et al.} 2024)) with several different models (Gemma 2 9B, Qwen2.5 Coder 32B Instruct, Llama 3 8B Instruct,
and GPT-4.1-nano), instructing the tool to attempt to solve the task as usual and collecting instances where it
fails to do so. For approach (2), we sample multiple completions from Gemini 2.0 Flash, prompted with the
correct patch along with instructions to perturb it in order to introduce commonly found bugs, filtering to keep
those that are actually incorrect. The relevant prompt can be found in the appendix. Our aim is to have bad
patches which are incorrect in minor ways (from approach 2) as well as at a higher level (from approach 1).

For the Java and C++ instances, we placed more emphasis on the Agentless generations for their more natural
patch attempts. However, there were instances that proved to be resilient to bad patch generation. These were
instances that either proved too difficult for the models to produce a valid patch or too simple for them to
produce a non-passing patch. As a result, we were limited to a subset of our instances for Java and C++. For
Java, we used 77 instances for this subset. For C++, we used 44 instances for this subset.

In this setting, the agent is prompted with the issue text and asked to generate one or more test cases to be
added to the test suite. The resulting candidate test is then evaluated: if it passes on the ground truth patch but



Under review as a conference paper at ICLR 2026

Code Reviewer

ﬁ

Empty Content
Incorrect Patch String looks wrong Correct Patch
ShareGPT
mapping

probably not needed

Review Report

T_40 MINT)
= OpenATTokenCounter (self .model type)

Initial Incorrect Proposal Corrected Proposal

Figure 3: In the task of responding to Code Review, an initial incorrect patch is provided, which contains a
meaningful attempt of the solution of a given problem. This attempt is then reviewed by a human or an LLM,
and a review report is generated. Utilizing this report, the LLM is tasked with correcting the initial approach
by utilizing this report, which is validated with the normal testing suite.

fails on all bad patches, it is considered successful. If it does not meet both criteria, the test is considered a
failure. We also reuse the bad patches in an additional task related to code review.

3.2.3 TASK: RESPONDING TO CODE REVIEW

It is not uncommon for developers to iterate over multiple proposed solutions in a pull request until they
fulfill all the necessary requirements. Often, such incorrect proposals are met with corresponding feedback or
review, explaining why or how this approach does not meet expectations. We create reviews by providing
both the perturbed bad patch (from the previous section) along with the correct patch and problem description
to Gemini 2.0 Flash, and asking it to come up with instructions for how the bad patch should be fixed. We
create our prompt in order to induce reviews that are informative but do not give away the complete solutions.

During evaluation, we present the model with the previously selected bad patch and display the review of
context. The model is then tasked with refining the existing solution in a way that passes the issue-specific
fail-to-pass test. While the adaptation of existing functionality to enable this use case is minor, we believe
this is a promising avenue for research. Especially when anticipating fully autonomous work on code issues,
interacting with external feedback, and starting from potentially corrupted states is an imperative skill.

3.2.4 TASK: CODE STYLE

Last, we introduce the task of style review. Since language models are trained on a wide range of
code—varying not only in functionality but also in quality—style-oriented tasks represent a natural extension
of evaluation. To assess code style, we use third-party tools such as pylint for Python, clang-tidy
for C++, and PMD for Java to score quality and extract specific style issues, including errors, warnings, and
convention violations.

In this task, the model is not expected to fix a functional bug but to resolve the listed style issues. Style review
is particularly appealing because it can be adapted to user-specific needs by incorporating custom guidelines
or organization-specific rules.



Under review as a conference paper at ICLR 2026

Code Style Review

Before Linter Report After

def { def

is_pos_difference(...): "type": "refactor", is_pos_difference(...):
difference = a - b "message": "Too return a > b
is_pos = many local variables",

difference > 0
return is_pos }

Figure 4: Side-by-side display of the original verbose code, linter warning, and refactored code with reduced
local variables. Key elements highlighted in blue.

We construct datasets for style errors for all repositories used for other tasks. We start by using the language-
specific tools to generate a list of all style violations in the repository. We then aggressively prune out overly
zealous rules and other commonly occurring warnings. We record both an aggregate style score and the full
list of reported style issues, including line numbers. We then group errors by file and construct 144 Python,
147 C++, and 124 Java instances, with each instance containing on average 9 style errors.

This output is passed to the agent, which is then tasked
with resolving the identified issues. After applying the Table 1: Combined statistics by language
proposed patch, we re-run the style tool and quantify
improvement based on score increase or the number

of issues eliminated. To account for partial success, Metric Python C++ Java
we allow a relaxed pass criterion, configurable via Patch statistics
thresholds on minimum score or maximum remaining Patches 273 112 109
issues. To determine how well the agent resolve style Complexity 7.1 476 192
violations, we compute a metric using a the following Lines added 16.9 180.7  74.8
formula that balances the total number of instances re- Lines removed 7.7 82.6 203
solved with new ones that are introduced, normalizing Test statistics
by total number of issues initial present: Patches 73 112 109
Complexity 7.2 38.0 11.9
(reso]ved — new ) Lines added 25.2 277.8 72.2
SCOre = max| —— ————— Lines removed 4.9 17.5 2.0
original
Bad Patch and Review statistics
Patches 164 44 79
3.3 EXPERIMENTAL SETUP Complexity 2870 3641  3.056
Lines added 3.909 5455 5.785

To demonstrate our benchmark, we evaluate the state- Lines removed 1866 2318 1.861
of-the-art agent framework SWE-Agent, along with a Review size 253.6  319.6 329.0
more pipelined and less agentic approach: Aider. We
evaluate both frameworks with Gemini 2.5 Flash. In
order to enable agents to interact with the instances,
we provide them with containerized environments as
described in Section We pass in the issue description as the initial task statement for Bug-Fixing. For
Test-Generation, Review-Response, and Style-Fixing, we prepare task-specific prompts that provide context
and instructions. These are detailed in the appendix. We use the default settings for SWE-Agent and adjust
the per instance cost limit to $2.0.




Under review as a conference paper at ICLR 2026

4 ANALYSIS OF DATASET

Bug Fixing In Table|l| we present quantitative analysis of the patches that introduce the bug into the repository.
Along with the size of patches, we construct a metric to better gauge bug complexity as complexity =
AFiles + Hunks + (AddedLines + RemovedLines)/10. We observe that the tasks follow difficulty order by
language as C++ > Java > Python. We see that this is reflected in the performance of agents on the tasks too.

Test Generation In Table [T} we present a similar analysis for test patches, quantifying the complexity of
the tests that need to be generated in the Test Generation task. We observe that the tasks follow the same
difficulty order by language as for BugFixing: C++ > Java > Python.

Review Response In Table[I] we also present an analysis of bad patches generated using Agentless, along
with sizes of Reviews generated for these bad patches, observing similar trends for

5 ANALYSIS OF LLM CODING AGENTS ON OMNICODE

Table 2: SWE-Agent Performance across languages and models

Language Model Bug-Fixing Test-Generation Review-Response Style-Fixing
Gemini-2.5-Flash 38.1% 14.0% 29.9% 72.2%
Python DeepSeek-V3.1 56.4% 18.7% 52.2% 73.4%
y GPT-5-mini 47.3% 6.2% 30.5% 56.3%
Qwen3-32B 24.5% 4.0% 17.7% 22.7%
Gemini-2.5-Flash 8.0% 12.2% 13.6% 36.3%
Cit DeepSeek-V3.1 19.6% 25.0% 22.7% 30.2%
GPT-5-mini 15.2% 6.8% 20.5% 21.8%
Qwen3-32B 3.8% 4.5% 4.5% 8.6%
Gemini-2.5-Flash 14.7% 4.9% 31.6% 60.4%
Java DeepSeek-V3.1 31.2% 20.9% 44.3% 50.2%
v GPT-5-mini 22.0% 2.7% 26.6% 25.0%
Qwen3-32B 10.1% 1.3% 15.2% 23.3%

Table 3: SWE-Agent vs Aider Comparison

Language Agent Bug-Fixing Test-Generation Review-Response Style-Fixing
Python SWE-Agent 38.1% 14.0% 29.9% 72.2%
Y Aider 32.4% 9.4% 26.8% 60.3%
Cit SWE-Agent 8.0% 12.2% 13.6% 36.3%
Aider 1.8% 2.3% 4.5% 10.1%
Java SWE-Agent 14.7% 4.9% 31.6% 60.4%
Aider 19.3% 3.9% 25.3% 60.9%

5.1 PERFORMANCE ACROSS TASKS

We present the results of evaluating SWE-Agent with a range of state of the art LLMs in Table[9] We find
that while a state of the art system like SWE-Agent excels on some tasks like Style Fixing in python, there
are many holes in its abilities. Specifically, we observe that it struggles at Test-Generation, where all tools



Under review as a conference paper at ICLR 2026

struggle across languages, the maximum performance being 25% on Python. Test generation is an essential
skill for SWE Agents for (1) assisting humans in developing robust test suites but also (2) writing tests to
verify their own code is correct. The evaluated tools also suffer disproportionately at C++, which agrees
with our analysis in Section 4 regarding the complexity of C++ bugs over other bugs in our benchmark. We
find that when using SWE-Agent, performance of different models on bug-fixing is strongly correlated to
review-response (pearson coeff = 0.921) and weakly correlated to test generation (pearson coeff = 0.764). We
find the correlation does not hold for style-review however (perason coeff = 0.512), where Gemini-2.5-Flash
performs as good as or better than DeepSeek v3.1 on Style-Fix despite DeepSeek consistently outperforming
Gemini on Bug-Fix. We find these observations to be generally true for Aider too, albeit slightly weaker.
Details of correlation analysis are presented in the Apendidx E.

5.2 COMPARISON BETWEEN AGENTS

We compare a widely used agentic approach (SWE-Agent) with a pipeline-based approach (Aider) to assess
the strengths and weaknesses of both paradigms. As shown in Table 3, SWE-Agent consistently outperforms
Aider across most programming languages and task types when evaluated on OmniCode using Gemini-2.5-
Flash. For Python, SWE-Agent achieves higher performance in bug-fixing (36.7% vs. 32.4%), test-generation
(14.0% vs. 9.4%), and review-response (29.9% vs. 26.8%), reflecting its stronger reasoning and synthesis
capabilities. In C++, Aider performs substantially worse, while SWE-Agent maintains modest but consistent
gains, particularly in test-generation (12.2% vs. 2.3%) and review-response (13.6% vs. 4.5%). One possible
explanation is that C++ tasks in OmniCode require more interactive reasoning and iterative error analysis,
involving multiple compile-run cycles and complex dependency handling. Aider’s pipeline-oriented design
may thus struggle with such trial-and-error-intensive workflows. Overall, these findings indicate that while
Aider remains competitive on less interactive or simpler tasks, SWE-Agent demonstrates greater robustness
and adaptability to complex, multi-stage software engineering problems, particularly those requiring sustained
reasoning and feedback integration. These results highlight OmniCode’s ability to differentiate between
interaction-intensive and procedural tasks, providing a nuanced view of how agentic and pipeline systems
handle varying levels of task complexity and reasoning demand.

5.3 REVIEW-RESPONSE

It is a well-known challenge for language models to identify the correct entry point when resolving issues in
large, multi-file repositories. We hypothesized that providing structured feedback via a Review-Response
task would improve performance over an autonomous Bug-Fixing task by guiding the agent. To test this, we
benchmarked several LLMs (including Gemini-2.5-Flash, DeepSeek-V3.1, GPT-5-mini, and Qwen3-32B)
across Python, Java, and C++. As all models showed a strong positive correlation (Table E]), we focus our
analysis on the results from DeepSeek-V3.1. While overall performance varied by language (Python > Java
> C++), the analysis supports our hypothesis that the guided Review-Response task is a more effective
problem framing. Since all Review-Response instances are a subset of Bug-Fixing, we can directly compare
performance on this common set. Here, Review-Response consistently resolved more unique instances: for
Java, it uniquely resolved 15 instances versus Bug-Fixing’s 4, a pattern that held for C++ (4 vs. 2) and
Python (22 vs. 20). The seemingly contradictory raw scores for Python (56.4% Bug-Fixing vs. 52.2%
Review-Response) are explained by the non-review instances being comparatively easier, with a high 65.1%
resolution rate. We also investigated common failure modes. Java, for instance, was most susceptible to
producing empty patches (8.9% in Review-Response vs. 6.4% in Bug-Fixing).

5.4 PATCH COMPLEXITY



Under review as a conference paper at ICLR 2026

As shown in Figure [I2] the complexity score distribution for unresolved instances is significantly higher
than that of the resolved ones, which reveals a negative correlation between successful resolution and patch
complexity. For details, refer to Table [I0]and Table [IT]in appendix. We further investigated the structural
complexity of generated patches to understand how agents approach different languages. The ground truth
(Gold) patch complexity followed a clear hierarchy: C++ (47.55) > Java (19.24) > Python (7.07). DeepSeek-
V3.1 demonstrated the highest stability, maintaining generation complexity closest to the Gold standard,
whereas other models exhibited a tendency toward "explosive" complexity in unresolved instances. For
example, GPT-5-mini’s unresolved Python patches reached an average complexity score of 390.18 - far
exceeding the Gold average of 7.07. We hypothesize this happens when the agent is unable to pinpoint a
precise fix, it attempt sprawling, ineffective refactors. Conversely, successful resolutions were often "cleaner"
than human-written solutions; for instance, DeepSeek’s resolved Python patches averaged a complexity of
5.35 compared to the Gold 7.07. Notably, the Review-Response framing did not effectively constrain this
volatility, as complexity scores for unresolved patches remained unstable or even increased. Unlike the
explosive failures in Python, unresolved Java patches consistently retained low complexity (e.g., Qwen3-32B
averaged 5.08 vs. Gold 19.24), suggesting that the language’s strict syntax discourages the refactoring seen
in more dynamic languages.

5.5 IMPACT OF INCLUDING BAD PATCHES

Incorporating bad patches is essential for evaluating the true robustness and discriminative power of LLM-
generated test cases. Metrics based solely on gold-patch success (as in prior work) dramatically overestimate
a model’s testing capability. In analysis of success for Qwen and DeepSeek results, test cases would have
been accepted at a higher rate if bad-patch failures were not required (e.g., Qwen C++ would be 22.7% instead
of 4.55%, Qwen Java would be 7.79% instead of 1.3%, DeepSeek C++ would be 43.8% instead of 25%, and
DeepSeek Java would be 28.4% instead of 11.9%). This gap highlights that many generated tests capture
superficial behaviors rather than the underlying program semantics. By enforcing that gold patches pass and
all bad patches fail, we obtain a far more realistic assessment of test quality, one that reflects a model’s ability
to differentiate correct logic from subtly incorrect implementations, a critical requirement for trustworthy
automated testing.

6 LIMITATIONS AND FUTURE WORK

Although we believe that our work expands the extent to which LLM coding benchmarks span the spectrum
of software engineering activities, much remains to be done before we truly have a test of whether an Al
system can perform as a programmer. Real programmers deal with config files, multiple languages, profiling
and optimizing, and engage in natural language conversation to iron out design decisions, plan sprints, and
other forms of team strategy. Although our benchmark is a step toward a more comprehensive assessment of
these systems, further expanding the suite of heterogeneous software-engineering tasks remains a prime target
for future research. We are currently working on expanding OmniCode to 1) other languages beyond Python,
Java, and C++, and 2) additional task categories like fixing security violations and code migration. Both of
these are emergent fields which we aim to adapt as soon as possible. Transitioning functionality between
languages is a very challenging, but fruitful tasks, which has seen only little attention in the evaluation field of
large language models. Similarly, spotting and fixing security violations requires a very deep understanding of
system dynamics, which language models may not yet possess. Further, specific tool usage, as is needed for
tasks like style review, carries over naturally to other programming languages. Our implementation already
employs checkstyle as a java-based alternative to pylint, in order to enable style review for repositories of
both origins. We believe that expanding the diversity of tasks and languages in this way will enable a more
robust evaluation for LLMs and LLM-Agents.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Aider-Al. Aider: Ai pair programming in your terminal. https://github.com/Aider-AI/aider,
2025.

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin, and Song Wang.
Swe-bench+: Enhanced coding benchmark for llms, 2024. URL https://arxiv.org/abs/2410.
06992.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. Codet:
Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
Evaluating large language models trained on code, 2021. URL https://arxiv.org/abs/2107.
03374.

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatunitest: A
framework for llm-based test generation. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, pp. 572-576, 2024.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning any
github repository into a programming agent environment. In ICML 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Wen-Ding Li, Darren Yan Key, and Kevin Ellis. Toward trustworthy neural program synthesis. In ICLR 2025
Workshop on Foundation Models in the Wild.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode.
Science, 378(6624):1092-1097, 2022.

Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. Swe-lancer: Can frontier
Ilms earn $1 million from real-world freelance software engineering?, 2025. URL https://arxiv.
org/abs/2502.12115.

Niels Miindler, Mark Miiller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and validating real-world
bug-fixes with code agents. Advances in Neural Information Processing Systems, 37:81857-81887, 2024.

Rangeet Pan, Myeongsoo Kim, Rahul Krishna, Raju Pavuluri, and Saurabh Sinha. Multi-language unit test
generation using llms. arXiv preprint arXiv:2409.03093, 2024.

11


https://github.com/Aider-AI/aider
https://arxiv.org/abs/2410.06992
https://arxiv.org/abs/2410.06992
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115

Under review as a conference paper at ICLR 2026

Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buccholz, Tim Esler, Simon Valentin,
Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim, et al. Swe-polybench: A multi-
language benchmark for repository level evaluation of coding agents. arXiv preprint arXiv:2504.08703,
2025.

André Silva and Martin Monperrus. Repairbench: Leaderboard of frontier models for program repair. arXiv
preprint arXiv:2409.18952, 2024.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming Zhang,
An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case generation. arXiv
preprint arXiv:2406.04531, 2024.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying 1lm-based
software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

John Yang, Kilian Leret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang, Binyuan Hui,
Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software engineering agents,
2025. URL https://arxiv.org/abs/2504.21798.

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai Qi,
Hao Yu, Lei Yu, et al. Swe-bench-java: A github issue resolving benchmark for java. arXiv preprint
arXiv:2408.14354, 2024.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu, Xiaojian
Zhong, Aoyan Li, Siyao Liu, Yongsheng Xiao, Liangqiang Chen, Yuyu Zhang, Jing Su, Tianyu Liu, Rui
Long, Kai Shen, and Liang Xiang. Multi-swe-bench: A multilingual benchmark for issue resolving, 2025.
URLhttps://arxiv.org/abs/2504.02605.

A ANALYSIS OF BAD PATCHES AND REVIEWS

Counts by Bad Patch Type

B
Bad Patch Type

Figure 5: Categorization of bad patches.

12


https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2504.02605

Under review as a conference paper at ICLR 2026

Counts by Bad Patch Type

Type
I \Wrong Layer
mmm Partial Fix
M Undisciplined
mmm Contract Violation
mmm Guard Removal
= Edge Cases

40

10

C D
Bad Patch Type

Figure 6: Categorization of bad patches

Counts by Review Type

Type

50 EEm Functional Correctness
=== Scope Control

W Contract Adherance

mmm Architecture

40 s Error Handling

= Security
Mantainability

Review Type

Figure 7: Categorization of reviews

To understand the distribution of bad patches generated by our pipeline we categorise a sample of 100 python
bad patches with results displaying in Fig[5} The categorisation is performed by prompting an LLM with
descriptions of the category along with the problem description, bad patch and correct patch for the instance.

We observe that bad patches are distributed across a range of types, with most of them being “Undisciplined”,
that is patches which make more spurious changes than necessary. There are also a significant number of bad
patches in the “Wrong Layer “ and “Contract Violation” categories.

Another way to understand bad patches is to categorise them according to whether they are “Partial” (the
attempted fix is partially correct), "Unnecessary" (the patch makes spurious changes) or “Incorrect” (the fix
approach is incorrect). We observe that the majority of bad patches are due to incorrect approach at making
the fix. These patches are useful to include in the dataset as they characterise probable failure modes that
existing tests may not account for.

To understand the distribution of reviews generated by our pipeline we categorise a sample of 100 python
reviews with results displaying in Fig 3] The categorisation is performed by prompting an LLM with
descriptions of the category along with the problem description, bad patch, correct patch and review for the
instance.

We observe that the vast majority of reviews are to do with improving functional correctness. There are also
reviews that discuss “Scope Control” and “Architecture”.

13



Under review as a conference paper at ICLR 2026

Descriptions used to categorise bad patches -

A. Wrong-layer fix / misdiagnosed root cause
Description: The change targets the wrong component or symptom instead of the source of truth.
Signals include modifying outputs instead of inputs, tweaking helpers when call sites or flags need
changes, relying on attributes/settings that are never wired, or making comment-only/no-op changes.

B. Partial fix / incomplete coverage
Description: Only a subset of affected paths, formats, or call sites is fixed; others remain broken.
Typical signs include updating JSON but not XML, adjusting PRAGMA but not SELECT, fixing one
code path while an equivalent exists elsewhere, or forgetting to update generated/runtime artifacts.

C. Process hygiene and change discipline failures
Description: The patch mixes unrelated edits (scope creep), alters tests to match a broken implemen-
tation, includes merge artifacts or duplicate code, or introduces syntax/typo/runtime errors (duplicate
args, unreachable code). These complicate review and often obscure regressions.

D. Contract/invariant violations or Abstraction/API misuse
Description: Changes break explicit or implicit invariants or requirements. Examples include
violating “single-column subquery,” making non-atomic multi-step writes, changing multiplication
order in non-abelian contexts, keeping multi-column projections inside IN subqueries, bypassing
APIs or type contracts, or hardcoding internals. Also includes changing established behavior
(defaults, tuple shapes, ordering, observable semantics) without justification or migration.

E. Guard/safety-net removal or inversion
Description: Removing or flipping checks, caches, or validation that protect correctness/security. In-
dicators include deleting is_active orhas_usable_password checks, removing parent_link
validation, dropping inverse/caching assignments, or disabling/inverting critical conditionals.

F. Edge cases, normalization, and type/representation assumptions
Description: Logic fails on uncommon values or conflates representations. Examples: treating None
as the only “empty” (ignoring "), mishandling NaN/Inf or undefined semantics, missing lowercase
exponent parsing, not rechecking length after mutation, confusing PATH vs PATH_INFO/script
prefixes, or choosing wrappers/proxies that break expected type behavior. Includes overfitted
regexes/parsers, missing named groups, unhandled array-indexed dispatch, naive SQL interpolation,
missing escaping, off-by-one slices, or wrong encodings/BOM handling.

Descriptions used to categorise reviews -

A. Functional correctness (logic, control flow, edge cases)
Description: Ensure the fix implements the intended behavior with correct conditions, boundaries, or-
dering/precedence, and return values. Catch logic/sign errors, unreachable code, inverted conditions,
and other correctness issues.

B. Scope control and change isolation
Description: Keep the patch tightly focused on the reported issue. Revert incidental edits, avoid
broad refactors, and limit changes to the affected component or backend.

C. API and data contract adherence
Description: Preserve public/internal interfaces, data shapes, and semantics. Avoid breaking
consumers, changing return types, or altering documented behavior without coordination.

D. Design/architecture alignment and plumbing
Description: Apply changes in the correct layer (e.g., model vs. view), respect separation of concerns,
and route control flags/state through the call chain so policies are enforced where needed. Prefer
non-breaking or backward-compatible design alternatives.

14



Under review as a conference paper at ICLR 2026

E. Error and exception handling
Description: Catch and handle expected failures at the correct layer; convert errors to appropriate

no-ops or fallbacks. Avoid swallowing unexpected exceptions or leaking internal errors.

F. Security and standards/protocol compliance
Description: Use correct security checks (authz/authn, permission models), avoid unsafe operations

(escaping, URL handling), and comply

15



Under review as a conference paper at ICLR 2026

B PROMPTS

Review Generation

You are an experienced software engineer tasked with
reviewing code patches.
Below is a problem statement, a correct patch example, and a
submitted patch which is likely incorrect or incomplete.
Please provide a detailed review of the submitted patch that
identifies issues (e.g., missing context, incorrect
modifications, or potential bugs) and specifies
suggestions for improving the submitted patch so that it
correctly solves the problem statement.
4|Avoid referencing the correct patch directly.

)

| Problem Statement:
71 {{ problem_statement }}

9| Correct Patch Example:
0| {{ correct_patch_example }}

1
2| Submitted Patch (Bad Patch) :
3l {{ bad_patch }}

i5|Detailed Review:

Bad Patch Genration

I|You are given a production-ready source file below. Your
task:

1. x*xIntroduce one to two subtle, functional bugs** without
adding any comments

3|2. *xDo NOT break compilationxx and *+xdo not introduce any

syntax or spelling errorsxx or make any code-style

changes.

4/3. **Do NOT change any import statementsx*x*

5/4. Preserve formatting and comments; modify only the minimum

lines needed to trigger a logical failure under certain

inputs.

6/ 5. Return x*only*xx the full modified file content, with no

explanations or diff markers.

S

sl ——— {path} original content START ——-
9| {curr_text}
0|=—= {path} original content END —-—-—

16



Under review as a conference paper at ICLR 2026

AW O =

SWE-Agent Bug-fixing instructions

<uploaded_files>

{{working_dir}}

</uploaded_files>

I’ve uploaded a python code repository in the directory {{
working_dir}}. Consider the following PR description:

<pr_description>
{{problem_statement}}
</pr_description>

Can you help me implement the necessary changes to the
repository so that the requirements specified in the <
pr_description> are met?

I’ve already taken care of all changes to any of the test
files described in the <pr_description>. This means you
DON’T have to modify the testing logic or any of the
tests in any way!

Your task is to make the minimal changes to non-tests files
in the {{working_dir}} directory to ensure the <
pr_description> is satisfied.

Follow these steps to resolve the issue:

1. As a first step, it might be a good idea to find and read

code relevant to the <pr_description>

2. Create a script to reproduce the error and execute it
with ‘python <filename.py>' using the bash tool, to
confirm the error

3. Edit the sourcecode of the repo to resolve the issue

4. Rerun your reproduce script and confirm that the error is

fixed!

5. Think about edgecases and make sure your fix handles them

as well

Your thinking should be thorough and so it’s fine if it’s
very long.

17




Under review as a conference paper at ICLR 2026

16

SWE-Agent Test Generation instructions

<uploaded_files>

{{working_dir}}

</uploaded_files>

I’ve uploaded a python code repository in the directory {{
working_dir}}. Consider the following problem description

<problem_description>
{{problem_statement}}
</problem_description>

Can you help me implement a test that successfully
reproduces the problem specified in the <
problem_description>?

The test must be created in the repository’s existing test
suite and should be runable with the repository’s testing

infrastructure / tooling (e.g. pytest).

Do not make any changes to the non-test code in the
repository since we only need to create a reproduction
test.

Follow these steps to resolve the issue:

1. As a first step, it might be a good idea to find and read

code relevant to the <problem description>

2. Create a script to reproduce the error and execute it
with ‘python <filename.py>' using the bash tool, to
confirm the error

3. Edit the the testing suite of the repo to implement a
test based on this reproduction script which can be run
using the repository’s testing infrastructure / tooling (
e.g. pytest)

4. Ensure this test runs and successfully reproduces the
problem!

5. Remove the reproduction script and only keep changes to
the test suite that reproduce the problem.

Your thinking should be thorough and so it’s fine if it’s
very long.

18




Under review as a conference paper at ICLR 2026

)

A~ W

W

10

20

21

22

SWE-Agent Style-Fix instructions

You have recently generated a patch to resolve an issue
within this repository.

Pylint has been run on the modified files and has produced
the following feedback:

{{problem_statement}}

Your task is to:

1. Analyze the Pylint violations provided in the problem
statement

2. Understand the specific rules that were violated (e.g.,
naming conventions, unused imports, complexity issues)

3. Apply fixes that resolve these errors while maintaining
code functionality

4. Ensure your changes follow Python best practices and
improve code readability

5. Test that your fixes don’t introduce new Pylint
violations

6. Do not introduce any new files to fix the style errors

Common Pylint violations you may encounter:

- Naming and style issues (invalid-name, missing-docstring,
line-too-long)

- Import issues (unused-import, wrong-import-order,
reimported)

— Error-prone patterns (undefined-variable, no-member,
unsubscriptable-object)

- Code design issues (too-many-arguments, too-many-locals,
too—-many-branches)

— Best practice and maintainability issues (fixme, unused-
argument, broad-except)

Please resolve the Pylint feedback to the best of your
ability, while preserving the functionality of the code.

Focus on the most critical violations first and ensure your
fixes improve overall code quality and maintainability.

19




Under review as a conference paper at ICLR 2026

AW O =

SWE-Agent Review-Fix instructions

<uploaded_files>

{{working_dir}}

</uploaded_files>

I’ve uploaded a code repository in the directory {{
working_dir}}. {{problem_ statement}}

Can you help me implement the necessary changes to the
repository so that the requirements specified in the <
pr_description> are met?

I’ve already taken care of all changes to any of the test
files described in the <pr_description>. This means you
DON’T have to modify the testing logic or any of the
tests in any way!

Your task is to make the minimal changes to non-tests files
in the {{working_dir}} directory to ensure the <
pr_description> is satisfied.

Follow these steps to resolve the issue:

1. As a first step, it might be a good idea to find and read

code relevant to the <pr_description>

2. Create a script to reproduce the error and execute it to
confirm the error

3. Edit the sourcecode of the repo to resolve the issue

4. Rerun your reproduce script and confirm that the error is

fixed!

5. Think about edgecases and make sure your fix handles them

as well

Your thinking should be thorough and so it’s fine if it’s
very long.

20




Under review as a conference paper at ICLR 2026

C STYLE REVIEW

C.1 STYLE REVIEW SCORE ANALYSIS
Here, we provide additional information on how LLLMs perform on Style Fixing tasks independent
of functionality. The metrics and their formulas are:

. number of resolved original errors
Fix Rate =

number of original errors
number of original errors — number of resolved original errors + number of new errors created

Error Ratio = —
number of original errors

number of resolved original errors

Overall Fix Rate = —
number of original errors 4+ number of new errors created

Table 4: Style Review Score Analysis

Language Experimental Setting Fix Rate Error Ratio Overall Fix Rate Score
SWE-Agent + Gemini-2.5-Flash ~ 96.2% 0.377 80.1% 72.2% ->57.0% + 6.9
SWE-Agent + DeepSeek-V3.1 91.5% 0.299 79.5% 73.4% ->54.0% + 7.2
Python SWE-Agent + GPT-5-mini 65.3% 0.457 59.6% 56.3% -> 45.9% + 7.7
SWE-Agent + Qwen3-32B 30.5% 0.891 25.5% 22.7% ->19.5% =+ 6.2
Aider + Gemini-2.5-Flash 85.7% 0.482 69.3% 60.3% ->48.6% + 7.0
SWE-Agent + Gemini-2.5-Flash ~ 75.9% 2.49 48.7%
Cit SWE-Agent + DeepSeek-V3.1 68.0% 2.46 41.4%
SWE-Agent + GPT-5-mini 47.3% 2.61 28.6%
SWE-Agent + Qwen3-32B 35.3% 2.87 18.1%
Aider + Gemini-2.5-Flash 25.1% 2.82 15.3% —%
SWE-Agent + Gemini-2.5-Flash ~ 80.9% 5.17 40.4%
Java SWE-Agent + DeepSeek-V3.1 77.9% 5.46 36.8%
SWE-Agent + GPT-5-mini 64.1% 5.38 352%
SWE-Agent + Qwen3-32B 66.0% 5.31 34.5%
Aider + Gemini-2.5-Flash 81.2% 5.55 37.6% %

C.2 RULESETS USED FOR STYLE REVIEW

21



Under review as a conference paper at ICLR 2026

Table 5: List of Python Style Errors.

protected-access
attribute-defined-outside-init
redefined-builtin
anomalous-backslash-in-string
raise-missing-from
unused-import
unnecessary-lambda
logging-fstring-interpolation
logging-not-lazy
unspecified-encoding
possibly-used-before-assignment
no-self-argument
too-many-function-args
cell-var-from-loop
undefined-loop-variable
abstract-class-instantiated
deprecated-class
not-context-manager
invalid-unary-operand-type
assert-on-string-literal
global-variable-undefined
invalid-metaclass

redefined-outer-name
abstract-method
invalid-str-returned
unnecessary-pass
unbalanced-tuple-unpacking
reimported
undefined-variable
missing-timeout
pointless-string-statement
dangerous—-default-value
arguments-renamed
unexpected-keyword-arg
no-value-for-parameter
comparison-with-callable
used-before-assignment
access-member-before-definition
function-redefined
signature-differs
broad-exception-raised
bad-indentation
import-self
invalid-repr-returned

isinstance-second-argument-not-validegwped-arg-before-vararg

missing-kwoa
raising-non-exception
subprocess-run-check
wildcard-import
useless-parent-delegation
not-an-iterable
assignment-from-none
bad-string-format-type

non-parent-init-called
redundant-u-string-prefix
unnecessary-ellipsis
astroid-error
bad-super-call
too-few-format-args
bad-chained-comparison
bad-thread-instantiation

contextmanager—generator-missing-cléepupcated-argument

deprecated-module
duplicate-key

exec-used
inherit-non-class
invalid-overridden-method
lost-exception
nested-min-max
notimplemented-raised
raising-bad-type
redundant-keyword-arg
self-assigning-variable
try-except-raise

dict-iter-missing-items

unused-argument

fixme

unused-variable
broad-exception-caught
arguments-differ
assigning-non-slot
pointless-statement
unsubscriptable-object
not-callable
invalid-field-call
eval-used

bare-except
expression-not-assigned
super-init-not-called
global-variable-not-assigned
bad-staticmethod-argument
implicit-str-concat
super-without-brackets
arguments-out-of-order
global-statement
invalid-getnewargs—-ex-returned
invalid-sequence-index
misplaced-bare-raise
possibly-unused-variable
redundant-unittest-assert
unused-private-member
syntax-error
method-hidden
assignment-from-no-return
bad-str-strip-call
bidirectional-unicode
deprecated-method
duplicate-except

duplicate-string-formatting-argumentiuplicate-value

f-string-without-interpolation
invalid-bool-returned
logging-format—-interpolation
method-cache-max-size—none
no-method-argument
pointless-exception-statement
raising-format-tuple
return-in-finally
self-cls-assignment
unbalanced-dict-unpacking

unexpected-special-method-signatureunnecessary-semicolon

unreachable
unsupported-membership-test
used-prior-global-declaration

unsupported-assignment-operation
unused-format-string-argument
useless-else-on-loop

format-string-without-interpolation

invalid-length-returned
logging-too-many-args
modified-iterating-list
non-iterator-returned

positional-only-arguments—expected

redeclared-assigned-name
return—-in-init
shadowed-import
undefined-all-variable
unpacking-non-sequence
unsupported-delete-operation
unused-wildcard-import
using-constant-test

22



Under review as a conference paper at ICLR 2026

Table 6: List of Java Style Errors

AtLeastOneConstructor
FieldNamingConventions
MethodArgumentCouldBeFinal
UnnecessaryImport
AvoidDeeplyNestedIfStmts
JUnitTestContainsTooManyAsserts
SystemPrintln
AvoidCatchingThrowable
ImmutableField
SignatureDeclareThrowsException
UseUnderscoresInNumericLiterals
AvoidFieldNameMatchingMethodName
CollapsibleIfStatements
CyclomaticComplexity
ExcessivePublicCount
MethodNamingConventions
NcssCount
SimplifyBooleanReturns
UnnecessaryConstructor
AbstractClassWithoutAbstractMethod
ClassNamingConventions
EmptyCatchBlock
ForLoopCanBeForeach
OneDeclarationPerLine
UnnecessaryReturn
UseTryWithResources
AvoidReassigningLoopVariables
EmptyControlStatement
MethodReturnsInternalArray
UnnecessaryCast
UseLocaleWithCaseConversions
BooleanGetMethodName
ExcessiveParameterList
JUnitUseExpected
OverrideBothEqualsAndHashcode
UnusedLocalVariable
UseStandardCharsets
AvoidProtectedFieldInFinalClass
DoubleBraceInitialization
FormalParameterNamingConventions

AvoidDuplicateLiterals
LawOfDemeter

OnlyOneReturn
UseUtilityClass
AvoidLiteralsInIfCondition
JUnitTestsShouldIncludeAssert
TestClassWithoutTestCases
CallSuperInConstructor
LooseCoupling
TooManyStaticImports
UselessParentheses
AvoidReassigningParameters
ConfusingTernary

DataClass

GodClass
MutableStaticState
NullAssignment
TooManyFields
UnusedFormalParameter
ArrayIsStoredDirectly
CloseResource
ExcessiveImports
JUnit4TestShouldUseTestAnnotation

CommentDefaultAccessModifier
LocalVariableCouldBeFinal
ShortClassName
AvoidCatchingGenericException
ClassWithOnlyPrivateConstructorsShouldBeFinal
LinguisticNaming
AvoidAccessibilityAlteration
CognitiveComplexity

ShortMethodName

UseDiamondOperator
AssignmentInOperand
AvoidThrowingRawExceptionTypes
CouplingBetweenObjects
ExceptionAsFlowControl
LiteralsFirstInComparisons
NPathComplexity

PreserveStackTrace
UnnecessaryBoxing
UseProperClassLoader
AvoidBranchingStatementAsLastInLoop
CompareObjectsWithEquals
FieldDeclarationsShouldBeAtStartOfClass
LocalVariableNamingConventions

ReturnEmptyCollectionRatherThanNullUnnecessaryFullyQualifiedName

UnnecessarySemicolon
UseVarargs

UnusedAssignment
AvoidFieldNameMatchingTypeName

AvoidUncheckedExceptionsInSignaturefontrolStatementBraces

GenericsNaming
PrematureDeclaration
UnnecessaryModifier
UseShortArrayInitializer
ConstantsInInterface
FinalFieldCouldBeStatic
MissingSerialVersionUID
UnnecessaryAnnotationValueElement
UseCollectionIsEmpty
AbstractClassWithoutAnyMethod

GuardLogStatement
SwitchStmtsShouldHaveDefault
UnusedPrivateMethod
AvoidThrowingNullPointerException
ConstructorCallsOverridableMethod
ForLoopVariableCount
NonStaticInitializer
UnnecessaryLocalBeforeReturn
UseEqualsToCompareStrings
AvoidCatchingNPE

AvoidProtectedMethodInFinalClassNotBxbeddsnggHardCodedIP
EmptyMethodInAbstractClassShouldBeAEgtuadsiull

ImplicitSwitchFallThrough

MissingStaticMethodInNonInstantiataBépCaas¥ectorWithList

SimplifiedTernary
AvoidDollarSigns
AvoidRethrowingException
DontImportSun

MissingOverride
SuspiciousEqualsMethodName
DefaultLabelNotLastInSwitchStmt
DoNotTerminateVM

SwitchDensity

AvoidInstanceofChecksInCatchClause

AvoidStringBufferField
FinalParameterInAbstractMethod
NonSerializableClass
UnusedPrivateField
DetachedTestCase
ForLoopShouldBeWhileLoop

JUnit4SuitesShouldUseSuiteAnnotatiodumbledIncrementer

ProperCloneImplementation
SimplifyConditional
UseObjectForClearerAPI
AvoidMultipleUnaryOperators
ClassCastExceptionWithToArray

ReplaceHashtableWithMap

SingletonClassReturningNewInstance

AssignmentToNonFinalStatic
AvoidUsingOctalValues
CloneMethodMustBePublic

CloneMethodReturnTypeMustMatchClassNaNetExtendJavaLlangError

DoNotThrowExceptionInFinally
InvalidLogMessageFormat
SingleMethodSingleton
UnusedNullCheckInEquals
UselessOverridingMethod

DontUseFloatTypeForLoopIndices
NoPackage
UnconditionalIfStatement
UseExplicitTypes
UselessQualifiedThis

JUnit5TestShouldBePackagePrivate
SimpleDateFormatNeedsLocale
AvoidDecimalLiteralsInBigDecimalConstructor
AvoidPrintStackTrace
DoNotCallGarbageCollectionExplicitly
IdenticalCatchBranches
PrimitiveWrapperInstantiation
AvoidThrowingNewInstanceOfSameException
DoNotExtendJavaLangThrowable
InstantiationToGetClass
LogicInversion
SimplifyBooleanExpressions
SingularField
AvoidMessageDigestField
CheckSkipResult
CloneMethodMustImplementCloneable
DoNotHardCodeSDCard
FinalizeDoesNotCallSuperFinalize
PackageCase

UnnecessaryCaseChange
UselessOperationOnImmutable
WhileLoopWithLiteralBoolean

23



Under review as a conference paper at ICLR 2026

Table 7: List of CPP Style Errors

misc-include-cleaner
cppcoreguidelines—-avoid-magic-numbers
misc-const-correctness
misc-non-private-member-variables-in-classes
cppcoreguidelines-pro-bounds-pointer—-arithmetic
cppcoreguidelines-avoid-non-const-global-variables
cppcoreguidelines—-owning-memory
cppcoreguidelines-macro-usage
cppcoreguidelines-pro-type-member-init
misc-no-recursion

bugprone-narrowing-conversions
cppcoreguidelines-pro-type-reinterpret-cast
cppcoreguidelines-use-default-member-init
bugprone-implicit-widening-of-multiplication-result
bugprone-suspicious—-include
cppcoreguidelines-avoid-const-or-ref-data-members
cppcoreguidelines-pro-type-vararg

misc-use-anonymous-namespace
cppcoreguidelines-avoid-do-while
cppcoreguidelines-rvalue-reference-param-not-moved
bugprone-easily-swappable-parameters
cppcoreguidelines-avoid-c-arrays
cppcoreguidelines-pro-bounds-array-to-pointer-decay
cppcoreguidelines—-init-variables
cppcoreguidelines-special-member-functions
cppcoreguidelines—-pro-type-static-cast-downcast
performance-enum-size
cppcoreguidelines-narrowing-conversions
cppcoreguidelines—-pro-type-union-access
cppcoreguidelines-pro-bounds-constant-array-index
bugprone-macro-repeated-side-effects
clang-analyzer-optin.core.EnumCastOutOfRange
cppcoreguidelines-explicit-virtual-functions
portability-simd-intrinsics

24



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

C.3 STYLE REVIEW ERROR ANALYSIS

Resolved Errors % (20 most frequent)

. Gemini
mm Deepseek

protected-access

redefined-outer-name

unused-argument

attribute-defined-outside-init

abstract-method

redefined-builtin

invalid-str-returned

unused-variable

anomalous-backslash-in-string

unnecessary-pass

broad-exception-caught

raise-missing-from

unbalanced-tuple-unpacking

arguments-differ

unused-import

0%

reimported

assigning-non-slot

unnecessary-lambda

undefined-variable

o 20 40 60 80 100
Resolved Errors (%)

Figure 8: Resolve rates for the 20 most frequent style errors in Python.

25



1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Resolved Errors % (20 most frequent)

73%
100%

AtLeastOneConstructor 17go,
0%

100%
AvoidDuplicateLiterals oo 100%

0%

100%
. 100%
CommentDefaultAccessModifier oo,
0%

100%

FieldNamingConventions +'ge, 100%

0%

100%
100%

LawOfDemeter g9,
0%

100%
LocalVariableCouldBeFinal 100%

100%
MethodArgumentCouldBeFinal 100%

100%
OnlyOneReturn 100%

ShortClassName 73%

91%
Unnecessarylmport

UseUtilityClass 91%
82%

100%
AvoidCatchingGenericException 100%

100%
AvoidDeeplyNestedIfStmts 100%

100%
AvoidLiteralsinifCondition 100%

70%
70%

ClassWithOnlyPrit onstruc 60%

70%

100%
JUnitTestContainsTooManyAsserts 100%

90%

JUnitTestsShouldincludeAssert 30%
30%
100%

LinguisticNaming 100%

100%
SystemPrintin 100%

90%
TestClassWithoutTestCases . Gemini
W Deepseek
= GPT

W Qwen

0 20 40 60 80 100
Resolved Errors (%)

Figure 9: Resolve rates for the 20 most frequent style errors in Java.

As shown in[J] agents reliably fix local, syntactic style issues but diverge on semantic or cross-file
refactorings. For example, many rules — AvoidDuplicateLiterals, CommentDefaultAccessModifier,
FieldNamingConventions, LawOfDemeter, Local VariableCouldBeFinal, Method ArgumentCould-
BeFinal, OnlyOneReturn, AvoidCatchingGenericException, AvoidDeeplyNestedIfStmts, — are
resolved at 100% by all three agents, which indicates these errors stem from local, pattern-detectable
oversights (leftover literals, missing modifiers, simple nesting or println usages) and can be corrected
by single-file, syntactic edits or well-scoped templates. By contrast, errors that require either boiler-
plate insertion or light architectural judgement show agent differences: AtLeastOneConstructor is

26



Under review as a conference paper at ICLR 2026

Resolved Errors % (20 most frequent)

. Gemini
- Aider
W Deepseek

misc-include-cleaner

misc-use-anonymous-namespace

371%
id i b

cppc ideli gi

39%

cppcoreguidelines-avoid-do-while

misc-const-correctness

I t. d

cppc

misc-non-private-member-variables-in-classes

pi

64%

38%

il
pl y parameter

cppc

cppcoreguidelines-avoid-non-const-global-variables

pro-bounds-pointe ithmetic

10%

cppcoreguidelines-avoid-c-arrays s0%

¥

bound to-pointer-d
p y-to-p ay

cppcoreguidelines-owning-memory s

cppcoreguidelines-init-variables

cppcoreguidelines-macro-usage 100%

100%

cppc

pecial-member-functions {y
75%

75%

cppc idelines-pi

50%
50%

50%

misc-no-recursion 4

100%

performance-enum-size 0%

0 20 40 60 80 100
Resolved Errors (%)

Figure 10: Resolve rates for the 20 most frequent style errors in CPP.

resolved by Gemini 73%, Aider 82% and Deepseek 100% (Deepseek appears strongest at inserting
appropriate constructors, suggesting it better synthesizes class skeletons), Unnecessarilylmport is
handled best by Gemini (91% vs ~82%), which implies Gemini is particularly effective at mechanical
cleanup (removing IDE-leftover imports), while UseUtilityClass is the hardest (Gemini 27%, Aider
64%, Deepseek 36%) — converting a class to a utility requires semantic understanding (that methods
are stateless/should be static and constructors removed), project-wide implications and non-trivial
refactoring heuristics, so performance drops. ShortClassName (Gemini 55%, Aider/Deepseek ~73%)
and ClassWithOnlyPrivateConstructorsShouldBeFinal (Gemini/Deepseek ~70%, Aider 80%) simi-
larly reflect refactor/semantic sensitivity: these errors occur because of design choices (poor naming,
classes meant as singletons/factories) and hence need broader context or safer rename patterns to fix
without breaking references. Finally, test-related fixes (JUnitTestsShouldIncludeAssert: Gemini 90%
vs others ~80%; TestClassWithoutTestCases ~90% all) show that adding assertions or test content
is approachable but benefits from an agent’s ability to infer test intent. Thus, if the fix is a local,
syntactic removal or modifier change (the common result of IDE habits or quick edits) all agents
excel; when the fix requires synthesis of new boilerplate or a design-level judgement (constructors,
utility conversion, safe renames), performance diverges and the better agent is the one that more
reliably infers program intent and can safely make cross-site edits — exactly the kinds of capabilities
we should prioritize next in automated style repair.

In[I0] a clear partitioning of agent capability emerges. Gemini attains the highest resolution rates
on checks that are syntactically local and mechanically canonical—notably misc-const-correctness,

27



Under review as a conference paper at ICLR 2026

misc-non-private-member-variables-in-classes and cppcoreguidelines-avoid-c-arrays, indicating it
reliably performs small, deterministic AST-level edits where the root cause is programmer oversight
or legacy C idioms. Deepseek dominates categories tied to legacy manual-memory and preprocessor
practices—most prominently cppcoreguidelines-owning-memory and cppcoreguidelines-macro-
usage —which directly implies it is better at recognizing and applying idiomatic modernization or
conservative rewrites in codebases where errors stem from explicit new/delete patterns and heavy
macro usage. Aider occupies an intermediate regime with moderate resolve rates on initialization and
type-related checks (cppcoreguidelines-init-variables, cppcoreguidelines-pro-type-member-init), sug-
gesting a propensity for lower-risk, surface-level repairs rather than broad structural refactors. Across
agents, the highest absolute resolve rates correspond to mechanically fixable, single-rewrite problems
(local syntactic omissions or replace-with-standard-container transformations), whereas checks that
require understanding programmer intent, cross-cutting design choices, or semantic refactoring
exhibit lower and more variable resolution; this pattern directly traces to the origin of each error
class—simple oversight or legacy idiom versus deep semantic or intentional ambiguity—and implies
that improving automated style repair requires either stronger intent inference (tests, specifications) or
broader, transformation-aware training focused on non-local semantic refactors. This can be surmised
from the fact that errors such as misc-const-correctness, misc-non-private-member-variables-in-
classes, cppcoreguidelines-avoid-c-arrays, cppcoreguidelines-pro-bounds-array-to-pointer-decay and
cppcoreguidelines-pro-type-member-init performance-enum-size exhibit consistently high resolve
rates (with Gemini leading on several), whereas other checks show moderate to low and often
heterogeneous performance across agents. These high-rate rows correspond to local, syntactic,
single-step transformations - adding const, restricting member visibility, or replacing raw C arrays
with standard containers - whose root causes are programmer oversight or legacy C idioms and
therefore admit deterministic AST-level repairs. By contrast, rows with low or mixed resolution
reflect checks that demand cross-cutting reasoning about ownership, lifetime, or design intent;
their failure modes in the plot indicate semantic ambiguity rather than simple syntactic omission.
Consequently, the visual evidence supports the interpretation that automated style repair succeeds
where a canonical, local rewrite exists and degrades where fixes require intent inference or non-local
semantic refactoring.

Further it can be seen though, the agents have a higher resolve rate for Java style errors, they are also
prone to introduce more number of additional errors as compared to resolving CPP style errors.

28



Under review as a conference paper at ICLR 2026

Additional counts per source (sorted by total)

MethodNamingConventions
LooseCoupling
UselessParentheses
UnnecessaryModifier
ClassWithOnlyPrivateConstructorsShouldBeFinal
UnnecessaryFullyQualifiedName
Unnecessarylmport
EmptyCatchBlock
Constantsininterface
CompareObjectsWithEquals
ControlStatementBraces
CloseResource
UncommentedEmptyConstructor
UncommentedEmptyMethodBody
GenericsNaming
AvoidUsingVolatile
LocalVariableNamingConventions
AssignmentinOperand
GuardLogStatement

AvoidCatchingThrowable

646
691
682

Gemini

Deepseek

GPT
Qwen

1600

.

200 400 800 1000 1200 1400
additional count

Figure 11: Counts for the 20 most frequent additional errors in Java.

29



Under review as a conference paper at ICLR 2026

[ X ] o
700 A
o ®e
600 -
g 500 4
O e o0 o
(1]
2 400 1 eeo e o
E ® 0qe %
g 300 -
o
o o0 o0
200 A
.
100 A e e o
(]
04 \I“.
0 1
unresolved or resolved

Figure 12: Distribution of Complexity Score between Resolved and Unresolved Instances

D PATCH COMPLEXITY ANALYSIS

30



Under review as a conference paper at ICLR 2026

Python: Review vs Bug Python: Test vs Bug Python: Style vs Bug
r=0925 r=0.702 r = 0.800
50 s 0
) 15.0] 60
z% N
125
. z 2
&30 #1100 @ a0
2 15
50
| 50
o I o I %
Sug:Fiing (%) Bug ixing (%)
C++: Review vs Bug C++: Test vs Bug
r=0.966 r=0733
s .
2|
2| )
£ z 25
: L H
{ £
= 10}
10 15
10
5575 W0 TS Bo TS ®o 575 100 T3 Bo TE o S5 75 10 T3 Bo T3 Wo
BugFiing (%) Bug Fixing (%) BugFixing (%)
Java: Review vs Bug Java: Test vs Bug Java: Style vs Bug
r=0.871 r=0.858 r=0.276
o5
2ol ®
10
=39 1 50
3 K
] i1 240
i “
) B 0
15 . . X . " . " X " " . .
s U s U T NI
Bug:Fining (%) Bug ixing (%) BugFiing (%)

Figure 13: Bugfixing performance ploted together with performance on other tasks seperately for each
language.

E CORRELATION ANALYSIS ACROSS TASKS

Table 8: Per-language Pearson correlation between Bug-Fixing and other tasks

Language Review vs Bug Test vs Bug Style vs Bug

Python 0.925 0.702 0.800
C++ 0.966 0.733 0.461
Java 0.871 0.858 0.276

Average 0.921 0.764 0.512

31



Under review as a conference paper at ICLR 2026

F PATCH GENERATION RATE

Table 9: SWE-Agent Patch Generate Rate across models and tasks

Language Model Bug-Fixing Test-Generation Review-Response Style-Fixing
Gemini-2.5-Flash 93.8% - 92.7% 91.7%
Pvthon DeepSeek-V3.1 96.3% 94.8% 95.1% 93.8%
y GPT-5-mini 76.2% 64.8% 61.0% 69.3%
Qwen3-32B 79.1% 90.8% 78.0% 35.7%
Gemini-2.5-Flash 98.2% 97.7% 77.3% 80.3%
Cit DeepSeek-V3.1 96.4% 75.0% 97.7% 85.7%
GPT-5-mini 62.5% 54.5% 56.8% 48.3%
Qwen3-32B 70.5% 97.7% 88.6% 47.6%
Gemini-2.5-Flash 99.1% 79.2% 93.7% 84.7%
Java DeepSeek-V3.1 93.6% 87.0% 91.1% 91.1%
v GPT-5-mini 45.9% 45.5% 51.9% 50.0%
Qwen3-32B 75.2% 90.9% 77.2% 44.4%

Table 10: Bugfixing - Avg. Complexity Score.

Gold Avg Model Avg Resolved Resolved Unresolved Unresolved

Model Language Complexit Complexit Gold Avg Model Avg Gold Avg Model Avg
P y P ¥ Complexity Complexity Complexity Complexity
Python 7.07 299.28 5.35 5.28 8.13 484.67
Gemini 2.5 Flash ~ Java 19.24 9.75 6.69 12.32 19.67 19.24
C++ 47.55 195.1 8.07 6.28 38.26 252.31
Python 7.07 12.08 5.22 5.35 9.46 21.60
Deepseek v3.1 Java 19.24 12.91 6.47 7.07 26.49 15.84
C++ 47.55 104.63 9.21 32.13 54.29 123.18
Python 7.07 165.56 4.30 4.05 9.55 390.18
GPT-5-mini Java 19.24 983.12 6.51 4.24 21.95 1186.70
C++ 47.55 603.39 18.48 90.91 43.92 767.78
Python 7.07 464.93 5.77 432 7.49 642.09
qwen3-32b Java 19.24 4.76 5.26 2.7 24.28 5.08
C++ 47.55 140.96 5.00 4.75 46.37 148.22

32



Under review as a conference paper at ICLR 2026

Table 11: Review-Response - Avg. Complexity Score.

Gold Avg Model Avg Resolved Resolved Unresolved  Unresolved

Model Language Complexit Complexit Gold Avg Model Avg Gold Avg Model Avg
plexity plexity Complexity Complexity Complexity Complexity
Python 7.07 1635.47 3.69 9.58 7.93 2408.95
Gemini 2.5 flash ~ Java 19.24 9.95 6.49 6.86 17.25 11.53
C++ 47.55 128.33 5.98 4.85 41.85 154.79
Python 7.07 10.71 4.36 6.24 9.23 16.26
Deepseek v3.1 Java 19.24 9.75 6.69 7.04 19.67 12.32
C++ 47.55 195.10 8.07 6.28 38.26 252.31
Python 7.07 289.22 4.96 13.80 7.40 543.45
GPT-5-mini Java 19.24 6.26 6.91 5.58 15.32 6.99
C++ 47.55 955.24 9.01 5.84 12.39 1489.28
Python 7.07 519.86 3.15 3.26 7.41 639.08
qwen3-32b Java 19.24 3.96 5.85 2.83 16.83 431
C++ 47.55 248.65 2.25 2.4 14.55 261.96

33



	Introduction
	Related Work
	Benchmark Construction
	Collection of real-world data from GitHub
	Task Details
	Task: Resolving Issues
	Task: Test Generation
	Task: Responding to Code Review
	Task: Code Style

	Experimental Setup

	Analysis of Dataset
	Analysis of LLM Coding Agents on OmniCode
	Performance across Tasks
	Comparison between Agents
	Review-Response
	Patch Complexity
	Impact of including Bad Patches

	Limitations and Future Work
	Analysis of Bad Patches and Reviews
	Prompts
	Style Review
	Style Review Score Analysis
	Rulesets used for Style Review
	Style Review Error Analysis

	Patch Complexity Analysis
	Correlation Analysis across Tasks
	Patch Generation Rate

