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Abstract

Open source image datasets collected via citizen science plat-
forms (such as iNaturalist) can pave the way for the de-
velopment of powerful AI models for insect detection and
classification. However, traditional supervised learning meth-
ods require labeled data, and manual annotation of these raw
datasets with useful labels (such as bounding boxes) can be
extremely laborious, expensive, and error-prone. In this pa-
per, we show that recent advances in vision-language models
enable highly accurate zero-shot detection of insects in a va-
riety of challenging environs. Our contributions are twofold:
a) We curate the Insecta rank class of iNaturalist to form a
new benchmark dataset of approximately 6M images con-
sisting of 2526 agriculturally important species (both pests
and beneficial insects). b) Using a vision-language object de-
tection method coupled with weak language supervision, we
are able to automatically annotate images in this dataset with
bounding box information localizing the insect within each
image. Our method succeeds in detection of diverse insect
species present in a wide variety of backgrounds, producing
high-quality bounding boxes in a zero-shot manner with no
additional training cost.

Introduction
Insect pests in the agricultural sector cause infestation and
damages to crops resulting in significant economic losses.
Improper identification of species (as well as their num-
ber density, called the action threshold) could potentially
result in unnecessary application of chemicals that could
harm beneficial insects, reduce profitability, and have an ad-
verse environmental footprint. While manual scouting re-
mains the gold standard for pest identification and action
threshold determination, this is a resource and (expert)labor
intensive, yet critical aspect of agriculture. There is signifi-
cant opportunity for computer vision and AI/ML approaches
to contribute to automating this process. However, the task
of identification and localization of insects is very challeng-
ing due to (a) the large number of species, (b) several distinct
species that exhibit remarkably similar visual features, (c)
species exhibiting very diverse features along their develop-
mental cycle (nymph vs adult, larva vs pupa vs adult), and
(d) images where the insect is difficult to differentiate from
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Figure 1: Example bounding boxes and segmentation maps
with zero-shot DETIC.

the background (for example, green colored insect-pests on
green backgrounds).

The availability of massive open source image datasets
(such as iNaturalist (Van Horn et al. 2018)) acquired in a
crowd-sourced manner can be leveraged to build powerful
deep neural network models that perform accurate insect
classification and detection. However traditional deep neu-
ral network-based object detectors require high quality an-
notations (or labels) for all image sample in these datasets.
Annotating labels for object detection involves either pixel-
by-pixel labelling of class information, or marking of tight
bounding boxes for every image in a dataset. Consequently,
creating datasets for AI models for insect detection in a su-
pervised manner can be very laborious, time consuming, and
prone to errors.

To overcome this, we leverage recent advances in vision-
language modeling. Starting from CLIP (Radford et al.
2021), the key idea has been to pre-train deep networks that
learn to match image data (possibly gathered in an unstruc-
tured manner) to associated captions that describe the con-
tents of the images using natural language descriptions. The
resulting models are remarkably robust: CLIP-style models
produce representations of images that transfer very well to
a variety of downstream tasks. For many applications these



models also enable zero-shot performance, i.e., no extra su-
pervision involving additional training data or computation
is required. Rather, inference can be performed by simply
specifying the category/class using a new natural language
description. In our application, we show that merely cou-
pling a recently proposed vision-language object detector
(Zhou et al. 2022) with a single (universal) natural language
prompt provides highly accurate bounding box for a very
large dataset of diverse insect-pest images.

In summary, our contributions in this paper are twofold:
1. We curate the Insecta rank class of iNaturalist to form

a new benchmark dataset of approximately 6M images
consisting of 2526 agriculturally important species. We
perform manual quality checking of a subset of these im-
ages.

2. Using a vision-language object detection method coupled
with weak language supervision, we are able to automat-
ically annotate images in this dataset with bounding box
information localizing insect-pests in each image.

Our method succeeds in detection of diverse insect-pests
present in a wide variety of backgrounds. In the absence
of ground truth, we performed manual quality checks; over
a carefully selected subset of images with diverse insect-
pest categories, our method exhibited tight bound bounding
boxes in large fraction of the samples; therefore, we expect
that our new benchmark dataset can be used in the future for
building high-quality supervised models as well.

Background: Zero-Shot Detection
Detection models focus on two loosely correlated problems:
localizing objects of interest in an image, and assigning
labels to them. One popular approach is a two-stage pro-
cess (Ren et al. 2015; Girshick 2015; He et al. 2020; Lin
et al. 2020) wherein the models detect probable object re-
gion proposals, and further finetune the bounding boxes and
predict classes. In contrast, a single shot detector (Redmon
and Farhadi 2018, 2017) not only generates region propos-
als but also classifies them in a single forward pass. Both of
these however rely on high quality, fine grained annotations
of localized objects in an image for training. Recent work on
weak supervision for detection (Fang et al. 2021; Xu et al.
2021) attempt to resolve the need for such fine-grained la-
belling by assigning labels to boxes based on model predic-
tions. For example, YOLO9000 (Redmon and Farhadi 2017)
assigns labels to boxes based on the magnitude of prediction
scores from the classification head. This however requires
good quality box proposals apriori which may be hard to
achieve essentially leading to a circular problem of needing
good boxes for good class predictions and vice-versa.

Detic (Zhou et al. 2022) presents an interesting zero-shot
solution to this problem by training detection models si-
multaneously with object detection and image classification
datasets. Formally, let Ddet = {xi; {bi,j ; ci,j}} consist of
images with labelled boxes, and Dcls = {xi; ci} be a clas-
sification dataset with image-level labels. Traditional detec-
tion networks consist of a two-stage detector; the first half
of the network, fD : Rd → {Rm × [0; 1]} outputs a set of
bounding boxes and corresponding objectness scores. The

second half, fc : Rm → R4 × [c] takes in every proposal
with an objectness score higher than a threshold and outputs
a bounding box with the corresponding prediction. The net-
works are trained only on Ddet.

Detic improves upon this by training fc on both Ddet

and Dcls. The classification head in fc is also replaced with
CLIP (Radford et al. 2021) embeddings as weights to add
open-set classification capabilities. Every minibatch consists
of mix of samples from Ddet and Dcls. The training ex-
amples from Ddet are trained using the standard detection
loss (boxwise regression and classification losses). Exam-
ples from Dcls are assumed to have a single detected object
(the largest detected box) with the image label as the box
label. The model is then trained with the following loss:

L(I) =

{
LRPN + LReg + Lcls; if I ∈ Ddet

�Lmax−size; if I ∈ Dcls

Note that here, LRPN ; Lreg, and Lcls refer to the training
losses from (Ren et al. 2015) while Lmax−size is a cross-
entropy loss with the target as the image class. DETIC has
two advantages over traditional detectors; (1) it can learn
from image classification datasets which are generally larger
than detection datasets, and contain a variety of classes, and,
(2) the CLIP embeddings used as the classification head al-
low for a far larger number of classes. Thus, contrary to stan-
dard detection models, DETIC does not require fine-tuning,
and can be used for zero-shot detection with natural images.

A New Benchmark Dataset
iNaturalist is a citizen science platform where users can
upload photographs of specific organisms. The iNaturalist
Open Data project is a curated subset of the overall iNatu-
ralist dataset that specifically contains images that apply to
the Creative Commons license created by iNaturalist specif-
ically to aid academic research.

We created a workflow tool, iNaturalist Open Download,
to easily download species images from the iNaturalist Open
Dataset associated with a specific taxonomy rank. We used
the tool to download all images of species under the rank
class Insecta from the iNaturalist Open Dataset for down-
stream annotation, curation and use in our model. We choose
to only use images identified as “research” quality grade un-
der the iNaturalist framework, which indicates that the la-
beling inspection for the image is more rigorous than stan-
dard and has multiple agreeing identifications at the species
level. This results in a total of 13,271,072 images across
95,399 different insect species at the time of writing. The im-
ages have a maximum resolution of 1024x1024, in .jpg/.jpeg
format and total 5.7 terabytes. Among the 95,399 insect
species, we select 2526 species which have been reported
to be the most agriculturally important species. This subset
of insect classes contribute to 6 million images in total.

Experimental Results
We use the highest performing DETIC model from (Zhou
et al. 2022) with the SWINB backbone. The model has been
trained on the COCO and Imagenet-21k datasets, with Cen-
ternet employed as the region proposal network. We run the




