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Abstract— Monocular 3D human pose estimation involves
predicting the 3D pixel coordinates of key body joints from
a 2D image or video. Typically, a 2D estimation model is
employed to initially determine joint locations in an image,
followed by training a separate model to lift these positions to
3D coordinates. In this paper, we evaluate the performance
of recently proposed 2D human pose estimation models as
different inputs for training and evaluation of 2D-3D lifting
models. In addition, we propose four simple merging strategies
to combine the outputs of these 2D human pose estimators
and generate less noisy 2D inputs. To evaluate, four recent 2D
pose estimators—ViTPose, PCT, MogaNet, and TransPose—are
selected, and their corresponding 2D outputs are generated on
the Human3.6M dataset. Subsequently, MotionAGFormer and
PoseFormerV2 are trained and evaluated using each created
2D input and its corresponding 3D motion-capture ground
truth. ViTPose stands out as the top-performing 2D estimator,
and employing all merging strategies proves beneficial in
generating a less noisy 2D input. Code and data are available
at https://github.com/TaatiTeam/2DEstimatorEval.

I. INTRODUCTION

Monocular 3D human pose estimation entails predicting
3D pixel coordinates of key body joints, such as knees,
hips, and elbows, based on a 2D image or video. The
method is used in a variety of applications, ranging from
augmented [11] and virtual reality [15], to autonomous
vehicles [2], clinical monitoring [3] and human-computer
interaction [16]. Nevertheless, the inherent challenge in this
process lies in its ill-posed nature, mainly due to depth
ambiguities present in the 2D input data.

Since the majority of datasets in this domain are collected
in controlled laboratory settings, directly estimating 3D poses
from images lacks generalizability. On the other hand, 2D
pose estimation models are trained with a wide range of data
reflecting different environments. Consequently, a common
approach for 3D human pose estimation involves a two-step
process: (i) locating the 2D positions of key body joints
in video frames, followed by (ii) lifting these 2D pixel
coordinates to 3D.

While there have been numerous models suggested for
each of these two stages, the connection between 2D human
pose estimation and the subsequent 3D lifting process has not
been thoroughly investigated. Typically, practitioners employ
an off-the-shelf 2D pose detection model fine-tuned on 2D-
3D lifting dataset video frames. However, this method comes
with a drawback during evaluation. The 2D detection model
has already been trained on a recording environment similar
to the test dataset, resulting in less noisy 2D data that does

not hold true for in-the-wild videos, making the evaluation
less representative of real-world conditions. This work aims
to experimentally find the best available 2D human pose
estimation model(s) for the specific subsequent task of 3D
lifting, without fine-tuning on the training dataset. Our main
contributions are:

• We examine the utility of four 2D pose estimators,
including from the top of the 2D leaderboards [13],
[1], for the specific task of 3D lifting, and compare
them with Detectron [7] (with a ResNet101-FPN back-
bone [12]), and CPN [4] that are fine-tuned on 2D-
3D lifting dataset. The models are: TransPose [25],
MogaNet [9], ViTPose [24], and PCT [6].

• We propose four simple merging strategies to combine
2D key joints coordinates of aforementioned 2D human
pose estimation models and generate less noisy 2D
inputs for 3D lifting, thereby improving 3D human pose
lifting performance.

II. RELATED WORK

2D human pose estimation. These models receive a
single RGB image as input and output locations of main
joints in 2D pixel coordinate. Cascaded Pyramid Network
(CPN) [4] introduces GlobalNet, a feature pyramid network
aimed at localizing keypoints that are easily detectable,
such as eyes and hands. Furthermore, the CPN incorpo-
rates an additional module called RefineNet, specifically
devised to handle the localization of occluded keypoints.
Stacked Hourglass [17] employs several stacked hourglass
modules, enabling iterative bottom-up and top-down infer-
ence processes. TransPose [25] uses a CNN backbone to
extract high-level image features and then uses a transformer
encoder to process these extracted features. MogaNet [9]
proposes a new family of pure ConvNet structure which
shows competitive results in various computer vision tasks,
including object detection, semantic segmentation, and 2D
human pose estimation. ViTPose [24] employs a pure vision
transformer for extracting image features and by using two
deconvolution layers as the decoder, it generates heatmaps
containing the 2D keypoints of different areas of the body.
PCT [6] proposes a structured representation to constrain
joint locations and prevent the model output to generate
unrealistic pose estimates.

Monocular 3D human pose estimation. Earlier methods
involved determining the 3D coordinates of joints directly
from video frames, without the need for any intermediary
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processing to locate 2D pixel coordinates [18], [19], [22],
[28]. Inspired by the rapid development and availability of
accurate 2D pose estimation models, more recent models
receive a sequence of 2D human pose as input and lift them
to 3D coordinate system. VideoPose3D [20] uses dialated
temporal convolutions over 2D keypoints to infer the 3D pose
sequence. PoseFormer [27] is the first method that proposes
spatial transformers to extract intra-frame information be-
tween joints and temporal transformers to extract inter-frame
information. PoseFormerV2 [26] enhances its computational
efficiency by using a frequency-domain representation, which
also conferred robustness against abrupt movements in noisy
data. STCFormer [23] proposes two parallel branches, one
using spatial transformers and the other using temporal trans-
formers. P-STMO [21] introduces masked pose modeling
and achieves a lower final error through self-supervised
pretraining. Enfalt et al. [5] reduce computational complexity
by utilizing masked token modeling. In StridedFormer [10],
the traditional fully-connected layers in the feed-forward
network of the transformer encoder are substituted with
strided convolutions. This modification aims to gradually
reduce the sequence length and effectively enhance the
central frame. MotionBERT [29] further improves the perfor-
mance by using spatial-temporal stack of transformers in one
branch and temporal-spatial transformers in another branch.
MotionAGFormer [14] uses spatial-temporal transformers in
one branch and Graph Convolutional Networks (GCNs) in
another branch to capture a complementary information and
output more accurate results.

In the experiments, we chose MotionAGFormer and Pose-
FormerV2 for the 2D-3D pose lifting task. For a fair com-
parison, MotionAGFormer is modified to accept 2D inputs
without confidence scores and trained with the same data
preprocessing as PoseFormerV2.

III. METHOD

We use recent 2D estimation models, trained on the MS
COCO Keypoint dataset [13], to estimate 2D keypoints on
the Human3.6M dataset [8]. Following that, we use the
estimated 2D pose sequences as input to train the 2D-3D
lifting models. Finally, we evaluate four simple merging
strategies to combine different estimated 2D sequences and
further improve the final 3D lifting accuracy.

A. 2D Human Pose Estimation

State-of-the-art models such as ViTPose [24], PCT [6],
MogaNet [9], and TransPose [25], trained on the MS COCO
dataset, are used to estimate 2D pose sequences for Hu-
man3.6M dataset. However, the 2D pose output format in
MS COCO differed from that of the Human3.6M dataset.
To align them, we converted the keypoints as illustrated in
Figure 1. In addition to the abovementioned four models, we
also used two 2D pose sequences used in VideoPose3D [20],
i.e., CPN [4] fine-tuned on Human3.6M and Detectron [7]
with and without fine-tuning. While the fine-tuned sequences
were already in Human3.6M format, we converted the De-

Fig. 1: MS COCO and Human3.6M keypoints format. For
models trained on MS COCO dataset, we convert them to
Human3.6M format.
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Fig. 2: 3D human pose estimation pipeline. Initially, a
2D pose sequence is estimated from the RGB video using a
2D pose estimator. Subsequently, a 2D-3D lifting model is
trained to lift 2D poses to 3D.

tectron sequences without fine-tuning to match the required
format.

B. Merging Strategy

Four different simple merging strategies are proposed to
improve the final 2D-3D lifting performance by introducing
less noisy 2D data.

Winner-take-all (WTA) merging. For this merging strat-
egy, for a single keypoint (e.g., right knee) estimated with
different 2D estimators, the 2D estimate that has the least dis-
tance with the ground truth among all the training frames in
Human3.6M is selected. For the ground truth, we project the
motion capture 3D coordinates into 2D pixels by leveraging
the camera intrinsic and extrinsic parameters. Specifically,
given 3D coordinates PW in world coordinate system, we
use

PC = R(PW − T ) (1)



to convert it to camera coordinates system
PC = (Xc, Yc, Zc) where R and T are rotation and
translation parameters, respectively. Next, It is projected to
2D coordinates using

u = f
Xc

Zc
+ cx, (2)

v = f
Yc

Zc
+ cy, (3)

where Pp = (u, v) is 2D coordinates in pixel coordinates
system. The intrinsic parameters, f , cx, cy , denote focal
length and image center, respectively. Finally, for selecting
the estimator d for a joint j, the 2D coordinates P t

p′,j is
represented as

P t
p′,j = P t

d,j ,

where d = arg min
1≤i≤D

T∑
t=1

||P t
p,j − P t

i,j ||.
(4)

Here, D = 4 is the number of 2D estimators (trained on
MS COCO dataset) and T is the total number of frames in
Human3.6M used for training.

Average merging. In this merging approach, we compute
the average of ViTPose, PCT, and MogaNet for each indi-
vidual frame within the sequence. This averaging process
aims to mitigate the impact of noise in the 2D input. Given
that each estimator introduces varying levels of noise for a
specific frame, combining their outputs through averaging
is anticipated to yield a less noisy 2D input. Based on
preliminary experiments, we decided not to use TransPose
for average merging, because in general its output was signif-
icantly noisier than the other three model (see experimental
results for more details).

Weighted average merging. In this approach, we incorpo-
rate the confidence scores of each 2D estimation as weights
in a weighted average. We normalize the confidence scores of
PCT (provided as logits) to probabilities. This strategy allows
us to account for the confidence levels associated with each
estimator’s output, offering a more informed combination of
results.

Concatenate merging. In this merging strategy, we con-
catenate results from ViTPose, PCT, and MogaNet, and train
a model to lift T×J×2N data, with T as frames, J as joints,
and N as number of 2D estimators.

C. 2D-3D Lifting

Following estimation of 2D pose sequences, Pose-
FormerV2 [26] and MotionAGFormer-B [14] are trained for
the task of 2D-3D lifting (Figure 2). Among PoseFormerV2
variants, the model with the receptive field of 27 and f = 3

was selected for fast training and inference time. For the
evaluation, Mean Per Joint Position Error (MPJPE) is used,
defined as:

MPJPE = ΣT
t=1Σ

J
j=1∥P̂t,j −Pt,j∥, (5)

where J is number of joints, T is number of frames in batch
of data, and P̂ and P are the ground-truth 3D motion capture
and estimated 3D pose, respectively.

IV. EXPERIMENTAL RESULTS

A. Quantitative Comparison of 2D Sequences

The 2D sequences generated by different 2D estimators
are initially transformed into the Human3.6M format, as
illustrated in Figure 1. These converted sequences are then
compared with the 2D ground truth, calculated through the
3D-2D camera projection process outlined in Equations 2
and 3. For the comparison, we incorporate all the train-
ing data from human participants 1, 5, 6, 7, and 8 in
Human3.6M. Subsequently, we calculate the average for
each joint by considering all frames across all the videos.
The comparison for a subset of joints is illustrated in
Figure 3. ViTPose generally surpasses other estimators in
terms of mean per-joint position error, leading to more
precise keypoint outputs. Nevertheless, for certain keypoints,
PCT tends to yield more accurate keypoints on average
compared to ViTPose. We hypothesize that the disparities
in errors across various body regions can be attributed to the
distinct biases inherent in each model, stemming from the
use of different architectures. Building upon this concept,
during WTA merging, ViTPose is predominantly employed,
except for the following keypoints, where PCT exhibits lower
average errors on training data: Left Knee, Upper Torso,
Center Head, and Left Shoulder.

B. Quantitative Comparison of 3D Sequences

Table I compares the estimated 3D sequences with the
motion capture 3D ground truth on the Human3.6M dataset
after training 2D-3D lifting models using different 2D esti-
mations as input. By comparison, ViTPose attains the lowest
mean per-joint position error among the four recent models
assessed for this task. The ultimate performance is 2.96 mm
and 3.22 mm higher when compared to the scenario where
PoseFormerV2 and MotionAGFormer are trained with the
fine-tuned CPN model, respectively. It is important to note
that CPN model used was fine-tuned on the Human3.6M
dataset. We consider this approach unfair since the training
and testing data in the Human3.6M dataset share identical
environments and cameras, with subjects positioned at nearly
the same distances. Consequently, CPN may acquire biases
from the Human3.6M dataset that may not be applicable



Fig. 3: Mean per-joint position error between each tested
2D estimator and the 2D ground truth. (L: left, R: right, U:
upper, C: center)

to real-world scenarios where the subject is situated in a
completely different environment. The performance of CPN
without fine-tuning confirms our assertion, as the trained
2D-3D lifters exhibit inferior behavior compared to both
PCT and ViTPose. Through the usage of the 2D sequences
obtained via the merging strategies, we can enhance the
performance of 2D-3D lifting models. Among the various
merging strategies, WTA merging and concatenate merging
were effective in reductions 3D error compared to ViTPose
in PoseFormerV2 and MotionAGFormer, respectively.

TABLE I: The mean per-joint position error (mm) comparisons
of estimated 3D keypoints on Human3.6M after training the Pose-
FormerV2 and MotionAGFormer using different 2D estimations.

2D Estimator Finetuned MPJPE (mm)
PoseFormerV2 MotionAGFormer

Detectron [7] × 59.56 52.00
Detectron [7] ✓ 55.91 47.48
CPN [4] × 55.96 48.27
CPN [4] ✓ 49.65 42.63
MogaNet [9] × 54.77 48.52
TransPose [25] × 66.20 52.87
PCT [6] × 53.26 46.61
ViTPose [24] × 52.61 45.85
Merge (WTA) × 51.96 45.78
Merge (Average) × 52.53 46.32
Merge (Weighted Average) × 52.50 45.54
Merge (Concatenate) × 52.13 45.27

C. Qualitative Comparison of 3D Sequences

Figure 4 visualizes the difference between sample esti-
mated 3D sequences and the motion capture 3D ground
truth on the Human3.6M dataset after training PoseFormerV2
and MotionAGFormer using different 2D estimations as
input. CPN generally aligns better with the ground-truth.
Among different merging strategies for PoseFormerV2 in
Figure 4 (a), the WTA strategy has slightly fewer errors in
some keypoints (e.g. right hand, left ankle), though it’s a

Fig. 4: Qualitative comparisons of estimated 3D keypoints
on Human3.6M after training the (a) PoseFormerV2 and (b)
MotionAGFormer using different 2D estimations. Transpar-
ent gray skeleton represents the ground-truth 3D pose. The
right part is shown in red, and the left part and torso are
shown in blue. WTA: Winner-take-all

bit worse in others (e.g. left hand). Overall, WTA shows a
bit better performance. Figure 4 (b) exhibits a similar trend,
where concatenate merging demonstrates superior alignment
compared to other merging strategies.

V. CONCLUSION

Among the four recent 2D human pose estimators used
in the 2D-3D pose lifting process, ViTPose exhibited the
most promising results. Specifically, it generates the most
precise 2D estimations for the majority of the keypoints, and
achieves the lowest mean per-joint position error of estimated
3D sequences. Additionally, we investigated four merging
strategies to combine the outputs of the 2D estimators to fur-
ther reducing the final error in the estimated 3D sequences.
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