

000 001 002 003 004 005 OMNI CODE: A BENCHMARK FOR EVALUATING SOFTWARE 006 DEVELOPMENT AGENTS 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029

Anonymous authors

Paper under double-blind review

ABSTRACT

LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a diverse set of task categories, including responding to code reviews, test generation, fixing style violations, and program repair. Overall, OmniCode contains 1,794 tasks spanning three programming languages—Python, Java, and C++—and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on BugFixing, they fall short on tasks such as Test Generation and in languages such as C++. OmniCode aims to serve as a platform for generating synthetic tasks from real world data, spurring the development of agents that can perform well across different aspects of software development.

030 031 032 1 INTRODUCTION 033

034 The future impact of AI-automated software development will be far-ranging: beyond building and improving
035 apps, AI will help us write more comprehensive test suites, perform and respond to code review suggestions,
036 enforce nuanced style guidelines, and perform many other tasks that are part of the software development
037 life cycle. Research on AI software development demands good benchmarks, both to measure progress
038 and to expand the scope of problem statements. However, AI coding benchmarks today, such as SWE-
039 Bench (Jimenez et al., 2024), CodeContests (Li et al., 2022), and HumanEval (Chen et al., 2021), are too
040 narrow in scope to spur progress on automating the full spectrum of software development tasks, instead
041 focusing on isolated tasks such as competition programming, code repair, and generating individual patches
042 in isolation.

043 **OmniCode.** To address this gap, we introduce a new benchmark for generative AI coding assistants
044 (specifically LLMs for code), which we call OmniCode. Our new benchmark is based on the insight that
045 software development involves a heterogeneous range of tasks and problem-solving activities for which
046 generative AI can be brought to bear (see Figure 1). We consider four such software development tasks:

Figure 1: Omnicode synthetically builds multiple tasks out of a base dataset to holistically evaluate software engineering agents. Four different types of tasks that we consider: Bug fixing/feature adding, test generation, responding to code review, and enforcing style guidelines.

1. Addressing issues, such as bug fixes and feature requests. This is a staple of software engineering benchmarks (Jimenez et al., 2024; Silva & Monperrus, 2024; Rashid et al., 2025), because it assesses the ability of an LLM coding agent to autonomously resolve real-world repository-level issues, provided we are given tests for validating program correctness.
2. Writing software tests. Current LLM coding agents are unreliable, requiring humans to manually inspect and test their outputs. By having LLM coding systems write their own tests, we measure progress toward fully closing the loop of both generating and checking repo-level patches.
3. Responding to code review. Coding agents today act in a partnership with human engineers, and we envision a future where LLMs provide initial drafts of a patch, which a human engineer then critiques. We compile a dataset of partly-correct patches paired with code-review feedback on how to best correct them, and task models with completing or fixing the patch given the code review.
4. Enforcing style guidelines. Code style is important for conforming to project-specific or organization-specific norms. Here, present the agent with a selection of coding convention violations in a file and test the ability of an LLM to fix the style.

We build our benchmark by bootstrapping off existing benchmarks such as SWE-Bench and Multi-SWE-Bench, along with collecting additional issues from popular open-source repositories. Using this collected real-world data, we employ LLM-based augmentations along with language-specific tools to create different task types. In total, our dataset comprises 494 issues from 27 repositories and 1794 benchmark tasks in total.

Results. We evaluate the widely used SWE-Agent with models spanning a range of providers and sizes (Gemini 2.5 Flash, DeepSeek-V3.1, GPT5-mini and Qwen3-32B) on our dataset. We also evaluate Aider Aider-AI (2025) with Gemini 2.5 Flash as pipeline-based agent comparison to SWE-Agent. We find that our benchmark challenges even the most modern systems, but it is not intractable. Specifically, SWE-Agent achieves a maximum of 25% on test generation across all three languages. On Review-Response it achieves a maximum of 52% on Python. For Style-Fixing, while agents perform well on Python, they do not perform as well on Java and C++. We also observe significant variations between models and agent frameworks.

094 **Contributions.** We wish to highlight the following contributions:

095

096 1. OmniCode, a benchmark assessing for distinct types of software engineering activities, comprising
097 1794 tasks total.

098 2. Presenting recipes for synthetically creating diverse interactive tasks to evaluate agents from collected
099 static real-world data.

100 3. Empirical evaluation of state-of-the-art LLM-agent systems on the benchmark, determining specific
101 areas where LLM agents fall especially short, particularly in test generation and style fixing.

102

103 **2 RELATED WORK**

104

105 **LLM coding benchmarks.** One of the earliest benchmarks for LLMs' functional code synthesis was
106 HumanEval (Chen et al., 2021), which contained 164 hand-written programming problems, each with a
107 natural language docstring and associated unit tests. However, it was limited to single-function synthesis
108 without any multi-file or repository context. SWE-Bench Jimenez et al. (2024) first introduced the paradigm
109 of benchmarking the ability of LLM agents to resolve real-world GitHub issues, yielding much follow-up
110 work (Miserendino et al., 2025; Jain et al.; Aleithan et al., 2024; Rashid et al., 2025; Zan et al., 2024). These
111 benchmarks added support for more languages and improved data quality by including more rigorous checks.
112 Similar to these benchmarks, we also manually validate each base task before including it in OmniCode.
113 In contrast to these benchmarks, OmniCode contains three new synthetic tasks that reduce the chances
114 of data leakage. Recently SWE-Smith Yang et al. (2025) has shown promise in synthetically generating
115 bugs to create training data for coding agents. OmniCode goes beyond just new bugs, to creating new task
116 types that are supported by synthetically generated data, such as code reviews. Multi-SWE-Bench Zan et al.
117 (2025) extended the SWE-Bench collection paradigm beyond Python to multiple languages, but restricted to
118 bug-fixing. We further extend this to other tasks that are part of the software development process.

119 **LLM coding benchmarks for other tasks.** Recently, Mündler et al. proposed SWT-Bench (Mündler et al.,
120 2024) that transforms the instances in SWE-Bench to test generation tasks. Each task involves generating
121 tests such that they fail on the buggy version of code and pass with the fixed version e.g, the gold patch,
122 which we call Fail-to-Pass. In contrast to SWT-Bench, the test generation tasks in OmniCode are more robust.
123 Our tasks require not only the generated test to go from Fail-to-Pass for golden patch but also Fail-to-Fail
124 when presented with multiple bad patches requiring the agents to generate tests that don't pass trivially,
125 resulting in more robust tests. TestEval (Wang et al., 2024) is another recent benchmark for evaluating test
126 generation capabilities of LLMs. However, their benchmark is only set up for single programs instead of
127 entire repositories, which is more challenging.

128 **Test case generation with LLMs.** Past work has also built LLM program synthesizers organized around the
129 principle of self-checking through test case generation (Li et al.; Chen et al., 2022). Researchers have also
130 proposed generating unit tests using LLMs (Chen et al., 2024; Pan et al., 2024). However, these works are
131 either focused on using tests as a validation step or improving unit test generation for a given focal method
132 with a single LLM. In contrast, our work focuses on benchmarking LLM-Agents for repository-level test
133 generation.

134 **3 BENCHMARK CONSTRUCTION**

135

136 The creation of OmniCode involves two major steps: (1) gathering real-world software data from open
137 source repositories and (2) generating augmentations on these base instances to support new task types. Each
138 instance in our benchmark is based on a pull request that has been made to resolve an issue in a GitHub
139 repository. The pull request and its associated metadata (such as the issue it resolved, the patch it introduced)

140

141 constitute what we call a **base instance**. Using this base instance, we can generate the data required to support
 142 different task types, such as generating bad patches to support test generation or code reviews to support
 143 review fixing. Next, we describe both the data collection and task generation in detail.

144

145 3.1 COLLECTION OF REAL-WORLD DATA FROM GITHUB

146

147 We first collect a set of base instances, that is, pull requests in public GitHub repositories, from which we can
 148 generate tasks. When curating pull requests, we follow a similar selection strategy to Jimenez et al. (2024).
 149 We consider popular projects, filtering out tutorials and other non-code repositories. From these, we collect
 150 merged pull requests that (1) resolve an issue and (2) introduce a test. To ensure that each instance is a
 151 meaningful task for an agent to be evaluated on, we perform manual inspection. Only instances where the
 152 changes introduced in the pull request are within the scope of the description of the issue are kept. We also
 153 discard issues if they only involve trivial changes to documentation or configuration files.

154 To enable agents to interact with an instance by executing code, we build containerized environments for
 155 each instance. The environment is made up of the state of the repository at the time of the issue, as well as
 156 dependencies that need to be installed so that code can be executed properly. We manually determine the
 157 dependencies required by inspecting requirements and documentation. To verify that the correct dependencies
 158 have been identified, we execute the test suite of the repository to check if the tests can be run without errors.

159 For our evaluation, we curate a multi-language dataset by filtering and selecting sane and reliable instances
 160 from existing benchmarks such as SWE-Bench and Multi-SWE-Bench, and we supplement this with a small
 161 number of additional repositories and hand-picked instances. This combined dataset comprises 273 Python,
 162 112 C++, and 109 Java instances (494 in total), spanning 28 diverse repositories across machine learning
 163 and scientific libraries (e.g., scikit-learn, sympy), systems libraries (e.g., fmt, simdjson), and large-scale
 164 frameworks (e.g., django, logstash, jackson, mockito). By extending coverage to Java and C++ in addition to
 165 Python, our dataset broadens evaluation beyond the Python-centric scope of SWE-Bench, providing a more
 166 realistic and comprehensive benchmark for assessing software engineering agents across ecosystems.

167

168 3.2 TASK DETAILS

169

170 In the following, we describe the details of how each of our main four task types is set up along with the
 171 evaluation procedures.

172

173 3.2.1 TASK: RESOLVING ISSUES

174

175 Resolving GitHub issues has become a standard approach for evaluating the capabilities of large language
 176 models (LLMs) in the software engineering domain. A common method, first introduced by Jimenez
 177 et al. (2024) is to mine resolved issues from large-scale open-source repositories. This provides a natural
 178 environment for agents to operate in by cloning the corresponding repository state, including the issue
 179 description, and withholding a set of tests used to validate the proposed fix. For each instance, we provide
 180 the issue description and a set of tests that distinguish between the pre- and post-fix repository states. An
 181 agent is tasked with generating a patch based on the issue, which is evaluated against tests that transitioned
 182 from failing to passing due to the ground truth fix, as well as against previously passing tests to ensure
 183 no regressions are introduced. While this task aligns closely with existing work, our benchmark expands
 184 the range of verified projects considered to by unifying instances from SWE-Bench, Multi-SWE-Bench, as
 185 well as 37 instances that we collect while maintaining a strong emphasis on manual validation for quality
 186 assurance.

Figure 2: For evaluating test patches on the task of Test Generation, we evaluate the proposed test patch against both the ground truth (gold) patch, as well as several meaningful, but incorrect, bad patches. A test is only considered correct if it passes for the gold test, but fails for all bad patches.

3.2.2 TASK: TEST GENERATION

All previously considered pull requests included relevant tests, as this was a necessary criterion for their selection. These tests play a crucial role in verifying that the proposed fix is valid and addresses the reported issue. However, this requirement significantly limits the number of available instances for model evaluation. At the same time, writing meaningful tests is itself a key aspect of software engineering. By focusing on this underexplored skill, we aim to evaluate and improve a model’s ability to reason about code behavior and generate effective test cases.

To assess the quality of a candidate test, we use both the ground truth test case and a set of what we define as bad patches. A bad patch is a plausible but incorrect attempt at resolving the issue—one that contains no obvious syntax errors and remains relevant to the problem description. This setup presents a more realistic and challenging evaluation scenario compared to existing approaches, which typically rely only on the pre- and post-PR repository states.

While there are usually few ways to correctly solve a problem, there are many ways to incorrectly solve it. To ensure that generated tests can be evaluated thoroughly, it is important to have bad patches that cover a diverse set of failure modes. We use two distinct approaches to achieve this. (1) Collecting failed attempts from less capable agents and (2) Perturbing correct patches to introduce bugs. For approach (1), we use Agentless (Xia et al., 2024) with several different models (Gemini 2 9B, Qwen2.5 Coder 32B Instruct, Llama 3 8B Instruct, and GPT-4.1-nano), instructing the tool to attempt to solve the task as usual and collecting instances where it fails to do so. For approach (2), we sample multiple completions from Gemini 2.0 Flash, prompted with the correct patch along with instructions to perturb it in order to introduce commonly found bugs, filtering to keep those that are actually incorrect. The relevant prompt can be found in the appendix. Our aim is to have bad patches which are incorrect in minor ways (from approach 2) as well as at a higher level (from approach 1).

For the Java and C++ instances, we placed more emphasis on the Agentless generations for their more natural patch attempts. However, there were instances that proved to be resilient to bad patch generation. These were instances that either proved too difficult for the models to produce a valid patch or too simple for them to produce a non-passing patch. As a result, we were limited to a subset of our instances for Java and C++. For Java, we used 77 instances for this subset. For C++, we used 44 instances for this subset.

In this setting, the agent is prompted with the issue text and asked to generate one or more test cases to be added to the test suite. The resulting candidate test is then evaluated: if it passes on the ground truth patch but

Figure 3: In the task of responding to Code Review, an initial incorrect patch is provided, which contains a meaningful attempt of the solution of a given problem. This attempt is then reviewed by a human or an LLM, and a review report is generated. Utilizing this report, the LLM is tasked with correcting the initial approach by utilizing this report, which is validated with the normal testing suite.

fails on all bad patches, it is considered successful. If it does not meet both criteria, the test is considered a failure. We also reuse the bad patches in an additional task related to code review.

3.2.3 TASK: RESPONDING TO CODE REVIEW

It is not uncommon for developers to iterate over multiple proposed solutions in a pull request until they fulfill all the necessary requirements. Often, such incorrect proposals are met with corresponding feedback or review, explaining why or how this approach does not meet expectations. We create reviews by providing both the perturbed bad patch (from the previous section) along with the correct patch and problem description to Gemini 2.0 Flash, and asking it to come up with instructions for how the bad patch should be fixed. We create our prompt in order to induce reviews that are informative but do not give away the complete solutions.

During evaluation, we present the model with the previously selected bad patch and display the review of context. The model is then tasked with refining the existing solution in a way that passes the issue-specific fail-to-pass test. While the adaptation of existing functionality to enable this use case is minor, we believe this is a promising avenue for research. Especially when anticipating fully autonomous work on code issues, interacting with external feedback, and starting from potentially corrupted states is an imperative skill.

3.2.4 TASK: CODE STYLE

Last, we introduce the task of style review. Since language models are trained on a wide range of code—varying not only in functionality but also in quality—style-oriented tasks represent a natural extension of evaluation. To assess code style, we use third-party tools such as `pylint` for Python, `clang-tidy` for C++, and `PMD` for Java to score quality and extract specific style issues, including errors, warnings, and convention violations.

In this task, the model is not expected to fix a functional bug but to resolve the listed style issues. Style review is particularly appealing because it can be adapted to user-specific needs by incorporating custom guidelines or organization-specific rules.

Code Style Review		
Before	Linter Report	After
<pre> 285 def 286 is_pos_difference(...): 287 ... 288 difference = a - b 289 is_pos = 290 difference > 0 291 return is_pos </pre>	<pre> { "type": "refactor", ... "message": "Too many local variables", ... } </pre>	<pre> def is_pos_difference(...): ... return a > b </pre>

Figure 4: Side-by-side display of the original verbose code, linter warning, and refactored code with reduced local variables. Key elements highlighted in blue.

We construct datasets for style errors for all repositories used for other tasks. We start by using the language-specific tools to generate a list of all style violations in the repository. We then aggressively prune out overly zealous rules and other commonly occurring warnings. We record both an aggregate style score and the full list of reported style issues, including line numbers. We then group errors by file and construct 144 Python, 147 C++, and 124 Java instances, with each instance containing on average 9 style errors.

This output is passed to the agent, which is then tasked with resolving the identified issues. After applying the proposed patch, we re-run the style tool and quantify improvement based on score increase or the number of issues eliminated. To account for partial success, we allow a relaxed pass criterion, configurable via thresholds on minimum score or maximum remaining issues. To determine how well the agent resolve style violations, we compute a metric using a the following formula that balances the total number of instances resolved with new ones that are introduced, normalizing by total number of issues initial present:

$$\text{score} = \max\left(\frac{\text{resolved} - \text{new}}{\text{original}}, 0\right)$$

3.3 EXPERIMENTAL SETUP

To demonstrate our benchmark, we evaluate the state-of-the-art agent framework SWE-Agent, along with a more pipelined and less agentic approach: Aider. We evaluate both frameworks with Gemini 2.5 Flash. In order to enable agents to interact with the instances, we provide them with containerized environments as described in Section 3.1. We pass in the issue description as the initial task statement for Bug-Fixing. For Test-Generation, Review-Response, and Style-Fixing, we prepare task-specific prompts that provide context and instructions. These are detailed in the appendix. We use the default settings for SWE-Agent and adjust the per instance cost limit to \$2.0.

Table 1: Combined statistics by language

Metric	Python	C++	Java
<i>Patch statistics</i>			
Patches	273	112	109
Complexity	7.1	47.6	19.2
Lines added	16.9	180.7	74.8
Lines removed	7.7	82.6	20.3
<i>Test statistics</i>			
Patches	273	112	109
Complexity	7.2	38.0	11.9
Lines added	25.2	277.8	72.2
Lines removed	4.9	17.5	2.0
<i>Bad Patch and Review statistics</i>			
Patches	164	44	79
Complexity	2.870	3.641	3.056
Lines added	3.909	5.455	5.785
Lines removed	1.866	2.318	1.861
Review size	253.6	319.6	329.0

329 **4 ANALYSIS OF DATASET**
330331 **Bug Fixing** In Table 1, we present quantitative analysis of the patches that introduce the bug into the repository.
332 Along with the size of patches, we construct a metric to better gauge bug complexity as $\text{complexity} =$
333 $\Delta\text{Files} + \text{Hunks} + (\text{AddedLines} + \text{RemovedLines})/10$. We observe that the tasks follow difficulty order by
334 language as C++ > Java > Python. We see that this is reflected in the performance of agents on the tasks too.
335336 **Test Generation** In Table 1, we present a similar analysis for test patches, quantifying the complexity of
337 the tests that need to be generated in the Test Generation task. We observe that the tasks follow the same
338 difficulty order by language as for BugFixing: C++ > Java > Python.
339340 **Review Response** In Table 1, we also present an analysis of bad patches generated using Agentless, along
341 with sizes of Reviews generated for these bad patches, observing similar trends for
342343 **5 ANALYSIS OF LLM CODING AGENTS ON OMNICODE**
344

345 Table 2: SWE-Agent Performance across languages and models

346

Language	Model	Bug-Fixing	Test-Generation	Review-Response	Style-Fixing
Python	Gemini-2.5-Flash	38.1%	14.0%	29.9%	72.2%
	DeepSeek-V3.1	56.4%	18.7%	52.2%	73.4%
	GPT-5-mini	47.3%	6.2%	30.5%	56.3%
	Qwen3-32B	24.5%	4.0%	17.7%	22.7%
C++	Gemini-2.5-Flash	8.0%	12.2%	13.6%	36.3%
	DeepSeek-V3.1	19.6%	25.0%	22.7%	30.2%
	GPT-5-mini	15.2%	6.8%	20.5%	21.8%
	Qwen3-32B	3.8%	4.5%	4.5%	8.6%
Java	Gemini-2.5-Flash	14.7%	4.9%	31.6%	60.4%
	DeepSeek-V3.1	31.2%	20.9%	44.3%	50.2%
	GPT-5-mini	22.0%	2.7%	26.6%	25.0%
	Qwen3-32B	10.1%	1.3%	15.2%	23.3%

359 Table 3: SWE-Agent vs Aider Comparison
360361

Language	Agent	Bug-Fixing	Test-Generation	Review-Response	Style-Fixing
Python	SWE-Agent	38.1%	14.0%	29.9%	72.2%
	Aider	32.4%	9.4%	26.8%	60.3%
C++	SWE-Agent	8.0%	12.2%	13.6%	36.3%
	Aider	1.8%	2.3%	4.5%	10.1%
Java	SWE-Agent	14.7%	4.9%	31.6%	60.4%
	Aider	19.3%	3.9%	25.3%	60.9%

371 **5.1 PERFORMANCE ACROSS TASKS**
372373 We present the results of evaluating SWE-Agent with a range of state of the art LLMs in Table 9. We find
374 that while a state of the art system like SWE-Agent excels on some tasks like Style Fixing in python, there
375 are many holes in its abilities. Specifically, we observe that it struggles at Test-Generation, where all tools

376 struggle across languages, the maximum performance being 25% on Python. Test generation is an essential
 377 skill for SWE Agents for (1) assisting humans in developing robust test suites but also (2) writing tests to
 378 verify their own code is correct. The evaluated tools also suffer disproportionately at C++, which agrees
 379 with our analysis in Section 4 regarding the complexity of C++ bugs over other bugs in our benchmark. We
 380 find that when using SWE-Agent, performance of different models on bug-fixing is strongly correlated to
 381 review-response (pearson coeff = 0.921) and weakly correlated to test generation (pearson coeff = 0.764). We
 382 find the correlation does not hold for style-review however (pearson coeff = 0.512), where Gemini-2.5-Flash
 383 performs as good as or better than DeepSeek v3.1 on Style-Fix despite DeepSeek consistently outperforming
 384 Gemini on Bug-Fix. We find these observations to be generally true for Aider too, albeit slightly weaker.
 385 Details of correlation analysis are presented in the Appendix E.

386 5.2 COMPARISON BETWEEN AGENTS

387 We compare a widely used agentic approach (*SWE-Agent*) with a pipeline-based approach (*Aider*) to assess
 388 the strengths and weaknesses of both paradigms. As shown in Table 3, *SWE-Agent* consistently outperforms
 389 *Aider* across most programming languages and task types when evaluated on OmniCode using Gemini-2.5-
 390 Flash. For Python, *SWE-Agent* achieves higher performance in bug-fixing (36.7% vs. 32.4%), test-generation
 391 (14.0% vs. 9.4%), and review-response (29.9% vs. 26.8%), reflecting its stronger reasoning and synthesis
 392 capabilities. In C++, *Aider* performs substantially worse, while *SWE-Agent* maintains modest but consistent
 393 gains, particularly in test-generation (12.2% vs. 2.3%) and review-response (13.6% vs. 4.5%). One possible
 394 explanation is that C++ tasks in OmniCode require more interactive reasoning and iterative error analysis,
 395 involving multiple compile-run cycles and complex dependency handling. *Aider*’s pipeline-oriented design
 396 may thus struggle with such trial-and-error-intensive workflows. Overall, these findings indicate that while
 397 *Aider* remains competitive on less interactive or simpler tasks, *SWE-Agent* demonstrates greater robustness
 398 and adaptability to complex, multi-stage software engineering problems, particularly those requiring sustained
 399 reasoning and feedback integration. These results highlight OmniCode’s ability to differentiate between
 400 interaction-intensive and procedural tasks, providing a nuanced view of how agentic and pipeline systems
 401 handle varying levels of task complexity and reasoning demand.

405 5.3 REVIEW-RESPONSE

406 It is a well-known challenge for language models to identify the correct entry point when resolving issues in
 407 large, multi-file repositories. We hypothesized that providing structured feedback via a Review-Response
 408 task would improve performance over an autonomous Bug-Fixing task by guiding the agent. To test this, we
 409 benchmarked several LLMs (including Gemini-2.5-Flash, DeepSeek-V3.1, GPT-5-mini, and Qwen3-32B)
 410 across Python, Java, and C++. As all models showed a strong positive correlation (Table 9), we focus our
 411 analysis on the results from DeepSeek-V3.1. While overall performance varied by language (Python > Java
 412 > C++), the analysis supports our hypothesis that the guided Review-Response task is a more effective
 413 problem framing. Since all Review-Response instances are a subset of Bug-Fixing, we can directly compare
 414 performance on this common set. Here, Review-Response consistently resolved more unique instances: for
 415 Java, it uniquely resolved 15 instances versus Bug-Fixing’s 4, a pattern that held for C++ (4 vs. 2) and
 416 Python (22 vs. 20). The seemingly contradictory raw scores for Python (56.4% Bug-Fixing vs. 52.2%
 417 Review-Response) are explained by the non-review instances being comparatively easier, with a high 65.1%
 418 resolution rate. We also investigated common failure modes. Java, for instance, was most susceptible to
 419 producing empty patches (8.9% in Review-Response vs. 6.4% in Bug-Fixing).

420 421 5.4 PATCH COMPLEXITY

423 As shown in Figure 12, the complexity score distribution for unresolved instances is significantly higher
 424 than that of the resolved ones, which reveals a negative correlation between successful resolution and patch
 425 complexity. For details, refer to Table 10 and Table 11 in appendix. We further investigated the structural
 426 complexity of generated patches to understand how agents approach different languages. The ground truth
 427 (Gold) patch complexity followed a clear hierarchy: C++ (47.55) > Java (19.24) > Python (7.07). DeepSeek-
 428 V3.1 demonstrated the highest stability, maintaining generation complexity closest to the Gold standard,
 429 whereas other models exhibited a tendency toward "explosive" complexity in unresolved instances. For
 430 example, GPT-5-mini's unresolved Python patches reached an average complexity score of 390.18 - far
 431 exceeding the Gold average of 7.07. We hypothesize this happens when the agent is unable to pinpoint a
 432 precise fix, it attempt sprawling, ineffective refactors. Conversely, successful resolutions were often "cleaner"
 433 than human-written solutions; for instance, DeepSeek's resolved Python patches averaged a complexity of
 434 5.35 compared to the Gold 7.07. Notably, the Review-Response framing did not effectively constrain this
 435 volatility, as complexity scores for unresolved patches remained unstable or even increased. Unlike the
 436 explosive failures in Python, unresolved Java patches consistently retained low complexity (e.g., Qwen3-32B
 437 averaged 5.08 vs. Gold 19.24), suggesting that the language's strict syntax discourages the refactoring seen
 438 in more dynamic languages.

440 5.5 IMPACT OF INCLUDING BAD PATCHES

442 Incorporating bad patches is essential for evaluating the true robustness and discriminative power of LLM-
 443 generated test cases. Metrics based solely on gold-patch success (as in prior work) dramatically overestimate
 444 a model's testing capability. In analysis of success for Qwen and DeepSeek results, test cases would have
 445 been accepted at a higher rate if bad-patch failures were not required (e.g., Qwen C++ would be 22.7% instead
 446 of 4.55%, Qwen Java would be 7.79% instead of 1.3%, DeepSeek C++ would be 43.8% instead of 25%, and
 447 DeepSeek Java would be 28.4% instead of 11.9%). This gap highlights that many generated tests capture
 448 superficial behaviors rather than the underlying program semantics. By enforcing that gold patches pass and
 449 all bad patches fail, we obtain a far more realistic assessment of test quality, one that reflects a model's ability
 450 to differentiate correct logic from subtly incorrect implementations, a critical requirement for trustworthy
 451 automated testing.

452 6 LIMITATIONS AND FUTURE WORK

455 Although we believe that our work expands the extent to which LLM coding benchmarks span the spectrum
 456 of software engineering activities, much remains to be done before we truly have a test of whether an AI
 457 system can perform as a programmer. Real programmers deal with config files, multiple languages, profiling
 458 and optimizing, and engage in natural language conversation to iron out design decisions, plan sprints, and
 459 other forms of team strategy. Although our benchmark is a step toward a more comprehensive assessment of
 460 these systems, further expanding the suite of heterogeneous software-engineering tasks remains a prime target
 461 for future research. We are currently working on expanding OmniCode to 1) other languages beyond Python,
 462 Java, and C++, and 2) additional task categories like fixing security violations and code migration. Both of
 463 these are emergent fields which we aim to adapt as soon as possible. Transitioning functionality between
 464 languages is a very challenging, but fruitful tasks, which has seen only little attention in the evaluation field of
 465 large language models. Similarly, spotting and fixing security violations requires a very deep understanding of
 466 system dynamics, which language models may not yet possess. Further, specific tool usage, as is needed for
 467 tasks like style review, carries over naturally to other programming languages. Our implementation already
 468 employs checkstyle as a java-based alternative to pylint, in order to enable style review for repositories of
 469 both origins. We believe that expanding the diversity of tasks and languages in this way will enable a more
 robust evaluation for LLMs and LLM-Agents.

470 REFERENCES

471
472 Aider-AI. Aider: Ai pair programming in your terminal. <https://github.com/Aider-AI/aider>,
473 2025.474
475 Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin, and Song Wang.
476 Swe-bench+: Enhanced coding benchmark for llms, 2024. URL <https://arxiv.org/abs/2410.06992>.477
478 Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. Codet:
479 Code generation with generated tests. [arXiv preprint arXiv:2207.10397](https://arxiv.org/abs/2207.10397), 2022.480
481 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
482 Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
483 Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
484 Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
485 Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
486 Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
487 Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
488 Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
489 Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
490 Evaluating large language models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.491
492 Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuguang Deng, and Jianwei Yin. Chatunitest: A
493 framework for llm-based test generation. In Companion Proceedings of the 32nd ACM International
494 Conference on the Foundations of Software Engineering, pp. 572–576, 2024.495
496 Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning any
497 github repository into a programming agent environment. In ICML 2024.498
499 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
500 Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
501 International Conference on Learning Representations, 2024. URL <https://openreview.net/forum?id=VTF8yNQM66>.502
503 Wen-Ding Li, Darren Yan Key, and Kevin Ellis. Toward trustworthy neural program synthesis. In ICLR 2025
504 Workshop on Foundation Models in the Wild.505
506 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
507 James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode.
508 Science, 378(6624):1092–1097, 2022.509
510 Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. Swe-lancer: Can frontier
511 llms earn \$1 million from real-world freelance software engineering?, 2025. URL <https://arxiv.org/abs/2502.12115>.512
513 Niels Mündler, Mark Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and validating real-world
514 bug-fixes with code agents. Advances in Neural Information Processing Systems, 37:81857–81887, 2024.515
516 Rangeet Pan, Myeongsoo Kim, Rahul Krishna, Raju Pavuluri, and Saurabh Sinha. Multi-language unit test
517 generation using llms. [arXiv preprint arXiv:2409.03093](https://arxiv.org/abs/2409.03093), 2024.

517 Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buccholz, Tim Esler, Simon Valentin,
 518 Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim, et al. Swe-polybench: A multi-
 519 language benchmark for repository level evaluation of coding agents. [arXiv preprint arXiv:2504.08703](https://arxiv.org/abs/2504.08703),
 520 2025.

521
 522 André Silva and Martin Monperrus. Repairbench: Leaderboard of frontier models for program repair. [arXiv
 523 preprint arXiv:2409.18952](https://arxiv.org/abs/2409.18952), 2024.

524
 525 Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming Zhang,
 526 An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case generation. [arXiv
 527 preprint arXiv:2406.04531](https://arxiv.org/abs/2406.04531), 2024.

528
 529 Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-based
 530 software engineering agents. [arXiv preprint arXiv:2407.01489](https://arxiv.org/abs/2407.01489), 2024.

531
 532 John Yang, Kilian Leret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang, Binyuan Hui,
 533 Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software engineering agents,
 534 2025. URL <https://arxiv.org/abs/2504.21798>.

535
 536 Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai Qi,
 537 Hao Yu, Lei Yu, et al. Swe-bench-java: A github issue resolving benchmark for java. [arXiv preprint
 538 arXiv:2408.14354](https://arxiv.org/abs/2408.14354), 2024.

539
 540 Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu, Xiaojian
 541 Zhong, Aoyan Li, Siyao Liu, Yongsheng Xiao, Liangqiang Chen, Yuyu Zhang, Jing Su, Tianyu Liu, Rui
 542 Long, Kai Shen, and Liang Xiang. Multi-swe-bench: A multilingual benchmark for issue resolving, 2025.
 543 URL <https://arxiv.org/abs/2504.02605>.

551 A ANALYSIS OF BAD PATCHES AND REVIEWS

Figure 5: Categorization of bad patches.

Figure 6: Categorization of bad patches

Figure 7: Categorization of reviews

To understand the distribution of bad patches generated by our pipeline we categorise a sample of 100 python bad patches with results displaying in Fig 5. The categorisation is performed by prompting an LLM with descriptions of the category along with the problem description, bad patch and correct patch for the instance.

We observe that bad patches are distributed across a range of types, with most of them being “Undisciplined”, that is patches which make more spurious changes than necessary. There are also a significant number of bad patches in the “Wrong Layer” and “Contract Violation” categories.

Another way to understand bad patches is to categorise them according to whether they are “Partial” (the attempted fix is partially correct), “Unnecessary” (the patch makes spurious changes) or “Incorrect” (the fix approach is incorrect). We observe that the majority of bad patches are due to incorrect approach at making the fix. These patches are useful to include in the dataset as they characterise probable failure modes that existing tests may not account for.

To understand the distribution of reviews generated by our pipeline we categorise a sample of 100 python reviews with results displaying in Fig 3. The categorisation is performed by prompting an LLM with descriptions of the category along with the problem description, bad patch, correct patch and review for the instance.

We observe that the vast majority of reviews are to do with improving functional correctness. There are also reviews that discuss “Scope Control” and “Architecture”.

611 Descriptions used to categorise bad patches -

612

613 **A. Wrong-layer fix / misdiagnosed root cause**

614 *Description:* The change targets the wrong component or symptom instead of the source of truth.
 615 Signals include modifying outputs instead of inputs, tweaking helpers when call sites or flags need
 616 changes, relying on attributes/settings that are never wired, or making comment-only/no-op changes.

617 **B. Partial fix / incomplete coverage**

618 *Description:* Only a subset of affected paths, formats, or call sites is fixed; others remain broken.
 619 Typical signs include updating JSON but not XML, adjusting PRAGMA but not SELECT, fixing one
 620 code path while an equivalent exists elsewhere, or forgetting to update generated/runtime artifacts.

621 **C. Process hygiene and change discipline failures**

622 *Description:* The patch mixes unrelated edits (scope creep), alters tests to match a broken implementa-
 623 tion, includes merge artifacts or duplicate code, or introduces syntax/typo/runtime errors (duplicate
 624 args, unreachable code). These complicate review and often obscure regressions.

625 **D. Contract/invariant violations or Abstraction/API misuse**

626 *Description:* Changes break explicit or implicit invariants or requirements. Examples include
 627 violating “single-column subquery,” making non-atomic multi-step writes, changing multiplication
 628 order in non-abelian contexts, keeping multi-column projections inside IN subqueries, bypassing
 629 APIs or type contracts, or hardcoding internals. Also includes changing established behavior
 630 (defaults, tuple shapes, ordering, observable semantics) without justification or migration.

631 **E. Guard/safety-net removal or inversion**

632 *Description:* Removing or flipping checks, caches, or validation that protect correctness/security. In-
 633 dicators include deleting `is_active` or `has_usable_password` checks, removing `parent_link`
 634 validation, dropping inverse/caching assignments, or disabling/inverting critical conditionals.

635 **F. Edge cases, normalization, and type/representation assumptions**

636 *Description:* Logic fails on uncommon values or conflates representations. Examples: treating `None`
 637 as the only “empty” (ignoring ”), mishandling NaN/Inf or undefined semantics, missing lowercase
 638 exponent parsing, not rechecking length after mutation, confusing PATH vs PATH_INFO/script
 639 prefixes, or choosing wrappers/proxies that break expected type behavior. Includes overfitted
 640 regexes/parsers, missing named groups, unhandled array-indexed dispatch, naive SQL interpolation,
 641 missing escaping, off-by-one slices, or wrong encodings/BOM handling.

642 Descriptions used to categorise reviews -

643

644 **A. Functional correctness (logic, control flow, edge cases)**

645 *Description:* Ensure the fix implements the intended behavior with correct conditions, boundaries, or-
 646 dering/precedence, and return values. Catch logic/sign errors, unreachable code, inverted conditions,
 647 and other correctness issues.

648 **B. Scope control and change isolation**

649 *Description:* Keep the patch tightly focused on the reported issue. Revert incidental edits, avoid
 650 broad refactors, and limit changes to the affected component or backend.

651 **C. API and data contract adherence**

652 *Description:* Preserve public/internal interfaces, data shapes, and semantics. Avoid breaking
 653 consumers, changing return types, or altering documented behavior without coordination.

654 **D. Design/architecture alignment and plumbing**

655 *Description:* Apply changes in the correct layer (e.g., model vs. view), respect separation of concerns,
 656 and route control flags/state through the call chain so policies are enforced where needed. Prefer
 657 non-breaking or backward-compatible design alternatives.

658

E. Error and exception handling

659

Description: Catch and handle expected failures at the correct layer; convert errors to appropriate
660 no-ops or fallbacks. Avoid swallowing unexpected exceptions or leaking internal errors.

661

F. Security and standards/protocol compliance

662

Description: Use correct security checks (authz/authn, permission models), avoid unsafe operations
663 (escaping, URL handling), and comply

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

B PROMPTS

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

Review Generation

1 You are an experienced software engineer tasked with
2 reviewing code patches.
3 Below is a problem statement, a correct patch example, and a
4 submitted patch which is likely incorrect or incomplete.
5 Please provide a detailed review of the submitted patch that
6 identifies issues (e.g., missing context, incorrect
7 modifications, or potential bugs) and specifies
8 suggestions **for** improving the submitted patch so that it
9 correctly solves the problem statement.
10 Avoid referencing the correct patch directly.
11
12 Problem Statement:
13 {{ problem_statement }}
14
15 Correct Patch Example:
16 {{ correct_patch_example }}
17
18 Submitted Patch (Bad Patch):
19 {{ bad_patch }}
20
21 Detailed Review:

733

Bad Patch Generation

1 You are given a production-ready source file below. Your
2 task:
3 1. ****Introduce one to two subtle, functional bugs**** without
4 adding any comments
5 2. ****Do NOT break compilation**** and ****do not introduce any**
6 **syntax or spelling errors**** or make any code-style
7 changes.
8 3. ****Do NOT change any `import` statements****
9 4. Preserve formatting and comments; modify only the minimum
10 lines needed to trigger a logical failure under certain
11 inputs.
12 5. Return ****only**** the full modified file content, with no
13 explanations or diff markers.
14
15 --- {path} original content START ---
16 {curr_text}
17 --- {path} original content END ---

750

751

SWE-Agent Bug-fixing instructions

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

```
1 <uploaded_files>
2 {{working_dir}}
3 </uploaded_files>
4 I've uploaded a python code repository in the directory {{working_dir}}. Consider the following PR description:
5
6 <pr_description>
7 {{problem_statement}}
8 </pr_description>
9
10 Can you help me implement the necessary changes to the repository so that the requirements specified in the <pr_description> are met?
11 I've already taken care of all changes to any of the test files described in the <pr_description>. This means you DON'T have to modify the testing logic or any of the tests in any way!
12 Your task is to make the minimal changes to non-tests files in the {{working_dir}} directory to ensure the <pr_description> is satisfied.
13 Follow these steps to resolve the issue:
14 1. As a first step, it might be a good idea to find and read code relevant to the <pr_description>
15 2. Create a script to reproduce the error and execute it with 'python <filename.py>' using the bash tool, to confirm the error
16 3. Edit the sourcecode of the repo to resolve the issue
17 4. Rerun your reproduce script and confirm that the error is fixed!
18 5. Think about edgecases and make sure your fix handles them as well
19 Your thinking should be thorough and so it's fine if it's very long.
```

799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845

SWE-Agent Test Generation instructions

```

1 <uploaded_files>
2 {{working_dir}}
3 </uploaded_files>
4 I've uploaded a python code repository in the directory {{working_dir}}. Consider the following problem description:
5
6 <problem_description>
7 {{problem_statement}}
8 </problem_description>
9
10 Can you help me implement a test that successfully
    reproduces the problem specified in the <problem_description>?
11 The test must be created in the repository's existing test
    suite and should be runable with the repository's testing
    infrastructure / tooling (e.g. pytest).
12 Do not make any changes to the non-test code in the
    repository since we only need to create a reproduction
    test.
13 Follow these steps to resolve the issue:
14 1. As a first step, it might be a good idea to find and read
    code relevant to the <problem_description>
15 2. Create a script to reproduce the error and execute it
    with 'python <filename.py>' using the bash tool, to
    confirm the error
16 3. Edit the the testing suite of the repo to implement a
    test based on this reproduction script which can be run
    using the repository's testing infrastructure / tooling (e.g. pytest)
17 4. Ensure this test runs and successfully reproduces the
    problem!
18 5. Remove the reproduction script and only keep changes to
    the test suite that reproduce the problem.
19 Your thinking should be thorough and so it's fine if it's
    very long.

```

846
 847
 848
 849 1 You have recently generated a patch to resolve an issue
 850 within **this** repository.
 851 2 Pylint has been run on the modified files and has produced
 852 the following feedback:
 853 3
 854 4 {{problem_statement}}
 855 5
 856 6 Your task is to:
 857 7 1. Analyze the Pylint violations provided in the problem
 858 8 statement
 859 9 2. Understand the specific rules that were violated (e.g.,
 860 naming conventions, unused imports, complexity issues)
 861 9 3. Apply fixes that resolve these errors **while** maintaining
 862 code functionality
 863 10 4. Ensure your changes follow Python best practices and
 864 improve code readability
 865 11 5. Test that your fixes don't introduce new Pylint
 866 violations
 867 12 6. Do not introduce any new files to fix the style errors
 868
 869 13
 870 14 Common Pylint violations you may encounter:
 871 15 - Naming and style issues (invalid-name, missing-docstring,
 872 line-too-long)
 873 16 - Import issues (unused-import, wrong-import-order,
 874 reimported)
 875 17 - Error-prone patterns (undefined-variable, no-member,
 876 unsubscriptable-object)
 877 18 - Code design issues (too-many-arguments, too-many-locals,
 878 too-many-branches)
 879 19 - Best practice and maintainability issues (fixme, unused-
 880 argument, broad-except)
 881
 882 20
 883 21 Please resolve the Pylint feedback to the best of your
 884 ability, while preserving the functionality of the code.
 885 22 Focus on the most critical violations first and ensure your
 886 fixes improve overall code quality and maintainability.
 887
 888
 889
 890
 891
 892

893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939

SWE-Agent Review-Fix instructions

```

1 <uploaded_files>
2 {{working_dir}}
3 </uploaded_files>
4 I've uploaded a code repository in the directory {{working_dir}}. {{problem_statement}}
5
6 Can you help me implement the necessary changes to the repository so that the requirements specified in the <pr_description> are met?
7 I've already taken care of all changes to any of the test files described in the <pr_description>. This means you DON'T have to modify the testing logic or any of the tests in any way!
8 Your task is to make the minimal changes to non-tests files in the {{working_dir}} directory to ensure the <pr_description> is satisfied.
9 Follow these steps to resolve the issue:
10 1. As a first step, it might be a good idea to find and read code relevant to the <pr_description>
11 2. Create a script to reproduce the error and execute it to confirm the error
12 3. Edit the sourcecode of the repo to resolve the issue
13 4. Rerun your reproduce script and confirm that the error is fixed!
14 5. Think about edgecases and make sure your fix handles them as well
15 Your thinking should be thorough and so it's fine if it's very long.

```

940 **C STYLE REVIEW**

941 **C.1 STYLE REVIEW SCORE ANALYSIS**

942 Here, we provide additional information on how LLMs perform on Style Fixing tasks independent
943 of functionality. The metrics and their formulas are:
944

945
$$\text{Fix Rate} = \frac{\text{number of resolved original errors}}{\text{number of original errors}}$$

946
$$\text{Error Ratio} = \frac{\text{number of original errors} - \text{number of resolved original errors} + \text{number of new errors created}}{\text{number of original errors}}$$

947
$$\text{Overall Fix Rate} = \frac{\text{number of resolved original errors}}{\text{number of original errors} + \text{number of new errors created}}$$

955 Table 4: Style Review Score Analysis

956 Language	957 Experimental Setting	958 Fix Rate	959 Error Ratio	960 Overall Fix Rate	961 Score
958 Python	SWE-Agent + Gemini-2.5-Flash	96.2%	0.377	80.1%	72.2% -> 57.0% ± 6.9
	SWE-Agent + DeepSeek-V3.1	91.5%	0.299	79.5%	73.4% -> 54.0% ± 7.2
	SWE-Agent + GPT-5-mini	65.3%	0.457	59.6%	56.3% -> 45.9% ± 7.7
	SWE-Agent + Qwen3-32B	30.5%	0.891	25.5%	22.7% -> 19.5% ± 6.2
	Aider + Gemini-2.5-Flash	85.7%	0.482	69.3%	60.3% -> 48.6% ± 7.0
963 C++	SWE-Agent + Gemini-2.5-Flash	75.9%	2.49	48.7%	
	SWE-Agent + DeepSeek-V3.1	68.0%	2.46	41.4%	
	SWE-Agent + GPT-5-mini	47.3%	2.61	28.6%	
	SWE-Agent + Qwen3-32B	35.3%	2.87	18.1%	
	Aider + Gemini-2.5-Flash	25.1%	2.82	15.3%	-%
968 Java	SWE-Agent + Gemini-2.5-Flash	80.9%	5.17	40.4%	
	SWE-Agent + DeepSeek-V3.1	77.9%	5.46	36.8%	
	SWE-Agent + GPT-5-mini	64.1%	5.38	35.2%	
	SWE-Agent + Qwen3-32B	66.0%	5.31	34.5%	
	Aider + Gemini-2.5-Flash	81.2%	5.55	37.6%	-%

974 **C.2 RULESETS USED FOR STYLE REVIEW**

987
988
989
990
991
992
993
994

Table 5: List of Python Style Errors.

995	protected-access	redefined-outer-name	unused-argument
996	attribute-defined-outside-init	abstract-method	fixme
997	redefined-builtin	invalid-str-returned	unused-variable
998	anomalous-backslash-in-string	unnecessary-pass	broad-exception-caught
999	raise-missing-from	unbalanced-tuple-unpacking	arguments-differ
1000	unused-import	reimported	assigning-non-slot
1001	unnecessary-lambda	undefined-variable	pointless-statement
1002	logging-fstring-interpolation	missing-timeout	unsubscriptable-object
1003	logging-not-lazy	pointless-string-statement	not-callable
1004	unspecified-encoding	dangerous-default-value	invalid-field-call
1005	possibly-used-before-assignment	arguments-renamed	eval-used
1006	no-self-argument	unexpected-keyword-arg	bare-except
1007	too-many-function-args	no-value-for-parameter	expression-not-assigned
1008	cell-var-from-loop	comparison-with-callable	super-init-not-called
1009	undefined-loop-variable	used-before-assignment	global-variable-not-assigned
1010	abstract-class-instantiated	access-member-before-definition	badstaticmethod-argument
1011	deprecated-class	function-redefined	implicit-str-concat
1012	not-context-manager	signature-differs	super-without-brackets
1013	invalid-unary-operand-type	broad-exception-raised	arguments-out-of-order
1014	assert-on-string-literal	bad-indentation	global-statement
1015	global-variable-undefined	import-self	invalid-getnewargs-ex-returned
1016	invalid-metaclass	invalid-repr-returned	invalid-sequence-index
1017	isinstance-second-argument-not-valid	typed -arg-before-vararg	misplaced-bare-raise
1018	missing-kwoa	non-parent-init-called	possibly-unused-variable
1019	raising-non-exception	redundant-u-string-prefix	redundant-unittest-assert
1020	subprocess-run-check	unnecessary-ellipsis	unused-private-member
1021	wildcard-import	astroid-error	syntax-error
1022	useless-parent-delegation	bad-super-call	method-hidden
1023	not-an-iterable	too-few-format-args	assignment-from-no-return
1024	assignment-from-none	bad-chained-comparison	bad-str-strip-call
1025	bad-string-format-type	bad-thread-instantiation	bidirectional-unicode
1026	contextmanager-generator-missing-cl	deplicated -argument	deprecated-method
1027	deprecated-module	dict-iter-missing-items	duplicate-except
	duplicate-key	duplicate-string-formatting-argument	duplicate-value
	exec-used	f-string-without-interpolation	format-string-without-interpolation
	inherit-non-class	invalid-bool-returned	invalid-length-returned
	invalid-overridden-method	logging-format-interpolation	logging-too-many-args
	lost-exception	method-cache-max-size-none	modified-iterating-list
	nested-min-max	no-method-argument	non-iterator-returned
	not-implemented-raised	pointless-exception-statement	positional-only-arguments-expected
	raising-bad-type	raising-format-tuple	redeclared-assigned-name
	redundant-keyword-arg	return-in-finally	return-in-init
	self-assigning-variable	self-cls-assignment	shadowed-import
	try-except-raise	unbalanced-dict-unpacking	undefined-all-variable
	unexpected-special-method-signature	unnecessary-semicolon	unpacking-non-sequence
	unreachable	unsupported-assignment-operation	unsupported-delete-operation
	unsupported-membership-test	unused-format-string-argument	unused-wildcard-import
	used-prior-global-declaration	useless-else-on-loop	using-constant-test

1028
1029
1030
1031
1032
1033

1034
1035
1036
1037

Table 6: List of Java Style Errors

1038	AtLeastOneConstructor	AvoidDuplicateLiterals	CommentDefaultAccessModifier
1039	FieldNamingConventions	LawOfDemeter	LocalVariableCouldBeFinal
1040	MethodArgumentCouldBeFinal	OnlyOneReturn	ShortClassName
1041	UnnecessaryImport	UseUtilityClass	AvoidCatchingGenericException
1042	AvoidDeeplyNestedIfStmts	AvoidLiteralsInIfCondition	ClassWithOnlyPrivateConstructorsShouldBeFinal
1043	JUnitTestContainsTooManyAsserts	JUnitTestsShouldIncludeAssert	LinguisticNaming
1044	SystemPrintln	TestClassWithoutTestCases	AvoidAccessibilityAlteration
1045	AvoidCatchingThrowable	CallSuperInConstructor	CognitiveComplexity
1046	ImmutableField	LooseCoupling	ShortMethodName
1047	SignatureDeclareThrowsException	TooManyStaticImports	UseDiamondOperator
1048	UseUnderscoresInNumericLiterals	UselessParentheses	AssignmentInOperand
1049	AvoidFieldNameMatchingMethodName	AvoidReassigningParameters	AvoidThrowingRawExceptionTypes
1050	CollapsibleIfStatements	ConfusingTernary	CouplingBetweenObjects
1051	CyclomaticComplexity	DataClass	ExceptionAsFlowControl
1052	ExcessivePublicCount	GodClass	LiteralsFirstInComparisons
1053	MethodNamingConventions	MutableStaticState	NPathComplexity
1054	NcssCount	NullAssignment	PreserveStackTrace
1055	SimplifyBooleanReturns	TooManyFields	UnnecessaryBoxing
1056	UnnecessaryConstructor	UnusedFormalParameter	UseProperClassLoader
1057	AbstractClassWithoutAbstractMethod	ArrayIsStoredDirectly	AvoidBranchingStatementAsLastInLoop
1058	ClassNamingConventions	CloseResource	CompareObjectsWithEquals
1059	EmptyCatchBlock	ExcessiveImports	FieldDeclarationsShouldBeAtStartOfClass
1060	ForLoopCanBeForeach	JUnit4TestShouldUseTestAnnotation	LocalVariableNamingConventions
1061	OneDeclarationPerLine	ReturnEmptyCollectionRatherThanNull	UnnecessaryFullyQualifiedName
1062	UnnecessaryReturn	UnnecessarySemicolon	UnusedAssignment
1063	UseTryWithResources	UseVarargs	AvoidFieldNameMatchingTypeName
1064	AvoidReassigningLoopVariables	AvoidUncheckedExceptionsInSignature	ControlStatementBraces
1065	EmptyControlStatement	GenericsNaming	GuardLogStatement
1066	MethodReturnsInternalArray	PrematureDeclaration	SwitchStmtsShouldHaveDefault
1067	UnnecessaryCast	UnnecessaryModifier	UnusedPrivateMethod
1068	UseLocaleWithCaseConversions	UseShortArrayInitializer	AvoidThrowingNullPointerException
1069	BooleanGetMethodName	ConstantsInInterface	ConstructorCallsOverridableMethod
1070	ExcessiveParameterList	FinalFieldCouldBeStatic	ForLoopVariableCount
1071	JUnitUseExpected	MissingSerialVersionUID	NonStaticInitializer
1072	OverrideBothEqualsAndHashCode	UnnecessaryAnnotationValueElement	UnnecessaryLocalBeforeReturn
1073	UnusedLocalVariable	UseCollectionIsEmpty	UseEqualsToCompareStrings
1074	UseStandardCharsets	AbstractClassWithoutAnyMethod	AvoidCatchingNPE
1075	AvoidProtectedFieldInFinalClass	AvoidProtectedMethodInFinalClassNot	ExtendingHardCodedIP
1076	DoubleBraceInitialization	EmptyMethodInAbstractClassShouldBeA	EqualsNull
1077	FormalParameterNamingConventions	ImplicitSwitchFallThrough	JUnit5TestShouldBePackagePrivate
1078	MissingStaticMethodInNonInstantiated	RepCaseVectorWithList	SimpleDateFormatNeedsLocale
1079	SimplifiedTernary	SwitchDensity	AvoidDecimalLiteralsInBigDecimalConstructor
1080	AvoidDollarSigns	AvoidInstanceOfChecksInCatchClause	AvoidPrintStackTrace
	AvoidRethrowingException	AvoidStringBufferField	DoNotCallGarbageCollectionExplicitly
	DontImportSun	FinalParameterInAbstractMethod	IdenticalCatchBranches
	MissingOverride	NonSerializableClass	PrimitiveWrapperInstantiation
	SuspiciousEqualsMethodName	UnusedPrivateField	AvoidThrowingNewInstanceOfSameException
	DefaultLabelNotLastInSwitchStmt	DetachedTestCase	DoNotExtendJavaLangThrowable
	DoNotTerminateVM	ForLoopShouldBeWhileLoop	InstantiationToGetClass
	JUnit4SuitesShouldUseSuiteAnnotation	FumbledIncrementer	LogicInversion
	ProperCloneImplementation	ReplaceHashtableWithMap	SimplifyBooleanExpressions
	SimplifyConditional	SingletonClassReturningNewInstance	SingularField
	UseObjectForClearerAPI	AssignmentToNonFinalStatic	AvoidMessageDigestField
	AvoidMultipleUnaryOperators	AvoidUsingOctalValues	CheckSkipResult
	ClassCastExceptionWithToArray	CloneMethodMustBePublic	CloneMethodMustImplementCloneable
	CloneMethodReturnTypeMustMatchClass	DoNotExtendJavaLangError	DoNotHardCodeSDCard
	DoNotThrowExceptionInFinally	DontUseFloatTypeForLoopIndices	FinalizeDoesNotCallSuperFinalize
	InvalidLogMessageFormat	NoPackage	PackageCase
	SingleMethodSingleton	UnconditionalIfStatement	UnnecessaryCaseChange
	UnusedNullCheckInEquals	UseExplicitTypes	UselessOperationOnImmutable
	UselessOverridingMethod	UselessQualifiedThis	WhileLoopWithLiteralBoolean

1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098

Table 7: List of CPP Style Errors

1099	misc-include-cleaner	misc-use-anonymous-namespace
1100	cppcoreguidelines-avoid-magic-numbers	cppcoreguidelines-avoid-do-while
1101	misc-const-correctness	cppcoreguidelines-rvalue-reference-param-not-moved
1102	misc-non-private-member-variables-in-classes	bugprone-easily-swappable-parameters
1103	cppcoreguidelines-pro-bounds-pointer-arithmetic	cppcoreguidelines-avoid-c-arrays
1104	cppcoreguidelines-avoid-non-const-global-variables	cppcoreguidelines-pro-bounds-array-to-pointer-decay
1105	cppcoreguidelines-owning-memory	cppcoreguidelines-init-variables
1106	cppcoreguidelines-macro-usage	cppcoreguidelines-special-member-functions
1107	cppcoreguidelines-pro-type-member-init	cppcoreguidelines-pro-type-static-cast-downcast
1108	misc-no-recursion	performance-enum-size
1109	bugprone-narrowing-conversions	cppcoreguidelines-narrowing-conversions
1110	cppcoreguidelines-pro-type-reinterpret-cast	cppcoreguidelines-pro-type-union-access
1111	cppcoreguidelines-use-default-member-init	cppcoreguidelines-pro-bounds-constant-array-index
1112	bugprone-implicit-widening-of-multiplication-result	bugprone-macro-repeated-side-effects
1113	bugprone-suspicious-include	clang-analyzer-optin.core.EnumCastOutOfRange
1114	cppcoreguidelines-avoid-const-or-ref-data-members	cppcoreguidelines-explicit-virtual-functions
1115	cppcoreguidelines-pro-type-vararg	portability-simd-intrinsics
1116		
1117		
1118		
1119		
1120		
1121		
1122		
1123		
1124		
1125		
1126		
1127		

1128 C.3 STYLE REVIEW ERROR ANALYSIS
1129
1130
1131
1132
1133
1134
1135
1136
11371164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174 Figure 8: Resolve rates for the 20 most frequent style errors in Python.

Figure 9: Resolve rates for the 20 most frequent style errors in Java.

As shown in 9, agents reliably fix local, syntactic style issues but diverge on semantic or cross-file refactorings. For example, many rules — `AvoidDuplicateLiterals`, `CommentDefaultAccessModifier`, `FieldNamingConventions`, `LawOfDemeter`, `LocalVariableCouldBeFinal`, `MethodArgumentCouldBeFinal`, `OnlyOneReturn`, `AvoidCatchingGenericException`, `AvoidDeeplyNestedIfStmts`, — are resolved at 100% by all three agents, which indicates these errors stem from local, pattern-detectable oversights (leftover literals, missing modifiers, simple nesting or `println` usages) and can be corrected by single-file, syntactic edits or well-scoped templates. By contrast, errors that require either boilerplate insertion or light architectural judgement show agent differences: `AtLeastOneConstructor` is

Figure 10: Resolve rates for the 20 most frequent style errors in CPP.

resolved by Gemini 73%, Aider 82% and Deepseek 100% (Deepseek appears strongest at inserting appropriate constructors, suggesting it better synthesizes class skeletons), `UnnecessarilyImport` is handled best by Gemini (91% vs ~82%), which implies Gemini is particularly effective at mechanical cleanup (removing IDE-leftover imports), while `UseUtilityClass` is the hardest (Gemini 27%, Aider 64%, Deepseek 36%) — converting a class to a utility requires semantic understanding (that methods are stateless/should be static and constructors removed), project-wide implications and non-trivial refactoring heuristics, so performance drops. `ShortClassName` (Gemini 55%, Aider/Deepseek ~73%) and `ClassWithOnlyPrivateConstructorsShouldBeFinal` (Gemini/Deepseek ~70%, Aider 80%) similarly reflect refactor/semantic sensitivity: these errors occur because of design choices (poor naming, classes meant as singletons/factories) and hence need broader context or safer rename patterns to fix without breaking references. Finally, test-related fixes (`JUnitTestsShouldIncludeAssert`: Gemini 90% vs others ~80%; `TestClassWithoutTestCases` ~90% all) show that adding assertions or test content is approachable but benefits from an agent’s ability to infer test intent. Thus, if the fix is a local, syntactic removal or modifier change (the common result of IDE habits or quick edits) all agents excel; when the fix requires synthesis of new boilerplate or a design-level judgement (constructors, utility conversion, safe renames), performance diverges and the better agent is the one that more reliably infers program intent and can safely make cross-site edits — exactly the kinds of capabilities we should prioritize next in automated style repair.

In 10, a clear partitioning of agent capability emerges. Gemini attains the highest resolution rates on checks that are syntactically local and mechanically canonical—notably `misc-const-correctness`,

1269 misc-non-private-member-variables-in-classes and cppcoreguidelines-avoid-c-arrays, indicating it
 1270 reliably performs small, deterministic AST-level edits where the root cause is programmer oversight
 1271 or legacy C idioms. Deepseek dominates categories tied to legacy manual-memory and preprocessor
 1272 practices—most prominently cppcoreguidelines-owning-memory and cppcoreguidelines-macro-
 1273 usage—which directly implies it is better at recognizing and applying idiomatic modernization or
 1274 conservative rewrites in codebases where errors stem from explicit new/delete patterns and heavy
 1275 macro usage. Aider occupies an intermediate regime with moderate resolve rates on initialization and
 1276 type-related checks (cppcoreguidelines-init-variables, cppcoreguidelines-pro-type-member-init), sug-
 1277 gesting a propensity for lower-risk, surface-level repairs rather than broad structural refactors. Across
 1278 agents, the highest absolute resolve rates correspond to mechanically fixable, single-rewrite problems
 1279 (local syntactic omissions or replace-with-standard-container transformations), whereas checks that
 1280 require understanding programmer intent, cross-cutting design choices, or semantic refactoring
 1281 exhibit lower and more variable resolution; this pattern directly traces to the origin of each error
 1282 class—simple oversight or legacy idiom versus deep semantic or intentional ambiguity—and implies
 1283 that improving automated style repair requires either stronger intent inference (tests, specifications) or
 1284 broader, transformation-aware training focused on non-local semantic refactors. This can be surmised
 1285 from the fact that errors such as misc-const-correctness, misc-non-private-member-variables-in-
 1286 classes, cppcoreguidelines-avoid-c-arrays, cppcoreguidelines-pro-bounds-array-to-pointer-decay and
 1287 cppcoreguidelines-pro-type-member-init performance-enum-size exhibit consistently high resolve
 1288 rates (with Gemini leading on several), whereas other checks show moderate to low and often
 1289 heterogeneous performance across agents. These high-rate rows correspond to local, syntactic,
 1290 single-step transformations - adding `const`, restricting member visibility, or replacing raw C arrays
 1291 with standard containers - whose root causes are programmer oversight or legacy C idioms and
 1292 therefore admit deterministic AST-level repairs. By contrast, rows with low or mixed resolution
 1293 reflect checks that demand cross-cutting reasoning about ownership, lifetime, or design intent;
 1294 their failure modes in the plot indicate semantic ambiguity rather than simple syntactic omission.
 1295 Consequently, the visual evidence supports the interpretation that automated style repair succeeds
 1296 where a canonical, local rewrite exists and degrades where fixes require intent inference or non-local
 1297 semantic refactoring.

1298 Further it can be seen though, the agents have a higher resolve rate for Java style errors, they are also
 1299 prone to introduce more number of additional errors as compared to resolving CPP style errors.
 1300

1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315

Figure 11: Counts for the 20 most frequent additional errors in Java.

Figure 13: Bugfixing performance plotted together with performance on other tasks separately for each language.

E CORRELATION ANALYSIS ACROSS TASKS

Table 8: Per-language Pearson correlation between Bug-Fixing and other tasks

Language	Review vs Bug	Test vs Bug	Style vs Bug
Python	0.925	0.702	0.800
C++	0.966	0.733	0.461
Java	0.871	0.858	0.276
Average	0.921	0.764	0.512

1457 **F PATCH GENERATION RATE**
14581459 Table 9: SWE-Agent Patch Generate Rate across models and tasks
1460

1461 Language	1462 Model	1463 Bug-Fixing	1464 Test-Generation	1465 Review-Response	1466 Style-Fixing
1463 Python	Gemini-2.5-Flash	93.8%	—	92.7%	91.7%
	DeepSeek-V3.1	96.3%	94.8%	95.1%	93.8%
	GPT-5-mini	76.2%	64.8%	61.0%	69.3%
	Qwen3-32B	79.1%	90.8%	78.0%	35.7%
1467 C++	Gemini-2.5-Flash	98.2%	97.7%	77.3%	80.3%
	DeepSeek-V3.1	96.4%	75.0%	97.7%	85.7%
	GPT-5-mini	62.5%	54.5%	56.8%	48.3%
	Qwen3-32B	70.5%	97.7%	88.6%	47.6%
1471 Java	Gemini-2.5-Flash	99.1%	79.2%	93.7%	84.7%
	DeepSeek-V3.1	93.6%	87.0%	91.1%	91.1%
	GPT-5-mini	45.9%	45.5%	51.9%	50.0%
	Qwen3-32B	75.2%	90.9%	77.2%	44.4%

1475 Table 10: Bugfixing - Avg. Complexity Score.
1476

1478 Model	1479 Language	1480 Gold Avg Complexity	1481 Model Avg Complexity	1482 Resolved Gold Avg Complexity	1483 Resolved Model Avg Complexity	1484 Unresolved Gold Avg Complexity	1485 Unresolved Model Avg Complexity
1481 Gemini 2.5 Flash	Python	7.07	299.28	5.35	5.28	8.13	484.67
	Java	19.24	9.75	6.69	12.32	19.67	19.24
	C++	47.55	195.1	8.07	6.28	38.26	252.31
1484 Deepseek v3.1	Python	7.07	12.08	5.22	5.35	9.46	21.60
	Java	19.24	12.91	6.47	7.07	26.49	15.84
	C++	47.55	104.63	9.21	32.13	54.29	123.18
1487 GPT-5-mini	Python	7.07	165.56	4.30	4.05	9.55	390.18
	Java	19.24	983.12	6.51	4.24	21.95	1186.70
	C++	47.55	603.39	18.48	90.91	43.92	767.78
1490 qwen3-32b	Python	7.07	464.93	5.77	4.32	7.49	642.09
	Java	19.24	4.76	5.26	2.7	24.28	5.08
	C++	47.55	140.96	5.00	4.75	46.37	148.22

Table 11: Review-Response - Avg. Complexity Score.

Model	Language	Gold Avg Complexity	Model Avg Complexity	Resolved Gold Avg Complexity	Resolved Model Avg Complexity	Unresolved Gold Avg Complexity	Unresolved Model Avg Complexity
Gemini 2.5 flash	Python	7.07	1635.47	3.69	9.58	7.93	2408.95
	Java	19.24	9.95	6.49	6.86	17.25	11.53
	C++	47.55	128.33	5.98	4.85	41.85	154.79
Deepseek v3.1	Python	7.07	10.71	4.36	6.24	9.23	16.26
	Java	19.24	9.75	6.69	7.04	19.67	12.32
	C++	47.55	195.10	8.07	6.28	38.26	252.31
GPT-5-mini	Python	7.07	289.22	4.96	13.80	7.40	543.45
	Java	19.24	6.26	6.91	5.58	15.32	6.99
	C++	47.55	955.24	9.01	5.84	12.39	1489.28
qwen3-32b	Python	7.07	519.86	3.15	3.26	7.41	639.08
	Java	19.24	3.96	5.85	2.83	16.83	4.31
	C++	47.55	248.65	2.25	2.4	14.55	261.96