®

Check for
updates

Smart Scheduling of Home Appliances
Using Happiness Aware Scalable
Reinforcement Learning Agent

Debajyoti Dasgupta!®), Arijit Mondal?, and Partha P. Chakrabarti’

! Indian Institute of Technology Kharagpur, Kharagpur, India
debajyotidasgupta6@gmail.com, ppchak@cse.iitkgp.ac.in
2 Indian Institute of Technology Patna, Patna, India

arijit@iitp.ac.in

Abstract. This study introduces IMPEARL (Incremental Model-based
Predictor Network Agent with Reinforcement Learning), a novel deep
reinforcement learning approach for optimizing household appliance
scheduling. This method intelligently considers uncertainties, variable
pricing models, and user satisfaction, efficiently scaling with increased
tasks. The model uniquely represents appliance states and job statuses,
employing a Deep Q-network with incremental training and feature-
extractor networks for improved performance. By incorporating a recur-
rent connection, IMPEARL captures the time series aspect of the
problem, leading to significant bill savings. Compared to traditional
first-come, first-served methods and state-of-the-art models, IMPEARL
achieves a 37.5% reduction in billing costs, a 66.5% increase in user sat-
isfaction, a 29.08% improvement in minimizing billing costs, a 7.06%
decrease in user dissatisfaction, and is 6.75% less sensitive to variability,
demonstrating its effectiveness in dynamic, non-smart environments.
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1 Introduction

Increasing household power consumption demands advanced infrastructure
despite the high costs. Peaks in energy usage occur during mornings and
evenings, highlighting the need for efficiency improvements by shifting appli-
ance use to off-peak hours, a key demand-side management strategy. Demand-
side management involves direct load control with smart appliances and variable
pricing. Smart grids, supported by municipal programs like PACE financing, are
crucial, especially in renewable energy integration and electric vehicle charg-
ing. In developing countries with limited smart grids, our model uses internet-
connected devices for flexible scheduling based on daily needs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. K. Patel et al. (Eds.): icSoftComp 2024, CCIS 2431, pp. 377-391, 2025.
https://doi.org/10.1007/978-3-031-88042-1_29


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88042-1_29&domain=pdf
https://doi.org/10.1007/978-3-031-88042-1_29

378 D. Dasgupta et al.

We employ a Deep Reinforcement Learning (DRL) approach to develop a job
scheduling model that minimizes costs with time-of-day pricing and penalties for
over-utilization. Building on previous work, we introduce an efficient image-based
scheme to represent device states and energy usage, using feature extractors like
Inception Net, ResNet50, and a modified ResNet. LSTM and LSTNet address
time series aspects, while three novel training methods-incremental training,
time-based fine-tuning, and predictor-guided training-along with a user happi-
ness score metric, enhance performance. Incremental training increased efficiency
by 22% for less efficient models and 10% for more efficient ones, while the pre-
dictor network setup boosted top architecture efficiency by 6.5%. Our methods
cover 60% more potential schedules daily than existing methods. The resulting
model, IMPEARL, achieves a 37% cost reduction compared to manual schedul-
ing and boosts user satisfaction by 66.5%. The paper is organized as follows:
related works (Sect.2), system model (Sect.3), IMPEARL model formulation
(Sect. 4), experimental results (Sect. 5), and conclusion (Sect. 6).

2 Related Work

Demand Side Management (DSM) involves optimizing energy use without addi-
tional infrastructure, focusing on demand response, conservation, and load man-
agement [18,25]. Residential load control, a key DSM aspect, aims to reduce
and shift consumption, with Direct Load Control (DLC) allowing remote man-
agement of home appliances [1,3,17]. However, user comfort remains a crit-
ical barrier [21]. Users independently shift heavy loads to off-peak hours to
save on electricity bills, reducing the Peak-to-Average Ratio (PAR) and costs
[14,16,19]. Deterministic algorithms face challenges modeling constraints for
increased uncertainty and complexity [20], demanding Al-based solutions.

2.1 Deterministic Approaches

Methods in [4] model cost functions and appliance constraints using greedy algo-
rithms for scheduling, influenced by electricity prices and incorporating penal-
ties for significant changes. While simulations show benefits like lower costs and
reduced peak loads, user satisfaction and manual intervention uncertainties are
often overlooked [16].

2.2 Meta-heuristics and AI-ML Based Approaches

Genetic Algorithms (GA) have been applied for cost minimization, integrating
battery storage and renewable energy sources (RESs) [16,19]. These systems
charge batteries during low-cost periods for later use, prioritizing high-demand
appliances from battery sources during peak prices. Evolutionary algorithms and
Deep Reinforcement Learning (DRL) have also been employed for load optimiza-
tion and energy storage management [10,13]. DeepRM [15] demonstrates RL’s
effectiveness for multi-resource scheduling, inspiring solutions in this paper.
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Current models often overlook electricity fluctuations’ impact on losses and
neglect end-user satisfaction. While studies like [12] introduce satisfaction, they
fail to account for human uncertainty and struggle to optimize both cost and
satisfaction. This paper addresses these gaps by focusing on user satisfaction and
manual intervention delays, where deterministic algorithms typically fall short.

3 System Model

The following terminologies are used in the rest of the paper.

Jobs are atomic, non-preemptive tasks. A job is defined as j; = (0;,w;),
where §; is the time required for the i*” job and wj is the average power consumed
per unit time.

A process is a task that the end user needs to schedule, consisting of one
or multiple jobs. For instance, washing clothes includes jobs like spinning and
rinsing. Processes can be preemptive or non-preemptive. Each process is char-
acterized by a list of pending jobs, h; = {ji,, Jins -, Jir }-

Machine refers to any household device used to execute a process, such as a
washing machine or air conditioner. Machines are categorized into three types:

— Type 1: Appliances with definable stages, such as washing machines. These
tasks can be preempted and resumed.

— Type 2: Periodic appliances like AC, maintaining a target condition and
restarting as needed. For example, an AC scheduled at 25°C for t; to ts
hours operates in intervals, cooling for x mins and wearing off for £ mins.

— Type 3: Appliances are performing repeated tasks with variable settings,
such as microwaves (short bursts of heating food).

Peak Power (at time t) is the total power consumed by all devices. Time-of-
the-day pricing with penalties for crossing a base limit is used.

| M| | M|
Total COStt = Ct X Z Pt,m + )\t X max 0, Z Pt,m — Pthresh,t (1)
m=1 m=1

where M is the total number of machines, the focus is minimizing the total bill
amount and peak power consumption by spreading consumption throughout the
day. User satisfaction is maximized by including in the reward function.

4 Overview of IMPEARL Methodology
4.1 Overall Architecture

Figure 1 shows the high-level flow of information for the RL Agent-based sched-
uler, which gathers system information while scheduling jobs, monitors for
delays, and adjusts future schedules. This figure also illustrates the training
and inferencing cycle in a real-world scenario.
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Fig. 1. Overview of the IMPEARL Scheduler

The IMPEARL architecture (Fig. 1) uses an untrained Q-network trained
with incremental training and time-based fine-tuning methodologies. The best
results were observed with & = 15 and § = 5 mins. The training process guides
another model with equal or better representational power. Feedback from the
previously trained model improves representation. Training accounts for human
intervention uncertainty and user satisfaction.

4.2 Deep Q Learning

Image Representation: The observation state is depicted as an image with
dimensions (number of machines x number of jobs x number of distinct
types of machines) (Fig.2). Each image layer focuses on scheduling jobs for
a specific type of machine, reducing redundant states. The intermediate state
shows power utilization levels, with darker cells indicating lower power usage.

3 LAYER FOR 3 g
TYPES OF DEVICES
g
High

JOBS

Fig.2. (a) Energy usage for one device type, (b) 3D stacked 2D layers for three
devices at a unit time, (c) Power usage scale (Dark [low] to White [high])
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Action Space: The action space is represented as a bitmap, where each action
schedules a job on the i*" device (1) or not (0). The action space range is defined
by Actionmi, = 0 and Actionmes = 2™ x 2P, depending on the number of
machines (M) and types of machines (D, which is 3).

Rewards: Rewards shape the RL agent’s decision-making. The custom reward
function considers penalties for illegal scheduling or deadline breaches, rewards
for completing jobs, and penalties inversely proportional to pending jobs.
Rewards also include incentives for minimizing power consumption fluctuations
and a happiness score for overall satisfaction.

Happiness: The happiness function quantifies user satisfaction based on job
requirements, urgency, and completion time variation. It uses a mathematical
formulation inspired by [5,6,22,26]:

1.3
. g _75 1 _l(g)Z
Happiness =p - (=——— —17) - 11 + (k1 - e 2\o l 2
pp p( 30 ) 1 (1 Um ) 2 ()
(g —60)"7
— ko) -1 3
+( 120 2) - I3 (3)
k1 = 3.5 x 10%, ky = 10.5 (4)
0 t<d-—125
Bl tsdmIE g JO s AR L 15 <i<d+12s
T o o t>d—125"" T =1 t>d+1257 0 =t=
0 t>d+125

(5)

Task completion time is ¢, deadline is d, and the difference is g = |t —d|. The
standard deviation ¢ is 35 min. Happiness penalizes late completion, promotes
scheduling near the deadline, and varies rewards for early completion based on
the device type. The function parameters are derived using a grid search. The
dis-satisfaction score is defined as:

D-Score = 1 — Normalized Happiness

4.3 Neural Architectures to Realize IMPEARL

We use deep reinforcement learning with image-based representations and
feature extractor networks like InceptionNet-V3 [24], ResNet-50(V2) [7], and
smaller residual networks. We add a bidirectional LSTM layer and 1D Convolu-
tion for comparison. The predictor network uses LSTNet [11] for multi-variable
time-series regression (Fig. 3).
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Fig. 3. Architecture of Neural Network for Deep Q-Network

4.4 Novel Training Methodologies

Incremental Training: Incremental training begins with a single hidden layer
focusing on one machine. As more machines are included, subsequent layers are
trained. This approach enhances learning efficiency. Initial runs avoid random
initialization. Training allows previous layers to be trainable for a limited fraction
of steps. For example, the 3rd layer is trained for 3000 steps, with 2500 focusing
on the 3rd layer and 500 on the first two layers. The final phase involves fine-
tuning the last two layers and the output layer over 2000-5000 steps.

’ Inception ‘
Network

\ Pred\(uor\s

S~
— - C E: k= Prevlous State
LSTNet
Next Step
Prediction

Fig. 4. (a) Happiness function depicted as a continuous graph (b) Predictor network
process flow diagram (INet-V3 as predictor)

Time Based Fine Tuning: The model divides the day into a minute intervals
for initial training and fine-tunes using shorter § minute intervals. This method
improves performance, with o = 15 and § = 5 mins yielding the best results.

Predictor Network: The predictor network addresses limited exploration in
DQN training by using LSTNet [11]. It combines 6 historical and 3 predicted
future steps. The Inception Network-based RL agent serves as a feature extrac-
tor, guiding the LSTNet-based RL agent (Fig.4(b)).
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Sensitivity Analysis Methodology: Sensitivity analysis measures the impact
of random perturbations on schedules. Let S be the schedule, and Ss the per-
turbed schedule with a random shift § € {—10, —5,0, 5,10} mins. The sensitivity
metric is defined as:

Sensitivity(S) = \/|i| Z (Cost(S5) — u(9))? (6)

J<PA

where A = {-10,-5,0, 5,10}, and Ss is the perturbed schedule. Lower sensitiv-
ity indicates more robust schedules to random delays or early scheduling.

5 Results and Discussions
5.1 Experimental Setup

Environment: Our model consists of devices from various groups (3) that exhibit
distinct states. For instance, washing jobs indicate their current process stage
and remaining time, while air conditioners show the current temperature. The
environment tracks job completion percentages and is implemented using two
classes: Jobs and Machine. It maintains a list of pending jobs and descriptions,
with each machine linked to a list representing process stages. To simulate real-
world unpredictability, occasional delays of 5-10 min are introduced. The RL
agent is informed of each job stage’s time and power consumption, which are
arranged sequentially. The input includes a time rate chart, with the output
being a schedule detailing job cycles, timings, and assigned machines.

Table 1. Time of the Day Rating Chart for experiments (1 Rs (Indian Rupees) =
$0.012 (US$) as per current rates)

Time upto (mins)/Cost (Rs/min)limit (W)penalty (Rs/min)
0-240 10 110 450

240-480 30 110 290

480-720 80 200 50

720-960 45 170 180

960-1200 20 140 380

1200-1440 5 230 550

Devices, Jobs, and Data: The number of device types is 3, categorized into 3
groups. We refer to [9] for a real-world time-of-the-day pricing scheme, used to
build a small synthetic time-of-the-day pricing shown in Table 1.
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5.2  Algorithmic (Heuristic) Bounds

Using N for machines, J for jobs, and T for total time units in a day, we compare
performance against two primary heuristics: First Come First Served (FCFS)
and Binary Search-based lower bound, as well as a random policy.

The FCFS method allocates jobs to the first available machine, mirroring
typical human behavior, but often leading to inefficiencies due to job accumula-
tion in the earliest available slots.

The Binary Search - based lower bound offers an idealistic minimum bill
amount, assuming no delay or uncertainty. Minimizing it involves performing a
binary search on the bill amount per time unit, iterating possible bill limits to
find the lowest achievable under ideal conditions.

The MILP baseline models the scheduling problem as a mixed-integer lin-
ear program, leveraging optimization techniques for near-optimal solutions. It
formulates the problem with linear constraints and an objective function to
minimize, capturing aspects such as job deadlines, resource capacities, and cost
considerations.

W increment fal Training 1 Full Training

5 1817
| i
5 H

ResNetv2 ResNetsmall Binary Search FCFS

Percentage Savings (in 8ill Amount)

Model

Fig. 5. Percentage Saving (in Bill Amount) of Incrementally trained InceptionNet w.r.t
other models

5.3 Comparison Between Neural Network Architectures

Figure5 shows that the Inception Network demonstrates a significant 37.5%
reduction in total bill amount compared to FCFS, indicative of its efficiency
over standard greedy human behavior. Figure 6 reveals that the Inception Net-
work outperforms other models during incremental training, rapidly adapting
to optimal scheduling. While simple residual networks initially show promise,
ResNet-50 eventually shows better performance. The Inception Network consis-
tently leads in performance as complexity escalates, outmatching simpler models.
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Fig. 6. Bill amount achieved by InceptionNet per training step (in evaluation phase)
(a) Full Training (b) Incremental Training

5.4 Ablation Study of Jobs and Devices Using InceptionNet

Scalability tests on the InceptionNet Agent (Fig.7, top-left) reveal that main-
taining a fixed ratio of devices to jobs results in stable pricing. Figure7 (top-
right) shows that pricing escalates with constant devices and increasing jobs due
to higher electricity consumption and scheduling challenges. Conversely, Fig. 7
(bottom) shows that increasing devices while keeping jobs constant reduces costs
due to improved scheduling and balanced peak power consumption.

Keeping Ratio (jobs/Machines) constant and increasing M increasing | with M constant

increasing M with ) constant

20000

150000

Amount (1n Rs)

100000

B

Fig. 7. Minimum bill achieved by the InceptionNet-based agent keeping (top-left) the
ratio of number of devices to jobs fixed (top-right) number of devices fixed and increas-
ing jobs (bottom) number of jobs fixed and increasing devices
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Fig. 8. Comparison of the minimum bill of full versus incremental training (full vs inc)
using Inception Network based Agent - (a) Line plot (b) Bar plot

5.5 Effect of Incremental Training

Figure 8 shows that models trained using fine-tuning perform better than those
trained using the full training approach. The Inception network shows less dif-
ference due to its efficiency, while Resnet shows significant improvement with
incremental training, demonstrating its efficiency in training less efficient net-
works. Incremental binary search algorithms perform rearrangements in some
schedule subsegments.

Bill amount (in Rs.)
‘\

Fig. 9. Comparison of performance of models under (a) Full (b) Incremental Training
for different combinations of tuning

5.6 Study of Fine-Tuning

Figure 9 shows that the combination of 15-minute coarse and 5-minute fine train-
ing consistently yields the best results. Adding a recurrent layer (LSTM) in
conjunction with the feature extractor layer shows mixed results. The Incep-
tionNet benefits marginally from the LSTM layer, achieving similar results to
its non-LSTM counterpart, while Resnet v2 shows significant improvement with
the recurrent layer, capturing time-related aspects effectively (Fig. 10).
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Fig. 10. Billing Cost of different NN (a) with and without recurrent layer (b) compared
with predictor network (IMPEARL)

5.7 Predictor Network

The predictor network uses the optimized inception network as the predictor
model with the LSTNet model. LSTNet is used for multivariate time series fore-
casting. The predictor network guides the LSTNet during training, significantly
improving its performance compared to the stand-alone InceptionNet (Table 2).

© FCFS @ BisySan O Necploli @ PO @ Lnesl[15 @ WPEARL © ULE

Deta

Fig. 11. Average value of the bill amount achieved by 5 rounds of random perturbance
to the base schedule for each value of § (Rs. 100k)

5.8 Sensitivity Analysis

Figures 11 and 12 show that the IMPEARL model outperforms both MILP and
[12] in mean bill amount and sensitivity. MILP achieves the lowest mean bill
amount of Rs. 456k but exhibits the highest sensitivity of 0.78, indicating high
susceptibility to task timing perturbations. IMPEARL balances cost optimiza-
tion and robustness, with a mean bill amount of Rs. 482k and a sensitivity
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Fig.12. Mean and sensitivity of the schedules generated by the models after 5 rounds

BienSsach  hespionliztv3

o

PPO Linetal 19 NPEARL.

s

of perturbance for each of the 5 values of § (Rs. 100k)

of 0.05, outperforming [12] (mean bill amount Rs. 506k, sensitivity 0.07). This

e

suggests that IMPEARL generates more robust schedules.

Table2 reveals that LSTNet consistently outperforms InceptionNet and
ResNet. The optimal training methodology involves coarse training with 15-
minute intervals and subsequent fine-tuning with 5-minute intervals. Incremental
training methods produce better outcomes than full training. The most effective
model combines an LSTNet with a Predictor Network (optimized InceptionNet),

using the Incys fines training.

Table 2. Results summary table (Bill Amount in Rs.)

Training Inception Net-V3 ResNet50 +LSTMIMPEARL
Fulls 589,613 636,928 543,807
Fullys 557,280 618,263 519,582
Fulls finei5565,193 625,112 526,764
Fullys fines|548,745 597,876 512,312
Incs 564,128 590,532 517,883
Incis 511,321 550,624 485,762
Incs fineis 547,299 566,789 502,875
Incis fines 499,464 537,725 479,225

5.9 Summary Table and Recommended Method

Table3 consolidates these findings, comparing the best-performing models
against established baselines. This comparison, focused on the 15-minute coarse
and 5-minute fine training settings, demonstrates significant cost reductions and

improved end-user satisfaction.
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Table 3. Perfomance comparison

Model Bill (Rs. 10%)[Sensitivity (Rs. 10%) D-Score
FCFS 7.68 1.00 1.000
Binary Search  |6.16 0.80 0.101
InceptionNet-V3 |4.99 3.84 0.297
TD3 [23] 5.12 7.36 0.453
PPO [2] 5.19 5.67 0.372
DDPG [§] 5.35 10.12 0.591
[12] 5.03 7.98 0.085
MILP 4.82 6.54 0.335
IMPEARL 4.79 1.25 0.079
Empirical Bound4.01 0.53 0.054

The Empirical Bound represents the statistical lower bound for 95% of the
observations, calculated as the mean (p) minus two times the standard deviation
(). This bound provides a reference point for expected optimal performance.

5.10 Ablation on Happiness Function

The happiness function is a crucial component of the IMPEARL model. It quan-
tifies user satisfaction based on job completion time relative to its deadline, early
or late completion impact, and specific device requirements.

The device-specific parameter p allows for customization based on device
characteristics. The happiness function captures preferences for timely comple-
tion, tolerance for slight deviations, and device-specific requirements. A grid
search approach determines the optimal parameter values. The ablation study
assesses the model’s sensitivity to these parameters, revealing the robustness and
effectiveness of the proposed happiness function (Fig. 13).

Fig. 13. Comparison of different happiness functions centered at the job’s deadline.
The proposed happiness model captures the complex dynamics of user satisfaction
across various scenarios
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6 Conclusions and Future Work

This paper introduces an innovative approach to representing power consump-
tion profiles as images, which are then effectively transformed into multivariate
time series representations. We demonstrate that models integrating mathemat-
ical concepts, like ResNet and LSTNet, exhibit superior performance. The effi-
cacy of incremental training, especially in scenarios where learning from simpler
versions of a problem aids in solving more complex ones, is highlighted. This
approach, which involves faster initial learning steps followed by finer, detailed
fine-tuning, enhances the learning process. Additionally, leveraging knowledge
from well-trained models (like Inception Network) proves beneficial in guiding
newer models (like LSTNet) toward more efficient solutions by avoiding unpro-
ductive learning states. Future work could explore integrating renewable energy
sources to improve happiness scores, implementing similar scheduling techniques
on the generation side to minimize energy losses, and extending the model to a
multi-agent framework for broader scheduling applications.
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