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Abstract
We introduce a novel approach for discovering
effective degrees of freedom (DOF) in molecu-
lar dynamics simulations by mapping the DOF
to approximate symmetries of the energy land-
scape. Unlike most existing methods, we do
not require trajectory data but instead rely on
knowledge of the forcefield (energy function)
around the initial state. We present a scalable
symmetry loss function compatible with exist-
ing force-field frameworks and a Hessian-based
method efficient for smaller systems. Our ap-
proach enables systematic exploration of confor-
mational space by connecting structural dynam-
ics to energy landscape symmetries. We apply
our method to two systems, Alanine dipeptide
and Chignolin, recovering their known important
conformations. Our approach can prove useful
for efficient exploration in molecular simulations
with potential applications in protein folding and
drug discovery.

1. Introduction
Molecular dynamics (MD) is an essential tool for a wide
range of applications, including drug discovery (Jorgensen,
2004; Hollingsworth & Dror, 2018), protein folding (Shaw
et al., 2010; Lindorff-Larsen et al., 2011), and under-
standing the physics of biological systems at the molec-
ular level (Karplus & Kuriyan, 2005; McCammon et al.,
1977). The configuration space of molecules is very high-
dimensional, with each atom contributing three degrees
of freedom (xyz coordinates). However, the physically
relevant conformations of molecules typically occupy a
much lower-dimensional subspace. This space corresponds
to regions of low free energy, which can be thought of
as a negative log-likelihood of the system’s state. The
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most likely conformations correspond to the minima of
this energy landscape. Sampling from this low-energy sub-
space is crucial for understanding the function and stability
of biomolecules, but it presents significant computational
challenges due to the vast number of possible configura-
tions and the presence of energy barriers separating dif-
ferent conformational states. Existing methods for sam-
pling these low-energy conformations include enhanced
sampling techniques such as metadynamics (Laio & Par-
rinello, 2002), umbrella sampling (Torrie & Valleau, 1977),
and replica exchange molecular dynamics (REMD) (Sugita
& Okamoto, 1999), which aim to overcome energy barri-
ers and improve exploration of the conformational space.
However, these methods often require careful tuning and
can be computationally expensive. More recently, machine
learning has shown great success in enhanced transition
path sampling (Holdijk et al., 2024; Sipka et al., 2023).
Our work is complementary to these efforts, providing a
data-free way to discover reaction coordinates or collective
variables.

In this work, we present a novel approach for discover-
ing degrees of freedom (DOF) that effectively move the
system along the low-energy manifold, enabling more effi-
cient exploration of relevant conformations in the molecu-
lar landscape. Our key observation is that low-energy DOF
can be related to approximate symmetries of the energy
function. Recent works in machine learning have made
progress in discovering symmetries in data (Benton et al.,
2020; Dehmamy et al., 2021; Yang et al., 2023b;a). Our
setting is different in that we do not have data, but an en-
ergy function. The problem of finding symmetries of the
energy function overlaps with the task addressed in LieGG
(Moskalev et al., 2022), which discovers infinitesimal sym-
metry generators, i.e. Lie algebra elements, for a given loss
function. In our case, we are interested in transformations
which change the energy below a certain threshold, mean-
ing approxiamte symmetries of the energy. For example,
we don’t want change in energy to be so high that it would
break chemical bonds.

We find approximate symmetries by considering small
transformations of the original DOF and deriving condi-
tions for the near-invariance of the energy. This process
yields a symmetry loss, which we then minimize. In the
case of small molecules, we show that the problem can be
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formulated as finding symmetries of the Hessian. Aside
from the optimization approach, we also provide an ana-
lytic solution based on degenerate Hessian eigenspaces.

Our method connects the structural dynamics of molecules
to the approximate symmetries of the energy landscape.
This enables a systematic exploration of conformational
space that is both computationally efficient and physically
insightful. We use our method on Alanine dipeptide and
Chignolin. We find that these effective DOFs can be used
to efficiently explore the phase space of the molecule. In
some cases, the DOF significantly overlap with chemical
features such as dihedral angles. Hence, these DOFs fa-
cilitate targeted exploration and sampling of biologically
relevant conformations. We show that this method of sam-
pling can significantly reduce the computational burden as-
sociated with high-dimensional MD simulations. It also
enhances the ability to explore areas of the conformational
landscape that are difficult to access through conventional
methods.

Our contributions can be summarized as follows.

1. DOF as Symmetries: We formulate identifying ef-
fective DOF (EDOF) as an optimization problem aim-
ing to discover approximate symmetries of the energy.

2. Symmetry discovery using the Hessian: We de-
rive the relation between symmetry generators and the
Hessian near critical points. We also provide a method
for constructing symmetries from the spectrum of the
Hessian.

3. Extraction of internal coordinates for molecules:
We show that our discovered DOF can overlap with
well-known dihedral angles, but also include addi-
tional DOF.

4. Exploring conformations of Alanine dipeptide and
Chignolin: We show that our DOF can be used to
sample diverse conformations, particularly shallow lo-
cal minima, which are difficult to sample using exist-
ing methods.

2. Related Work
Exploring the conformation space of molecular systems
poses significant challenges due to their numerous degrees
of freedom and the highly nonconvex energy landscape.
Traditional molecular dynamics and Monte Carlo meth-
ods often struggle to fully map this landscape, as they
tend to become trapped in local minima and fail to cap-
ture rare conformations. This is largely due to the high en-
ergy barriers surrounding the minima or the long timescales
required for conformational changes to evolve (Bernardi
et al., 2015). Our goal in this work is not to design bet-
ter sampling methods. Instead, we want to show how

parametrizing the low-energy subspace can facilitate prob-
lems such as sampling. We will now review some of the
literature on sampling and identifying DOF.

Space sampling. Monte Carlo methods are advantageous
for sampling configurational space due to the absence of
inherent timescales, but they struggle to capture transitions
between conformations and can become trapped in local
minima behind high-energy barriers, leaving some regions
of the energy landscape poorly sampled (Heilmann et al.,
2020). Umbrella sampling, introduced by Torrie & Valleau
(1977), addresses this by replacing the standard Boltzmann
weighting with a biasing potential, effectively enabling a
random walk across energy barriers.

Methods such as replica exchange molecular dynam-
ics (REMD) (Hansmann & Okamoto, 1999; Sugita &
Okamoto, 1999) employ MD simulations simultaneously
on a series of replica systems with different conditions,e.g.
temperature, and randomly exchange the states of any two
replicas with a regular schedule (Qi et al., 2018) to effi-
ciently sample and overcome high energy barriers in the
landscape. However, the need for numerous replicas can
significantly increase computational demands, making the
approach challenging to implement in practice (Rathore
et al., 2005; Liu et al., 2005; Wang et al., 2020).

Metadynamics is another approach to improve sampling
of the energy landscape of a system by driving it through
collective variables (CV), which represent key coordinates
in the landscape (Laio & Parrinello, 2002; Bussi & Laio,
2020). In Metadynamics, Gaussian biases are periodically
added to MD to prevent the system from revisiting previ-
ously explored regions, facilitating the discovery of new
minima. The challenge is that finding CV is non-trivial and
typically relies on prior knowledge.

Identifying the DOF. Identifying suitable CV for energy
landscape sampling is challenging, often introducing bi-
ases and facing issues related to data quality and inter-
pretability. Principal component analysis (PCA) has been
employed to define CVs (Hori et al., 2009), but its linear
nature often fails to represent the complexity of protein
energy landscapes (Maisuradze et al., 2009). Recent ap-
proaches range from autoencoders learning nonlinear CVs
from data (Chen & Ferguson, 2018), to path-based methods
like DeepLNE (Fröhlking et al., 2024) or DeepLDA (Bon-
ati et al., 2020; Majumder & Straub, 2024) that learn CVs
from molecular dynamics trajectories. These methods have
proven quite effective, but they rely on a significant amount
of data and are not easily interpretable. Other including
self-supervised deep neural networks, have been developed
to identify slow CVs or reaction coordinates (Wehmeyer
& Noé, 2018).Other CV finding methods using ML follow
the coarse-graining approach to accelerate MD, improving
sampling efficiency and expanding accessible phase space

2



Symmetry-Driven Discovery

(Souza et al., 2021; Majewski et al., 2023; Noé et al., 2020).
Our method falls in the category of finding CVs. However,
the crucial difference between our method and the above is
that ours does not require trajectory or simulation data.

3. Theory
We will now presents our theoretical framework for dis-
covering effective DOF, based on identifying approximate
symmetries in the energy landscape. We introduce two ap-
proaches: a scalable symmetry loss function compatible
with existing force-field frameworks, and a Hessian-based
method effective for smaller systems. Both methods con-
nect molecular structural dynamics to energy function sym-
metries, enabling systematic conformational space explo-
ration. We derive the mathematical foundations of these ap-
proaches, showing how they lead to the discovery of physi-
cally meaningful DOF, such as dihedral angles in peptides.

3.1. Symmetry and DOF

While we primarily focus on physical and molecular sys-
tems, our approach is general and can be formulated in
broader terms by treating the energy as a general loss func-
tion. Let E : Z → R represent the potential energy of a
physical system, which, analogous to a loss function, we
assume to be smooth over large regions of the parameter
space Z , and bounded from below. The parameters z ∈ Z
correspond to the system’s degrees of freedom (DOF). We
assume that Z is a vector space. In the context of MD, the
standard DOF z = (x, p) = {(x⃗i, p⃗i)}ni=1 includes the 3D
positions x⃗i and momenta p⃗i = midx⃗i/dtof all particles
i ∈ {1, . . . , n}, where mi denotes the mass of particle i.
Let x⃗i ∈ X , p⃗i ∈ P , and Z = X × P

Temperature and kinetic energy In this work, we are pri-
marily interested in the static conformations of the system
and therefore ignore the kinetic energy term in our formu-
lation. By focusing on the potential energy, we capture
the equilibrium properties of molecular systems. Although
temperature induces thermal fluctuations in real systems,
our current approach neglects these effects. These fluctu-
ations could be incorporated into future extensions, partic-
ularly when accounting for finite-temperature effects and
exploring dynamic behavior. Ignoring the kinetic DOF p⃗i
by setting p = 0, our parameter space reduces to the space
X × {0} ⊂ Z of positions x = {x⃗i}. Hence, we redefine
the energy to be just the potential energy E : X → R.

Lifting DOF to a group Our core idea is that transfor-
mations acting on the DOF can be used to replace the
original DOF, thereby lifting the DOF to a group action
on X . While not all DOF can be lifted in this manner,
we demonstrate that this approach enables us to link low-
energy DOF to underlying symmetries of the system. We

consider the general linear group GL(X ) acting on the pa-
rameter space X . Global translations and rotations SE(3)
can also be included, but since MD potentials are gener-
ally invariant under E(3), they lead to trivial symmetries,
which we are not interested in here. Starting from a ref-
erence point x0 ∈ X , the orbit of GL(X ), defined as
Orbit{x = gx0 | g ∈ GL(X )}, generates a manifold of
transformed configurations. This manifold effectively de-
scribes the set of configurations related to x0 by symmetry
transformations. This allows us to replace x with transfor-
mations g that reach x from x0. Now, if we focus on a
subset of symmetries G ⊆ GL(X ) that approximately pre-
serves the potential energy, we can extract DOF that corre-
spond to motion along low-energy directions, thus provid-
ing a natural way to explore the low-energy landscape of
the system.

Group parameters as DOF In order to map g to degrees
of freedom, we need a parametrization for g. SinceGL(X )
is a continuous group, we use the Lie algebra and the ex-
ponential map to parameterize g in terms of the Lie alge-
bra basis La ∈ gl(X ), where the Lie algebra gl(X ) =
TidGL(X ) is the tangent space at the identity of GL(X ).
In the case of matrix Lie groups such as GL(X ), the ex-
ponential map exp : gl(X ) → GL(X ) can be written in
terms of the matrix exponential. Exponentiating an element
in the Lie algebra yields a group element g = exp(θ · L),
where θ is a vector of parameters. In more general cases,
where a group element requires a nontrivial path on the
group manifold, the transformation may be expressed as a
product of exponentials g =

∏
i exp(θi ·L). In both cases,

small group elements (i.e. near identity) can be expanded
as g ≈ I + θ · L + O(θ2), where I is the identity matrix.
This formulation allows us to define the group parameters
θ as the new DOF, reparametrizing the system in terms of
group transformations that capture the low-energy dynam-
ics. Next, we define more concretely what we mean by
low-energy dynamics and effective DOF.

3.2. Defining Effective Degrees of Freedom

What does it mean for this DOF to be an “effective” or
“low-energy” DOF? Implicitly, low-energy DOF assumes
that there exists a hierarchy in the energy scales, where
some barriers in the energy landscape are much smaller
than some others. In MD, we can clearly see such a hi-
erarchy in force-fields used E(x), such as AMBER (Cor-
nell et al., 1995). The energy landscape comprises strong
quadratic terms representing bond lengths and bond angles,
along with nonlinear terms (“non-bonding”) which are
much weaker. The non-bonding energy includes Lennard-
Jones (E ∼ ar−12 − br−6, producing the weak van der
Waals forces and Hydrogen bonding) and Coulomb (E ∼
cr−1) forces, both of which dominate at short distances but
decay at larger separations (App. B). The bonding energy
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is convex and the energy barriers between local minima are
mostly related to the non-bonding energies. Thus, effective
DOF must satisfy two competing requirements:

• At small scales: they must provide sufficient δE to
overcome local barriers and escape metastable states,
with δE > Ebarrier.

• At larger scales: they must preserve the molecular
structure, e.g. not break bonds, δE ≪ Ebond.

In other words, we want the DOF to yield small δE in a
large range of parameters. When δE = 0 while moving
along a DOF, we say the DOF is a symmetry ofE. Let x0 be
a reference point at which we discover the effective DOF,
and let x = x0+ϵ. We want the DOF to be an approximate
symmetry of E when ϵ is large, but also want it to result
in relatively large δE at small ϵ to move us straight toward
energy barriers to ensure we can explore other minima. Our
strategy involves two steps:

1. Minimization: Discover candidate set of DOF at by
requiring that for large ϵ:

S = {DOF : |δE(ϵl)| < η for ϵl > ϵmin} (1)

2. Maximization: Select optimal DOF:

DOF = argmax
L∈S

|δE(ϵs)| for ϵs ≪ ϵmin (2)

where η = Ebarrier is a small energy scale and ϵmin cor-
responds to displacements on the order of non-bonded in-
teraction distances, typically ∼ 0.1 − 0.5nm in molecular
systems. In the next section we will make these statements
concrete, deriving the explicit optimization objectives.

3.3. Symmetry loss

Let x ∈ X be a reference point, corresponding to a config-
uration where the quadratic energy terms are minimized.
The condition |δE(ϵl)| < η in the discovery step, means
up to order η changes, the L are approximate symmetries
of E. Note that the main difference between the two steps
equation 1 and equation 2 is ϵl > ϵs. Since working with
exponential g is difficult, we consider a small but finite
transformation g ≈ I + θL, where θ ∈ R is now just a
magnitude and L ∈ gl(X ), yielding

δE ≈ θ∇E(x) ·Lx (3)

The optimization objective corresponding to step 1 of our
method is to find the L that minimizes the symmetry loss

Symmetry loss: L(L, x) = (∇E(x) ·Lx)2 (4)

subject to ∥L∥F ≤ 1, ensuring that L remains within a
bounded region of the Lie algebra. The L minimizing
equation 4 define the set of effective DOF. Note that L
are not necessarily exact symmetries of E and the sym-
metry loss does not need to vanish (e.g. in MD δE ∼
O(Enonbond) is permissible). However, in problems such
as MD there are important global symmetry considerations,
which we discuss next.

3.4. Excluding global symmetries

In MD, the configuration space X is naturally isomorphic
to Rn×d, where n is the number of particles and d is the
spatial dimension. For d = 3, the system often has a global
SE(3) symmetry, corresponding to rotations and transla-
tions in three-dimensional space. However, we are not in-
terested in this symmetry, as it represents trivial motions
that do not affect the relative configuration of the parti-
cles. Therefore, we restrict the Lie algebra element L to act
on the particle indices, while being invariant under SE(3)
transformations.

Given this restriction, the action of L affects only the n-
dimensional part of x ∈ Rn×d. The condition for approxi-
mate symmetry, (∇E · Lx)2, can now be written as

SE(3)-invariant loss: (5)

L(L, x) =

∑
i,j,µ

∂E

∂xµj
Li

jx
µ
i

2

=
(
Tr

[
(∇E)⊤Lx

])2
where i, j index the particles, and µ indexes the spatial
components. Here, ∇E ∈ Rn×d is the gradient of the
energy with respect to the particle positions, and the ma-
trix product involves L, which acts on the particle indices,
while x is the current configuration of the system. We will
be working with equation 5 instead of equation 4. Addi-
tionally, in small molecular systems we can use another
level of simplification using the Hessian, described next.

3.5. Hessian Approach for Symmetry Loss

Assume that x∗ is a critical point of the energy, meaning
that ∇E(x∗) = 0. The x in equation 5 is not necessarily a
critical point, but we can assume x is close to a x∗, meaning
x = x∗+ ϵ, where ϵ ∼ N (0, σ2I) is a random perturbation
around x∗. We can Taylor expand ∇E(x) around x∗ to
first order

∇E(x) ≈ ∇E(x∗) +H(x∗) · (x− x∗) = H(x∗) · ϵ (6)

Here, H(x∗) is the Hessian matrix at x∗, which has com-
ponents Hij

µν = ∂2E/∂xµi ∂x
ν
j .

Expectation over Gaussian Perturbations Now, assume
that we have many samples x, such that ϵ is drawn from a
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Gaussian distribution. Since ϵ ∼ N (0, σ2I), we have

E[ϵµi ϵ
ν
k] = σ2δikδ

µν (7)

Substituting this expansion into the symmetry loss

E[L(L, x)] = E
[(
Tr

[
ϵ⊤H(x∗)

⊤L(x∗ + ϵ)
])2]

(8)

where H = H(x∗) and we used the symmetry of the Hes-
sian (H⊤ = H). Note that in the Minimization step equa-
tion 1 we want the approximate symmetry condition to hold
for ϵ which are relatively large compared to the Maximiza-
tion step equation 2. To distinguish between the δE of
these two steps, we should choose different orders of Tay-
lor expansion for them. Therefore, for the minimization
step we will keep the O(ϵ2) terms, but for the maximiza-
tion we only keep O(ϵ).

The cross-term in equation 8 isO(ϵ3) and vanishes because
ϵ is normal. Since H and L always appear together and for
ease of notation, let us denote K ≡ HL. For the first term
in equation 8, using equation 7 we get (see Appendix A.1
for all derivations below)

E
[
Tr

[
ϵ⊤Kx∗

]2]
= σ2∥Kx∗∥2 (9)

The last term, this in equation 8 yields

E
[
Tr

[
ϵ⊤Kϵ

]2]
= σ4

(
2Tr

[
K2

S

]
+Tr [KS ]

2
)

(10)

where KS = (K⊤ + K)/2 is the symmetric part of K.
Putting these together, the symmetry loss in this approxi-
mation becomes

Hessian symmetry loss: (11)

E [L(L, x)] ≈ σ2∥Kx∗∥2 + σ4
(
2Tr

[
K2

S

]
+Tr [KS ]

2
)

3.6. Analytical Solutions to the Trace Loss in 1D

We note that there exists a simple analytical way to min-
imize each of the two loss terms. In the 1-D case, the σ4

term only depends on the eigenvalues of the symmetric part
of KS = HL + L⊤H . Let λ1, λ2, . . . , λn be the eigen-
values, then the optimization is equivalent to minimizing∑n

i=1 2λ
2
i +(

∑n
i=1 λi)

2 which can be minimized by mini-
mizing the operator norm of KS . The space of L minimiz-
ing the operator norm of KS can be given as a combination
of the following (see Appendix A for details) :

1. Symmetric L part:
Proposition 3.1 (L in “slow” subspace of the Hessian). If
L has support only on the span of eigenvectors with the
smallest eigenvalues of H2

∥HL∥2 = Tr
[
LTH2L

]
(12)

then it minimizes the σ4 term in equation 11 and also min-
imizes Tr [Kx]

2 for arbitrary x.

In practice, we are content with having small but nonzero
Tr

[
LTH2L

]
. In this case, L corresponds to directions in

the configuration space along which the energy is approxi-
mately flat.

2. Anti-Symmetric L part:

Proposition 3.2 (Anti-symmetric K). If HL is antisym-
metric, the trace loss can also be minimized. This requires

HL+L⊤H = 0 ⇒ Tr [KS ] = 0, Tr
[
K2

S

]
= 0

which implies that L generates transformations that pre-
serve the structure of the Hessian. One solution to this
condition is if L itself is antisymmetric L⊤ = −L. In this
case, the commutator between H and L vanishes

[L, H] = 0

This implies that L commutes withH , and therefore defines
symmetry directions where the Hessian is invariant.

If H has a degenerate subspace corresponding to k de-
generate eigenvalues, this subspace has an inherent SO(k)
symmetry. Because of this, the Lie algebra elements L ∈
so(k) of this subspace symmetry satisfy [L, H] = 0. This
is a special case of the proposition 3.2. More formally:

Proposition 3.3 (Degenerate subspace solution). let Λ be
the diagonalized form of H , with QΛQ⊤ = H . If Λ has a
set of k-fold degenerate eigenvalues λ1 = λ2 = · · · = λk,
the corresponding eigenspace forms a k-dimensional sub-
space of symmetry. The action of L in this subspace can be
viewed as a rotation, and L can be chosen to belong to the
Lie algebra of rotations SO(k) restricted to the degenerate
subspace:

L ∈ so(k), L⊤ = −L (13)

The matrix L generates rotations within the degenerate
eigenspace, leaving the overall structure of H invariant.

In the three dimensional case, owing to the global spatial
symmetries, we focus on L ∈ Rn×n which only act on
the particle indices (i, j) and not the spatial indices (µ, ν).
Thus, we can relate this anti-symmetric one dimensional
solution to the general case by having [H,L] = 0 be given
as [Hµν ,L] = 0 for all (µ, ν). This is not always possi-
ble to do and therefore we approximate it to the condition
[H2,L] = 0 for H2 =

∑
µHµ,µ. Similarly for the sym-

metric case, we replace ∥HL∥2 with ∥H2L∥2 for H2 =∑
µ,ν H

2
µ,ν . Thus, we generalize this one-dimensional an-

alytic framework by looking at slow eigenspaces and de-
generate eigenspaces for suitable SE(3) invariant matrices
H2.
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4. Selecting optimal effective DOF
Using the discovery procedure, we get a set of Lie algebra
elements La. Given the set of La, we now want to find the
transformations that help us navigate the energy landscape
most effectively. Unlike the discovery step for L, where
we wanted δE to be small, now we want to maximize it as
in equation 2. Therefore, we define the most effective L
as the one leading to the largest perturbations in energy. As
stated above, we want the largest δE in the close vicinity
of x∗, meaning this time we will assume ϵ is very small
and will only keep the σ2 term, discarding the σ4. Using
the result from equation 9 as a proxy of the magnitude of
structural change, we can solve the following optimization
problem to get the most effective DOFs among nL discov-
ered L:

L(c) ≡
nL∑
a=1

caLa,

Find c∗ = argmax
c,∥c∥2=1

∥HL(c)x∗∥2 (14)

But since this term is identical to the σ2 term we used for
the discovery of L, it makes sense to only minimize the σ4

term for discovering candidate L and use the σ2 term only
in the second step. This is what we do in our experiments.
In the end, we keep the top two L(c) as the effective DOF.
When using equation 4 for discovering L, we also use the
full Hij

µν in equation 14. When using the other Hessian
approaches, we use H2 instead of H in equation 14.

Optimal L without Hessian. For the optimization ver-
sion of the problem, we see that as mentioned before the
L are discovered at high noise levels (large σ) by mini-
mizing the symmetry loss over the samples. In order to
find the most effective DOF, we maximize the symme-
try loss at low noise levels (small σ). Given m samples
ϵj ∼ N (0, σeffI

n×d) where σeff is smaller than σ used for
discovery. Then

c∗ = argmax
c∈RK ,∥c∥2=1

m∑
j=1

Tr
[
∇E(x∗ + ϵj)

⊤L(c)(x∗ + ϵj)
]2

(15)

5. Experiments
To evaluate our method’s effectiveness, we conducted ex-
periments on two well-characterized molecular systems:
alanine dipeptide and the designed mini-protein chignolin.
These systems serve as canonical test cases in the molecu-
lar dynamics community, offering a balance between com-
putational tractability and biological relevance.

In the case of the alanine dipeptide, the two DOF that
capture the most important conformations are known to
be the dihedral angles ϕ and ψ over the peptide bonds.

(ϕ, ψ) are used as coordinates to describe the states of the
molecule as a density plot called the Ramachandran plot.
We want to investigate whether the DOF discovered using
our method can be used to effectively explore the states of
the system. We will examine different regions of the Ra-
machandran plot reached by varying our discovered DOF
and whether we can discover the known conformers of the
alanine dipeptide in this way. We will also investigate
whether (ϕ, ψ) overlap with our DOF, which are discov-
ered directly from the forcefield without using any prior
knowledge about the importance of the peptide bonds. In
case of chignolin, there are a lot of local minima around
a properly folded state and another near a misfolded state
(forming two large groups of conformers). In the litera-
ture (Kührová et al., 2012), it has been shown that the two
groups of conformers can be distinguished by the configu-
ration of the carbon backbone of the Glycine 7 residue in
chignolin. Denoting the backbone dihedral angles of Gly7
as ϕ, ψ, we repeat the same analysis for chignolin. How-
ever, we only examine chignolin in the presence of solvent
as the β hairpin structure of chignolin is only formed in
presence of solvent.

As the conformers of the alanine dipeptide as well as
the ramachandran plot change with the ambient medium,
we consider two MD setting for alanine dipeptide. For
chignolin the β hairpin configuration is only observed in
solvent, so we only consider chignolin in water. In to-
tal, we consider three MD settings. 1) Alanine Dipepe-
tide in Vacuum where we only use the amber forcefield
(amber99sbnmr) corresponding to interactions within the
molecule and 2) Alanine Dipeptide in Water where we
use the molecule forcefield (amber99sbnmr) along with the
amber forcefield for the solvent (amber99 obc) modelled
as implicit. 3) Chignolin in Water where we use the
molecule forcefield (amber99sbnmr) along with the amber
forcefield for the solvent (amber99 obc) modelled as im-
plicit. Additionally, we put Hbond constraints (that keeps
the length of bonds between heavy atoms and hydrogen
fixed) and use heavy hydrogen in order to stabilize the in-
tegration steps (as used in (Satoh et al., 2006)).

Methods for Extracting DOF: Based on our theoreti-
cal results, we will use four methods to discover effective
DOF:

1. Direct Optimization: Solving equation 5

2. Full Hessian: Minimizing the σ4 in equation 11

3. Slow Hessian: Using smallest eigenvalue subspace of
H2 (minimizng the σ2 term of equation 11 for arbi-
trary x∗).

4. Degenerate Hessian: Using a degenerate subspace of
H2. We use the subspace with the highest dimensions

6
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Figure 1: Ramachandran plot for alanine dipeptide in vacuum: a) long (500ns) simulation starting at β, b) direct
optimization of equation 4, c) analytically solving the σ4 term in equation 11 d) slow subspace of H2 e) fast degenerate
subspace of H2. The blue and red grid lines are traced by transforming β alanine along the discovered DOF.
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Figure 2: Ramachandran plot for alanine dipeptide in water: a) long (500ns) openMM sim with implicit solvent
starting at β alanine dipeptide, b) direct optimization of equation 4 c) σ4 analytical solution d) slow subspace of H2 e)
fast degenerate subspace of H2 f) direct optimization over the forcefield with solvent. The blue and red grid lines are
transforming β alanine along the DOF.

Note that the methods involving an explicit Hessian cannot
be easily applied to settings with a stochastic solvent force.
But, the direct optimization of equation 4 is applicable in
all cases, including used systems with an implicit model
for the solvent. We discuss the results for both settings:
optimization method using just intra-molecular forces and
optimization method including solvent forcefield.

Procedure: Our experimental procedure is as follows:

1. Start from an initial conformation x0, the C5 con-
former for alanine dipepetide and a properly folded
conformer in case of chignolin.

2. Extract the top two DOF L1, L2 near x0.

3. Make a 31× 31 grid of angles (θ1, θ2) ∈ [0, 2π)2.

4. Generate deformed conformers x = eθ1L1+θ2L2x0.

5. Use openmm.minimize on x and run short 2ps
simulations to find stable conformations from the de-
formed structure.

We then compare the conformers found using the method
above against conformers found using a baseline method of
sampling. For our baseline we run long openMM simula-
tions for 500ns at 300K with friction coefficient of 1ps−1

and step size of 2fs amounting to 2.5e8 steps. We use the
same amber forcefields in both the last step of our method
and the baseline simulations in order to maintain consis-
tency.

Comment on sampled densities. It is important to note
that our goal is not recovering the density of states found
via the long simulation. In fact, our goal is to be able to visit
states which are much harder to reach using the baseline
method. Figures 1–3 all show the density of states sampled.
We have also plotted the energies of the states (Appendix
C), confirming that we indeed arrive at low-energy states.

5.1. Experiments in Vacuum

When modeling alanine dipeptide in vacuum, we only con-
sider the molecular forces between the atoms. For this
setting, we see that all the Hessian-based methods recover
all the major conformations of alanine dipeptide with rela-
tively short simulation times. As the Lie algebra elements
L in our problem span a Rn2

space, we need at leastO(n2)
point to avoid overfitting. For our experiments, we use
16n2 samples for discovery and 16n2 samples for finding
the most effective degrees of freedom. Using larger values
of ϵ can give us more information about long-range sym-
metries but using large ϵ also increases the stochasticity
causing very high variance in the estimates.

5.2. Experiments with Solvent

We experimented with both alanine dipeptide (Figs 2, 4b)
and Chignolin (Figs 3, 5) in water. Alanine dipeptide has
different stable conformers in water than in vacuum, sug-
gesting that incorporating the solvent force is essential for
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Figure 3: Ramachandran plot for chignolin in water a) long sim (500ns) with implicit solvent starting at folded chig-
nolin, b), c) direct optimization with DOF discovered at medium (0.1nm) and long range (0.5nm), d) analytical solution
of σ4 term in equation 11 e),f) direct optimization of forcefield with solvent and DOF discovered at medium (0.1nm) and
long range (0.5nm). The blue and red grid lines are transforming chignolin along the discovered DOF.

(a) Alanine Dipeptide in Vacuum (b) Alanine Dipeptide in Water

Figure 4: Closest Structure to the known conformers. We only consider a structure to be a conformer candidate if it is
stable and its (ϕ, ψ) dihedral angles are close to that of the corresponding conformer.

Figure 5: Closest Structure to the conformers of Chigno-
lin discovered for simulations in water. Only the last two
columns use the solvent force field to calculate the DOF.

modeling the DOF. Note that our optimization approach
using equation 4 can use the forcefield with explicit sol-
vent forces included to calculate the DOF, and can there-
fore be applied to the case with solvent. However, our
Hessian-based methods do not work with stochastic forces,
and therefore we use the DOF discovered using the force-
field in vacuum also in the case with solvent. Our results
suggest the vacuum DOF also work well in the presence of
solvent. Similarly, we also use the Hessian based method
as well as the direct optimization method to calculate DOF
for chignolin in vacuum and use those to navigate the free
energy landscape in the presence of solvent. Moreover, we
also see that although the Hessian-based approaches do not
easily transfer over to the solvent scenario, the optimization

based approach can be easily generalized to any forcefield.
So, we also incorporate the implicit solvent forcefield in
the optimization-based approach to find symmetries over
the combined forcefields. As seen in the figures above, all
the approaches proposed discover the major conformers of
alanine dipeptide as well as folded and misfolded conform-
ers of chignolin. Another important fact that we want to
highlight is that discovered DOF are general enough to al-
low us to find the conformers in settings with forcefields
slightly different from the ones they were learnt on.

Discussion on speed

Although our methods use the openmm simulation in the fi-
nal step, we only need a fraction of the total steps required
by openmm to find all conformations. Furthermore, the
simulations can be run for all grid points simultaneously.
Thus, in principle, the effective time required for simula-
tions using our method could be orders of magnitude less
than the time required for the baseline long openmm simu-
lations. The major bottleneck for our approach is the Hes-
sian computation which scales quadratically with the size
of the system (2sec for alanine-dipeptide, 200sec for chig-
nolin) and does not easily generalize to stochastic force-
fields. While the direct optimization method overcomes
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0.25 0.5 2.5 5 25 50 250 500

Alanine Dipeptide in Vacuum
C5 0.257 0.268 0.233 0.247 0.246 0.238 0.215 0.23
C7eq 0.479 0.429 0.448 0.436 0.436 0.425 0.382 0.408
C7ax 0 0 0 0 0 0.027 0.117 0.059

Alanine Dipeptide in Solvent
β 0.411 0.424 0.416 0.404 0.367 0.39 0.39 0.39
αL 0 0 0 0 0.001 0.001 0.001 0.001
αR 0.043 0.043 0.048 0.047 0.041 0.043 0.043 0.043

Chignolin in Solvent folded 0.992 0.994 0.997 0.79 0.206 0.4 0.4 0.4
misfolded 0 0 0 0.183 0.073 0.048 0.048 0.048

Table 1: Fractional Distribution of Conformers with respect to elapsed simulation time (in ns) for a standard long openmm
simulation. This denotes the relative frequency and exploration of the conformal landscape as a function of the time elapsed
in the simulation.

0.002 0.01 0.02 0.1 0.2 1 2 10

Alanine Dipeptide in Vacuum
C5 0.4659 0.3676 0.2463 0.2168 0.2264 0.2082 0.2232 0.2340
C7eq 0.1818 0.2745 0.3515 0.3745 0.3708 0.3311 0.3357 0.3367
C7ax 0 0 0 0 0 0.0768 0.0467 0.0226

Alanine Dipeptide in Solvent
β 0.9205 0.7451 0.6052 0.4808 0.4336 0.4359 0.4422 0.4505
αL 0 0 0 0 0 0.0017 0.0063 0.0061
αR 0.0000 0.0956 0.2166 0.3079 0.3417 0.3383 0.3238 0.3200

Table 2: Fractional Distribution of Conformers with respect to elapsed simulation time (in ns) for a REMD simulation
with 8 parallel simulations at logarithmically spaced out temperatures between 300 K - 500 K with an attempted transition
between adjacent temperatures every 50 steps. This denotes the relative frequency and exploration of the conformal land-
scape as a function of the time elapsed in the simulation.

the second challenge in principle we find it to be less stable
than the Hessian-based approaches in practice and it also
has similar quadratic computation cost (15sec for alanine-
dipeptide and 450sec for chignolin). The pairwise nature of
the atomic interactions leads to quadratic cost, but it can be
pruned to be almost linear by using distance cut-off. Table
1 compares the relative distribution of different conform-
ers as a function of the simulation time. This shows that
the conformational landscape is poorly explored by a long
simulation. On the other hand, our proposed method is able
to find a structure close to every conformer within 2 ps of
simulation time leading to much more efficient and thor-
ough exploration of the conformational landscape. Addi-
tionally we also compare it to Replica Exchange Meta Dy-
namics on Alanine-dipeptide using 8 parallel simulations
at logarithmically spaced out temperatures between 300 K
- 500 K with an attempted transition between adjacent tem-
peratures every 50 steps. Table 2 shows that even under
this enhanced sampling formulation, the proposed method
produces orders of magnitude in speed-up (as some con-
formers are only discovered after 1 ns of simulation time).
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A. Derivations Of Results
A.1. Hessian Symmetry Loss

Substituting this expansion into the symmetry loss

E[L(L, x)] = E
[(
Tr

[
ϵ⊤H(x∗)

⊤L(x∗ + ϵ)
])2]

= E
[
Tr

[
ϵ⊤HLx∗

]2
+ 2Tr

[
ϵ⊤HLx∗

]
Tr

[
ϵ⊤HLϵ

]
+Tr

[
ϵ⊤HLϵ

]2]
(16)

where H = H(x∗) and we used the symmetry of the Hessian (H⊤ = H). For the second term we have

E
[
Tr

[
ϵ⊤HLx∗

]
Tr

[
ϵ⊤HLϵ

]]
= 0 (vanishes due to E[ϵ3] = 0) (17)

Since H and L always appear together and for ease of notation, let us denote K ≡ HL. For the first term in equation 16,
using equation 7 we get

E
[
Tr

[
ϵ⊤Kx∗

]2]
=

∑
i,j,µ,ν

E
[
ϵµi ϵ

ν
j

]
(Kx∗)

i
µ(Kx∗)

j
ν (18)

= σ2
∑
i,µ

(Kx∗)
i
µ(Kx∗)

i
µ = σ2∥Kx∗∥2 (19)

The last term, this in equation 16 yields

E
[
Tr

[
ϵ⊤Kϵ

]2]
=

∑
i,j,k,l,µ,ν,ρ,λ

Kij
µνK

kl
ρλE

[
ϵµi ϵ

ν
j ϵ

ρ
kϵ

λ
l

]
(20)

= σ4
∑

i,j,µ,ν

{
Kij

µν

[
Kij

µν +Kji
νµ

]
+Kii

µµK
jj
νν

}
(21)

= σ4
{
Tr

[
K

(
K⊤ +K

)]
+Tr [K]

2
}

= σ4

{
1

2
Tr

[(
K⊤ +K

)2]
+Tr [K]

2

}
(22)

Defining the symmetric part KS = (K⊤ +K)/2, we have

E
[
Tr

[
ϵ⊤Kϵ

]2]
= σ4

{
2Tr

[
K2

S

]
+Tr [KS ]

2
}

(23)

where we used the fact that Tr [K] = Tr [KS ]. Putting these together, the symmetry loss in this approximation becomes

Hessian symmetry loss:

E [L(L, x)] ≈ σ2∥Kx∗∥2 + σ4
{
2Tr

[
K2

S

]
+Tr [KS ]

2
}
. (24)

Now, note that since K ≡ HL the components are Kij
µν =

∑
kH

ik
µνL

kj . Let us define the trace over spatial indices, µ, ν,
and the node (particle) indices i, j as follows

Trs [H]
ij ≡

∑
µ

Hij
µµ, Trn [H]µν ≡

∑
i

Hii
µν (25)

For the trace terms we have

Tr [K] =
∑
i,µ

Kii
µµ =

∑
iµ

Hik
µµL

ki = Trn [Trs [H]L]

Tr
[
KK⊤] = ∑

ijµµ

(
Kij

µν

)2
=

∑
iµ

Hik
µνL

kjHil
µνL

lj = Trn
[
L⊤Trs

[
H2

]
L
]

Tr
[
K2

]
=

∑
ijµµ

(
Kij

µν

)2
=

∑
iµ

Hik
µνL

kjHjl
νµL

li = Trs [Trn [HLHL]] (26)
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This provides a relationship between the Hessian, the Lie algebra element L, and the effective DoF defined by L, allowing
us to identify approximate symmetries by minimizing this loss. Note that the above still approximately holds even x∗ is
not a critical point, but some point where the gradient is small, meaning |∇E(x∗)| < η for some small η.

A.2. Analytical Solutions to the Trace Loss in 1D

In the 1-D case, the σ4 term only depends on the eigenvalues of the symmetric part of KS = HL + L⊤H . Let
λ1, λ2, . . . , λn be the eigenvalues, then the optimization is equivalent to minimizing

∑n
i=1 2λ

2
i + (

∑n
i=1 λi)

2 which can
be minimized by minimizing the operator norm of KS . This can be equivalently written as

xT
(
LTH +HL

)
x = xT

(
HT +H

)
Lx = O(ε) (27)

Any L that satisfies equation 27 for arbitrary x is a symmetry of the Hessian. We establish the following result, that shows
that the slow modes of the Hessian form and the rotation of the degenerate subspaces of the Hessian are the most dominant
modes of the symmetry.

Theorem A.1. For a given symmetric real matrix A with eigen-decomposition given as A = V ΛV T , we see that only
matrices B of the form

B = V ΓV T , with
∑
ij

(λjΓji + λiΓij)
2 ≤ Or(ϵ

2)

satisfy the equation
∀x s.t ∥x∥2 = 1, xT

(
BTA+AB

)
x ≤ O(ϵ) (28)

Proof. For any real symmetric matrix A, there exists an eigendecomposition for A such that A = V ΛV T where V V T =
V TV = I and Λ = Diag(λ) is a diagonal matrix of eigenvalues λ.

xT
(
BTA+AB

)
x = xT

(
BTV ΛV T + V ΛV TB

)
x

= xT IBTV ΛV T Ix+ xT IV ΛV TBIx

= xTV V TBTV ΛV TV V Tx+ xTV V TV ΛV TBV V Tx

= xTV
(
V TBTV Λ + ΛV TBV

)
V Tx

= (V Tx)T
(
V TBTV Λ + ΛV TBV

)
(V Tx)

Let Γ = V TBV which is equivalent to B = V ΓV T , we get that xT
(
BTA+AB

)
x = O(ϵ) for all x with ∥x∥2 = 1

is equivalent to xT
(
ΓTΛ + ΛΓ

)
x = O(ϵ) for all x with ∥x∥2 = 1 (as

∥∥V Tx
∥∥
2
= ∥x∥2).

This is further equivalent to the condition that max∥x∥2=1 x
T
(
ΓTΛ + ΛΓ

)
x =

∥∥ΓTΛ + ΛΓ
∥∥
2
= O(ϵ). Finally, we see

that ∥M∥2 ≤ ∥M∥F ≤
√
r ∥M∥2 holds true for all r-rank matrices M . Thus, we have∑

ij

(λjΓji + λiΓij)
2
=

∥∥ΓTΛ + ΛΓ
∥∥2
F
= Or(ϵ

2)

Considering the result in Theorem A.1, there are many linear transformations L that satisfy equation equation 27. We
restrict our attention to the only matrices given by the anstaz motivated by the following corollary.

Theorem A.2. For any matrix B, we can divide B into two matrices : symmetric matrix BS = 1
2

(
B +BT

)
and anti-

symmetric matrix BA = 1
2

(
B −BT

)
. We can further restrict BS and BA to the following family of matrices to give an

ansatz for constructing an B that satisfies equation equation 28

• BS has dominant modes only along the slow modes of the A

• BA has a block diagonal structure which mixes almost-degenerate eigenspaces of A.
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Proof. Let ΓS = 1
2

(
Γ + ΓT

)
and ΓA = 1

2

(
Γ− ΓT

)
. We start by observing that BS = 1

2

(
B +BT

)
=

1
2

(
V ΓV T + V ΓTV T

)
= V 1

2

(
Γ + ΓT

)
V T = V ΓSV

T . Similarly we can show that BA = V ΓAV
T .

∑
ij

(λiΓij + λjΓji)
2
=

∑
ij

(
λi

(ΓS)ij + (ΓA)ij
2

+ λj
(ΓS)ij − (ΓA)ij

2

)2

≤ 1

2

∑
ij

(λi + λj)
2
(ΓS)

2
ij +

1

2

∑
ij

(λi − λj)
2
(ΓA)

2
ij

Thus it suffices to have ∑
ij

(λi + λj)
2
(ΓS)

2
ij = Or(ϵ

2) and
∑
ij

(λi − λj)
2
(ΓA)

2
ij = Or(ϵ

2) (29)

As a result of the first part, we get that (ΓS)ij = O(ϵ) if max(λi, λj) ̸= O(ϵ) which shows that the dominant modes of
BS are along the slow modes of A. Similarly, the second part gives us that (ΓA)ij = O(ϵ) if |λi − λj | ̸= O(ϵ) which
shows that BA only mixes the almost-degenerate eigenspaces (space of eigenvectors whose the eigenvalues are very close
together) of A.
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B. Experimental Setup : AMBER Force-field
We implement a simplified force-field with implicit solvent (i.e. water molecules are not modeled and appear as hydrogen-
bonding and hydrophobicity terms. In protein folding our energy function consists of five potential energies for: bond
length Ebond, bond angles Eangle, Van der Waals EvdW , hydrophobic Ehp and hydrogen bonding EH (Ceci et al., 2007).

Protein Folding with Classical MD Using AMBER Force Field We incorporate the AMBER force field, known for
its accurate representation of molecular interactions, particularly in proteins. This force field is implemented using the
parameters from OpenMM (Eastman et al., 2017), and it comprehensively models the following interactions:

• Bond lengths Ebond and bond angles Eangle

• Torsional angles Etorsion

• Non-bonded interactions including van der Waals EvdW and electrostatic Eelec forces

We utilize the functional forms and parameters specified in the AMBER force field:

Ebond =
∑
bonds

kbond(r − r0)
2 Eangle =

∑
angles

kangle(θ − θ0)
2 (30)

Etorsion =
∑

torsions

Vn [1 + cos(nω − γ)] EvdW =
∑
i<j

Aij

r12ij
− Bij

r6ij
(31)

Eelec =
∑
i<j

qiqj
4πϵ0ϵrrij

(32)

Here, r and θ represent the bond lengths and angles, respectively, with r0 and θ0 as their equilibrium values. The torsional
term Etorsion includes a sum over all torsion angles ω, with periodicity n, amplitude Vn, and phase γ. The Lennard-Jones
potential in EvdW is characterized by parameters Aij and Bij , and Eelec is calculated using the Coulombic potential with
partial charges qi, qj and the relative permittivity ϵr.

In this simulation, we exclude the modeling of solvent effects entirely, focusing solely on the protein in vacuum. This
approach simplifies the computational model while emphasizing the direct interactions within the protein.

The overall energy of the system is then given by:

L(X) = Ebond + Eangle + Etorsion + EvdW + Eelec (33)
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C. Further Experimental Results
C.1. Energy Results

In table 3 and table 4, we list for each simulation method and for each experiment, the value of the lowest energy config-
uration found structurally close to a given conformer. The closeness of the values to the ground truth found by the long
simulation show that the configurations found are valid conformers. As the direct optimization method has two ϵ param-
eters (units nanometers), one for sampling around the starting point to estimate the Hessian (eqs 5 and 7), and one for the
maximization step to choose best L’s (eq 15), we report two different experiments with varying values of the parameters.

Vacuum Results. The last three columns are for the three prominent conformations.

Method C5 Cax
7 Ceq

7

Long Simulation -80 -77 -83
Direct Optim ϵ = (0.01, 0.1) -80 -84 -78
Direct Optim ϵ = (0.01, 0.5) -80 -78 -78

Full Hessian -80 -78 -84
H2 backbone (slow subspace) -80 -84 -84

H2 backbone (degenerate subspace) -80 -78 -84

Table 3: Energy(kJ/mol) in Vacuum for discovered Conformers of Alanine-Dipeptide

Solvent Results. These are for simulations in water. The last three columns are for the three prominent conformations.
”Solvent Direct Optim” means using the symmetry loss eq 3 and 5 with the energy function of a forcefield that includes
explicit solvent terms (using openMM).

Method αL β αR

Long Simulation -120 -127 -128
Direct Optim ϵ = (0.01, 0.1) -105 -127 -128
Direct Optim ϵ = (0.01, 0.5) -120 -127 -128

Solvent Direct Optim ϵ = (0.01, 0.1) -128 -127 -120
Solvent Direct Optim ϵ = (0.01, 0.5) -97 -127 -128

Full Hessian -120 -127 -128
H2 backbone (slow subspace) -128 -127 -128

H2 backbone (degenerate subspace) -120 -127 -128

Table 4: Energy(kJ/mol) in Solvent for discovered Conformers of Alanine-Dipeptide
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Figure 6: Ramachandran plot for alanine dipeptide in Vacuum based on the a) long (500 ns) openMM simulation with
implicit solvent starting at β alanine dipeptide, b) direct optimization based approach over the molecular forcefield, c)
analytically solving the full σ4 term in equation 4 d) slow subspace of H2 e) fast degenerate subspace of H2 f) direct
optimization based approach over the solvent and the molecular forcefield . The blue and red grid lines on the plots refer
to the grid traced by transforming β alanine using the two most effective DOF discovered by our algorithms. Additionally
the scatter plot gives the values of the potential energy (in presence of solvent) at the points sampled.
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Figure 7: Ramachandran plot for alanine dipeptide in water based on the a) long (500 ns) openMM simulation with implicit
solvent starting at β alanine dipeptide, b) direct optimization based approach over the molecular forcefield, c) analytically
solving the full σ4 term in equation 4 d) slow subspace of H2 e) fast degenerate subspace of H2 f) direct optimization
based approach over the solvent and the molecular forcefield . The blue and red grid lines on the plots refer to the grid
traced by transforming β alanine using the two most effective DOF discovered by our algorithms. Additionally the scatter
plot gives the values of the potential energy (in presence of solvent) at the points sampled using the corresponding method.
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Figure 8: The gridlines and conformers found for three independent runs (row 1, row 2 and row 3) using the direct
optimization method with ε1 = 0.1 and ε2 = 0.01. a) give the results in vacuum b) gives the results where the simulation
is conducted with solvent but the initial trajectory is derived without solvent and c) where the simulation is conducted in
solvent and the initial optimization problem is also solved using the solvent forcefield.
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Figure 9: The gridlines and conformers found for three independent runs (row 1, row 2 and row 3) using the direct
optimization method with ε1 = 0.5 and ε2 = 0.01. a) give the results in vacuum b) gives the results where the simulation
is conducted with solvent but the initial trajectory is derived without solvent and c) where the simulation is conducted in
solvent and the initial optimization problem is also solved using the solvent forcefield.
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Figure 10: Ramachandran plot for alanine dipeptide in water based on the a) long (500 ns) openMM simulation with
implicit solvent starting at folded chignolin, b) direct optimization based approach over the molecular forcefield with
symmetry discovered at close range (0.1 nm), c) direct optimization based approach over the molecular forcefield with
symmetry discovered at close range (0.1 nm), d) analytically solving the full σ4 term in equation 4 e) direct optimization
based approach over the solvent and the molecular forcefield with symmetry discovered at long range (0.1 nm f) direct
optimization based approach over the solvent and the molecular forcefield with symmetry discovered at long range (0.5
nm). The blue and red grid lines on the plots refer to the grid traced by transforming folded chignolin using the two most
effective DOF discovered by our algorithms.
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