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ABSTRACT

Crystal Structure Prediction (CSP) is crucial in various scientific disciplines. Ex-
isting learning-based generative approaches seldom capture the full symmetries
of the crystal structure distribution—the invariance of translation, rotation, and
periodicity. In this paper, we propose DiffCSP, a novel diffusion method to learn the
stable structure distribution from data, incorporating the above symmetries. To be
specific, DiffCSP jointly generates the lattice and the fractional coordinates of all
atoms by employing a periodic-E(3)-equivariant denoising model to better model
the crystal geometry. Notably, DiffCSP leverages fractional coordinates other than
traditional Cartesian coordinates to represent crystals, remarkably promoting the
diffusion and the generation process of atom positions. Extensive experiments on
crystal structure prediction verify the effectiveness of DiffCSP against existing
learning-based counterparts.

1 INTRODUCTION

Crystal Structure Prediction (CSP), which returns the stable 3D structure of a compound based solely
on its composition, has been a goal in physical sciences since the 1950s (Desiraju, 2002). As crystals
are the foundation of various solid materials, estimating their structures in 3D space determines
the physical and chemical properties that greatly influence the application to various academic and
industrial sciences, such as the design of batteries and catalysis (Butler et al., 2018).

CSP is related to two well-known tasks: protein structure prediction (Jumper et al., 2021) and
molecular conformation generation (Shi et al., 2021), which aim at predicting the 3D structure of a
protein sequence or a molecular graph, respectively. That being said, CSP exhibits unique challenges,
mainly incurred by the periodicity of the atom arrangement in crystals. To generate such type of
structures, we require to not only model the distribution of the atom coordinates within every cell,
but also infer how their bases (a.k.a. lattices) are placed in 3D space. Furthermore, the choice of the
lattice is not unique owing to the periodicity, which makes CSP much more challenging.

Conventional methods towards CSP mostly apply the computationally-intensive Density Functional
Theory (DFT) (Kohn & Sham, 1965) to compute the energy at each iteration, guided by optimization
algorithms (such as random search (Pickard & Needs, 2011), Bayesian optimization (Yamashita
et al., 2018), e.t.c.) to iteratively search for the stable state corresponding to the local minima of the
energy surface (Oganov et al., 2019). Recently, machine learning methods have been developed to
learn the stable structures directly from the training data based on deep generative models (Court
et al., 2020; Yang et al., 2021). Although the generative methods accelerate previous DFT-based
counterparts remarkably, they seldom consider the full symmetries of the crystal structure distribution
in the 3D world, giving rise to poor generalization ability. From the perspective of physics, any E(3)
transformation, including translation, rotation, and reflection, of the coordinates does not change the
physical law and thus keeps the distribution invariant. Moreover, the aforementioned periodicity is
another vital symmetry of crystals. For conciseness, we call the E(3) invariance plus periodicity as
periodic E(3) invariance, which, unfortunately, is less explored in existing generative models. There
are also other methods that apply machine learning models to replace DFT for energy prediction
followed by structure optimization (Jacobsen et al., 2018; Podryabinkin et al., 2019; Cheng et al.,
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Figure 1: Overview of DiffCSP. Given the composition A, we denote the crystal, its lattice and
fractional coordinate matrix at time t as Mt, Lt and Ft, respectively. The terms ϵL and ϵF are
Gaussian noises. ϵ̂L and ϵ̂F are predicted by the denoising model ϕ.

2022). Although the predictors can be made E(3) invariant to reflect the symmetry, their effectiveness
is still limited by the vast search space for optimization.

In this work, we introduce DiffCSP, an equivariant diffusion method to address CSP. DiffCSP is
motivated by the success of diffusion models in relevant scientific domains, including molecular
conformation generation (Xu et al., 2021), protein structure prediction (Trippe et al., 2022) and
protein docking (Corso et al., 2022). Considering the specificity of the crystal geometry here, our
DiffCSP jointly and simultaneously generates the lattice and the fractional coordinates of all atoms,
by employing a proposed denoising model that is theoretically proved to be periodic E(3) invariant.
A preferable characteristic of DiffCSP is that, it leverages the fractional coordinate system (defined
in § 2) other than the Cartesian system used in previous methods to represent crystals, which encodes
periodicity intrinsically. In particular, the fractional representation not only allows us to consider
Wrapped Normal (WN) distribution (Jing et al., 2022) to better model the periodic process on
fractional coordinates, but also facilitates the design of the denoising model via the Fourier transform,
compared to the multi-graph encoder in crystal modeling (Xie & Grossman, 2018).

2 PRELIMINARIES

Representation of crystal structures A 3D crystal can be represented as the infinite periodic
arrangement of atoms in 3D space, and the smallest repeating unit is called a unit cell. A unit cell
can be defined by a triple M = (A,X,L), where A = [a1,a2, ...,aN ] ∈ Rh×N denotes the list
of the one-hot representations of atom types, X = [x1,x2, ...,xN ] ∈ R3×N consists of Cartesian
coordinates of the atoms, and L = [l1, l2, l3] ∈ R3×3 represents the lattice matrix containing three
basic vectors describing the periodicity of the crystal. The infinite crystal structure is represented by

{(a′
i,x

′
i)|a′

i = ai,x
′
i = xi +Lk, ∀k ∈ Z3×1}, (1)

where the j-th element of the integral vector k denotes the integral 3D translation in units of lj .

Fractional coordinate system The Cartesian coordinate system X leverages three standard orthog-
onal bases as the coordinate axes. In crystallography, the fractional coordinate system is usually
applied to reflect the periodicity of the crystal structure, which utilizes the lattices (l1, l2, l3) as the
bases. In this way, a point represented by the fractional coordinate vector f = [f1, f2, f3]

⊤ ∈ [0, 1)3

corresponds to the Cartesian vector x =
∑3

i=1 fili. This paper employs the fractional coordinate
system, and denotes the crystal by M = (A,F ,L), where the fractional coordinates of all atoms
compose the matrix F ∈ [0, 1)3×N .

Symmetries of Crystal Structure Distribution While various generative models can be utilized to
address CSP, this task encounters particular challenges, including constraints arising from symmetries
of crystal structure distribution. We formally depict the related notions below.
Definition 1 (O(3) Invariance). For any Q ∈ R3×3 satisfying Q⊤Q = I , p(QL,F | A) = p(L,F |
A), namely, any rotation/reflection of lattice L keeps the distribution unchanged.
Definition 2 (Periodic Translation Invariance). For any translation t ∈ R3, p(L, w(F + t) | A) =
p(L,F | A), where the function w(F ) = F − ⌊F ⌋ ∈ [0, 1)3×N returns the fractional part of each
element in F . It explains that any periodic translation of F will not change the distribution.
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For simplicity, we compactly term the O(3) invariance and periodic translation invariance as periodic
E(3) invariance henceforth.

CSP task definition The task of CSP is to predict the lattice matrix L and the fractional matrix F
given the chemical composition A, namely, learning the conditional distribution p(L,F | A).

3 OVERVIEW OF PROPOSED METHOD

As illustrated in Figure 1, our method DiffCSP addresses CSP by simultaneously diffusing the
lattice L and the fractional coordinate matrix F . Given the atom composition A, Mt denotes the
intermediate state of L and F at time step t (0 ≤ t ≤ T ). DiffCSP defines two Markov processes:
the forward diffusion process gradually adds noise to M0, and the backward generation process
iteratively samples from the prior distribution MT to recover the origin data M0.

The recovered distribution from MT should meet periodic E(3) invariance. Such requirement is
satisfied if the prior distribution p(MT ) is invariant and the Markov transition p(Mt−1 | Mt)
is equivariant, according to the diffusion-based generation literature (Xu et al., 2021). Here, an
equivariant transition is specified as p(g ·Mt−1 | g ·Mt) = p(Mt−1 | Mt) where g ·M refers to
any orthogonal/translational transformation g acts on M in the way presented in Definitions 1-2. We
separately summarize the derivation processes of L and F below, with more details in Appendix A.1.

Diffusion on L Given that L is continuously variable, we exploit Denoising Diffusion Probabilistic
Model (DDPM) (Ho et al., 2020) to accomplish the generation. We utilize the forward process to
progressively diffuse L0 towards the Normal prior N (0, I). For generation, we initialize p(LT )
from the O(3)-invariant prior distribution N (0, I) and apply the O(3)-equivariant backward process
ensuring by the denoising model to acquire the O(3)-invariant marginal distribution p(L0).

Diffusion on F The domain of fractional coordinates [0, 1)3×N forms a quotient space R3×N/Z3×N

induced by the crystal periodicity. It is not suitable to apply the above DDPM fashion to generate
F , as the normal distribution used in DDPM is unable to model the cyclical and bounded domain
of F . Instead, we leverage Score-Matching (SM) based framework Song & Ermon (2020); Song
et al. (2020) along with Wrapped Normal (WN) distribution (De Bortoli et al., 2022) to fit the
specificity here. Note that WN distribution has been explored in generative models, such as molecular
conformation generation (Jing et al., 2022).

In the forward process, we first sample ϵF from N (0, I), and then acquire Ft = w(F0 + σtϵF )
where the truncation w(·) is already defined in Definition 2. This sampling implies the WN transition:

q(Ft|F0) ∝
∑

Z∈Z3×N

exp
(
− ∥Ft − F0 +Z∥2F

2σ2
t

)
. (2)

Here, the noise scale σt obeys the exponential scheduler. Desirably, q(Ft|F0) is periodic translation
equivariant, and approaches a uniform distribution U(0, 1) if σT is sufficiently large.

For the backward process, we first initialize FT from the uniform distribution U(0, 1), which is
periodic translation invariant. We then apply the predictor-corrector sampler (Song et al., 2020)
to sample F0. The periodic translation invariance of the marginal distribution p(F0) is further
maintained by the denoising model.

Architecture of the Denoising Model As mentioned above, the denoising model should satisfy
certain symmetries to guarantee the periodic E(3) invariance of the sampled distribution p(M0).
We design a message-passing neural network to model the structures and apply the inner product
scalarization for O(3)-euqivariance and the Fourier transformation for periodic translation invariance.
We explain the detailed architecture in Appendix A.2 along with theoretical analysis in Appendix B.

4 EXPERIMENTS

Dataset and metrics We conduct experiments on three datasets with distinct levels of difficulty.
Perov-5 (Castelli et al., 2012a;b) contains 18,928 perovskite materials with similar structures. Each
structure has 5 atoms in a unit cell. MP-20 (Jain et al., 2013) selects 45,231 stable inorganic materials
from Material Projects (Jain et al., 2013), which includes the majority of experimentally-generated
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Table 1: Results on crystal structure prediction task.

# of samples
Perov-5 MP-20 MPTS-52

Match rate RMSE Match rate RMSE Match rate RMSE

RS
20 29.22 0.2924 8.73 0.2501 2.05 0.3329

5,000 36.56 0.0886 11.49 0.2822 2.68 0.3444

BO
20 21.03 0.2830 8.11 0.2402 2.05 0.3024

5,000 55.09 0.2037 12.68 0.2816 6.69 0.3444

PSO
20 20.90 0.0836 4.05 0.1567 1.06 0.2339

5,000 21.88 0.0844 4.35 0.1670 1.09 0.2390

P-cG-SchNet
1 48.22 0.4179 15.39 0.3762 3.67 0.4115

20 97.94 0.3463 32.64 0.3018 12.96 0.3942

CDVAE
1 45.31 0.1138 33.90 0.1045 5.34 0.2106

20 88.51 0.0464 66.95 0.1026 20.79 0.2085

DiffCSP
1 52.02 0.0760 51.49 0.0631 12.19 0.1786

20 98.60 0.0128 77.93 0.0492 34.02 0.1749

materials with at most 20 atoms in a unit cell. MPTS-52 is a more challenging extension of MP-20,
consisting of 40,476 structures up to 52 atoms per cell, sorted according to the earliest published year
in literature. For Perov-5 and MP-20, we apply the 60-20-20 split in line with Xie et al. (2021). For
MPTS-52, we split 27,380/5,000/8,096 for training/validation/testing in chronological order. For the
evaluation metrics, we adopt Match rate and RMSE, with formal definitions in Appendix C.3.

Baselines We contrast two types of previous works. The first type follows the predict-optimize
paradigm, which first trains a predictor of the target property and then utilizes certain optimization
algorithms to search for optimal structures. Following Cheng et al. (2022), we apply MEGNet (Chen
et al., 2019) as the predictor of the formation energy. For the optimization algorithms, we choose
Random Search (RS), Bayesian Optimization (BO), and Particle Swarm Optimization (PSO), all
iterated over 5,000 steps. The second type is based on deep generative models. We follow the modifi-
cation in Xie et al. (2021) and leverage cG-SchNet (Gebauer et al., 2022) that utilizes SchNet (Schütt
et al., 2018) as the backbone and additionally consider the ground-truth lattice initialization for
encoding periodicity, yielding a final model named P-cG-SchNet. Another baseline CDVAE (Xie
et al., 2021) is a VAE-based framework for pure crystal generation, by first predicting the lattice and
the initial composition and then optimizing the atom types and coordinates via annealed Langevin
dynamics (Song & Ermon, 2020). To adapt CDVAE into the CSP task, we replace the original normal
prior for generation with a parametric prior conditional on the encoding of the given composition.
More details are provided in Appendix C.2.

Results Table 1 conveys the following observations. 1. The optimization methods encounter low
Match rates, signifying the difficulty of locating the optimal structures within the vast search space. 2.
In comparison to other generative methods that construct structures atom by atom or predict the lattice
and atom coordinates in two stages, our method demonstrates superior performance, highlighting
the effectiveness of jointly refining the lattice and coordinates during generation. 3. All methods
struggle with performance degradation as the number of atoms per cell increases, on the datasets from
Perov-5 to MPTS-52. For example, the match rates of the optimization methods are less than 10% in
MPTS-52. Even so, our method consistently outperforms all other methods. More experiments on
metastable structure generation and property prediction are deferred to Appendix D.1 and D.2.

5 CONCLUSION

In this work, we present DiffCSP, a diffusion-based framework for crystal structure prediction,
particularly curated to take into account the vital symmetries in crystals. It is highly flexible by jointly
optimizing the lattice and fractional coordinates, where the intermediate distributions are invariant
under permutations, orthogonal transformations, and periodic translations. We verifies the strong
applicability of DiffCSP on a wide range of crystal datasets, where it consistently matches the ground
truth more closely than the baselines in terms of structural similarity and formation energy.
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uncertainty-aware directional message passing for non-equilibrium molecules. In Machine Learn-
ing for Molecules Workshop, NeurIPS, 2020.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional
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Schütt. Inverse design of 3d molecular structures with conditional generative neural networks.
Nature communications, 13(1):1–11, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

5

http://www.sciencedirect.com/science/article/pii/S0010465520304057
http://www.sciencedirect.com/science/article/pii/S0010465520304057


Under review as a conference paper at ICLR 2023

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International Conference on Machine Learning, pp. 8867–8887.
PMLR, 2022.

TL Jacobsen, MS Jørgensen, and B Hammer. On-the-fly machine learning of atomic potential in
density functional theory structure optimization. Physical review letters, 120(2):026102, 2018.

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. Commentary: The
materials project: A materials genome approach to accelerating materials innovation. APL
materials, 1(1):011002, 2013.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional
diffusion for molecular conformer generation. arXiv preprint arXiv:2206.01729, 2022.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex Bridgland,
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A DETAILS OF PROPOSED METHOD

In this section, we first present the joint equivaraint diffusion process on L and F , and then introduce
the architecture of the denoising function used in our method.

A.1 JOINT EQUIVARIANT DIFFUSION

Algorithm 1 summarizes the forward diffusion process as well as the training of the denoising model
ϕ, while Algorithm 2 illustrates the backward sampling process. They can maintain the symmetries if
ϕ is delicately constructed. We separately explain the derivation details of L and F below.

Diffusion on L We first define the forward process that progressively diffuses L0 towards the Normal
prior p(LT ) = N (0, I) as follows:

q(Lt|Lt−1) = N
(
Lt|
√
1− βtLt−1, βtI

)
, (3)

where βt ∈ (0, 1) controls the variance of the diffusion process on Lt. Eq. 3 can be devised as the
probability conditional on the initial distribution:

q(Lt|L0) = N
(
Lt|

√
ᾱtL0, (1− ᾱt)I

)
, (4)

where ᾱt =
∏t

s=1 αt =
∏t

s=1(1− βt), is valued in accordance to the cosine scheduler (Nichol &
Dhariwal, 2021).

The backward generation process is given by:

p(Lt−1|Mt) = N (Lt−1|µ(Mt), σ
2(Mt)I), (5)

where µ(Mt) = 1√
αt

(
Lt − βt√

1−ᾱt
ϵ̂L(Mt, t)

)
, σ2(Mt)= βt

1−ᾱt−1

1−ᾱt
. The denoising term

ϵ̂L(Mt, t) ∈ R3×3 is predicted by the model ϕ(Lt,Ft,A, t).

As the prior distribution p(LT ) = N (0, I) is already O(3)-invariant, we require the generation
process in Eq. 5 to be O(3)-equivariant, which is formally stated below.
Proposition 1. The marginal distribution p(L0) by Algorithm 2 is O(3)-invariant if ϵ̂L(Mt, t) is
O(3)-equivariant.

To train the denoising model ϕ, we first sample ϵL ∼ N (0, I) and reparameterize Lt =
√
ᾱtL0 +√

1− ᾱtϵL based on Eq. (4). The training objective is defined as the expected ℓ2 loss between ϵL
and ϵ̂L:

LL = EϵL∼N (0,I),t∼U(1,T )[∥ϵL − ϵ̂L(Mt, t)∥22]. (6)

Diffusion on F During the forward process, we first sample ϵF from N (0, I), and then acquire
Ft = w(F0 + σtϵF ) where the truncation function w(·) is already defined in Definition 2. This
truncated sampling implies the WN transition:

q(Ft|F0) ∝
∑

Z∈Z3×N

exp
(
− ∥Ft − F0 +Z∥2F

2σ2
t

)
. (7)

Here, the noise scale σt obeys the exponential scheduler: σ0 = 0 and σt = σ1(
σT

σ1
)

t−1
T−1 , if t > 0.

Desirably, q(Ft|F0) is periodic translation equivariant, and approaches a uniform distribution U(0, 1)
if σT is sufficiently large.

For the backward process, we first initialize FT from the uniform distribution U(0, 1), which is
periodic translation invariant. We then apply the predictor-corrector sampler (Song et al., 2020)
to sample F0. In Algorithm 2, Line 7 refers to the predictor while Lines 8-10 correspond to the
corrector, where the term ϵ̂F ∈ R3×N is the predicted score by ϕ. We immediately have the following
proposition.
Proposition 2. The marginal distribution p(F0) by Algorithm 2 is periodic translation invariant if
ϵ̂F (Mt, t) is periodic translation invariant.

8
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Algorithm 1 Training Procedure of DiffCSP
1: Input: lattice matrix L0, atom types A, fractional coordinates F0, denoising model ϕ, and the number of

sampling steps T .
2: Sample ϵL ∼ N (0, I),ϵF ∼ N (0, I) and t ∼ U(1, T ).
3: Lt ←

√
ᾱtL0 +

√
1− ᾱtϵL

4: Ft ← w(F0 + σtϵF )
5: ϵ̂L, ϵ̂F ← ϕ(Lt,Ft,A, t)
6: LL ← ∥ϵL − ϵ̂L∥22
7: LF ← λt∥∇Ft log q(Ft|F0)− ϵ̂F ∥22
8: Minimize LL + LF

Algorithm 2 Sampling Procedure of DiffCSP
1: Input: atom types A, denoising model ϕ, number of sampling steps T , step size of Langevin dynamics γ.
2: Sample LT ∼ N (0, I),FT ∼ U(0, 1).
3: for t← T, · · · , 1 do
4: Sample ϵL, ϵF , ϵ′F ∼ N (0, I)
5: ϵ̂L, ϵ̂F ← ϕ(Lt,Ft,A, t).

6: Lt−1 ← 1√
αt

(Lt − βt√
1−ᾱt

ϵ̂L) +
√

βt · 1−ᾱt−1

1−ᾱt
ϵL.

7: Ft− 1
2
← w(Ft + (σ2

t − σ2
t−1)ϵ̂F +

σt−1

√
σ2
t−σ2

t−1

σt
ϵF )

8: , ϵ̂F ← ϕ(Lt−1,Ft− 1
2
,A, t− 1).

9: dt ← γσt−1/σ1

10: Ft−1 ← w(Ft− 1
2
+ dtϵ̂F +

√
2dtϵ

′
F ).

11: end for
12: Return L0,F0.

The training objective for score matching is:

LF = EFt∼q(Ft|F0),t∼U(1,T )[
λt∥∇Ft

log q(Ft|F0)− ϵ̂F (Mt, t)∥22
]
, (8)

where λt = E−1
Ft

[
∥∇Ft

log q(Ft|F0)∥22
]

is approximated via Monte-Carlo sampling. More details
are deferred to Appendix C.1.

A.2 THE ARCHITECTURE OF THE DENOISING MODEL

This subsection designs the denoising model ϕ(L,F ,A, t) that outputs ϵ̂L and ϵ̂F satisfying the
properties stated in Proposition 1 and 2.

Let H(s) = [h
(s)
1 , · · · ,h(s)

N ] denote the node representations of the s-th layer. The input feature is
given by h

(0)
i = ρ(fatom(ai), fpos(t)), where fatom and fpos are the atomic embedding and sinusoidal

positional encoding (Vaswani et al., 2017; Ho et al., 2020), respectively; ρ is a multi-layer perception
(MLP).

Built upon EGNN (Satorras et al., 2021), the s-th layer message-passing is unfolded as follows:

m
(s)
ij = φm(h

(s−1)
i ,h

(s−1)
j ,L⊤L, ψFT(fj − fi)), (9)

m
(s)
i =

N∑
j=1

m
(s)
ij , (10)

h
(s)
i = h

(s−1)
i + φh(h

(s−1)
i ,m

(s)
i ). (11)

Here φm and φh are MLPs. The function ψFT : (−1, 1)3 → [−1, 1]3×K is Fourier Transform of the
relative fractional coordinate fj − fi. Specifically, suppose the input to be f = [f1, f2, f3]

⊤, then
the c-th row and k-th column of the output is calculated by ψFT(f)[c, k] = sin(2πmfc), if k = 2m
(even); and ψFT(f)[c, k] = cos(2πmfc), if k = 2m+ 1 (odd). The transform ψFT is able to extract
various frequencies of all relative fractional distances that are helpful for crystal structure modeling,

9
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and more importantly, ψFT is periodic translation invariant, namely, ψFT(w(fj + t)− w(fi + t)) =
ψFT(fj − fi) for any translation t. The proof is provided in Appendix B.3.

After S layers of message passing conducted on the fully connected graph, the lattice noise ϵ̂L is
acquired by a linear combination of L, with the weights given by the final layer:

ϵ̂L = LφL

( 1

N

N∑
i=1

h
(S)
i

)
, (12)

where φL is an MLP with output shape as 3× 3.

The fractional coordinate score ϵ̂F is output by:

ϵ̂F [:, i] = φF (h
(S)
i ), (13)

where ϵ̂F [:, i] defines the i-th column of ϵ̂F , and φF is an MLP on the final representation.

The above formulation of the denoising model ϕ(L,F ,A, t) ensures the following property.
Proposition 3. The noise ϵ̂L by Eq. 12 is O(3)-equivariant, and the score ϵ̂F from Eq. 13 is periodic
translation invariant. Hence, the generated distribution by DiffCSP in Algorithm 2 is periodic E(3)
invariant.

B THEORETICAL ANALYSIS

B.1 PROOF OF PROPOSITION 1

We first introduce the following definition to describe the equivariance and invariance from the
perspective of distributions.
Definition 3. We call a distribution p(x) is G-invariant if for any transformation g in the group G,
p(g ·x) = p(x), and a conditional distribution p(x|c) is G-equivariant if p(g ·x|g · c) = p(x|c),∀g ∈
G.

We then provide and prove the following lemma to capture the symmetry of the generation process.
Lemma 1 (Xu et al. (2021)). Consider the generation process p(x0) = p(xT )

∫
p(x0:T−1|xt)dx1:T .

If the prior distribution p(xT ) is G-invariant and the Markov transitions p(xt−1|xt), 0 < t ≤ T are
G-equivariant, the marginal distribution p(x0) is also G-invariant.

Proof. For any g ∈ G, we have

p(g · x0) = p(g · xT )
∫
p(g · x0:T−1|g · xt)dx1:T

= p(g · xT )
∫ T∏

t=1

p(g · xt−1|g · xt)dx1:T

= p(xT )

∫ T∏
t=1

p(g · xt−1|g · xt)dx1:T

= p(xT )

∫ T∏
t=1

p(xt−1|xt)dx1:T

= p(xT )

∫
p(x0:T−1|xt)dx1:T

= p(x0).

Hence, the marginal distribution p(x0) is G-invariant.

The proposition 1 is rewritten and proved as follows.
Proposition 1. The marginal distribution p(L0) by Algorithm 2 is O(3)-invariant if ϵ̂L(Mt, t) is
O(3)-equivariant.

10
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Proof. Consider the transition probability in Eq. (5), we have

p(Lt−1|Lt,Ft,A) = N (Lt−1|at(Lt − btϵ̂L(Lt,Ft,A, t)), σ
2
t I),

where at = 1√
αt
, bt = βt√

1−ᾱt
, σ2

t = βt · 1−ᾱt−1

1−ᾱt
for simplicity, and ϵ̂L(Mt, t) is completed as

ϵ̂L(Lt,Ft,A, t). For any orthogonal transformation Q ∈ R3×3,Q⊤Q = I , we have

p(QLt−1|QLt,Ft,A) = N (QLt−1|at(QLt − btϵ̂L(QLt,Ft,A, t)), σ
2
t I)

= N (QLt−1|at(QLt − btQϵ̂L(Lt,Ft,A, t)), σ
2
t I)

= N (QLt−1|Q
(
at(Lt − btϵ̂L(Lt,Ft,A, t))

)
, σ2

t I)

= N (Lt−1|at(Lt − btϵ̂L(Lt,Ft,A, t)), σ
2
t I)

= p(Lt−1|Lt,Ft,A).

As the transition is O(3)-equivariant and the prior distribution N (0, I) is O(3)-invariant, we prove
that the the marginal distribution p(L0) is O(3)-invariant based on lemma 1.

B.2 PROOF OF PROPOSITION 2

Let Nw(µ, σ
2I) denote the wrapped normal distribution with mean µ, variance σ2 and period 1. We

first provide the following lemma.

Lemma 8. If the denoising term ϵ̂F (Lt,Ft,A, t) is periodic translation invariant, and the transition
probabilty can be formulated as p(Ft−1|Lt,Ft,A) = Nw(Ft−1|Ft + utϵ̂F (Lt,Ft,A, t), v

2
t I),

where ut, vt are functions of t, the transition is periodic translation equivariant.

Proof. For any translation t ∈ R3, we have

p(w(Ft−1 + t)|Lt, w(Ft + t),A)

=Nw(w(Ft−1 + t)|w(Ft + t) + utϵ̂F (Lt, w(Ft + t),A, t), v2t I)

=Nw(w(Ft−1 + t)|w(Ft + t) + utϵ̂F (Lt,Ft,A, t), v
2
t I)

=Nw(w(Ft−1 + t)|w
(
Ft + utϵ̂F (Lt,Ft,A, t) + t

)
, v2t I)

=Nw(Ft−1|Ft + utϵ̂F (Lt,Ft,A, t), v
2
t I)

=p(Ft−1|Lt,Ft,A).

We rewrite proposition 2 as follows.

Proposition 2. The marginal distribution p(F0) by Algorithm 2 is periodic translation invariant if
ϵ̂F (Mt, t) is periodic translation invariant.

Proof. The transition probability of the fractional coordinates during the Predictor-Corrector sampling
can be formulated as

p(Ft−1|Lt,Ft,A) = pP (Ft− 1
2
|Lt,Ft,A)pC(Ft−1|Lt−1,Ft− 1

2
,A),

pP (Ft− 1
2
|Lt,Ft,A) = Nw(Ft− 1

2
|Ft + (σ2

t − σ2
t−1)ϵ̂F (Lt,Ft,A, t),

σ2
t−1(σ

2
t − σ2

t−1)

σ2
t

I),

pC(Ft−1|Lt−1,Ft− 1
2
,A) = Nw(Ft− 1

2
|Ft + γ

σt−1

σ1
ϵ̂F (Lt−1,Ft− 1

2
,A, t− 1), 2γ

σt−1

σ1
I),

where pP , pC are the transitions of the predictor and corrector. According to lemma 8, both of the
transitions are periodic translation equivariant. Therefore, the transition p(Ft−1|Lt,Ft,A) is periodic
translation equivariant. As the prior distribution U(0, 1) is periodic translation invariant, we finally
prove that the marginal distribution p(F0) is periodic translation invariant based on lemma 1.

11
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B.3 PROOF OF PROPOSITION 3

We rewrite proposition 3 as follows.
Proposition 3. The noise ϵ̂L by Eq. 12 is O(3)-equivariant, and the score ϵ̂F from Eq. 13 is periodic
translation invariant. Hence, the generated distribution by DiffCSP in Algorithm 2 is periodic E(3)
invariant.

Proof. We first prove the orthogonal invariance of the inner product term L⊤L. For any orthogonal
transformation Q ∈ R3×3,Q⊤Q = I , we have

(QL)⊤(QL) = L⊤Q⊤QL = L⊤IL = L⊤L.

For the Fourier Transformation, consider k is even, we have
ψFT(w(fj + t)− w(fi + t))[c, k]

= sin
(
2πm

(
w(fj,c + tc)− w(fi,c + tc)

))
=sin

(
2πm(fj,c − fi,c)− 2πm

(
(fj,c − fi,c)− (w(fj,c + tc)− w(fi,c + tc))

))
=sin(2πm(fj,c − fi,c))

=ψFT(fj − fi)[c, k].

Similar results can be acquired as k is odd. Therefore, we haveψFT(w(fj+t)−w(fi+t)) = ψFT(fj−
fi),∀t ∈ R3, i.e., the Fourier Transformation ψFT is periodic translation invariant. According to
the above, the message passing layers defined in Eq. (9)- (11) is periodic E(3) invariant. Hence,
we can directly prove that the coordinate denoising term ϵ̂F is periodic translation invariant. Let
ϵ̂l(L,F ,A, t) = φL

(
1
N

∑N
i=1 h

(S)
i

)
. For the lattice denoising term ϵ̂L = Lϵ̂l, we have

ϵ̂L(QL,F ,A, t) = QLϵ̂l(QL,F ,A, t)

= QLϵ̂l(L,F ,A, t)

= Qϵ̂L(L,F ,A, t),∀Q ∈ R3×3,Q⊤Q = I.

Above all, ϵ̂L is O(3)-equivariant, and ϵ̂F is periodic translation invariant. According to proposition 1
and 2, the generated distribution by DiffCSP in Algorithm 2 is periodic E(3) invariant.

C IMPLEMENTATION DETAILS

C.1 APPROXIMATION OF THE WRAPPED NORMAL DISTRIBUTION

The Probability Density Function (PDF) of the wrapped normal distribution Nw(0, σ
2
t ) is

Nw(x|0, σ2
t ) =

1√
2πσt

∞∑
k=−∞

exp
(
− (x− k)2

2σ2
t

)
,

where x ∈ [0, 1). Because the above series is convergent, it is reasonable to approximate the infinite
summation to a finite truncated summation (Kurz et al., 2014) as

fw,n(x; 0, σ
2
t ) =

1√
2πσt

n∑
k=−n

exp
(
− (x− k)2

2σ2
t

)
.

And the logarithmic gradient of f can be formulated as

∇x log fw,n(x; 0, σ
2
t ) = ∇x log

(
1√
2πσt

n∑
k=−n

exp
(
− (x− k)2

2σ2
t

))

= ∇x log

(
n∑

k=−n

exp
(
− (x− k)2

2σ2
t

))

=

∑n
k=−n(k − x) exp

(
− (x−k)2

2σ2
t

)
σ2
t

∑n
k=−n exp

(
− (x−k)2

2σ2
t

)
12
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Figure 2: Overview of the original (a,b) and adapted (c,d) CDVAE. The key adaptations lie in two
points. (1) We introduce an additional 1D prior encoder to fit the latent distribution of the given
composition. (2) We initialize the generation procedure of the 3D decoder with the ground truth
composition and keep the atom types unchanged to ensure the generated structure conforms to the
given composition.

To estimate λt = E−1
x∼Nw(0,σ2

t )

[
∥∇x logNw(x|0, σ2

t )∥22
]
, we first sample m points from Nw(0, σ

2
t ),

and the expectation is approximated as

λ̃t =
[ 1
m

m∑
i=1

∥∇x log fw,n(xi; 0, σ
2
t )∥22

]−1

=

[
1

m

m∑
i=1

∥∥∥∑n
k=−n(k − xi) exp

(
− (xi−k)2

2σ2
t

)
σ2
t

∑n
k=−n exp

(
− (xi−k)2

2σ2
t

) ∥∥∥2
2

]−1

.

For implementation, we select n = 10 and m = 10000.

C.2 ADAPTATION OF CDVAE

As illustrated in Figure 2, the original CDVAE (Xie et al., 2021) mainly consists of three parts:
(1) a 3D encoder to encoder the structure into the latent variable z3D, (2) a property predictor to
predict the lattice L, the number of nodes in the unit cell N , and the proportion of each element
in the composition c, (3) a 3D decoder to generate the structure from z3D,L, N, c via the Score
Matching with Langevin Dynamics (SMLD, Song & Ermon (2020)) method. The training objective
is composed of the loss functions on the three parts, i.e. the KL divergence between the encoded
distribution and the standard normal distribution LKL, the aggregated prediction loss LAGG and the
denoising loss on the decoder LDEC . Formally, we have

LORI = LAGG + LDEC + βDKL

(
N (µ3D, σ

2
3DI)∥N (0, I)

)
.

We formulate LKL = βDKL(N (µ3D, σ
2
3DI)∥N (0, I)) for better comparison with the adapted

method. β is the hyper-parameter to balance the scale of the KL divergence and other loss functions.
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To adapt the CDVAE framework to the CSP task, we apply two main changes. Firstly, for the encoder
side, to take the composition as the condition, we apply an additional 1D prior encoder to encode the
composition set into a latent distribution N (µ1D, σ

2
1DI) and minimize the KL divergence between

the 3D and 1D distribution. The training objective is modified into

LADA = LAGG + LDEC + βDKL

(
N (µ3D, σ

2
3DI)∥N (µ1D, σ

2
1DI)

)
.

During the inference procedure, as the composition is given, the latent variable z1D is sampled
from N (µ1D, σ

2
1DI). For implementation, we apply a Transformer (Vaswani et al., 2017) without

positional encoding as the 1D encoder to ensure the permutation invariance. Secondly, for the
generation procedure, we apply the ground truth composition for initialization and keep the atom
types unchanged during the Langevin dynamics to ensure the generated structure conforms to the
given composition.

C.3 HYPER-PARAMETERS AND TRAINING DETAILS

We acquire the origin datasets from CDVAE (Xie et al., 2021)1 and MPTS-52 (Jain et al., 2013)2.
We utilize the codebases from GN-OA (Cheng et al., 2022)3, cG-SchNet (Gebauer et al., 2022)4 and
CDVAE (Xie et al., 2021)5 for baseline implementations.

For the optimization methods, we apply the MEGNet (Chen et al., 2019) with 3 layers, 32 hidden
states as property predictor. The model is trained for 1000 epochs with an Adam optimizer with
learning rate 1× 10−3. As for the optimization algorithms, we apply RS, PSO, and BO according
to Cheng et al. (2022). For RS and BO, We employ random search and TPE-based BO as implemented
in Hyperopt Bergstra et al. (2013)6. Specifically, we choose observation quantile γ as 0.25 and the
number of initial random points as 200 for BO. For PSO, we used scikit-opt7 and choose the
momentum parameter ω as 0.8, the cognitive as 0.5, the social parameters as 0.5 and the size of
population as 20.

For P-cG-SchNet, we apply the SchNet (Schütt et al., 2018) with 9 layers, 128 hidden states as the
backbone model. The model is trained for 500 epochs on each dataset with an Adam optimizer with
initial learning rate 1× 10−4 and a Plateau scheduler with a decaying factor 0.5 and a patience of 10
epochs. We select the element proportion and the number of atoms in a unit cell as conditions for the
CSP task. For CDVAE, we apply the DimeNet++ (Gasteiger et al., 2020) with 4 layers, 256 hidden
states as the encoder and the GemNet-T (Gasteiger et al., 2021) with 3 layers, 128 hidden states as
the decoder. We further apply a Transformer (Vaswani et al., 2017) model with 2 layers, 128 hidden
states as the additional prior encoder as proposed in Appendix C.2. The model is trained for 3500,
1000, 1000 epochs for Perov-5, MP-20 and MPTS-52 respectively with an Adam optimizer with
initial learning rate 1× 10−3 and a Plateau scheduler with a decaying factor 0.6 and a patience of 30
epochs. For our DiffCSP, we utilize the setting of 4 layer, 256 hidden states for Perov-5 and 6 layer,
512 hidden states for other datasets. The dimension of the Fourier embedding is set to k = 256. We
apply the cosine scheduler with s = 0.008 to control the variance of the DDPM process on Lt, and
an exponential scheduler with σ1 = 0.005, σT = 0.5 to control the noise scale of the score matching
process on Ft. The diffusion step is set to T = 1000. Our model is trained for 3500, 4000, 1000,
1000 epochs for Perov-5, Carbon-24, MP-20 and MPTS-52 with the same optimizer and learning rate
scheduler as CDVAE. All models are trained on one GeForce RTX 3090 GPU.

Following the common practice (Xie et al., 2021), we evaluate by matching the predicted candidates
with the ground-truth structure. Specifically, for each structure in the test set, we first generate k
samples of the same composition and then identify the matching if at least one of the samples matches
the ground truth structure, under the metric by the StructureMatcher class in pymatgen (Ong et al.,
2013) with thresholds stol=0.5, angle tol=10, ltol=0.3. The Match rate is the proportion of the
matched structures over the test set. RMSE is calculated between the ground truth and the best

1https://github.com/txie-93/cdvae/tree/main/data
2https://github.com/sparks-baird/mp-time-split
3http://www.comates.group/links?software=gn_oa
4https://github.com/atomistic-machine-learning/cG-SchNet
5https://github.com/txie-93/cdvae
6https://github.com/hyperopt/hyperopt
7https://github.com/guofei9987/scikit-opt
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matching candidate, normalized by 3
√
V/N where V is the volume of the lattice, and averaged over

the matched structures. For optimization methods, we select 20 structures of the lowest energy or
all 5,000 structures from all iterations during testing as candidates. For generative baselines and our
DiffCSP, we let k = 1 and k = 20 for evaluation.

D MORE EXPERIMENTS

D.1 METASTABLE STRUCTURE GENERATION

Dataset We carry out experiments on Carbon-24 (Pickard, 2020), which includes 10,153 carbon
materials with 6∼24 atoms in a cell. Different from the datasets adopted in section 4, where most
compositions have only one stable structure for reference, Carbon-24 comprises diverse structures
of a given composition. By the evaluations here, we can assess the ability to generate one-to-many
metastable structures that align with the diversity of crystal structures.

Baselines We contrast our methods against four generative methods applicable to this dataset.
FTCP (Ren et al., 2021) is a coordinate-based method and NOT E(3)-invariant. It represents crystals
as a combination of real-space and Fourier-transformed properties fed to a CNN-VAE backbone for
generation. G-SchNet (Gebauer et al., 2019) generates structures in an autoregressive manner and
P-G-SchNet is a variant of G-SchNet by taking periodicity into consideration. As mentioned before,
CDVAE (Xie et al., 2021) incorporates the score matching-based decoder into the VAE framework,
and we apply its official version without any modification here. Specifically for our DiffCSP, we
gather the statistics of the atom numbers from the training set, then sample the number based on the
pre-computed distribution similar to the method in Hoogeboom et al. (2022), which allows DiffCSP
to generate structures of variable size.

Table 2: Results on metastable structure generation task on
Carbon-24. The results of baseline methods are from Xie
et al. (2021).

Validity Coverage Property

Valid rate(%) COV-R COV-P dρ dE

FTCP 0.08 0.0000 0.0000 5.206 19.05
G-SchNet 99.94 0.0000 0.0000 0.9427 1.32
P-G-SchNet 48.39 0.0000 0.0000 1.533 134.7
CDVAE 100.00 0.9980 0.8308 0.1407 0.285

DiffCSP 100.00 0.9990 0.9835 0.0590 0.035

Evaluation Metrics Following (Xie
et al., 2021), we evaluate the genera-
tion performance from three perspec-
tives. Validity: The valid rate is cal-
culated as the percentage of the gen-
erated structures with all pairwise dis-
tances larger than 0.5Å. Coverage: It
measures the structural similarity be-
tween the testing set St and the gener-
ated samples Sg. Specifically, letting
d(M1,M2) denote the L2 distance
of the CrystalNN fingerprints (Zim-
mermann & Jain, 2020) of structure, the COVerage Recall (COV-R) is determined as COV-R =
1

|St| |{Mi|Mi ∈ St,∃Mj ∈ Sg, d(Mi,Mj) < δ}| where δ = 0.2 is a pre-defined threshold. The
coverage precision (COV-P) is defined similarly by swapping Sg,St. Property statistics: We cal-
culate two kinds of Wasserstein distances between the generated and testing structures, in terms of
the density and the formation energy that are predicted by an independent model (Xie et al., 2021),
denoted as dρ and dE , individually. The validity and coverage metrics are calculated on 10,000
generated samples, and the property metrics are evaluated on a subset with 1,000 samples passing the
validity test.

Results Table 2 displays that our method surpasses all compared methods regarding all metrics.
Specifically, DiffCSP obtains higher validity and coverage precision, indicating the high quality of
the generated samples, and yields better coverage recall which reflects the promising diversity of our
generated structures. Furthermore, for the property metrics, the density distance dρ is determined
by the volume of the generated lattice and the formation energy dE is highly related to the atom
arrangement. DiffCSP achieves much smaller distances with respect to these two metrics, which
again reveals the benefit of our joint generation mechanism.

D.2 PROPERTY PREDICTION

The structure of a crystal plays a crucial role in determining its properties. We conduct a prop-
erty prediction task on Perov-5 and MP-20 to further justify the quality of the generated sam-
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ples. We apply the same 60-20-20 split in section 4. For each composition in the test set,
we generate 20 samples and apply an independent predictor to predict the formation energy of
each sample. The predicted energies are then averaged and compared with the ground-truth en-
ergy labels. We use Mean Absolute Error (MAE), symmetric Mean Absolute Percentage Error
(sMAPE), and Pearson correlation coefficient (PCC) to evaluate different aspects. We compare
our method with CDVAE, the strongest baseline in the above experiments, and Pyxtal (Fred-
ericks et al., 2021), a python toolkit to generate random structures of the given composition.

Table 3: Results on property prediction tasks. GT means the
prediction results on ground truth structures, which measures
the performance of the predictor and serves as the lower
bound of MAE and sMAPE and the upper bound of PCC.

Perov-5 MP-20

MAE sMAPE PCC MAE sMAPE PCC

Pyxtal 0.4839 0.3629 0.3363 0.5965 0.5917 0.8185
CDVAE 0.4760 0.3645 0.3939 0.0631 0.1431 0.9971
DiffCSP 0.4043 0.3195 0.5781 0.0318 0.0942 0.9988
GT 0.0400 0.0446 0.9950 0.0240 0.0825 0.9992

We also provide the results of the pre-
dictor on ground-truth structures as
the vanilla reference.

From Table 3, we observe DiffCSP
substantially outperforms the two
baselines, demonstrating its capability
of producing more precise and mean-
ingful structures. Although there is a
clear gap between the predicted struc-
tures and the ground-truth ones, Dif-
fCSP is still able to attain comparable
performance to the GT model, partic-
ularly on MP-20.

D.3 ABLATION STUDIES

We ablate each component of DiffCSP in Table 4. We probe the following aspects. 1. To ver-
ify the necessity of jointly updating the lattice L and fractional coordinates F in the generation
procedure, we construct two variants that separate the joint update into two stages, denoted as
L → F and F → L. Particularly, L → F applies two networks to learn the reverse processes
pθ1(L0:T−1|A,FT ,LT ) and pθ2(F0:T−1|A,FT ,L0). During inference, we first sample LT ,FT

from their prior distributions, acquiring L0 via pθ1 , and then F0 by pθ2 based on L0. F → L is
similarly executed but with the generation order of L0 and F0 exchanged. Results indicate that
L → F performs better than the F → L, but both are inferior to the joint update in DiffCSP, which
endorses our design. 2. Instead of applying the score matching scheme with WN, we diffuse F
via the standard normal distribution q(Ft|M0) = N

(
Ft|

√
ᾱtF0, (1− ᾱt)I

)
during the generative

process similarly defined as Eq. (5). A lower match rate and higher RMSE are observed for this
variant, probably due to the lack of periodic translation invariance in the marginal distribution.

Table 4: Ablation studies on MP-20. MG:
Multi-Graph edge construction (Xie & Gross-
man, 2018), FT: Fourier-Transformation pro-
posed in § A.2.

Match rate (%) RMSE

L→ F 50.03 0.0921
F → L 36.73 0.0838

w/o WN 34.09 0.2350

w/o inner product 1.66 0.4002

w/o FT 29.15 0.0926
MG w/ FT 25.85 0.1079
MG w/o FT 28.05 0.1314

DiffCSP 51.49 0.0631

3. Our model achieves orthogonal equivariance via
the inner product L⊤L in Eq. 9. When we replace
it with L in Eq. 9 and change the final output as
ϵ̂L = φL

(
1
N

∑N
i=1 h

(S)
i

)
in Eq. 12 to break the

equivariance, the model suffers from extreme per-
formance detriment. Only 1.66% structures are suc-
cessfully matched, which obviously implies the im-
portance of incorporating orthogonal equivariance. 4.
We adopt Fourier embeddings to capture periodicity.
To investigate its effect, we remove the Fourier em-
beddings from the message in Eq. 9, and the match
rate drops from 51.49% to 29.15%. 5. We further
change the complete graph into the multi-graph ap-
proach adopted in Xie & Grossman (2018). The
multi-graph approach decreases the match rate, since
the multi-graphs constructed under different inter-
mediate structures may differ vibrantly during generation, leading to substantially higher training
difficulty and lower sampling stability.
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E IMPACT OF SAMPLING NUMBERS

Figure 3 illustrates the impact of sampling numbers on the match rate. The match rate of all methods
increases when sampling more candidates, and DiffCSP outperforms the baselines methods under the
arbitrary number of samples.
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Figure 3: Comparison on different number of samples.

F LEARNING CURVES OF DIFFERENT VARIANTS

We plot the curves of training and validation loss of different variants proposed in § D.3 in Figure 4
with the following observations. 1. The multi-graph methods struggle with higher training and
validation loss, as the edges constructed under different disturbed lattices vary significantly, com-
plicating the training procedure. 2. The Fourier transformation, expanding the relative coordinates
and maintaining the periodic translation invariance, helps the model converge faster at the beginning
of the training procedure. 3. The variant utilizing the fully connected graph without the Fourier
transformation (named “DiffCSP w/o FT” in Figure 4) encounters obvious overfitting as the periodic
translation invariance is violated, highlighting the necessity to leverage the desired invariance into the
model.
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Figure 4: Learning curves of different variants proposed in § D.3. MG and FT denote multi-graph
edge construction and Fourier transformation, respectively.

G VISUALIZATIONS

In this section, we first present visualizations of the predicted structures from DiffCSP and other
generative methods in Figure 5. Our DiffCSP provides more accurate predictions compared with
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the baseline methods. Figure 6 illustrates 48 generated structures on Carbon-24. The visualization
shows the capability of DiffCSP to generate diverse metastable structures. We further visualize the
generation process in Figure 7. We find that the generated structure M0 is periodically translated
from the ground truth structure, indicating that the marginal distribution p(M0) follows the desired
periodic translation invariance.

Ground Truth

DiffCSP

CDVAE

P-cG-SchNet

Perov-5 MP-20 MPTS-52

Figure 5: Additional visualizations of the predicted structures from different methods. We translate
the same atom to the origin for better visualization and comparison.

Figure 6: Visualization of the generated structures on Carbon-24.
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𝑡 = 1000 𝑡 = 750 𝑡 = 500 𝑡 = 250 𝑡 = 0 Translated Ground Truth

Figure 7: Visualization of the generation process on MP-20. The column “Translated” means
translating the same atom in the generated structure M0 to the origin as the ground truth for better
comparison.
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