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Abstract

The rapid advancement of techniques in large
language models (LLMs) for processing tabu-
lar data necessitates improvements in evalua-
tion benchmarks. However, most of existing
table benchmarks offer evaluation from a sin-
gular task-based perspective, failing to provide
a comprehensive and meticulous assessment
of the LLMs’ table-related capabilities. To
address this gap, we introduce TableBench, a
capability-based benchmark tailored to evalu-
ate the performance of LLMs on tabular data.
Our framework intricately outlines 10 essential
capabilities required from the point a model
receives a table-related input to the generation
of an output, with each capability tested across
6 table formats. We evaluate 20 models using
TableBench and observe that GPT-4 and GPT-
4o achieve the highest scores, while phi3-small
outperform other open-source models of sim-
ilar scale. Drawing from our evaluation, we
present a series of valuable insights, which can
serve as a pivotal reference for future table-
related LLM research.

1 Introduction

Tables, characterized by the two-dimensional in-
herent structure, are essential for storing, organiz-
ing and presenting large amounts of data, with
widespread applications across diverse domains
such as finance, medicine, business, education, etc.
The pervasive utilization of tables has spurred the
exploration of advanced techniques on large lan-
guage models (LLMs) to effectively process tabular
data, ranging from prompt engineering (Sui et al.,
2024), model finetuning (Li et al., 2023; Zhang
et al., 2023a) to LLM-powered agent (Li et al.,
2024a; Hu et al., 2024).

The advancement of LLM techniques necessi-
tates the improvement of evaluation benchmarks.
Various existing datasets targeting diverse table-
related tasks have been proposed. Specifically, a
significant portion of these datasets is dedicated
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to the TableQA task, exemplified by datasets such
as WikiTQ (Pasupat and Liang, 2015), HybridQA
(Chen et al., 2020b), HiTab (Cheng et al., 2022),
FeTaQA (Nan et al., 2022), and FinQA (Chen et al.,
2021). Each of these datasets emphasizes distinct
dimensions of evaluation. For instance, FinQA
sharpens its focus on the financial domain, while
HiTab introduces the additional challenge of com-
prehending hierarchical table structures. In terms
of fact verification task, datasets such as TabFact
(Chen et al., 2020a) and FEVEROUS (Aly et al.,
2021) are tailored to validate factual accuracy de-
rived from tables. There are also many other table
tasks include Table-to-Text (Parikh et al., 2020;
Nan et al., 2021), Text-to-SQL (Zhong et al., 2017;
Yu et al., 2018), Table Interpretation (Deng et al.,
2020), etc. In addition to datasets tailored for in-



dividual table tasks, there have been efforts to syn-
thesize datasets across various table tasks, such
as UnifiedSKG (Xie et al., 2022), Tablelnstruct
(Zhang et al., 2023a), TableGPT (Li et al., 2023),
etc. While existing datasets have evaluated have
assessed LLMs from different angles, they are pre-
dominantly task-based. Task-based benchmarks
primarily assess a model’s performance on specific
tasks, which often involves a combination of capa-
bilities. Merely assigning a score to a task fails to
provide a nuanced analysis of the individual capa-
bilities necessary for that task. This highlights the
absence of a holistic capability-based benchmark
for evaluating LLMs in handling tabular data.

In response to this need, we introduce
TableBench, a capability-based benchmark crafted
to evaluate the LLMs’ performance on tabular data.
We design TableBench based on a framework that
outlines the key capabilities required for an LLM
to process tabular data, organized into a four-stage
process. Stage 1 involves understanding the table’s
structure, format, and input size. Stage 2 focuses
on locating relevant information and understand-
ing its semantic context. Stage 3 varies depending
on the task, with editing tasks requiring aggrega-
tion and commanding capabilities, while analysis
tasks require aggregating information, summariz-
ing and exploring the underlying patterns. Stage 4
is where the model provides final outputs, includ-
ing the use of coding capabilities for additional
processing. Each stage and capability is carefully
evaluated through 500 curated questions per capa-
bility, forming the basis of TableBench.

Our contributions are summarized as follows:

* We introduce TableBench, a systematic and
comprehensive capability-based benchmark to
assess LLMs’ capabilities on handling tabular
data.

* We evaluate closed-source, generic open-
source and table-specific models (20 in total)
on our proposed benchmark to provide a thor-
ough and detailed assessment.

* We provide valuable insights into LLMs’
table-related capabilities. This analysis serves
as a valuable reference for subsequent re-
search and development efforts in enhancing
the tabular capabilities of LLMs.

2 Related Work

2.1 Table-related models

The pervasive utilization of tables has simulated
the efforts to develop powerful models to handle
tabular data. Conventional approaches for process-
ing tabular data predominately involve customiz-
ing specialized model architectures, often includ-
ing special designs of attention mechanisms, po-
sitional embeddings and learning objectives for
pretraining stage (Deng et al., 2020; Yin et al.,
2020; Wang et al., 2021; Herzig et al., 2020; Liu
et al., 2022). These modifications aims to tailor
the models to capture structural nuances of tabu-
lar data. However, a notable shift in paradigm has
occurred with the emergence of LLMs like GPT-4
(OpenAl, 2023b) , GPT-3.5 (OpenAl, 2023a), and
Llama?2 (Touvron et al., 2023). Initially designed
as generic language models, they exhibit surpris-
ing capability to process tabular data and simulate
new approaches to tackle table-related tasks (Lu
et al., 2024). Some research leverages the powerful
in-context learning of LLMs by curating suitable
prompts to understand table data (Sui et al., 2024),
or utilizing external programming tools to facilitate
Chain-of-thought (CoT) (Wei et al., 2022) infer-
ence. Furthermore, finetuning open-source models
such as Llama (Zhang et al., 2023b), CodeLlama
(Zhang et al., 2024) or building LLM-powered
agents equipped with external tools also receive
great attentions. These ideas have infused new vi-
tality into the field.

2.2 Table-related datasets

The progress in LLM techniques requires high-
quality benchmarks across diverse table-related
tasks. Typical table tasks include TableQA (Pa-
supat and Liang, 2015; Chen et al., 2020b; Nan
et al., 2022; Cheng et al., 2021), Fact Verification
(Chen et al., 2020a; Aly et al., 2021), Table-to-Text
(Parikh et al., 2020; Nan et al., 2021), Text-to-SQL
(Zhong et al., 2017; Yu et al., 2018), Table Interpre-
tation (Deng et al., 2020), etc., which are facilitated
by various carefully curated datasets. While these
table datasets were released relatively early, they
laid a solid foundation for subsequent datasets and
have become an indispensable part of the field.
Some new benchmarks have been proposed to
meet the increasing demands for more diverse eval-
uation. For instance, Text2Analysis incorporates
advanced analysis tasks that extend beyond SQL-
compatible operations and require more compli-



cated analysis (He et al., 2024). WikiTableEdit
complicates the table manipulation task by intro-
ducing both regular and irregular table editing by
natural language instruction (Li et al., 2024b). Ad-
ditionally, Table-GPT (Zha et al., 2023) and Table-
Instruct (Zhang et al., 2023b) collect and synthe-
size a wide range of table datasets to diversify the
evaluation dimensions. Although originally de-
signed to evaluate their own fine-tuned models,
they still offer valuable references for evaluating
generic LLMs.

While existing benchmarks have provided eval-
uations of LLMs across various dimensions, they
are predominantly task-based. Task-based bench-
marks primarily focus on evaluating a model’s per-
formance on specific tasks, which often involve a
mixture of capabilities. Simply providing a score
for a task does not allow for a detailed analysis
of the specific capabilities required for that task.
This highlights the absence of a holistic capability-
based benchmark for evaluating the performance
of LL.Ms in handling tabular data.

3 TableBench

3.1 Framework

We systemically design TableBench based on a
capability-based framework (see Figure 1). It intri-
cately delineates the required capabilities involved
in the process from an LLM receiving a table-
related input to providing output. We divide it
into a 4-stage process and evaluate corresponding
capabilities.

Stage 1 is where a model receives a user query
and a table as the input and starts to recognize
the table. This stage involves the understanding
of table structure (structure understanding), table
format (format understanding), and the table length
(large-table understanding). These understanding
capabilities enable the model to distinguish table
from sequential natural language.

Stage 2 begins by the model searching for and
identifying the regions where the answers to the
user query might locate, demonstrating its ground-
ing capability. It then proceeds to understand the
semantic contents and relationships within these
areas, showcasing its (knowledge capability).

Stage 3 depends on the specific user demands.
From the user’s perspective, the demands for tab-
ular data can be primarily categorized into table
editing and analyzing. In editing tasks, the model
is required to group the located information from

stage 2 (aggregation capability) and execute spe-
cific actions or commands to manipulate the table
(commanding capability). For table analysis tasks,
the model first synthesize the extracted information
or summarize grouped contents (summarization
capability) before delving deeper to explore signif-
icant insights (exploration capability).

Stage 4 is where the model provides the final
outputs. In the context of tabular data, a notable
aspect is the utilization of code in addition to di-
rectly output the answer from the table. Therefore,
during the output phase, the coding capability of
the model also requires evaluation.

3.2 Benchmark Construction

Structure Understanding This category as-
sesses the capability of an LLM on identifying
the organizational layout of tables. The model is
required to answer questions related to table bound-
ary, header, rows/column number, and supplemen-
tary information given a serialized table input. It
aims to test whether an LLM can accurately inter-
pret the foundational layout of a table.

Data source: This category contains two types of
data sources. The first source is the annotated table
regions of VEnron2, VEUSUS and VFUSE, as in-
troduced in TableSense (Dong et al., 2019). These
table regions are used to construct a boundary de-
tection task, where, given a table with addresses
(e.g., Al, B2, C3), the model needs to output the
range of the table, such as "A5:G8". For the sec-
ond data source, we use the same combination of
three datasets as Gol et al. (2019): DeEx!, SAUS?,
and CIUS? (DSC for short) to construct structure-
related questions. DSC contains columns/rows
numbers and cell-level annotations, which we uti-
lize to require model to answer the numbers of
columns/rows and identify whether the given table
contains a header or extra information.

Metric: We use accuracy as the metric to evalu-
ate this capability.

Format Understanding This category is essen-
tial to reveal the capability of an LLM to recognize
and digest various table formats. One table can
have various storage formats, each presenting dif-
ferent levels of information compression (Sui et al.,
2024). We follow Sui et al. (2024) to convert a table

"https://wwwdb.inf.tu-dresden.de/research-
projects/deexcelarator/

“https://dbgroup.eecs.umich.edu/project/sheets/datasets.html

3https://ucr.fbi.gov/crime-in-the-u.s
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Structure Accuracy T+Q Answer 2,244
Largetable Accuracy T+Q Answer 33,239
Commanding TEDS T+I Table 1,117
Knowledge Accuracy T+Q Answer 605
Grounding Accuracy T+Q Answer 1,686
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Figure 2: The Components of TableBench. Pie chart on the left side details the datasets used to evaluate each
capability and their subcategories. Table on the right side summarizes the metrics, inputs, outputs and average data
length. T,Q,LS are abbreviations for Table, Question, Instruction, and Statement.

into different formats but go further by applying
them to a greater number of models and datasets.
We uniformly convert all the tables into 2d-lists,
which enables convenient transformation to various
formats. In our experiments, we typically select
six widely used formats: JSON, HTML, XML, La-
TeX, Markdown, and Grid. But our code is capable
of supporting more conversions of other different
formats. Since we apply these formats to all of
our other capability tests, no specific datasets and
metrics are used.

Knowledge Understanding This category in-
tends to assess the capability of an LLM to under-
stand the semantic structure and meaning of table
contents. It requires a model to link the elements of
the table to semantic tags from Knowledge Graph
(KG).

Data source: We use WikidataTables (Cutrona
et al., 2020) dataset in SemTab 2023*. The dataset
encompasses three tasks, namely CEA (Cell Entity
Annotation), which involves annotating each target
cell with an entity from Wikidata; CTA (Column
Type Annotation), which entails annotating each
entity column with items from Wikidata as its type;
and CPA (Column Property Annotation), which
requires annotating each column pair with a prop-

*https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

erty from Wikidata. For the output of those tasks,
the dataset employs the IDs of either an entity or
a property. To evaluate the model’s capacity for
understanding knowledge in tables rather than just
memorizing IDs, we convert the IDs into their cor-
responding english names and aliases, transforming
the output of the task into the names of entities or
properties.

Metric: The overall metric is defined as the aver-
age accuracy of CEA, CPA, and CTA accuracy. For
the CEA and CPA tasks, a prediction is considered
correct when the predicted value matches one of the
ground truth entity or property names or aliases. As
for the CTA task, we utilize approximate accuracy,
which is defined the same as SemTab’. Formula
details are in Appendix C.2.

Large-table Understanding This category fo-
cuses on evaluating the capability of an LLM to
manage large tables that may contain vast amounts
of cells. It is design to evaluate whether a model
can handle scalability issues and whether the per-
formance remains robust with large tables. In this
part, we collect tables from 5 token lengths: <4k, 4-
8k, 8-16k, 16-32k and >32k, each with 100 pieces
of data.

Data source: We utilize DCS (same as Struc-

Shttps://sem-tab-challenge. github.io/2023/



ture Understanding part) as the source of data and
classify them into different lengths. To exclusively
assess the model’s comprehension of large tables
while decoupling it from other capabilities, we have
processed the dataset as follows:

* To decouple from the understanding of com-
plex structures, we select the column-major
simple tables from the dataset for evaluation.
This involves removing metadata, notes, and
other supplementary information from the
tables, filtering out those that are primarily
column-based and possess only the first row
as the header for experiment.

e To decouple from the ability to compre-
hend complex questions, we generate simple
queries with fixed answers to test large table
capability. These primarily include questions
about the number of rows in the table, the
number of columns, and the content of the
header in the n-th column.

Metric: We use accuracy as the metric to evalu-
ate this capability.

Commanding Table commanding refers to the
capability of an LLM to manipulate table(s) follow-
ing various user commands. We aim to explore the
model’s intrinsic commanding capabilities, thus re-
quiring the model to directly return the edited result
without relying on external tools or code.

Data source: We select WikiTableEdit (Li et al.,
2024b) as the data source for testing this capabil-
ity. Each data instance in this dataset consists of
a triplet denoted as (instruction, source table, and
target table), which requires the model to return
the modified table directly. It covers a wide range
of operations such as adding, removing, swapping,
reordering, merging, and splitting.

Metric: We use Tree-Edit-Distance-based Simi-
larity (TEDS) (Zhong et al., 2019) as the metric for
evaluation, which is designed to measure both the
structure and the cell content similarity between
the prediction and ground truth. The score is nor-
malized between 0 and 1 where 1 means perfect
matching. It is original designed for evaluating
HTML-format tables, but we modify the code to
support multiple formats. Detailed formula can be
found in Appendix C.1.

Coding This category requires developing code
to manipulate and process table data effectively,
aiming to assess the coding proficiency of an LLM

in handling and processing tabular data. Given
a serialized table input, the model is required to
writing Python code to automate data transforma-
tions, merging, filtering, and other processing tasks.
Furthermore, it encompasses tasks related to gen-
erating SQL queries for manipulating information
from tables.

Data source: For coding with table, there are cur-
rently two mainstream types of datasets — Python
and SQL. For Python, we use the Text2analysis
(He et al., 2024) dataset, which is designed for
exploring advanced analysis through Python code
generation on tables. We specifically select the
rudimentary analysis task to test the model’s cod-
ing capabilities. For SQL, we choose the WikiSQL
(Zhong et al., 2017) dataset, which involves parsing
queries and corresponding tables into SQL state-
ments.

Metric: The overall metric is defined as the aver-
age pass rate of Text2Analysis and WikiSQL pass
rate. Pass rate of WikiSQL is the execution ac-
curacy in (Zhong et al., 2017). The pass rate for
Text2analysis is similar to (He et al., 2024), repre-
senting the proportion of samples where the code
correctly passes out of the total number of samples.

Grounding This category aims at testing the ca-
pability of an LL.M in locating and extracting the
specific information given a user question. It re-
quires the model to index, search, locate and return
the exact match answer of the question from the
table.

Data source: We utilize the WikiTQ (Pasupat
and Liang, 2015) dataset, which is a TableQA
dataset. To evaluate grounding capability, we filter
out examples where the result is a specific cell in a
table, using these as evaluation samples.

Metric: We use accuracy as the metric to evalu-
ate this capability.

Aggregation This category is design to reveal the
capability of an LLM to perform numerical reason-
ing. It requires the model to synthesize information
across multiple cells or rows/columns to conduct
numerical calculation and inference.

Data source: We utilize the WikiTQ (Pasu-
pat and Liang, 2015) dataset, which is a tableQA
dataset. To evaluate aggregation capability, we fil-
ter out examples where the result is numerical but
not a specific cell in a table, using these as evalua-
tion samples.

Metric: We use accuracy as the metric to evalu-
ate this capability.



Summarization This task is centered around test-
ing the capability of an LLM on distilling high-
level summaries from structured data. It requires
the model to provide a one-sentence description
given a question or determine whether a summary
can be derived from the table.

Data source: We utilize free form TableQA and
fact verification tasks to evaluate summarization
capability. For free form TableQA task, generating
a free-form answer, which is expressed as a single
sentence, requires the model not only to retrieve
the correct information but also to summarize it
to produce a complete and coherent sentence. We
utilize FetaQA (Nan et al., 2022) dataset, which
is a TableQA dataset with free form answer. For
the fact verification task, the given statement is pre-
summarized information, and model needs to query
and summarize information from the table and then
compare it with the given statement to determine
the result. We utilize TabFact (Chen et al., 2020a)
dataset.

Metric: The overall metric is defined as the av-
erage score of BLEU for FetaQA and accuracy for
TabFact.

Exploration This category aims at evaluating the
capability of an LLM to navigate through and draw
valuable insights from tabular data. It requires
the model to uncover patterns, trends, and insights
from organized table data.

Data source: We utilize basic insights and chart
generation tasks in Text2Analysis (He et al., 2024)
dataset, which is designed for exploring advanced
analysis through Python code generation on tables.
To more accurately evaluate the model’s explo-
ration capability rather than coding capability, we
transform the dataset into one that directly gener-
ates basic insights and chart results. In other words,
the output of the task is the execution results of the
code in the original dataset.

Metric: We use accuracy as the metric to evalu-
ate this capability.

3.3 Data Statistics

The statistics of TableBench are shown in Figure
2. TableBench covers a wide range of table tasks
which are re-classified into different capabilities.
For each capability, we meticulously select 500
data samples to evaluate the LLMs’ performance,
resulting in a total of 4,500 questions. In terms of
average input length, most of the data falls within
2k tokens. We specially prepare a set of large tables

with an average length of 33,239 and the longest
data length reaching 680k.

4 Experiments

A thorough set of experiments are conducted on
TableBench. We evaluate 20 models on all the capa-
bility tests with 6 different formats. We report the
best format results in Table 1 and put the specific
results of each format in Appendix F. We detail
the selected models and experiment setups in this
section.

4.1 Models

Our evaluation encompasses closed-source mod-
els, open-source models and table-specific models
(20 models). We provide a detailed assessment of
these models on TableBench. Below is a list of all
the models we select: (1) Closed-source models:
GPT-3.5, GPT-4, GPT-40. (2) Table-specific mod-
els: TableLLM (Zhang et al., 2024), TableLlama
(Zhang et al., 2023a). (3) Open-source models:
Llama?2 (Touvron et al., 2023), Llama3 (Touvron
et al., 2023), Qwen2 (Bai et al., 2023), Mistral
(Jiang et al., 2023), Mixtral (Jiang et al., 2024),
Yil.5 (Al et al., 2024), Phi3 (Abdin et al., 2024),
DeepSeek (DeepSeek-Al, 2024). Specific model
versions are presented in Appendix 3.

4.2 Setups

For each capability testing, we carefully design the
prompt to optimize the model performance under
one-shot setting. Detailed prompt templates for
each category can be found in Appendix D.

We use OpenCompass (Contributors, 2023) as
the evaluation framework and vLLM (Kwon et al.,
2023) to accelerate inference speed.

5 Key Insights

In this section, we will delve deeper into the eval-
uation results and provides some insights of table-
related capabilities of LLMs.

Evaluation results The evaluation results of all
selected models on TableBench are presented in
Table 1 and Figure 3. It is not surprising to find that
closed-source models outperform most of the open-
source and table-specific models in terms of over-
all scores, where GPT-4 and GPT-40 receive the
same highest score of 0.57. Llama-3-70B-Instruct
is the best-performance open-source model which
reaches 0.52. However, it is surprising to find that



Table 1: LLMs Evaluation on TableBench with Their Highest Score among All Formats. #1 and #2 represent
the fine-tuned table formats of TableLlama and TableLLM respectively. For each metric in each section, the bold
number indicates the highest performance.

Total
Model Structure  Large-table Knowledge Commanding Coding Grounding Aggregation Summary Exploration Total
Proprietary Models
GPT-3.5 0.43 (json) ~ 0.10 (json)  0.54 (html) 0.95 (xml) 0.40 (grid)  0.63 (latex) 0.35 (grid) 0.44 (md) 0.54 (md) 0.49
GPT-4 0.47 (md) 0.23 (json) 0.64 (json) 0.97 (xml) 0.38 (xml) 0.75 (json) 0.54 (json) 0.54 (json) 0.58 (json) 0.57
GPT-40 0.51 (md) 0.24 (json)  0.66 (html) 0.94 (json) 0.46 (md) 0.76 (xml) 0.59 (md) 0.54 (xml)  0.43 (html) 0.57
Table-Specific Models
TableLlama 0.08 (#1) 0.01 (#1) 0.31 (#1) 0.06 (#1) 0.01 (#1) 0.37 (#1) 0.17 (#1) 0.46 (#1) 0.15 (#1) 0.18
TableLLM-7B 0.24 (#2) 0.03 (json) 0.35 (#2) 0.15 (html) 0.27 (html) 0.30 (#2) 0.17 (#2) 0.35 (#2) 0.17 (#2) 023
TableLLM-13B 0.27 (#2) 0.03 (json) 0.38 (xml) 0.80 (html) 0.27 (html)  0.47 (json) 0.22 (#2) 0.36 (#2) 0.24 (latex)  0.34
Open-Source Models
Llama-2-7B-Chat 0.27 (json) 0.01 (json) 0.27 (latex) 0.70 (latex) 0.13 (latex) ~ 0.33 (json) 0.13 (latex) 0.34 (latex) 0.04 (grid) 0.25
Mistral-7B-Instruct-v0.2 0.27 (json)  0.07 (html) 0.34 (xml) 0.74 (html) 0.30 (md) 0.43 (grid) 0.18 (md) 0.33 (grid) 0.16 (json) 0.31
Mistral-7B-Instruct-v0.3 0.42 (html) ~ 0.10 (html) 0.43 (xml) 0.90 (xml) 0.41 (xml)  0.47 (xml) 0.25 (latex) ~ 0.43 (html) 0.38 (md) 0.42
Qwen-2-7B-Instruct 0.39 (html)  0.09 (latex) 0.45 (xml) 0.89 (xml) 0.33 (xml) 0.57 (json) 0.32 (latex) 0.41 (xml) 0.60 (html) 0.45
Phi-3-Small-8k-Instruct 0.36 (json)  0.06 (json) 0.40 (grid) 0.91 (xml) 0.36 (md) 0.58 (json) 0.33 (md) 0.57 (html) 0.61 (md) 0.46
Phi-3-Small-128k-Instruct ~ 0.35 (latex)  0.07 (json) 0.29 (grid) 0.90 (xml) 0.37 (xml)  0.45 (html) 0.16 (json) 0.38 (grid) 0.57 (md) 0.39
Deepseek-7B-chat 0.27 (latex) 0.02 (json) 0.33 (latex) 0.80 (xml) 0.19 (grid) 0.34 (json) 0.15 (latex) 0.35 (json) 0.43 (latex) 0.32
Llama-3-8B-Instruct 0.37 (xml) 0.05 (json) 0.37 (xml) 0.85 (xml) 0.41 (latex)  0.51 (xml) 0.29 (json) 0.43 (grid) 0.56 (md) 0.43
Yi-1.5-9B-Chat 0.35 (json)  0.07 (latex) 0.46 (md) 0.83 (md) 0.32 (json)  0.51 (latex) 0.24 (json) 0.46 (json) 0.56 (md) 0.42
Llama-2-13B-chat 0.30 (json) 0.01 (json) 0.33 (xml) 0.78 (md) 0.18 (md) 0.35 (json) 0.15 (json) 0.37(xml) 0.06 (grid) 0.27
Phi-3-Medium-4k-Instruct ~ 0.30 (json) 0.03 (json) 0.48 (json) 0.84 (md) 0.44 (md) 0.56 (md) 0.30 (md) 0.46 (latex) 0.53 (xml) 0.44
Yi-1.5-34B-Chat 0.36 (json) ~ 0.07 (json) 0.50 (json) 0.84 (json) 0.27 (md) 0.60 (json) 0.32 (md) 0.49 (html)  0.49 (html) 0.45
Mixtral-8x7B-Instruct 0.44 (html) ~ 0.16 (html)  0.43 (html) 0.83 (html) 0.39 (html) ~ 0.53 (html) 0.33 (html) ~ 0.41 (latex)  0.16 (grid) 0.41
Llama-3-70B-Instruct 0.46 (md) 0.14 (json) 0.56 (xml) 0.93 (xml) 0.35 (json)  0.68 (grid) 0.46 (html) 0.49 (md) 0.61 (md) 0.52

Phi3-Small-8k-Instruct not only surpasses mod-
els with similar parameters, such as Mistral-7B-
Instruct-v0.3 and Qwen-2-7B-Instruct, but also out-
performs larger LLMs like Mixtral-8x7B-Instruct
and Yi-1.5-34B-Chat. Also, the table-specific mod-
els provide unsatisfactory results.

Format understanding capability We conduct
holistic experiments of applying different formats
to all the capability tests. Generally, it can be ob-
served that different models exhibit varying pref-
erences for formats, and the formats of the best
results in various capability tests also differs. How-
ever, We have observed that JSON is the preferred
format for large-table capability testing, as 14 out
of 20 models deliver the best results with this for-
mat compared to the other five. And XML and
HTML format shows advantages in knowledge un-
derstanding testing. Besides, it is found that models
within the same series exhibit similar format pref-
erences, such as GPT-series, llama-series, mistral-
series, phi-series in largetable capability testing.

Largetable capability analysis Largetable test-
ing poses great challenges to the tested models as is
shown in their relatively low scores. We specially
select 5 models that claim to support long context
ranging from 16k to 131k, and provide the accuracy
of their answers to input with varying table lengths
(see Table 2). For questions of less than 4k length,
the models can answer a a portion of questions
correctly, with GPT-40 achieving an accuracy of
56%. However, for data exceeding 4k in length, the

performance of all models, except for GPT-4o, de-
teriorates significantly, with most models unable to
provide correct answers for data exceeding 32k in
length. Our questions primarily focus on tasks such
as determining the number of columns or rows, or
outputting the column name of a specified cell. The
models lose their largetable understanding capabil-
ity as the table length increases, even though most
of the data falls within the context window of the
models. This indicates that there is much room for
improvement of extending model context window
while maintaining the model’s table processing ca-
pability.

Table 2: The Results (Accuracy) of Five Long Context
Models in Largetable Testing of TableBench. "Avg" is
the average score over five lengths. The highest average
score is bold, and the highest score in each length is
underlined.

Model <4k  4-8k 8-16k 16-32k >32k Avg
Yi-1.5-34B (16k) 032 0.00 0.00 0.01 0.00 0.07
Mistral-7B (32k) 024 008 0.16 0.01 0.00 0.10
GPT-40 (128k) 0.56 0.55 0.06 0.01 0.00 0.24
Phi-3-7B (128k) 0.15 0.03 0.03 0.04 0.01 0.07
Qwen-2-7B (131k)  0.26  0.05  0.06 0.07 0.00  0.09

Dependencies among different capabilities In
Table 1, we observe dependencies among a model’s
various capabilities. Primarily, a positive corre-
lation is observed between the commanding ca-
pability and the model’s comprehension of table
structures. Broadly speaking, as the understanding
capability of table structures improves, the com-
manding capability will improve correspondingly.



T 032
T 0 31
LT T R
T 0 27
i i 25
I 22
I (.18

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Summarizaf tion

Figure 3: Total Evaluation Scores (on the left figure) and Evaluation Scores of Each Capabilities (on the right

figure).

This correlation stems from the fact that table oper-
ations frequently involve modifications to rows and
columns, necessitating a clear grasp of the table’s
structure for accurate manipulation.

Furthermore, from a holistic perspective, the ag-
gregation capability and summarization capability
exert influence on the model’s exploration capa-
bility. Models with high proficiency in these two
abilities tend to exhibit enhanced exploration capa-
bilities. This phenomenon suggests that when ad-
dressing queries requiring the provision of insights,
trends, or the identification of hidden patterns, a
model requires the support from integrating and
summarizing related information. However, a few
models displayed subpar performance in the explo-
ration capability test. Through error analysis, we
determine that this is partly attributable to the mod-
els’ inadequate capabilities and partly due to their
failure to effectively adhere to the prompt instruc-
tions. This lead to output answers that could not
be recognized, ultimately resulting in them being
labeled as incorrect.

Table-specific models’ capabilities We evalu-
ation three table specific models on TableBench:
TableLlama, TableLL.M-7B, and TableLLM-13B.
TableLlama is a fine-tuned version of Llama?2 (7B)
trained on Tablelnstruct (Zhang et al., 2023b), and
TableLLM is based on CodeLlama. In Figure 5,
we apply different formats, including the models’
original ones, to evaluate the models. It is observed
that TableLlama is sensitive to the table formats
and finetuning prompts. After testing with our stan-
dardized six formats, TableLlama-7B only receives
a score of 0.06. However, when using the origi-
nal prompts and table formats, several scores of
model’s capabilities greatly improve with overall
score from 0.06 to 0.18. A similar pattern is ob-

served with the TableLLM-7B model, likely indi-
cating smaller parameter models tend to have a
stronger preference for fine-tuned formats. Based
on the fine-tuning dataset provided in the TableL-
lama paper, it is further evident that fine-tuned mod-
els exhibit a shift in capabilities towards the require-
ments of the fine-tuning dataset, resulting in a loss
of generalization. However, this loss of capability
can be mitigated as the model’s parameter size in-
creases. For instance, when the parameter count
of TableLLM increased to 13B, the model’s perfor-
mance using the standardized format is comparable
to, if not better than, its performance on its specific
format, particularly excelling in the commanding
capability.

6 Conclusion

In this paper, we introduce TableBench, a new
capability-based benchmark crafted to assess the
performance of LLMs on tabular data. Our frame-
work intricately outlines 10 essential capabilities
required from the point a model receives a table-
related input to the generation of an output, with
each capability tested across 6 table formats. We
conduct comprehensive evaluations on 20 models
using TableBench and observe that GPT-4 and GPT-
40 achieve the highest scores, while phi3-small out-
perform other open-source models of similar scale.
Based on the evaluation, we find that the JSON
format is an optimal choice for LLMs to process
large tables and those models that claim to be able
to process long context window do not perform
well on tabular data. We also observe dependencies
among different capabilities. Our benchmark and
conclusions can serves as a pivotal reference for
future table-related LLM research.



Limitations

The primary limitation of this work lies in the unex-
plored capabilities. For instance, in the current edit-
ing and analysis tasks, we have mainly explored
the performance on column-major simple tables
and have not addressed more complex structured
tables, such as those with merged cells or multi-
tiered headers. This limitation is also reflective of
the field of tabular tasks, where there is limited
exploration of complex structured tables in down-
stream tasks. There are few appropriate datasets
and benchmarks available that facilitate such explo-
ration. This represents a future direction that the
community in this field can collectively investigate.
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A Model Versions

B Extra Experiments
C Metric Details

C.1 TEDS

Tree-Edit-Distance-Distance-Based (TEDS) met-
ric is proposed by Zhong et al. (2019) to measure
the semantic and structural similarity between two
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Model

Version

GPT-3.5

GPT-4

GPT-40

TableLlama
TableLLM-7B
TableLLM-13B
Llama-2-7B-Chat
Llama-2-13B-Chat
Llama-3-8B-Instruct
Llama-3-70B-Instruct
Mistral-7B-Instruct-v0.2
Mistral-7B-Instruct-v0.3
Mixtral-8x7B-Instruct
Phi-3-Small-8k-Instruct
Phi-3-Small-128k-Instruct
Phi-3-Medium-4k-Instruct
Qwen-2-7B-Instruct
Yi-1.5-9B-Chat
Yi-1.5-34B-Chat
Deepseek-7B-Chat

gpt-3.5-turbo-0125
gpt-4-1106-preview
gpt-40-2024-05-13
osunlp/TableLlama
RUCKBReasoning/TableLLM-7b
RUCKBReasoning/TableLLM-13b
meta-llama/Llama-2-7b-chat-hf
meta-llama/Llama-2-13b-chat-hf
meta-llama/Meta-Llama-3-8B-Instruct
meta-llama/Meta-Llama-3-70B-Instruct
mistralai/Mistral-7B-Instruct-v0.2
mistralai/Mistral-7B-Instruct-v0.3
mistralai/Mixtral-8x7B-Instruct-v0.1
microsoft/Phi-3-small-8k-instruct
microsoft/Phi-3-small-128k-instruct
microsoft/Phi-3-medium-4k-instruct
Qwen/Qwen2-7B-Instruct
01-ai/Yi-1.5-9B-Chat
01-ai/Yi-1.5-34B-Chat
deepseek-ai/deepseek-1lm-7b-chat

Table 3: The Huggingface/Offical Model Version
Names of All the Tested Models.

tables. It takes the cost of insertion and deletion op-
erations as 1. When the edit is substituting a node
n, wWith ng, the cost is 1 if either n,, or ng is not td
(table cells in HTML). When both n, and ng are
td, the substitution cost if 1 if the column span or
the row span of n, and n; is different. Otherwise,
the substitution cost is the normalized Levenshtein
similarity (Levenshtein et al., 1966) (€ [0,1]) be-
tween the content of n, and ns. Therefore, TEDS
between two trees is computed as

EditDist(T,, T)

TEDS(Ta,Tp) = 1 —
(Te, Th) maz ([T, 1)

where EditDist denotes tree-edit distance, and
|T'| is the number of nodes in T'.

C.2 CTA approximate accuracy

For CTA task in knowledge understanding cate-
gory, we utilize approximate accuracy as the metric,
which is defined as:

ZaEall samples g(a)
F£all samples

Approximate Accuracy =

1.0, if a is a perfect annotation (PA)

g(a) = 0.8%(®) " if @ is an ancestor of PA and d(a) < 5
0.7%%) if g is a descendent of PA and d(a) < 3
0, otherwise

where, # denotes the number, d(a) is the depth
to the perfect annotation. E.g., d(a) = lifais a
parent of the perfect annotation, and d(a) = 2 if a
is a grandparent of the perfect annotation.
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TableBench - Structure Understanding

Instruction: Given a table, please answer the question based on the table. Do NOT add any explanations. Return the
final result as the JSON format: {’prediction’: ’<answer>’}, such as {’prediction’: *China’}.

Table: <example serialized table>

Question: Does this table have a header? Return the final result as the JSON format: {’prediction’: ’<an-
swer>’}.

Answer: {’prediction’: "yes’}
Table: <serialized input table>

Answer:

TableBench - Largetable Understanding

Instruction: Given a table, please answer the question based on the table. Do NOT add any explanations. You only
need to output a number in a JSON format: { prediction’: <answer>’}, such as { prediction’: ’3’}

Table: <example serialized table>

Question: How many columns are there in the table? Return the final result as the JSON format: {’predic-
tion’: ’<answer>’}.

Answer: {’prediction’: ’3’}

Table: <serialized input table>

Answer:
Table 4: Results of All Models on TableBench in XML Format.
XML
Model Structure Largetable Knowledge Commanding Coding Grounding Aggregation Summary Exploration
Proprietary Models
GPT-3.5 0.32 0.07 0.54 0.95 0.39 0.60 0.31 0.42 0.48
GPT-4 0.43 0.11 0.61 0.97 0.38 0.72 0.48 0.52 0.51
GPT-40 0.43 0.11 0.65 0.94 0.42 0.76 0.54 0.54 0.38
Table-Specific Models
TableLlama 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.01 0.02
TableLLM-7B 0.24 0.02 0.14 0.14 0.25 0.21 0.00 0.07 0.08
TableLLM-13B 0.18 0.01 0.38 0.65 0.25 0.41 0.03 0.09 0.08
Open-Source Models
Llama-2-7B-Chat 0.15 0.01 0.22 0.58 0.07 0.31 0.12 0.30 0.01
Llama-2-13B-Chat 0.19 0.01 0.33 0.77 0.16 0.32 0.14 0.37 0.04
Llama-3-8B-Instruct 0.37 0.03 0.37 0.85 0.39 0.51 0.28 0.41 0.53
Llama-3-70B-Instruct 0.38 0.09 0.56 0.93 0.34 0.67 0.42 0.49 0.60
Mistral-7B-Instruct-v0.2 0.31 0.05 0.34 0.63 0.25 0.39 0.14 0.30 0.12
Mistral-7B-Instruct-v0.3 0.39 0.05 0.43 0.90 0.41 0.47 0.21 0.41 0.32
Mixtral-8x7B-Instruct 0.41 0.10 0.37 0.80 0.38 0.52 0.29 0.35 0.10
Phi-3-Small-8k-Instruct 0.32 0.04 0.34 0.91 0.34 0.54 0.27 0.45 0.59
Phi-3-Small-128k-Instruct 0.28 0.03 0.27 0.90 0.37 0.40 0.13 0.36 0.50
Phi-3-Medium-4k-Instruct 0.24 0.02 0.46 0.80 0.33 0.54 0.25 0.44 0.53
Qwen-2-7B-Instruct 0.31 0.07 0.45 0.89 0.33 0.56 0.30 0.41 0.56
Yi-1.5-9B-Chat 0.25 0.04 0.43 0.79 0.29 0.48 0.22 0.46 0.49
Yi-1.5-34B-Chat 0.33 0.04 0.49 0.56 0.25 0.57 0.30 0.47 0.47
Deepseek-7B-Chat 0.19 0.01 0.32 0.80 0.14 0.31 0.10 0.29 0.42
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TableBench - Commanding

Instruction: I want you to act as a data analytics scientist. I will give you a table, a user query, and you need to generate
Python code to answer the user query. You should follow the rules:

1. Return the Python code, and wrap the code in *~ “python ... " to make it a code block.

2. There is already a DataFrame variable for table in the environment, so you should not reassign ta-
ble=pd.read_html(...) in the code.

3. Stores the final result in the variable result. I will directly utilize the 'result’ variable for assessing the subsequent
code outcomes.

4. The result must be one variable being one of pd.DataFrame, List[int], List[float], List[str], int, float, str, dict.

5. For Pivot/groupby, Aggregation, Filter, Sort, Add virtual field, Calculation operations, you should use the pandas
library.

6. For forecasting, you should use the greykite or prophet library.

7. For chart generation:

7.1 You should use the matplotlib library.

7.2 You should assign a !!!result!!! dictionary: {"x_fields": field_name, "y_fields": [field_namel, field_name2],
"chart_type": chart_type} chart_type choose from lineChart, barChart, scatterChart, pieChart.

7.3 You should print the result at the end.

8. For basic insight, there are 7 types: Rank, RankLast, Attribution, Trend, Monotonicity, Outlier, Unimodality.

8.1 There are two descriptions of insight, and you can choose one of them or their values to answer the query:

+ is_insight: bool, whether the insight is true

+ property: dict, the property of the insight. For "Rank", key is "First" and value is str; for "RankLast", key is
"Last" and value is str; for "Attribution", key is "Dominator" and value is str; for "Trend", key is "IsIncreasing" and
value is bool; for "Monotonicity", key is "Trend" and value is "Increasing" or "Decreasing”; for "Outlier", key is
"TemporalOutlierLocation" and value is List[str]; for "Unimodality", key is "Location" and value is List[str].

8.2 The result of your answer to the query needs to refer to the description. The result must be a direct answer to the
query, not a direct dict of the above descriptions. The result can be True, "Increasing”, "Decreasing” and so on.

Table: <example serialized table>
Question: Who is the tallest boy in class A?
Answer: <modified table>

Table: <serialized input table>

Question: <question>

Answer:

TableBench - Knowledge Understanding

Instruction: Given a table and a target cell, please annotate target cell with an entity of Wikidata. One cell can be
annotated by one entity. Return the entity label name, and do !!!not!!! return the entity id. Return the final result as the
JSON format without extra explanation: {’prediction’: <answer>’}, such as { prediction’: *China’}.

Table: <example serialized table>

Target row id: 3

Target column id: 1

Target cell value: ESO 568-22

Answer: {’prediction’: 3’}

Table: <serialized input table>

Target row id: <row id>

Target column id: <col id>

Target cell value: <value>

Answer:
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TableBench - Grounding

Instruction: Given a table, please answer the question based on the table. Do NOT add any explanations. If there
is more than one answer, separate them with commas(,). Return the final result as the JSON format without extra
explanation: {’prediction’: *<answer>’}, such as {’prediction’: *China’}.

Table: <example serialized table>

Question: how long did it take the 5th place swimmer to finish?

Answer: {’prediction’: "43.12’}

Table: <serialized input table>
Question: <question>

Answer:

TableBench - Summarization

Instruction: Given a table, please answer the question with description based on the table. Do NOT add any
explanations. Return the final result as the JSON format: { prediction’: ’<answer>’}, such as {’prediction’: *China’}.

Table: <example serialized table>

Table page title: Scott Pye

Table section title: Career results

Question: What was the best achievement of Scott Pye in 2012?

Answer: {’prediction’: ’In 2012, Scott Pye placed 2nd with Triple Eight Race Engineering, driving a
Holden VE Commodore in the 2012 V8 Supercar Series.’ }

Table: <serialized input table>

Table page title: Scott Pye

Table section title: Career results

Question: <question>

Answer:

TableBench - Aggregation

Instruction: Given a table, please answer the question based on the table. Do NOT add any explanations. If there
is more than one answer, separate them with commas(,). Return the final result as the JSON format without extra
explanation: {’prediction’: *<answer>’}, such as {’prediction’: *China’}.

Table: <example serialized table>

Question: how many races in the 1950s were not called by bryan field

Answer: {’prediction’: ’5’}

Table: <serialized input table>
Question: <question>

Answer:
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TableBench - Exploration

Instruction: Given a table, please answer the question based on the table. Do NOT add any explanations. If there
is more than one answer, separate them with commas(,). Return the final result as the JSON format without extra
explanation: {’prediction’: *<answer>’}, such as {’prediction’: *China’}.

Table: <example serialized table>

Question: ???

Answer: {’prediction’: ’5’}

Table: <serialized input table>

Question: <question>

Answer:
Table 5: Results of All Models on TableBench in JSON Format.
JSON
Model Structure Largetable Knowledge Commanding Coding Grounding Aggregation Summary Exploration
Proprietary Models
GPT-3.5 0.43 0.10 0.52 0.47 0.38 0.61 0.33 0.42 0.54
GPT-4 0.42 0.23 0.64 091 0.29 0.75 0.54 0.54 0.58
GPT-40 0.47 0.24 0.64 0.91 0.43 0.75 0.57 0.53 0.42
Table-Specific Models
TableLLM 0.01 0.00 0.00 0.00 0.00 0.20 0.06 0.03 0.02
TableLlama-7B 0.24 0.03 0.09 0.01 0.25 0.15 0.00 0.07 0.07
TableLlama-13B 0.27 0.04 0.35 0.59 0.24 0.47 0.03 0.11 0.22
Open-Source Models
Llama-2-7B-Chat 0.27 0.01 0.21 0.58 0.11 0.33 0.09 0.33 0.01
Llama-2-13B-Chat 0.30 0.01 0.29 0.73 0.18 0.35 0.15 0.22 0.00
Llama-3-8B-Instruct 0.37 0.05 0.37 0.45 0.31 0.51 0.29 0.42 0.47
Llama-3-70B-Instruct 0.40 0.14 0.55 0.86 0.35 0.64 0.44 0.48 0.58
Mistral-7B-Instruct-v0.2 0.37 0.05 0.29 0.31 0.27 0.38 0.13 0.29 0.16
Mistral-7B-Instruct-v0.3 0.41 0.06 0.41 0.67 0.30 0.46 0.22 0.41 0.34
Mixtral-8x7B-Instruct 0.42 0.11 0.35 0.53 0.36 0.52 0.30 0.36 0.06
Phi-3-Small-8k-Instruct 0.36 0.06 0.30 0.74 0.33 0.58 0.30 0.47 0.61
Phi-3-Small-128k-Instruct 0.30 0.07 0.25 0.73 0.35 0.38 0.16 0.35 0.54
Phi-3-Medium-4k-Instruct 0.30 0.03 0.48 0.83 0.29 0.53 0.28 0.45 0.50
Qwen-2-7B-Instruct 0.38 0.06 0.44 0.80 0.12 0.57 0.26 0.39 0.57
Yi-1.5-9B-Chat 0.35 0.06 0.42 0.75 0.32 0.50 0.24 0.46 0.50
Yi-1.5-34B-Chat 0.36 0.07 0.50 0.84 0.19 0.60 0.30 0.48 0.47
Deepseek-7B-Chat 0.23 0.02 0.33 0.28 0.16 0.34 0.09 0.35 0.40

Table 6: Results of All Models on TableBench in Latex Format.

Latex
Model Structure Largetable Knowledge Commanding Coding Grounding Aggregation Summary Exploration
Proprietary Models
GPT-3.5 0.40 0.09 0.54 0.79 0.39 0.63 0.33 0.42 0.54
GPT-4 0.44 0.2 0.6 0.83 0.37 0.73 0.51 0.52 0.49
GPT-40 0.48 0.21 0.62 0.82 0.41 0.75 0.57 0.54 0.38
Table-Specific Models
TableLLM 0.00 0.00 0.01 0.02 0.00 0.17 0.09 0.04 0.02
TableLlama-7B 0.24 0.03 0.13 0.42 0.24 0.21 0.00 0.07 0.13
TableLlama-13B 0.23 0.01 0.36 0.63 0.23 0.40 0.01 0.11 0.24
Open-Source Models
Llama-2-7B-Chat 0.27 0.01 0.27 0.70 0.13 0.32 0.13 0.34 0.00
Llama-2-13B-Chat 0.27 0.01 0.28 0.71 0.17 0.35 0.06 0.24 0.03
Llama-3-8B-Instruct 0.37 0.03 0.36 0.72 0.41 0.51 0.27 0.41 0.55
Llama-3-70B-Instruct 0.45 0.08 0.53 0.77 0.32 0.67 0.44 0.47 0.60
Mistral-7B-Instruct-v0.2 0.35 0.05 0.33 0.61 0.28 0.39 0.16 0.30 0.06
Mistral-7B-Instruct-v0.3 0.40 0.06 0.39 0.72 0.38 0.43 0.25 0.42 0.35
Mixtral-8x7B-Instruct 0.39 0.10 0.38 0.66 0.38 0.53 0.31 0.41 0.07
Phi-3-Small-8k-Instruct 0.36 0.04 0.33 0.75 0.33 0.56 0.32 0.46 0.58
Phi-3-Small-128k-Instruct 0.35 0.05 0.24 0.73 0.34 0.28 0.12 0.35 0.47
Phi-3-Medium-4k-Instruct 0.26 0.03 0.45 0.74 0.34 0.53 0.29 0.46 0.49
Qwen-2-7B-Instruct 0.36 0.09 0.43 0.75 0.31 0.55 0.32 0.39 0.58
Yi-1.5-9B-Chat 0.33 0.07 0.43 0.73 0.30 0.51 0.22 0.45 0.52
Yi-1.5-34B-Chat 0.34 0.05 0.49 0.77 0.24 0.55 0.30 0.47 0.46
Deepseek-7B-Chat 0.27 0.01 0.33 0.70 0.15 0.32 0.15 0.33 0.43
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Table 7: Results of All Models on TableBench in Grid Format.

Grid
Model Structure Largetable Knowledge Commanding Coding Grounding Aggregation Summary Exploration
Proprietary Models
GPT-3.5 0.30 0.06 0.54 0.87 0.40 0.61 0.35 0.44 0.50
GPT-4 0.40 0.10 0.58 0.89 0.35 0.73 0.51 0.54 0.52
GPT-40 0.50 0.12 0.63 0.90 0.41 0.76 0.55 0.54 0.37
Table-Specific Models
TableLlama 0.00 0.00 0.02 0.03 0.00 0.28 0.08 0.05 0.02
TableLLM-7B 0.22 0.01 0.16 0.01 0.19 0.18 0.00 0.06 0.04
TableLLM-13B 0.23 0.01 0.36 0.00 0.23 0.39 0.02 0.10 0.19
Open-Source Models
Llama-2-7B-Chat 0.18 0.00 0.25 0.41 0.07 0.31 0.12 0.31 0.04
Llama-2-13B-Chat 0.21 0.01 0.32 0.55 0.16 0.31 0.13 0.35 0.06
Llama-3-8B-Instruct 0.36 0.03 0.33 0.79 0.36 0.51 0.27 0.43 0.56
Llama-3-70B-Instruct 0.44 0.09 0.52 0.85 0.32 0.68 0.44 0.49 0.61
Mistral-7B-Instruct-v0.2 0.33 0.03 0.33 0.70 0.29 0.43 0.17 0.33 0.03
Mistral-7B-Instruct-v0.3 0.40 0.05 0.39 0.78 0.37 0.47 0.22 0.40 0.38
Mixtral-8x7B-Instruct 0.39 0.06 0.39 0.76 0.36 0.52 0.30 0.40 0.16
Phi-3-Small-8k-Instruct 0.33 0.03 0.40 0.77 0.34 0.55 0.30 0.46 0.58
Phi-3-Small-128k-Instruct 0.24 0.04 0.29 0.67 0.35 0.39 0.14 0.38 0.54
Phi-3-Medium-4k-Instruct 0.22 0.03 0.46 0.78 0.38 0.51 0.26 0.45 0.49
Qwen-2-7B-Instruct 0.38 0.03 0.42 0.83 0.30 0.54 0.27 0.41 0.57
Yi-1.5-9B-Chat 0.19 0.03 0.41 0.69 0.27 0.46 0.16 0.44 0.50
Yi-1.5-34B-Chat 0.19 0.04 0.49 0.72 0.23 0.52 0.26 0.46 0.48
Deepseek-7B-Chat 0.22 0.01 0.31 0.00 0.19 0.30 0.12 0.26 0.32

Table 8: Results of All Models on TableBench in HTML Format.

HTML
Model Structure Largetable Knowledge Commanding Coding Grounding Aggregation Summary Exploration
Proprietary Models
GPT-3.5 0.26 0.07 0.54 0.88 0.35 0.58 0.34 0.44 0.49
GPT-4 0.34 0.08 0.6 0.9 0.36 0.75 0.52 0.53 0.48
GPT-40 0.45 0.11 0.66 0.9 0.42 0.74 0.54 0.53 0.43
Table-Specific Models
TableLLM 0.00 0.00 0.00 0.01 0.00 0.10 0.03 0.02 0.01
TableLlama-7B 0.24 0.01 0.12 0.45 0.27 0.23 0.00 0.07 0.08
TableLlama-13B 0.23 0.01 0.38 0.80 0.27 0.41 0.03 0.16 0.23
Open-Source Models
Llama-2-7B-Chat 0.11 0.00 0.19 0.66 0.05 0.30 0.11 0.30 0.01
Llama-2-13B-Chat 0.18 0.01 0.31 0.7 0.11 0.29 0.12 0.36 0.05
Llama-3-8B-Instruct 0.36 0.04 0.36 0.83 0.35 0.50 0.26 0.43 0.54
Llama-3-70B-Instruct 0.41 0.10 0.55 0.87 0.34 0.65 0.46 0.49 0.60
Mistral-7B-Instruct-v0.2 0.34 0.07 0.33 0.74 0.28 0.37 0.14 0.30 0.11
Mistral-7B-Instruct-v0.3 0.42 0.10 0.39 0.78 0.38 0.45 0.22 0.43 0.34
Mixtral-8x7B-Instruct 0.44 0.16 0.43 0.83 0.39 0.53 0.33 0.34 0.10
Phi-3-Small-8k-Instruct 0.28 0.04 0.24 0.85 0.32 0.41 0.30 0.57 0.59
Phi-3-Small-128k-Instruct 0.25 0.07 0.27 0.86 0.13 0.45 0.12 0.32 0.08
Phi-3-Medium-4k-Instruct 0.18 0.03 0.47 0.75 0.25 0.48 0.24 0.45 0.52
Qwen-2-7B-Instruct 0.39 0.06 0.42 0.85 0.32 0.55 0.30 0.41 0.60
Yi-1.5-9B-Chat 0.22 0.04 0.42 0.69 0.25 0.47 0.23 0.46 0.55
Yi-1.5-34B-Chat 0.23 0.06 0.48 0.45 0.20 0.52 0.31 0.49 0.49
Deepseek-7B-Chat 0.16 0.01 0.28 0.72 0.13 0.25 0.09 0.23 0.30
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Table 9: Results of All Models on TableBench in Markdown Format.

Markdown
Model Structure Largetable Knowledge Commanding Coding Grounding Aggregation Summary Exploration
Proprietary Models
GPT-3.5 0.40 0.07 0.52 0.89 0.39 0.62 0.34 0.44 0.54
GPT-4 0.47 0.19 0.61 0.92 0.36 0.74 0.52 0.54 0.56
GPT-40 0.51 0.17 0.62 0.91 0.46 0.74 0.59 0.53 0.42
Table-Specific Models
TableLlama 0.00 0.00 0.02 0.05 0.00 0.25 0.11 0.05 0.02
TableLLM-7B 0.24 0.01 0.20 0.03 0.24 0.19 0.00 0.07 0.06
TableLLM-13B 0.27 0.02 0.36 0.00 0.24 0.39 0.04 0.10 0.23
Open-Source Models
Llama-2-7B-Chat 0.24 0.01 0.22 0.62 0.10 0.32 0.12 0.33 0.03
Llama-2-13B-Chat 0.24 0.01 0.30 0.78 0.18 0.32 0.11 0.36 0.04
Llama-3-8B-Instruct 0.36 0.05 0.31 0.84 0.36 0.51 0.26 0.42 0.56
Llama-3-70B-Instruct 0.46 0.09 0.52 0.88 0.34 0.66 0.43 0.49 0.61
Mistral-7B-Instruct-v0.2 0.34 0.01 0.32 0.68 0.30 0.38 0.18 0.29 0.05
Mistral-7B-Instruct-v0.3 0.38 0.02 0.38 0.81 0.38 0.42 0.24 0.42 0.38
Mixtral-8x7B-Instruct 0.40 0.06 0.34 0.79 0.37 0.52 0.29 0.40 0.07
Phi-3-Small-8k-Instruct 0.32 0.04 0.35 0.82 0.36 0.55 0.33 0.47 0.61
Phi-3-Small-128k-Instruct 0.33 0.03 0.26 0.83 0.36 0.38 0.15 0.37 0.57
Phi-3-Medium-4k-Instruct 0.26 0.03 0.45 0.84 0.44 0.56 0.30 0.45 0.52
Qwen-2-7B-Instruct 0.38 0.04 0.43 0.85 0.29 0.55 0.28 0.38 0.58
Yi-1.5-9B-Chat 0.32 0.05 0.46 0.83 0.30 0.50 0.23 0.45 0.56
Yi-1.5-34B-Chat 0.32 0.04 0.48 0.83 0.27 0.58 0.32 0.48 0.51
Deepseek-7B-Chat 0.23 0.01 0.31 0.00 0.17 0.33 0.14 0.31 0.36
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Figure 5: Format Examples.
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