Under review as a conference paper at ICLR 2026

OMNICODE: A BENCHMARK FOR EVALUATING SOFTWARE
DEVELOPMENT AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-powered coding agents are redefining how real-world software is developed. To
drive the research towards better coding agents, we require challenging benchmarks that
can rigorously evaluate the ability of such agents to perform various software engineering
tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus
on narrowly scoped tasks such as competition programming and patch generation. In
reality, software engineers have to handle a broader set of tasks for real-world software
development. To address this gap, we propose OmniCode, a novel software engineering
benchmark that contains a diverse set of task categories, including responding to code
reviews, test generation, fixing style violations, and program repair. Overall, OmniCode
contains 1,794 tasks spanning three programming languages—Python, Java, and C++—and
four key categories: bug fixing, test generation, code review fixing, and style fixing. In
contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually
validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated
to avoid data leakage issues, presenting a new framework for synthetically generating
diverse software tasks from limited real world data. We evaluate OmniCode with popular
agent frameworks such as SWE-Agent and show that while they may perform well on
BugFixing, they fall short on tasks such as Test Generation and in languages such as C++.
OmniCode aims to serve as a platform for generating synthetic tasks from real world
data, spurring the development of agents that can perform well across different aspects of
software development.

1 INTRODUCTION

The future impact of Al-automated software development will be far-ranging: beyond building and improving
apps, Al will help us write more comprehensive test suites, perform and respond to code review suggestions,
enforce nuanced style guidelines, and many other tasks that are part of the software development life cycle.
Research on Al software development demands good benchmarks, both to measure progress and to expand
the scope of problem statements. However, Al coding benchmarks today, such as SWE-Bench (Jimenez et al.|
2024), CodeContests (Li et al.} 2022)) and HumanEval (Chen et al.| 2021)), are too narrow in scope to spur
progress on automating the full spectrum of software development tasks, instead focusing on isolated tasks
such as competition programming, code repair, and generating individual patches in isolation.

OmniCode. To address this gap, we introduce a new benchmark for generative Al coding assistants
(specifically LLMs for code), which we call OmniCode. Our new benchmark is based on the insight that
software development involves a heterogeneous range of tasks and problem-solving activities for which
generative Al can be brought to bear (see Figure[I)). We consider four such software development tasks:

Under review as a conference paper at ICLR 2026

Current Evaluation Approaches

OmniCode Evaluation

Task Horizon

o
Bl

Code Review

IEI Bug Repair
L

EMLC = <>
52 "

Code Style Fixing

Works On
Fmmm———m
| Woy pe10snon

Task Horizon

W
|g| <_inLEi‘fi_ | \ |

Figure 1: Omnicode synthetically builds multiple tasks out of a base dataset to holistically evaluate software
engineering agents. Four different types of tasks that we consider: Bug fixing/feature adding, test generation,
responding to code review, and enforcing style guidelines.

Test Generation

1. Addressing issues, such as bug fixes and feature requests. This is a staple of software engineering
benchmarks (Jimenez et al.l|[2024; Silva & Monperrus|, 2024; |[Rashid et al.|,[2025), because it assesses
the ability of an LLM coding agent to autonomously resolve real-world repository-level issues,
provided we are given tests for validating program correctness.

2. Writing software tests. Current LLM coding agents are unreliable, requiring humans to manually
inspect and test their outputs. By having LLM coding systems write their own tests, we measure
progress toward fully closing the loop of both generating and checking repo-level patches.

3. Responding to code review. Coding agents today act in a partnership with human engineers, and
we envision a future where LLMs provide initial drafts of a patch, which a human engineer then
critiques. We compile a dataset of partly-correct patches paired with code-review feedback on how
to best correct it, and task models with completing or fixing the patch given the code review.

4. Enforcing style guidelines. Code style is important for conforming to project-specific or organization-
specific norms. Here, present the agent with a selection of coding convention violations in a file and
test the ability of an LLM to fix the style.

We build our benchmark by bootstrapping off existing benchmarks such as SWE-Bench and Multi-SWE-
Bench, along with collecting additional issues from popular open-source repositories. Using this collected
real-world data, we employ LLM-based augmentations along with language-specific tools to create different
task types. In total, our dataset comprises 494 issues from 27 repositories and 1794 benchmark tasks in
total. Results. We evaluate the widely used SWE-Agent with Gemini 2.5 Flash on our dataset. We find
that our benchmark challenges even the most modern systems, but that it is not intractable. Specifically,
SWE-Agent obtains less than 15% on test generation across all three languages. On Review-Response it
achieves a maximum of 32% on Java. For Style-Fixing while agents perform well on Python, they do not
perform as well on Java and C++.

Contributions. We wish to highlight the following contributions:

Under review as a conference paper at ICLR 2026

1. OmniCode, a benchmark assessing for distinct types of software engineering activities, comprising
1794 tasks total.

2. Presenting recipes for synthetically creating diverse interactive tasks to evaluate agents from collected
static real-world data.

3. Empirical evaluation of state-of-the-art LLM-agent systems on the benchmark, determining specific
areas where LLM agents fall especially short, particularly in test generation and style fixing.

2 RELATED WORK

LLM coding benchmarks. One of the earliest benchmarks for LLMs’ functional code synthesis was
HumanEval (Chen et al) 2021), which contained 164 hand-written programming problems, each with a
natural language docstring and associated unit tests. However, it was only limited to single-function synthesis
without any multi-file or repository context. SWE-Bench Jimenez et al.|(2024) first introduced the paradigm
of benchmarking the ability of LLM agents to resolve real-world GitHub issues, yielding much follow-up
work (Miserendino et al.l 2025} Jain et al.; |Aleithan et al., 2024} [Rashid et al., 2025} [Zan et al., [2024). These
benchmarks added support for more languages and improved data quality by including more rigorous checks.
Similar to these benchmarks, we also manually validate each base task before including it in OmniCode. In
contrast to these benchmarks, OmniCode contains three new synthetic tasks that reduce the chances of data
leakage. Recently SWE-Smith|Yang et al. (2025) has shown promise in synthetically generating bugs to create
training data for coding agents. OmniCode goes beyond just new bugs, to creating new task types that are
supported by synthetically generated data such as code reviews. Multi-SWE-Bench|Zan et al.| (2025) extended
the SWE-Bench collection paradigm beyond Python to multiple languages, but restricted to bug-fixing. We
further extend this to other tasks that are part of the software development process.

LLM coding benchmarks for other tasks. Recently, Miindler et al. proposed SWT-Bench (Miindler et al.,
2024) that transforms the instances in SWE-Bench to test generation tasks. Each task involves generating
tests such that they fail on the buggy version of code and pass with the fixed version e.g the gold patch,
what we call Fail-to-Pass. In contrast to SWT-Bench, the test generation tasks in OmniCode are more robust.
Our tasks require not only the generated test to go from Fail-to-Pass for golden patch but also Fail-to-Fail
when presented with multiple bad patches requiring the agents to generate tests that don’t pass trivially,
resulting in more robust tests. TestEval (Wang et al.| 2024) is another recent benchmark for evaluating test
generation capabilities of LLMs. However, their benchmark is only set up for single programs instead of
entire repositories, which is more challenging.

Test case generation with LLMs. Past work has also built LLM program synthesizers organized around the
principle of self-checking through test case generation (Li et al.; |Chen et al., 2022)). Researchers have also
proposed generating unit tests using LLMs (Chen et al.| 2024; |Pan et al.| [2024)). However, these works are
either focused on using tests as a validation step or improving unit test generation for a given focal method
with a single LLM. In contrast, our work focuses on benchmarking LLM-Agents for repository-level test
generation.

3 BENCHMARK CONSTRUCTION

The creation of OmniCode involves two major steps: (1) gathering real world software data from open source
repositories and (2) generating augmentations on these base instances to support new tasks types. Each
instance in our benchmark is based on a pull-request that has been made to resolve an issue in a GitHub
repository. The pull request and its associated metadata (such as the issue it resolved, the patch it introduced)
constitute, what we call a base instance. Using this base instance, we can generate the data required to support

Under review as a conference paper at ICLR 2026

different task types, such as generating bad patches to support test generation or code reviews to support
review fixing. Next, we describe both the data collection and task generation in detail.

3.1 COLLECTION OF REAL-WORLD DATA FROM GITHUB

We first collect a set of base instances, that is, pull requests in public GitHub repositories, from which we can
generate tasks. When curating pull requests, we follow a similar selection strategy to|[Jimenez et al.| (2024)).
We consider popular projects, filtering out tutorials and other non-code repositories. From these, we collect
merged pull requests that (1) resolve an issue and (2) introduce a test. To ensure that each instance is a
meaningful task for an agent to be evaluated on, we perform manual inspection. Only instances where the
changes introduced in the pull request are within the scope of the description of the issue are kept. We also
discard issues if they only involved trivial changes to documentation or configuration files.

To enable agents to interact with an instance by executing code, we build containerized environments for
each instance. The environment is made up of the state of the repository at the time of the issue, as well as
dependencies that need to be installed so that code can be executed properly. We manually determine the
dependencies required by inspecting requirements and documentation. To verify that the correct dependencies
have been identified, we execute the test suite of the repository to check if the tests can be run without errors.

For our evaluation, we curate a multi-language dataset by filtering and selecting sane and reliable instances
from existing benchmarks such as SWE-Bench and Multi-SWE-Bench, and we supplement this with a small
number of additional repositories and hand-picked instances. This combined dataset comprises 273 Python,
112 C++, and 109 Java instances (494 in total), spanning 28 diverse repositories across machine learning
and scientific libraries (e.g., scikit-learn, sympy), systems libraries (e.g., fmt, simdjson), and large-scale
frameworks (e.g., django, logstash, jackson, mockito). By extending coverage to Java and C++ in addition to
Python, our dataset broadens evaluation beyond the Python-centric scope of SWE-Bench, providing a more
realistic and comprehensive benchmark for assessing software engineering agents across ecosystems.

3.2 TASK DETAILS

In the following, we describe the details of how each of out main four task types is setup along with the
evaluation procedures.

3.2.1 TASK: RESOLVING ISSUES

Resolving GitHub issues has become a standard approach for evaluating the capabilities of large language
models (LLMs) in the software engineering domain. A common method, first introduced by Jimenez
et al.| (2024), is to mine resolved issues from large-scale open-source repositories. This provides a natural
environment for agents to operate in by cloning the corresponding repository state, including the issue
description, and withholding a set of tests used to validate the proposed fix. For each instance, we provide
the issue description and a set of tests that distinguish between the pre- and post-fix repository states. An
agent is tasked with generating a patch based on the issue, which is evaluated against tests that transitioned
from failing to passing due to the ground truth fix, as well as against previously passing tests to ensure no
regressions are introduced. While this task aligns closely with existing work, our benchmark expands the
range of verified projects considered to by unifying instances from SWE-Bench, Multi-SWE-Bench as well as
37 instances that we collect while maintaining a strong emphasis on manual validation for quality assurance.

3.2.2 TASK: TEST GENERATION

All previously considered pull requests included relevant tests, as this was a necessary criterion for their
selection. These tests play a crucial role in verifying that the proposed fix is valid and addresses the reported

Under review as a conference paper at ICLR 2026

Bad Patch #3

Bad Patch #2

Gold Patch #1

Bad Patch #1

Test Patch

Figure 2: For evaluating test patches on the task of Test Generation, we evaluate the proposed test patch
against both, the ground truth (gold) patch, as well as several meaningful, but incorrect, bad patches. A test is
only considered correct if he passes for the gold test, but fails for all bad patches.

issue. However, this requirement significantly limits the number of available instances for model evaluation.
At the same time, writing meaningful tests is itself a key aspect of software engineering. By focusing on this
underexplored skill, we aim to evaluate and improve a model’s ability to reason about code behavior and
generate effective test cases.

To assess the quality of a candidate test, we use both the ground truth test case and a set of what we define
as bad patches. A bad patch is a plausible but incorrect attempt at resolving the issue—one that contains no
obvious syntax errors and remains relevant to the problem description. This setup presents a more realistic
and challenging evaluation scenario compared to existing approaches, which typically rely only on the pre-
and post-PR repository states.

While there are usually few ways to correctly solve a problem, there are many ways to incorrectly solve it. To
ensure that generated tests can be evaluated thoroughly, it is important to have bad patches which cover a
diverse set of failure modes. We use two distinct approaches to achieve this. (1) Collecting failed attempts
from less capable agents and (2) Perturbing correct patches to introduce bugs. For approach (1), we use
Agentless (Xia et al.,|2024) with several different models (Gemma 2 9B, Qwen2.5 Coder 32B Instruct, Llama
3 8B Instruct, and GPT-4.1-nano), instructing the tool to attempt to solve the task as usual and collecting
instances where it fails to do so. For approach (2), we sample multiple completions from Gemini 2.0 Flash
prompted with the correct patch along with instructions to perturb it in order to introduce commonly found
bugs, filtering to keep those that are actually incorrect. The relevant prompt can be found in the appendix.
Our aim is to have bad patches which are incorrect in minor ways (from approach 2) as well as at higher level
(from approach 1).

For the Java and C++ instances, we placed more emphasis on the Agentless generations for their more natural
patch attempts. However, there were instances that proved to be resilient to bad patch generation. These
were instances that either proved to difficult for the models to produce a valid patch or to simple for them to
produce a non-passing patch. As a result, we were limited to a subset of our instances for Java and C++. For
Java, we used 77 instances for this subset. For C++, we used 44 instances for this subset.

In this setting, the agent is prompted with the issue text and asked to generate one or more test cases to be
added to the test suite. The resulting candidate test is then evaluated: if it passes on the ground truth patch but
fails on all bad patches, it is considered successful. If it does not meet both criteria, the test is considered a
failure. We also reuse the bad patches in an additional task related to code review.

Under review as a conference paper at ICLR 2026

Code Reviewer

ﬁ

Empty Content
Incorrect Patch String looks wrong Correct Patch
ShareGPT
mapping

probably not needed

Review Report

T_40 MINT)
= OpenATTokenCounter (self .model type)

Initial Incorrect Proposal Corrected Proposal

Figure 3: In the task of responding to Code Review, an initial incorrect patch is provided which contains a
meaningful attempt of the solution of a given problem. This attempt is then reviewed by a human or an LLM
and a review report is generated. Utilizing this report, the LLM is tasked with correcting the initial approach
by utilizing this report, which is validated with the normal testing suite.

3.2.3 TASK: RESPONDING TO CODE REVIEW

It is not uncommon for developers to iterate over multiple proposed solutions in a pull request until they
fulfill all the necessary requirements. Often, such incorrect proposals are met with corresponding feedback or
review, explaining why or how this approach does not meet expectations. We create reviews by providing both
the perturbed bad patch (from the previous section) along with the correct patch and problem description to
Gemini 2.0 Flash, and asking it to come up with instructions for how the bad patch should be fixed. We create
our prompt in order to induce reviews which are informative but do not give away the complete solutions.

During evaluation, we present the model with the previously selected bad patch and display the review of
context. The model is then tasked with refining the existing solution in a way that passes the issue-specific
fail-to-pass test. While the adaptation of existing functionality to enable this use case is minor, we believe
this is a promising avenue for research. Especially when anticipating fully autonomous work on code issues,
interacting with external feedback, and starting from potentially corrupted states is an imperative skill.

3.2.4 TAsSK: CODE STYLE

Last, we introduce the task of style review. Since language models are trained on a wide range of
code—varying not only in functionality but also in quality—style-oriented tasks represent a natural extension
of evaluation. To assess code style, we use third-party tools such as pylint for Python, clang-tidy
for C++ and PMD for Java to score quality and extract specific style issues, including errors, warnings, and
convention violations.

In this task, the model is not expected to fix a functional bug but to resolve the listed style issues. Style review
is particularly appealing because it can be adapted to user-specific needs by incorporating custom guidelines
or organization-specific rules.

We construct datasets for style errors for all repositories used for other tasks. We start by using the language
specific tools to generate a list of all style violations in the repository. We then aggressively prune out overly
zealous rules and other commonly occurring warnings. We record both an aggregate style score and the full

Under review as a conference paper at ICLR 2026

Code Style Review

Before Linter Report After

def { def

is_pos_difference(...): "type": "refactor", is_pos_difference(...):
difference = a - b "message": "Too return a > b
is_pos = many local variables",

difference > 0
return is_pos }

Figure 4: Side-by-side display of the original verbose code, linter warning, and refactored code with reduced
local variables. Key elements highlighted in blue.

list of reported style issues, including line numbers. We then group errors by file and construct 144 Python,
147 C++ and 124 Java instances, with each instance containing on average 9 style errors.

This output is passed to the agent, which is then tasked
with resolving the identified issues. After applying the
proposed patch, we re-run the style tool and quantify Table 1: Combined statistics by language
improvemept l?ased on score increase or t.he number Metric Python
of issues eliminated. To account for partial success,
we allow a relaxed pass criterion, configurable via

C++ Java

Patch statistics

thresholds on minimum score or maximum remain- Patches 273 112 109
ing issues. To determine how well the agent resolve Complexity 7.1 476 192
style violations, we compute a metric using a the fol- Lines added 16.9 180.7 74.8
lowing formula that balances the total number of in- Lines removed 7.7 82.6 203
stances resolved with new ones that are introduced, Test statistics
normalising by total lnumber of issues initial present: Patches 273 112 109
score = max (0, (RN) Complexity 72 380 119
Lines added 25.2 277.8 722

Lines removed 49 17.5 2.0
Bad Patch and Review statistics

3.3 EXPERIMENTAL SETUP Patches 164 44 79
Complexity 2.870 3.641 3.056
Lines added 3.909 5.455 5.785

To demonstrate our benchmark, we evaluate state-of- Lines removed 1.866 2318 1.861

the-art agent framework SWE-Agent along with a Review size 2536 3196 329.0

more pipelined and less agentic approach: Aider. We
evaluate both frameworks with Gemini 2.5 Flash. In
order to enable agents to interact with the instances,
we provide them with containerized environments as
described in Section 3.1 We pass in the issue descrip-
tion as the initial task statement for Bug-Fixing. For
Test-Generation, Review-Response and Style-Fixing,
we prepare task specific prompt that provide context and instructions. These are detailed in the appendix. We
use the default settings for SWE-Agent and adjust the per instance cost limit to $2.0.

Under review as a conference paper at ICLR 2026

4 ANALYSIS OF DATASET

Bug Fixing In Table |1, we present quantitative analysis of the patches that introduce the bug into the
repository. Along with size of patches, we construct a metric to better guage bug complexity as complexity =
(AFiles + Hunks + AddedLines + RemovedLines)/10. We observe that the tasks follow difficulty order by
language as C++ > Java > Python. We see that this is reflected in the performance of agents on the tasks too.

Test Generation In Table (1] we present a similar analysis for test patches, quantifying the complexity of the
test that need to be generated in the Test Generation task. We observe that the tasks follow the same difficulty
order by language as for BugFixing: C++ > Java > Python.

Review Response In Table|l| we also present analysis of bad patches generated using Agentless along with
sizes of Reviews generated for these bad patches, observating similar trends for

5 ANALYSIS OF LLM CODING AGENTS ON OMNICODE

Table 2: SWE-Agent with Gemini 2.5 Flash Performance across languages

Language Bug-Fixing Test-Generation Review-Response Style-Fixing

Python 36.7 % 14.0 % 29.9% 72.2%
C++ 8.0% 12.2% 13.6% 36.3%
Java 14.7% 4.9% 31.6% 60.4%

Table 3: SWE-Agent vs Aider Comparison

Language Agent Bug-Fixing Test-Generation Review-Response Style-Fixing
Python SWE-Agent 36.7 % 14.0 % 29.9% 72.2%
Y Aider 32.4% 9.4% 26.8% 60.3%
Cit SWE-Agent 8.0% 12.2% 13.6% 36.3%
Aider 1.8% 2.3% 4.5% 10.1%
Java SWE-Agent 14.7% 4.9% 31.6% 60.4%
Aider 19.3% 3.9% 25.3% 60.9%

5.1 PERFORMANCE ACROSS TASKS

We find that while a state of the art system like SWE-Agent with Gemini 2.5 Flash excels on some tasks like
Style Fixing in python, there are many holes in its abilities. Specifically we observe that it is struggles at
C++ tasks as well as Test-Generation across languages. With regards to C++, we believe this agrees with our
analysis in Section 4 regarding the complexity of C++ bugs over other bugs in our benchmark. It may also
be due to large C++ codebase having complex linking structures which are difficult for the agent to tease
apart. With regards to Test-Generation, we see that all tools struggles across all languages, the maximum
performance being 14% on Python. Test generation is an essential skill for SWE Agents of the future, for (1)
assisting humans develop robust test suites but also (2) writing tests to verify their own code is correct. There
seems to be quite a way for agents to go in making progress in this task.

Under review as a conference paper at ICLR 2026

5.2 COMPARISON BETWEEN AGENTS

We compare between a widely used agentic approach (SWE-Agent) and a pipeline approach (Aider) to assess
the strengths and weakness of both approaches. In Table [3] we present our comparison across tasks and
languages. We find that Aider is often competitive with SWE-Agent and even surpasses it in Java Bug-Fixing.
However for C++, it performs significantly worse. One hypothesis for this may be that C++ tasks involve
more interaction to solve, requiring multiple trials and error iterations, looking at errors to understand what
may be wrong. Java and Python, on the other hand, maybe not need as much interaction. We also have
evidence from Section 4 that C++ tasks are significantly harder than Java and Python. This may indicate that
Aider matches SWE-Agent at easy tasks but cannot tackle harder tasks.

5.3 REVIEW-RESPONSE

We find that providing reviews to aid the agent significantly boosts the performance for both SWE-Agent
and Aider, however, only for Java and C++. In the case of Python, for both agents, we observe a lower
performance in the Review-Response setting compared to Bug-Fixing. It is a well-known challenge for
language models to identify the correct entry point when resolving issues in large, multi-file repositories.
Having a prior, meaningful attempt as a reference point serves as a valuable guide, steering the model toward
the relevant part of the codebase. In addition, the presence of structured reviewer feedback helps the model
pinpoint the specific flaws in the proposed solution. This insight supports the idea that language models
reach their full potential when paired with scaffolded or guided interaction paradigms, where the problem
is partially structured and the model can operate as a collaborative assistant rather than a fully autonomous
agent. However the observation that this only holds for Java and C++ maybe linked to the fact that they are
harder tasks, in which case additional information helps. For Python, it maybe the case that the additional
information provided by the review actively distracts from the goal.

6 LIMITATIONS AND FUTURE WORK

Although we believe that our work expands the extent to which LLM coding benchmarks span the spectrum
of software engineering activities, much remains to be done before we truly have a test of whether an Al
system can perform as a programmer. Real programmers deal with config files, multiple languages, profiling
and optimizing, and engage in natural language conversation to iron out design decisions, plan sprints, and
other forms of team strategy.

Although our benchmark is a step toward a more comprehensive assessment of these systems, further
expanding the suite of heterogeneous software-engineering tasks remains a prime target for future research.
We are currently working on expanding OmniCode to 1) other languages beyond Python Java and C++, and
2) additional task categories like fixing security violations and code migration. Both of these are emergent
fields which we aim to adapt as soon as possible. Transitioning functionality between languages is a very
challenging, but fruitful tasks, which has seen only little attention in the evaluation field of large language
models. Similarly, spotting and fixing security violations requires a very deep understanding of system
dynamics, which language models may not yet possess. Further, specific tool usage, as is needed for tasks like
style review, carries over naturally to other programming languages. Our implementation already employs
checkstyle as a java-based alternative to pylint, in order to enable style review for repositories of both origins.
We believe that expanding the diversity of tasks and languages in this way will enable a more robust evaluation
for LLMs and LLM-Agents.

Under review as a conference paper at ICLR 2026

REFERENCES

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin, and Song Wang.
Swe-bench+: Enhanced coding benchmark for llms, 2024. URL https://arxiv.org/abs/2410,
06992.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. Codet:
Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
Evaluating large language models trained on code, 2021. URL https://arxiv.org/abs/2107.
03374.

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatunitest: A
framework for llm-based test generation. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, pp. 572-576, 2024.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning any
github repository into a programming agent environment. In ICML 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM6b66.

Wen-Ding Li, Darren Yan Key, and Kevin Ellis. Toward trustworthy neural program synthesis. In ICLR 2025
Workshop on Foundation Models in the Wild.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode.
Science, 378(6624):1092-1097, 2022.

Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. Swe-lancer: Can frontier
Ilms earn $1 million from real-world freelance software engineering?, 2025. URL https://arxiv.
org/abs/2502.12115.

Niels Miindler, Mark Miiller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and validating real-world
bug-fixes with code agents. Advances in Neural Information Processing Systems, 37:81857-81887, 2024.

Rangeet Pan, Myeongsoo Kim, Rahul Krishna, Raju Pavuluri, and Saurabh Sinha. Multi-language unit test
generation using llms. arXiv preprint arXiv:2409.03093, 2024.

Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buccholz, Tim Esler, Simon Valentin,
Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim, et al. Swe-polybench: A multi-

language benchmark for repository level evaluation of coding agents. arXiv preprint arXiv:2504.08703,
2025.

10

https://arxiv.org/abs/2410.06992
https://arxiv.org/abs/2410.06992
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115

Under review as a conference paper at ICLR 2026

André Silva and Martin Monperrus. Repairbench: Leaderboard of frontier models for program repair. arXiv
preprint arXiv:2409.18952, 2024.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming Zhang,
An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case generation. arXiv
preprint arXiv:2406.04531, 2024.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-based
software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

John Yang, Kilian Leret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang, Binyuan Hui,
Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software engineering agents,
2025. URL https://arxiv.org/abs/2504.21798l

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai Qi,
Hao Yu, Lei Yu, et al. Swe-bench-java: A github issue resolving benchmark for java. arXiv preprint
arXiv:2408.14354, 2024.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu, Xiaojian
Zhong, Aoyan Li, Siyao Liu, Yongsheng Xiao, Liangqiang Chen, Yuyu Zhang, Jing Su, Tianyu Liu, Rui
Long, Kai Shen, and Liang Xiang. Multi-swe-bench: A multilingual benchmark for issue resolving, 2025.
URL https://arxiv.org/abs/2504.02605.

A APPENDIX

You may include other additional sections here.

11

https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2504.02605

	Introduction
	Related Work
	Benchmark Construction
	Collection of real-world data from GitHub
	Task Details
	Task: Resolving Issues
	Task: Test Generation
	Task: Responding to Code Review
	Task: Code Style

	Experimental Setup

	Analysis of Dataset
	Analysis of LLM Coding Agents on OmniCode
	Performance across Tasks
	Comparison between Agents
	Review-Response

	Limitations and Future Work
	Appendix

