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Abstract

The goal of this paper is to address the problem of global point cloud registration (PCR)
i.e., finding the optimal alignment between point clouds irrespective of the initial poses
of the scans. This problem is notoriously challenging for classical optimization methods
due to computational constraints. First, we show that many state-of-the-art deep learning
methods suffer from huge performance degradation when the point clouds are arbitrarily
placed in space. We propose that equivariant deep learning should be utilized for solv-
ing this task and we characterize the specific type of bi-equivariance of PCR. Then, we
design BiEquiformer a novel and scalable bi-equivariant pipeline i.e. equivariant to the
independent transformations of the input point clouds. While a naive approach would pro-
cess the point clouds independently we design expressive bi-equivariant layers that fuse the
information from both point clouds. This allows us to extract high-quality superpoint cor-
respondences and in turn, robust point-cloud registration. Extensive comparisons against
state-of-the-art methods show that our method achieves comparable performance in the
canonical setting and superior performance in the robust setting in both the 3DMatch and
the challenging low-overlap 3DLoMatch dataset.

Keywords: Equivariance, Bi-Equivariance, Point-Cloud Registration, Geometric Deep
Learning

1. Introduction

Point Cloud Registration (PCR) is at the frontend of many robotics and vision pipelines.
The goal, in the pairwise and rigid setting, is to align two partially overlapped point clouds
expressed in their own coordinate system by estimating a roto-translation between them
and fusing them in a common coordinate system. It has been successfully applied in many
tasks such as 3D Scene Reconstruction Blais and Levine (1995), SLAM (Nüchter et al.,
2006) and pose estimation Yang et al. (2013).

While PCR has been studied extensively over the past decades, the desiderata for real-
time and robust registration of real-world applications makes the problem extremely chal-
lenging. Especially in environments with repetitive patterns such as indoor environments
as well as in low-overlap settings that appear loop closure tasks Bosse and Zlot (2008) the
requirement for distinctive point-wise features for correspondence is enhanced. A particu-
larly challenging aspect of the problem is the robustness w.r.t. the initial poses of the point
clouds. In classical optimization methods, the problem is called global PCR and is famously
intractable due to the large volume of points Yang et al. (2013).

Deep learning has been proven very effective in PCR in all building blocks of the registra-
tion pipeline. Powerful point cloud architectures Qi et al. (2016); Thomas et al. (2019) serve
both as the feature extraction for correspondence-based methods Zeng et al. (2017); Choy
et al. (2019) and a way to identify distinctive features for matching Huang et al. (2020); Li
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Figure 1: Registration Metrics (IR,RRE,RTE,RMSE) for two pairs of low-overlap scans
that differ only by their relative pose. While both methods succeed in the original
point cloud input (left column), GeoTransformer fails to find good matches (low
IR) when the inputs are randomly rotated (right column), while our proposed
BiEquiformer performs consistently irrespective of the initial point cloud poses.

and Harada (2022). It has also been utilized to learn robust estimators Choy et al. (2020);
Pais et al. (2019); Bai et al. (2021) or directly regress the relative transformation (Wang
and Solomon, 2019; Aoki et al., 2019). In this work, we show how recent state-of-the-art
registration pipelines are heavily affected by the orientations of the initial scans, especially
in challenging low-overlap settings (Fig. 3). Subsequently, we propose BiEquiformer a
detector-free attention pipeline that is bi-equivariant to the roto-translation group (Fig.2).
Our main contributions can be summarized as follows:

1. The state of Global PCR in DL: We investigate the robustness of state-of-the-art
methods under rigid transformations of the input point clouds. In Fig. 3 we show that
in numerous popular state-of-the-art methods there is a deterioration in performance
when the initial poses of the point clouds vary, exacerbated as the overlap between
scans becomes smaller. Figure 1 shows a visual example of this phenomenon.

2. Bi-Equivariance and PCR: We formulate and characterize the specific bi-equivariance
properties of PCR (Section 3). Then we propose novel layers that process invari-
ant, equivariant, and different types of bi-equivariant features, which extend standard
equivariant layers by fusing information between the point clouds (Section 4).

3. State-of-the-art in Global PCR: We propose a novel, scalable bi-equivariant
pipeline for point cloud registration. Our method ensures consistent registration re-
sults, regardless of the pose of the input point clouds, and achieves state-of-the-art
registration accuracy in the robust setting, especially in low-overlap datasets.

2. Related Work

Point cloud registration (PCR) is a fundamental problem with extensive literature. Here
we focus on related work on rigid geometric PCR where only depth input is provided.

Classic Methods; ICP and Global Registration. Extensive surveys (Pomerleau
et al., 2015; Bellekens et al., 2015; Li et al., 2021) categorize and benchmark classical
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algorithms or main building blocks of those e.g., the local feature extraction backbone
Guo et al. (2015) or the robust estimators Babin et al. (2018). Stemming from the Iterative
Closest Point (ICP) algorithm Chen and Medioni (1991); Besl and McKay (1992), a number
of variants have been proposed Pomerleau et al. (2015). The non-convexity of PCR with
unknown correspondences makes ICP susceptible to local optima and thus a relatively
accurate initial registration is required. This initiated the problem of Global PCR where
PCR is treated as a global optimization problem (Li and Hartley, 2007; Yang et al., 2013)
which is notoriously difficult for scene-level scans.

Correspondence-Based PCR: Correspondence-based methods utilize the local de-
scriptors in order to match points or surfaces between the points clouds before estimating
the transformation. The pioneering work of 3DMatch Zeng et al. (2017) was followed by
many works that learn to match the learned keypoints (Yew and Lee, 2018; Choy et al.,
2019; Sarode et al., 2019; Deng et al., 2018b; Gojcic et al., 2019; Bai et al., 2020; Wang
et al., 2022; Li et al., 2020; Huang et al., 2021). More recently, keypoint-free deep learning
methods have been introduced that perform matching in a coarse-to-fine fashion Yu et al.
(2021); Min et al. (2021); Yang et al. (2022); Li and Harada (2022); Qi et al. (2016).

Equivariant Registration: As a step towards global PCR, equivariant deep learning
can be utilized. Currently, most of the deep learning registration pipelines are not equiv-
ariant to the point cloud poses thus requiring a great amount of data augmentations Qin
et al. (2022) while still behaving inconsistently during inference (Fig. 3). In this category,
PPFNet Deng et al. (2018b,a) is a keypoint-based method that introduces hand-designed
rotation-invariant point features as local descriptors. YOHO Wang et al. (2022) utilizes
a feature extractor equivariant to the icosahedral group while SpinNet Ao et al. (2021)
uses a cylindrical convolution to extract planar equivariant features. GeoTransformer Qin
et al. (2022) takes a step forward by encoding pose invariant features in the superpoint
transformer. However, the method is not end-to-end rotation-equivariant as we show next.
Powerful rotation equivariant networks that operate on point clouds have been proposed
Chen et al. (2021); Deng et al. (2021); Wu et al. (2023). They have been successfully utilized
in 3D Shape Reconstruction Chatzipantazis et al. (2023); Chen et al. (2022), Segmentation
Deng et al. (2023), Protein-Docking Ganea et al. (2021), Robotic Manipulation Ryu et al.
(2023, 2024),Huang et al. (2024) etc. Building on the success of equivariant deep learning
we propose a bi-equivariant detector-free, transformer-based PCR pipeline.

3. Problem Formulation and Characterization of Equivariant Properties

Consider a reference and a source observer, each with distinct coordinate frames r and
s respectively, sampling points in their respective frames Xr = {xi ∈ R3|i = 1, . . . , N},
Y s = {yj ∈ R3|j = 1, . . . ,M}. Let SE(3) denote the group of roto-translations and SO(3)
its subgroup of rotations. The objective of PCR (under the assumption of unique align-
ment) is to find the rigid transformation T r

s ∈ SE(3) that aligns the coordinate frame s to
r using only the sampled points Xr, Y s. Once the relative rotation and translation param-
eters Rr

s ∈ SO(3), T r
s ∈ R3 that constitute T r

s , are estimated we can transform Y s to the
reference frame r and get Y r := T r

s Y
s := Rr

sY
s + T r

s = {Rr
sy + T r

s ∈ R3|y ∈ Y s}. This
transformation allows the merging of the two observations with the union Xr ∪ Y r.

To solve this problem we assume that there exists an overlapping area of the surface
sampled by both observers. Specifically, we assume that there exists a subset Xo ⊆ Xr such
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Figure 2: BiEquiFormer is an attention-based bi-equivariant pipeline for global PCR. First,
equivariant intra-point self-attention and inter-point cross-attention layers update
the scalar and vector features on the points. Then a bi-equivariant feature is
used to align the input vectors to the same frame before applying equivariant
cross-attention. The output invariant coarse features are used to extract a set of
candidate coarse matches from which candidate transformations are extracted.
Using these candidates the final transformation estimation is computed via a
local-to-global registration scheme.

that for every point xm ∈ Xo there exists a corresponding ym ∈ Y r := Rr
sY

s+T r
s such that

∥xm− ym∥ ≤ ϵ for a small ϵ. We refer to the points xi ∈ Xo and their corresponding points
yi ∈ Y s as point matches. The goal is first to estimate these point matches. Given a set
of such matching pairs C = {(xi, yi)|xi ∈ Xr, yi ∈ Y s}, PCR estimates the relative trans-
formation by solving the Procrustes optimization problem min(R,T )∈SE(3)

∑
(xi,yi)∈C∥Ryi +

T − xi∥22.
Characterization of Equivariant Properties of PCR: To describe the geometric

properties of the problem we need the notion of equivariance first. Given a group G acting
on two sets Si, So via the (left) actions ∗, ∗̃ : G×S → S (in our cases those sets will either be
(sets of) vector spaces or a sub-group of G where the action will be properly defined) a map
f : Si → So is equivariant w.r.t. the group actions if for all g ∈ G, s ∈ Si: f(g ∗s) = g∗̃f(s).
For clarity, we suppress ∗, ∗̃ and write gs for the group action of G on S.

SE(3) Bi-Equivariance: Formally, we define a function f : Si → So to be SE(3)-bi-
equivariant if it is equivariant w.r.t. the joint group action of the direct product group
SE(3) × SE(3) defined as s 7→ g1 ∗ s · g−1

2 , where ∗, · are left and right group actions re-
spectively that are jointly associative i.e. g1 ∗ (s · g−1

2 ) = (g1 ∗ s) · g−1
2

1. We prove in
Appendix Proposition 5 that this joint action is a valid left action of the direct product
group (whenever the actions ∗, · are well-defined). Depending on whether s belongs to the
domain Si or the co-domain So of f we define three cases . For all (g1, g2) ∈ SE(3)×SE(3):

Input bi-equivariance: f : S1 → S2 × S3, with f(g1s1g
−1
2 ) = (g1s2, g2s3), ∀s1 ∈ S1.

Input/Output bi-equivariance: f : S1 → S2 with f(g1s1g
−1
2 ) = g1f(s1)g

−1
2 , ∀s1 ∈ S1.

Output bi-equivariance, f : S1 × S2 → S3, with f(g1s1, g2s2) = g1f(s1, s2)g
−1
2

To analyze the properties of the PCR problem we will assume that the Procrustes
optimization problem has a unique solution (a sufficient condition for that is that the set C
of matches includes 3 non-coplanar vectors). Given the overlap and optimality conditions

1. In our case all actions are implemented using matrix multiplications which are both left and right
associative; we omit the ∗, · to make notation more compact
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discussed above, and under the assumption of unique ground-truth registration T r
s , PCR

can be defined as a map
⋃

N>0R3×N ×
⋃

M>0R3×M → SE(3) with PCR(Xr, Y s) = T r
s . We

can rigorously prove the following propositions using our definitions (see Appendix 7.4).

Proposition 1 PCR is output SE(3)-bi-equivariant. i.e. for all (T1, T2) ∈ SE(3)×SE(3):
PCR(T1Xr, T2Y s) = T1T r

s T −1
2 .

Proposition 2 (Reference-Source Interchangeability) PCR is equivariant to the ordering
of the arguments. I.e. C2 = {e, f} is the group of flips with e the identity and f acting as:
f(Xr, Y s) = (Y s, Xr) then: PCR(f(Xr, Y s)) = (T r

s )
−1.

Proposition 3 (Permutation Equivariance) PCR is invariant to the ordering of the points.
I.e. if SN is the group of permutations of N points: PCR(SNXr, SMY s) = T r

s .

4. Method

4.1. Building Bi-equivariant feature maps

While the literature is abundant with methods that build SE(3)-equivariant representations
there is a lack in the design of compact and expressive bi-equivariant feature maps as
described in the previous section. This is particularly important in our problem since
vanilla equivariant features do not fuse the information of both point clouds thus they
create impoverished representations for matching. While the general theory from Cohen
et al. (2019) can be adapted to find convolutional layers, such layers have a huge memory
overhead and do not scale to scene-level scans. Closer to our work, both Ganea et al.
(2021) and Qin et al. (2022) parametrize only the invariant channels when they fuse the
features of the point clouds via cross-attention. However, useful vector features that can be
learned on the points, such as the normals of the surface, cannot be represented this way.
In this work we allow for the fusion of such vector features between the two point-clouds
by designing bi-equivariant layers that respect the properties described in Section 3. We
present the detailed form of these layers in Section 4.2, while in Appendix 7.3 we show how
their elementary operations satisfy the bi-equivariant property.

In order to mitigate this memory overhead we propose a more structured design of a
bi-equivariant network as a composition of input, output and input-output bi-equivariant
layers. Given our definitions above, it is straightforward to prove that we can construct an
SO(3)-bi-equivariant map via the composition (iBEq◦(◦KioBEqK)◦oBEq)(Eq(X),Eq(Y ))
where iBEq, oBEq, ioBEqK are SO(3) input, output, and input-output bi-equivariant
maps respectively and Eq is an SO(3) equivariant map.

Architecture Overview: We follow a coarse-to-fine approach similar to Qin et al.
(2022). The coarse superpoint matching stage estimates candidate pairs of matching point
cloud patches (superpoints). Given these, the fine point matching stage estimates R, T for
the neighborhood of each candidate pair. Lastly, a local-to-global registration scheme (Ap-
pendix 7.7), is used to evaluate each candidate transformation and select the highest-scoring
one. Additionally, we propose that after the first estimated transformation (Global Step)
an optional Local Refinement Step can be used, using only equivariant layers. To ensure
bi-equivariance all parts of the pipeline must respect the constraint. For the initial feature
extractor we adapt the VNN Deng et al. (2021) architecture, as described in Appendix 7.2.
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4.2. Invariant and Equivariant Attention Layers

Intra-Point Self Attention: Assume we are given a point cloud X along with its per-
point equivariant and invariant features fs(xi), fv(xi). We propose to extend the invariant
attention layer proposed in Qin et al. (2022), so that it can process both invariant and
equivariant features. Specifically, we define the intra-point self-attention layers as follows:

αintra
s (xi, fs, fv) =

∑
xj∈X

sijWvfs(xj), αintra
v (xi, fs, fv) =

∑
xj∈X

sijVNV (fv(xj))

where VNV is a learned Vector Neurons linear layer and sij = exp(eij)/
∑

x′
j∈X

exp(eij′)

where eij is the attention score matrix defined as:

eij = (fs(xi)WQ) (fs(xj)WK + rijWR)
T + wqfv(xi)

T fv(xj)w
T
k

with rij being the invariant relative geometric embedding between xi, xj introduced in
Qin et al. (2022), WQ,WK being learned weight matrices and wq, wk being learned weight
vectors. In Appendix 7.5 we prove the invariance of αintra

s and equivariance of αintra
v .

Equivariant Cross-Attention Layer: Applying a mechanism similar to the intra-
point self-attention for the case of inter-point cross-attention is not trivial when we want
to use the equivariant features. That is because the two point clouds and their features
can rotate independently, and thus an alignment is required before combining them. We
propose to do such an alignment by using a bi-equivariant feature extracted from a point
pair that consists of a point transforming according to frame r and a point transforming
according to frame s. First, to define the point pair we assume a soft assignment SXY =

{sij ∈ [0, 1]|
∑|Y |

j=1 sij = 1, 0 < i ≤ |X|} between the point clouds X and Y e.g. coming
from the attention scores sij of a cross-attention layer that uses only the invariant features
of the point clouds. Given SXY we compute for all xi ∈ X the pairs (xi, ypi) where:

ypi =
∑
j∈|Y |

sijyj fv(ypi) =
∑

j∈|Y |
sijfv(yj) fs(ypi) =

∑
j∈|Y |

sijfs(yj)

Then we can define the alignment layer a that aligns the equivariant features fv(ypi) so that
they rotate according to a rotation of frame r. Specifically we define the alignment layer:

a(fv(xi), fv(ypi)) = b(fv(xi), fv(ypi))fv(ypi) (1)

where b : R3×C × R3×C → R3×3×C is an output bi-equivariant function that takes
the channel-wise tensor product fv(xi) ⊗ fv(ypi) and pass it through an input-output bi-
equivariant nonlinearity ϕ:

b(fv(xi), fv(ypi)) = ϕ(fv(xi)⊗ fv(ypi)), ϕ(F ) = LayerN (∥F∥) F

∥F∥

with LayerN being the LayerNorm Ba et al. (2016) and ∥.∥ : R3×3×C → RC the Frobenius
norm for each 3 × 3 matrix. Given the set of pairs (xi, ypi) we can define the equivariant
cross-attention layer where the query features are the features of points in xi ∈ X, and the
key, value features are the features of points ypi after they have been properly aligned to

frame r. In more detail we define the score attention matrix epairXY as:

epairXY (ij) = (fs(xi)WQ) (fs(ypj)WK)T + wqfv(xi)
Ta(fv(xi), fv(ypj))w

T
k
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Figure 3: Registration Recall for GeoTransformer Qin et al. (2022), Cofinet Yu et al. (2021)
and Predator Huang et al. (2021) on different overlap ranges of the total 3DMatch
Zeng et al. (2017). The green lines (mean original) show the mean per overlap
range for the original dataset. The blue lines (mean augmented) show the mean
per overlap range of an augmented dataset in which each point cloud has been
uniformly roto-translated. The red line (robust augmented) shows the mean per
overlap range of the minimum across the augmented dataset. The total mean
across all pairs in the dataset for each case is also shown in the plot.

Then assuming input invariant/equivariant features FX ,FY , we define the pair attention as:

αpair
s (xi, FX , FY ) =

∑
xj∈X

spairXY (ij)Wvfs(ypj),

αpair
v (xi, FX , FY ) =

∑
xj∈X

spairXY (ij) (VNV (a(fv(xj), fv(ypj))))

with spairXY (ij) being the softmax of the attention scores epairXY (ij). In Appendix 7.5 we prove

that αpair
s is invariant to the roto-translation of both point clouds X,Y . αpair

v is equivariant
to the roto-translation of X and invariant to the roto-translation of Y . Similarly we can
define the symmetric layers for pairs of the form (yi, xpi).

4.3. BiEquiformer Architecture Stages

Coarse point correspondence: For the estimation of the superpoint matches we uti-
lize the equivariant backbone presented in Section 7.2, followed by a coarse correspondence
model that iteratively applies intra-point self-attention followed by inter-point cross atten-
tion. For the intra-point self-attention we are using in parallel the invariant and equivariant
self-attention layers presented above. For the inter-point cross-attention we used a compo-
sition of a simple cross-attention layer only between the invariant features of the two point
clouds, followed by a bi-equivariant cross-attention layer defined above. The outputs of the
coarse correspondence transformer are the invariant per superpoint features for both point
clouds, namely fcx, fcy for all x ∈ XS , y ∈ YS . The extracted invariant features are then
used similarly to Qin et al. (2022) to extract the candidate superpoint invariant matches.

Fine point matching: Given a candidate pair of matched superpoints (xk(n), yk(n))
we perform fine point matching on their corresponding local neighborhoods Nxk(n)

⊆ XD,
Nyk(n)

⊆ YD. We define the neighborhood Nxk(n)
⊆ XD as the set of all the fine points that

have xk(n) as their closest coarse point, and similarly for Nyk . The dense point correspon-
dences are extracted using an optimal transport layer (Sinkhorn and Knopp, 1967) with a
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Canonical Roto-translated

Model
RR Mean RR Robust RR Mean IR Robust IR

3DM 3DLM 3DM+3DLM 3DM+3DLM 3DM+3DLM 3DM+3DLM

FCGF Choy et al. (2019) 0.85 0.40 - - - -
D3Feat Bai et al. (2020) 0.82 0.37 - - - -
Predator Huang et al. (2021) 0.89 0.60 0.71 0.34 0.36 0.25
CoFiNet Yu et al. (2021) 0.89 0.68 0.71 0.34 0.38 0.27
GeoTransformer Qin et al. (2022) 0.91 0.74 0.77 0.61 0.49 0.46
LepardLi and Harada (2022) 0.92 0.65 0.64 0.60 0.37 0.30
SpinNet Ao et al. (2021) 0.89 0.60 0.72 - 0.36 -
YOHO Wang et al. (2022) 0.90 0.65 0.76 - 0.43 -
RIGA Yu et al. (2024) 0.89 0.65 0.77 0.77 0.47 0.47
BiEquiformer 0.90 0.69 0.78 0.78 0.49 0.49

Table 1: Top: Non-equivariant methods, Bottom: Equivariant methods. Canonical Reg-
istration Recall (RR) on 3DMatch (3DM) and 3DLoMatch (3DLM), Mean and
Robust Registration Recall (Mean RR, Robust RR) and Inlier Ratio (Mean IR,
Robust IR) on the total Rotated 3DMatch (concatenation of the 3DMatch and
3DLoMatch) for inputs augmented by uniform rotation.

cost matrix defined as Ck =
(
Fxk

F T
yk

)
/
√
d. These dense correspondences define a set of

inliers Mk for each candidate pair. Here Fxk
∈ RC×|Nxk

|, Fyk ∈ RC×|Nyk
| are matrices with

columns containing scalar features for each point of the corresponding local neighborhoods.
Similar to the coarse matches, in order for the optimal transport cost and consequently the
assignment of the fine point matches to be invariant to rigid transformation, the features
Fxk

, Fyk should also be invariant to these transformations. In our design we achieve that
by concatenating the extracted invariant features and the invariant inner products between
the extracted equivariant features. After the dense point correspondences are computed
the final alignment transformation is estimated using a local-to-global registration scheme
proposed in Qin et al. (2022) (See Appendix 7.7).

Iterative Refinement: Given an initial estimation of the alignment transformation
R0, T0 produced by our model, we can perform a refinement step by iteratively applying
our model. Specifically after the first iteration we can use the previously estimated trans-
formation to replace the bi-equivariant feature b(fv(xi), fv(ypi)) used in the alignment layer
defined in Eq. 1. In the experimental results we perform three such refinement steps.

5. Experiments

We evaluate our method on the 3DMatch Zeng et al. (2017) and the challenging 3DLoMatch
Huang et al. (2021) datasets which contain scans of indoor scenes. Following Huang et al.
(2021) we evaluate on the 3DMatch test set containing scenes with an overlap above 30%
and on the 3DLoMatch test set, which contains scenes with overlap from 10% to 30%. For
the quantitative evaluation of our method we use similar metrics to previous works Qin
et al. (2022); Huang et al. (2021) (see Appendix 7.8 for more details).

5.1. Robustness Analysis to the initial pose of the point clouds

We benchmark popular state-of-the-art methods Qin et al. (2022); Yu et al. (2021); Huang
et al. (2021) on their robustness to the initial poses of the scans. We test all methods in the
total 3DMatch dataset Zeng et al. (2017) by concatenating the 3DMatch and 3DLoMatch
splits and test the mean performance across different overlap intervals. In Fig.3 we plot the
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Registration Recall in 3 different settings. First, in the mean original, we show the mean
performance of the methods in each overlap interval in the original dataset. The overlap of
each pair is calculated as in Huang et al. (2021) in the ground truth registration. Second, in
the mean augmented, we show the mean performance in an augmented dataset where each
point cloud from each pair has been individually rotated around 9 axes uniformly selected
and with 3 different angles around each axis also uniformly selected. Lastly, in the robust
augmented, we show the robust loss i.e., the mean of the minimum performance for each
overlap region across the different configurations of the same pair. We observe that there
is a big drop in performance in the augmented setting both in the average (6-7%) and in
the robust metrics (23-43%), which is exacerbated as the overlap becomes smaller. While
GeoTransformer is more robust to initial poses than the rest of the methods it still performs
erratically in different initial poses (see Figure 1). This is because although the model used
for the superpoint matching is designed to be invariant to point-cloud poses, its backbone
Thomas et al. (2019) is not rotation equivariant. Nevertheless, the improved robustness
shows that enforcing equivariance even partially in the model can be beneficial for global
PCR. These results motivate the design of our end to end bi-equivariant PCR pipeline.

5.2. Quantitative Comparison

We compare the performance of our method against recent state-of-the-art, FCGF Choy
et al. (2019), D3Feat Bai et al. (2020), SpinNet Ao et al. (2021), Predator Huang et al.
(2021),YOHO Wang et al. (2022), CoFiNet Yu et al. (2021), GeoTransformer Qin et al.
(2022). Details on the training and evaluation metrics are presented in Appendix 7.6.2,
7.8. In Table 1 we present the Registration Recall separately for the original 3DMatch
and 3DLoMatch. Then, in order to measure robustness to the initial poses of the point
clouds, which is the important metric for global PCR, we estimate the expected registration
recall (Mean RR) across different initial poses and the robust registration recall which is
the average over the dataset of the minimum recall over different poses of the input, sim-
ilar to the experiment in Section 5.1. We observe that our method achieves comparable
results with other state-of-the-art methods in the canonical test set, being second only to
GeoTransformer. Moreover, it achieves state-of-the-art performance in the expected and
robust metrics. This validates the argument that our bi-equivariant design is an important
step towards global PCR without sacrificing performance on the canonical setting. Visual-
izations of low-overlap registrations are provided in Appendix Fig. 4, while in Appendix
7.1 we provide additional ablations experiments on the proposed bi-equivariant layers.

6. Conclusion
In this work we proposed a novel bi-equivariant pipeline to address the task of global PCR.
We investigated the robustness of current deep learning methods on the transformation of
the poses of the input scans and observed a large performance degradation, especially in
low-overlap settings. To combat that we proposed to build novel, expressive bi-equivariant
layers that fuse the information of the two point clouds while extracting per-point features
on them. We used those layers to build BiEquiformer a bi-equivariant attention architecture
that is scalable to the large volume of points in scene-level scans. We evaluated our method
on both the 3DMatch and the challenging 3DLoMatch dataset, showing that our method can
achieve comparable and even superior performance to other non-equivariant and equivariant
state-of-the-art methods, especially in the robust metrics.
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7. Appendix / Supplementary Material

7.1. Ablation on the proposed layer and the iterative refinement

In this section we provide an ablation study, presented in table 2, to show the importance of
the proposed bi-equivariant layers as well as the proposed equivariant iterative refinement.
First, we provide a simple end-to-end equivariant alternative to GeoTransformer by replac-
ing the non-equivariant feature extractor KPConv Thomas et al. (2019) with the equiv-
ariant VNN Deng et al. (2021). We show that when compared to this simple alternative,
BiEquiFormer which uses bi-equivariant layers that fuse the information from the two point
clouds demonstrates improved performance on the task. Moreover, we experimented with
local refinement steps after the initial global alignment. We ran the non-equivariant ICP
algorithm, heavily tuned (Point-to-Plane ICP with Robust loss Pomerleau et al. (2015)).
Then we ran the equivariant iterative scheme described in Section 4.3. In this case too, our
method yields better results.

Model
RR

3DM 3DLM

VNN+GeoTransformer 0.87 0.62
BiEquiformer + ICP 0.88 0.66
BiEquiFormer 0.90 0.69

Table 2: Ablation study on BiEquiformer. VNN+GeoTransformer replaces the non-
equivariant KPConv Thomas et al. (2019) with an equivariant counterpart VNN
Deng et al. (2021). BiEquiFormer+ICP utilizes the bi-equivariant layers but re-
fines with a non-bi-equivariant ICP. BiEquiFormer uses the equivariant iterative
scheme described in Section 4.3

7.2. Equivariant Feature Extraction

Previous works utilize commonly used point cloud processing architectures, such as KPConv-
FPN (Thomas et al., 2019) or DGCNN (Wang et al., 2019), to extract per point features for
each point-cloud individually. These features are not inherently designed to be equivariant
to rigid transformations. We address this limitation by using a backbone feature extractor
that outputs both invariant fs and equivariant fv feature vectors. Under a roto-translation
R, T of the input these features transform as:

fs(Rxi + T,RX + T ) = fs(xi, X), fv(Rxi + T,RX + T ) = Rfv(xi, X) (2)

To process such equivariant vector features we utilize the Vector Neurons layer proposed in
Deng et al. (2021). This type of linear layer, denoted as VN, processes features of the form
F ∈ R3×C , with columns corresponding to vectors in R3. It is defined as VN(F ) = FWlvn,
and is equivariant to rotations of its input features since VN(RF ) = RFWlvn = RVN(F ).

Additionally, to capture the geometry of the scenes at different levels of detail we use a
hierarchical architecture, similar to Chen et al. (2022), that processes and outputs invari-
ant/equivariant vector features for different subsampled versions of the input point cloud.
We denote these subsampled versions as X(0), X(1), . . . , X(n), ranging from finer to coarser
sampled points. We can create the different levels by running for example an equivariant
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adaptation of Farthest Point Sampling (FPS) where we initialize it from the point clos-
est to the mean. The points in the first downsampling level are referred as dense points
XD = X(1), while the points obtained by the last level of downsampling are referred to as
superpoints XS = X(n).

7.3. Bi-Equivariant Layers

In this section, we present examples of simple operations that preserve the three cases of
bi-equivariance, namely the input-bi-equivariance the output-bi-equivariance and the input-
output-bi-equivariance:

Proposition 4

1. If f1, f2 ∈ R3 are vector features i.e. they transform with the standard representation
of SO(3) then the tensor product f1, f2 7→ f1f

T
2 is an SO(3) output-bi-equivariant

map.
2. Given a matrix F ∈ R3×3 with distinct, positive, singular values that transforms with

the joint action of SO(3)× SO(3) i.e., F 7→ R1FRT
2 the map:

F 7→ ({Uiσ(Σ)}4i=1, {Viσ
′(Σ)}4i=1)

is an SO(3) input-bi-equivariant map, where {(Ui,Σ, Vi)}4i=1 are the 4 possible
SVD decompositions of F counting signs with Ui, Vi ∈ SO(3) if det(F ) > 0 and
Ui ∈ O(3)− SO(3), Vi ∈ SO(3) if det(F ) < 0 and σ, σ′ are point-wise non-linearities
on the singular values. The SO(3) matrices are formed as [u1, u2, u1 × u2] and the
O(3) − SO(3) as [u1, u2,−u1 × u2] where u1, u2 are the first two columns of U (and
similar for V ).

3. Given the same matrix F ̸= 0 as above, the map F 7→ σ(∥F∥) F
∥F∥ is SO(3) input-

output bi-equivariant, where ∥ · ∥ is a matrix norm e.g. operator, Frobenius, trace
norm etc.

We provide a detailed proof of the above proposition along with the proofs for propositions
1, 2, 3, 5 in the next Section 7.4.

By composing the above operations we can design bi-equivariant layers that allow for
fusion of information between equivariant features that transform according to independent
frames. This capability of bi-equivariant layers makes them ideal for the problem of global
PCR, contrary to the traditional equivariant layers that can only process features expressed
in the same frame. Specifically, as described in Section 4.2, BiEquiformer uses both the
tensor product and the bi-equivariant map F 7→ σ(∥F∥) F

∥F∥ to define the inter-point cross
attention layers.

7.4. Proofs of Propositions

Before beginning with the proofs of the propositions we need to prove a subtle but important
point that the joint action is indeed a valid group action of the direct product group.

Proposition 5 If the groups G1, G2 act on the set S via ∗, · from the right and the left
respectively and these actions are jointly associative i.e. (g1 ∗ s).g2 = g1 ∗ (s.g2), for all
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g1 ∈ G1, g2 ∈ G2, s ∈ S then the map defined as:

(G1 ×G2)× S → S

((g1, g2), s) 7→ g1 ∗ (s · g−1
2 )

is a group action of the direct product group G1 ×G2.

Proof We write the map as (g1, g2)s := g1 ∗ (s · g−1
2 ) for compactness. If e1, e2 are the

identity elements of G1, G2 then (e1, e2) is the identity element of G1 × G2. Also consider
(g1, g2), (h1, h2) ∈ G1 ×G2 Then,

1.(e1, e2)s = e1 ∗ (s · e−1
2 ) = e1 ∗ (s · e2) = e1 ∗ s = s

2.(g1, g2)(h1, h2)s = (g1, g2)(h1 ∗ (s · h−1
2 )) = g1 ∗ ((h1 ∗ (s · h−1

2 )) · g−1
2 )

joint assoc.
=

= g1 ∗ (h1 ∗ ((s · h−1
2 ) · g−1

2 )) = g1 ∗ (h1 ∗ ((s · h−1
2 g−1

2 ))) = (g1h1) ∗ (s · (h−1
2 g−1

2 ))

= (g1h1, g2h2)s

Due to joint associativity we can drop the parentheses and write (g1, g2)s := g1 ∗ s · g−1
2 .

We did not do that in the proof to make explicit when the joint associativity was used.

Proof [Proof of Proposition 1] Given the formulation in Section 3 we start by denoting the

input point clouds Xr, Y s and their relative rigid transformation T r
s =

[
Rr

s T r
s

0 1

]
. Also let

C = {(xi, yi)|xi ∈ Xr, yi ∈ Y s} denote the point matches. Now, if the input point clouds
transform with T1, T2 ∈ SE(3) as: T1Xr = R1X

r + T1, T2Y s = R2Y
s + T2 then we need to

prove the following for the transformation T1T r
s T −1

2 ∈ SE(3):

• Invariant point matching: The points T1xi = R1xi + T1 ∈ T1Xr, T2yi = R2yi + T2 ∈
T2Y s are also point matches for T1T r

s T −1
2 (which can also be computed from the first

problem formulation) since in the new alignment we have: T1T r
s T −1

2 (T2yi) = T1T r
s yi

and

∥T1xi − T1T r
s yi∥2 = ∥(R1xi + T1)− (R1(T r

s yi) + T1)∥2
= ∥R1(xi − T r

s yi)∥2 = ∥xi − T r
s yi∥2 ≤ ϵ

since (xi, yi) ∈ C.

• Optimal Procrustes: For the initial problem we know that the objective function
L1(T ) =

∑
(xi,yi)∈C ∥T yi − xi∥22 satisfies: L1(T r

s ) := L∗
1 ≤ L1(T ) for all T ∈ SE(3).

Now we look at the objective of the new problem (for which we proved invariant
matches) L2(T ) =

∑
(xi,yi)∈C ∥T T2yi−T1xi∥22. If we substitute T = T1T r

s T −1
2 we get:

L2(T1T r
s T −1

2 ) =
∑

(xi,yi)∈C

∥T1T r
s T −1

2 T2yi−T1xi∥22 =
∑

(xi,yi)∈C

∥T r
s yi−xi∥22 = L1(T r

s ) = L∗
1
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we proved that the optimal of the second problem is upper bounded by the first. We
will also show the opposite. In particular, if we substitute T = T −1

1 T T2 in L1 for any
T ∈ SE(3) we get:

L1(T −1
1 T T2) =

∑
(xi,yi)∈C

∥T −1
1 T T2yi − xi∥22

=
∑

(xi,yi)∈C

∥RT
1 (T T2yi)−RT

1 T1 − xi∥22

=
∑

(xi,yi)∈C

∥T T2yi −R1(R
T
1 T1 + xi)∥22

=
∑

(xi,yi)∈C

∥T T2yi − T1xi∥22 = L2(T )

Proof [Proof of proposition 2] First, we can again prove invariant matching. The flip is a
unitary operation so it does not change the distances between the matched points. In other
words since ∥xm − ym∥2 = ∥ym − xm∥2 the set C of point matches consists of the same
points (reversed). Again looking at the two objectives we can prove Procrustes optimality
as for T ∈ SE(3) it holds T −1 ∈ SE(3):

L1(T −1) =
∑

(xi,yi)∈C

∥T −1yi − xi∥22

=
∑

(xi,yi)∈C

∥RT yi −RTT − xi∥22

=
∑

(xi,yi)∈C

∥yi − T −Rxi∥22 =
∑

(xi,yi)∈C

∥T xi − yi∥22 = L2(T )

Thus, the optimal values of the two problems are again the same and since T r
s is optimal for

L1 then (T r
s )

−1 is optimal for L2. Lastly, this is indeed an action of the flips since f2 = e
and ((T r

s )
−1)−1 = T r

s

Proof [proof of Proposition 3] Since the permutations is a unitary transformation the
distance again as above do not change and the matching is again invariant (this time the
set has exactly the same points in some order). Since the sum is order-invariant the value
of the objective is also the same so the problem is invariant to point permutations.

Proof [proof of proposition 4]

1. Since f1 7→ R1f1, f2 7→ R2f2 the tensor product f1f
T
2 7→ (R1f1)(R2f2)

T = R1(f1f
T
2 )R

T
2 .

Thus, the map is output bi-equivariant.

2. Since all singular values are distinct and positive, we can sort them in Σ = diag{σ1, σ2, σ3}
in which case it is known that the SVD of F = UΣV T is unique up to a simultaneous
sign flip of the columns of U, V i.e., there are 8 choices for U = [±u1 ± u2 ± u3]
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and the corresponding for V . However, if det(F ) > 0 then we can select both
U, V ∈ SO(3) i.e. u3 = u1 × u2 and v3 = v1 × v2 and if det(F ) < 0 we can se-
lect U ∈ O(3)−SO(3), V ∈ SO(3) i.e. u3 = −u1 × u2, v3 = v1 × v2. Since all singular
values are positive the determinant cannot be zero.

That leaves 4 choices i.e. if (u1, v1) and (u2, v2) are the first and second columns
of U, V then ±(u1, v1), ±(u2, v2) are the rest of the choices for the first and second
column of U, V which create the valid SVD solutions.

Now, R1FRT
2 = R1(UΣV T )RT

2 = (R1U)Σ(R2V )T and thus (R1U,Σ, R2V ) is an SVD
of R1FRT

2 since the composition of rotation matrix with a unitary matrix is a unitary
matrix. Moreover, det(R1FRT

2 ) = det(R1) det(F ) det(R2) = det(F ) so if det(F ) > 0
then R1U,R2V ∈ SO(3) and if det(F ) < 0 then R1U ∈ O(3)− SO(3), R2V ∈ SO(3)
as is the case for U, V .

So if the set {(U1, V1), (U2, V2), (U3, V3), (U4, V4)} is the set of valid U, V in the SVD for
F then forR1FRT

2 the corresponding set is: {(R1U1, R2V1), (R1U2, R2V2), (R1U3, R2V3), (R1U4, R2V4)}.
Also, Σ is invariant. Thus we can use any point-wise non-linearity on Σ since this
is also invariant. And if we define the action · on the set of 4 matrices as R ·
{U1, U2, U3, U4} = {RU1, RU2, RU3, RU4} then the map:

F 7→ ({Uiσ(Σ)}4i=1, {Viσ
′(Σ)}4i=1)

satisfies:

R1FRT
2 7→ (R1 · {Uiσ(Σ)}4i=1, R2 · {Viσ

′(Σ)}4i=1).

Thus the map is input bi-equivariant.

3. Since ∥R1FRT
2 ∥ = ∥F∥ we get R1FRT

2 7→ σ(∥R1FRT
2 ∥)

R1FRT
2

∥R1FRT
2 ∥ = R1σ(∥F∥) F

∥F∥R
T
2 .

Thus the map is input-output bi-equivariant.

7.5. Equivariant and Bi-Equivariant Properties of Attention layers

In this section we provide a more detailed analysis of the properties of the attention layers
defined in Section 4.2.
Intra point self-attention layer: Since this layer processes points coming from the same
point cloud and thus features that transform according to the same frame we require it to
preserve the standard equivariant property. Specifically, we can show the following:

Proposition 6 αintra
s is invariant and αintra

v is equivariant to the roto-translation of the
input point cloud:

αintra
s (Rxi + T, fs, Rfv) = αintra

s (xi, fs, fv)

αintra
v (Rxi + T, fs, Rfv) = Rαintra

v (xi, fs, fv)
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Proof [Proof sketch of proposition] It is easy to show that eij is invariant to transformations
of all the inputs of aintras since the first term uses only the invariant fs features and the
invariant rij geometric embedding introduced in Qin et al. (2022). In the second term a
transformation by R results in:

wq(Rfv(xi))
T (Rfv(xj))wk = wqfv(xi)

TRTRfv(xj)wk = wqfv(xi)
T fv(xj)wk

which is also invariant. As a result αintra
s (xi, fs, fv) is invariant since it only depends on eij

and fv and since the VN layer is equivariant to the rotations:

αintra
v (Rxi + T, fs, Rfv) = =

∑
xj∈X

exp(eij)∑
x′
j∈X

exp(eij′)
VNV (Rfv(xj))

=
∑
xj∈X

exp(eij)∑
x′
j∈X

exp(eij′)
RVNV (fv(xj))

= Rαintra
v (xi, fs, fv)

Inter point cross-attention: In this case the inter point cross-attention layer is required
to process and fuse information between points that transform according to different frames.
Thus it is required to preserve the bi-equivariant properties presented in Section 3. Starting
from the alignment layer of Equation 1 we can show the following:

Proposition 7 The alignment layer is equivariant to the rotations of its first input and
invariant to the rotations of its second input: a(Rxfv(xi), Ryfv(ypi)) = Rxa(fv(xi), fv(ypi))

Proof [Proof Sketch] Here following Proposition 4 we use the fact that the the Frobenius
norm is invariant to the rotation and as a result for the nonlinearity we have that:

ϕ(RxFRT
y ) = LayerN

(
∥RxFRT

y ∥
) RxFRT

y

∥RxFRT
y ∥

= LayerN (∥F∥)
RxFRT

y

∥F∥
= Rxϕ(F )RT

y

Then using the fact that the tensor product is bi-equivariant it is easy to show that b is
output bi-equivariant:

b(Rxfv(xi), Ryfv(ypi)) = ϕ(Rxfv(xi)⊗Ryfv(ypi))

= ϕ(Rx(fv(xi)⊗ fv(ypi))R
T
Y )

= Rxϕ((fv(xi)⊗ fv(ypi)))R
T
Y

and then

a(Rxfv(xi), Ryfv(ypi)) = b(Rxfv(xi), Ryfv(ypi))Ryfv(ypi)

= Rxb(fv(xi), fv(ypi))fv(ypi)

= Rxa(fv(xi), fv(ypi))
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Finally, for the overall inter-point cross-attention layer we can show that:

Proposition 8 αpair
s is invariant to the roto-translation of both point clouds X,Y . αpair

v is
equivariant to the roto-translation of X and invariant to the roto-translation of Y . Specifi-
cally given X ′ = RxX + Tx and Y ′ = RyY + TY :

αpair
s (Rxxi + Tx, FX′ , FY ′) = αpair

s (xi, FX , FY )

αpair
s (Rxxi + Tx, FX′ , FY ′) = RXαpair

s (xi, FX , FY )

Proof [Proof sketch] Here the layer is similar with the one in proposition 4.1 with different
second input being a(fv(xi), fv(ypi)) that is equivariant to the transformation of frame X.
So we can show the equivariance using the same arguments as proposition 4.1

7.6. Implementation Details

7.6.1. Input pre-processing

For the initial feature extraction, described in Section 7.2, we use four different subsampled
versions of the input point cloud, denoted as X(0), X(1), X(2), X(3). Each point cloud is
sampled using grid sampling where, for the ith subsampled version X(i), the voxel size is
set to 0.025 ∗ 2i.
During training, both the source and the reference point clouds are augmented with Gaus-
sian noise with standard deviation of 0.005. Additionally, for each point cloud, we limit the
total amount of points to 5000. If the input point clouds exceed this limit, we randomly
sample 5000 points from each one of them. We observed that enforcing this limit during
training has a minimum effect on the performance during testing, even when we test on
larger point clouds.

7.6.2. Model Architecture and Training

We implemented and evaluated BiEquiFormer in PyTorch Paszke et al. (2019) on an I9
Intel CPU, 64GB RAM and an NVIDIA RTX3090 GPU.

• Feature extraction: Our feature extraction network consists of consecutive “hybrid”
layers, similar to the ones proposed in Chen et al. (2022), that simultaneously process
both scalar invariant features and equivariant vector features by utilizing Vector Neu-
rons layers (Deng et al., 2021). In each layer, all points aggregate features from their
k nearest neighbors, where we set k = 20. We perform three aggregation steps for
each subsampled version of the point cloud. Similar to KPConv-FPN (Thomas et al.,
2019), we process the different subsampled versions from finer to coarser, where the
coarser points have as input features an aggregation of the extracted features of their
closest finer points.

• Coarse point correspondence: The coarse point correspondence model consists of
three consecutive blocks of an intra-point self-attention layer described in Section ??,
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followed by an inter-point cross attention layer that uses only the invariant features
of the point clouds, and an equivariant inter-point cross-attention layer described in
Section 4.2.

• Fine point matching: As discussed in Section 4.3, we extract fine point matches
between the local neighborhoods of the matched superpoints by using an optimal
transport layer. We use the Sinkhorn algorithm (Sinkhorn and Knopp, 1967) for 100
steps. After extracting the soft assignment between fine points, we use solve a weighted
Procrustes problem, to extract the local candidate transformations for the different
matched superpoints. Finally, we follow the Local to Global Registration scheme,
which selects the candidate transformation that minimizes the total alignment error.

• Iterative Refinement: When we perform the iterative refinement we train an initial
model for the first estimation of the alignment transformation and then a second model
that performs the refinement steps.

During training we supervise the output of the coarse matching module by using the overlap-
aware circle loss proposed in Qin et al. (2022). Additionally, similarly to Sarlin et al. (2020)
we supervise the fine point matches between the neighborhood Nxk

, Nyk by using a negative
log-likelihood loss on the output of the soft assignment matrix Zk produced by the optimal
transport:

Lf,k = −
∑

(x,y)∈Gk

log(zx,y)−
∑
x∈Ik

log(zx,mk+1)

−
∑
y∈Jk

log(zni+1,y)

where Gk is the set of ground truth fine point matches, Ik, Jk are the sets containing the rest
unmatched points and z.,mk+1, zni+1,. corresponds to the dustbin row and column output
from the learnable optimal transport module. We train our model for 40 epochs, using an
initial learning rate of 10−4 that we reduce by a scale of 0.95 each epoch. All the parameters
are optimized using the Adam optimizer (Kingma and Ba, 2015).

7.7. Local to Global Registration

The final alignment transformation is computed using a local-to-global registration scheme
proposed in Qin et al. (2022). For each candidate coarse match (xk(n), yk(n)) and their given
set of inliers Mk, we compute a candidate transformation Ri, Ti by solving the optimization
problem:

min
R,T

∑
(p,q)∈Mk

zp,q∥Rp+ t− q∥22

where zp,q is the entry corresponding to the soft assignment of the fine point p to the point
q in the optimal transport matrix Zk. Finally we pick as the global estimated transfor-
mation, the candidate that minimizes the alignment error over the combined set of inliers⋃

k=1,...,M Mk.
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7.8. Evaluation Metrics

Registration Recall (RR): the fraction of point clouds whose estimated transformation
has an error less by a set threshold. Specifically given a ground truth transformation Pgt

and the estimated transformation Pest we compute the RMSE error:

RMSE =

√
1

|Y |
∑
y∈Y

∥P−1
gt Pesty − y∥22

then the registration recall counts the fraction of registration with RMSE< 0.2m.

Inlier Ratio (IR) the fraction of fine point correspondences where their residual under
the ground-truth transformation is below 0.1m.

Relative Rotation and Relative Translation Error: the relative rotation error and
relative translation error between the estimated and ground truth transformation

7.9. Qualitative Results

In Figure 4 we provide additional qualitative results with registrations achieved by our
method. We show examples of both high and low overlap from the test set of 3DMatch and
3DLoMatch.

7.10. Limitations

One limitation of the current network is that, while in the robust setting, it achieves state-
of-the-art results, in the canonical setting there is a performance gap with the current best
methods. We conjecture that this can be attributed to the feature extraction backbone
VNN Deng et al. (2021) and we will investigate alternatives in the future.

Another limitation of the pipeline is an additional memory overhead coming from the
tensor products in the attention modules. While we did our best to create a scalable and
compact architecture, the toll to satisfy the equivariance constraint exactly is that some
blocks might require additional operations to their non-equivariant counterparts. While in
the 3DMatch setting, this did not make a difference, the method has to be adapted properly
in order to register scenes with millions of points.

A general limitation of correspondence-based methods like ours is that when the overlap
is zero as in Point Cloud Assembly tasks the network cannot treat PCR properly. Moreover,
as typical in PCR literature, it is implicitly assumed that there is a correct alignment for
the input pairs. The network is designed to predict the best alignment possible even when
no alignment is correct. Thus in order to integrate it into bigger SLAM pipelines for loop
closure detection etc. additional extensions need to be done.

Lastly, the case of symmetric parts where multiple alignments are possible is not treated
in this work. However, we conjecture that the advantages of our method in equivariant
feature extraction from the neighboorhoods together with the local robust estimators (LGR)
that propose different rotations per-neighboorhood before selecting a single one can lead to
multiple consistent hypotheses in the cases of symmetric objects.
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Input Point Cloud Estimated Registration Ground Truth

Figure 4: Registration results achieved by our method compared to the ground truth align-
ment.
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7.11. Broader Impact

In this work, we address a major robustness limitation of current deep learning methods
on point cloud registration. Our theoretical and methodological contributions, for example
the novel bi-equivariant layers presented, have the potential to advance any pipeline that
respects similar symmetries (for example pick-and-place in robotics manipulation).

Moreover, Point Cloud Registration can be used as the front end of larger SLAM
pipelines. Our method guarantees that the registration will be consistent w.r.t. the scan
poses meaning that there is no adversarial pose that would make the network behave errat-
ically. If PCR is integrated into safety-critical applications this is a major advancement on
verifiable safety.
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